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ABSTRACT

Atomistic foundation models, trained on extensive and diverse datasets, now
achieve near ab initio accuracy across broad molecular and material systems while
demonstrating strong transferability across chemical spaces. However, their large
parameter counts result in high inference latency and large memory requirements,
hindering long-time-scale molecular dynamics simulations and deployment on
resource-constrained hardware. In practice, researchers in physical chemistry of-
ten focus on specific chemical subdomains, where compact specialized models
with fewer parameters would be sufficient—provided they inherit appropriate in-
ductive biases from large foundation models. This need motivates distillation tech-
niques that compress foundation models into efficient specialized models while
preserving accuracy. In this paper, we propose an architecture-agnostic distilla-
tion method: Joint Atomic Energy–Energy Hessian Distillation. This approach
augments state-of-the-art Hessian supervision with atomic energy, which comple-
ments low-frequency components at minimal computational overhead (<0.5%).
Compared with the current state-of-the-art method, our method consistently im-
proves energy MAE over Hessian-only distillation (averaging 48.3% on SPICE
and 6.1% on MPtrj datasets) while achieving comparable force MAE (average
improvement of 1.4%). Ultimately, our approach reduces parameter counts by
78%–98%, enabling fast and deployment-friendly specialized models for targeted
chemical subdomains.

1 INTRODUCTION

Foundation models (FMs) have emerged as a powerful tool in computational materials science,
demonstrating remarkable accuracy and generalization capabilities in property prediction and ma-
terials discovery (Deng et al., 2023; Batatia et al., 2023; Fu et al., 2025; Kovács et al., 2025;
Wood et al., 2025). These gains stem from large, heterogeneous quantum-based datasets span-
ning molecules and materials, including OC20/OC22 for catalysis (Chanussot et al., 2021; Tran
et al., 2023), SPICE/OMol25 for molecules (Eastman et al., 2023; 2024; Levine et al., 2025), and
MPtrj/OMat24 for materials (Deng et al., 2023; Barroso-Luque et al., 2024), as well as architec-
tures that combine message passing with strong physical inductive biases such as invariance and
equivariance to capture complex interatomic interactions.

Despite this progress, the architectural complexity and large parameter counts of FMs limit their
practicality for million-step molecular dynamics and large-scale relaxations. specialized machine
learning force fields (MLFFs) such as DeePMD (Wang et al., 2018), PaiNN (Schütt et al., 2021),
and GemNet (Gasteiger et al., 2021) provide much faster inference and can support billion-atom
simulations at nanoseconds per day on top supercomputers (Jia et al., 2020; Guo et al., 2022). In
many studies, researchers focus on specific chemical subdomains, such as specific elements, space
groups, or biomolecular families. In such settings, compact and fast models are sufficient (Unke
et al., 2021). This motivates transferring the capabilities of FMs into small specialized models.

Knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021) is a well-established method for
improving the speed-accuracy trade-off by transferring information from a large teacher model to a
smaller student model. Beyond classic logit-based KD, feature-based protocols align intermediate

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

representations (e.g., node, edge, or vector features) and have recently been adapted to molecular
graph neural networks (GNNs), yielding accuracy gains in energy/force regression without chang-
ing student architectures or reducing throughput (Das et al., 2023; Ekström Kelvinius et al., 2023;
Sheshanarayana & You, 2025). However, feature matching can be brittle when teacher and student
differ in inductive biases and internal feature parameterizations.

A complementary approach is to distill architecture-agnostic and physically meaningful informa-
tion directly from the energy surface itself. Recently, Amin et al. (2025) proposed the current
state-of-the-art Hessian distillation method, which aligns rows of the teacher’s energy Hessians
with those of the student during training. This Hessian distillation transfers local curvature (Ro-
driguez et al., 2025), while remaining agnostic to internal feature choices and working across direc-
tional/equivariant designs and across direct-force/conservative-force parameterizations. Conceptu-
ally, training to match function derivatives echoes the broader idea of Sobolev training (Czarnecki
et al., 2017), which can improve sample efficiency and generalization by supervising gradients or
higher-order derivatives.

In this paper, our goal is to distill fast, domain-specialized small models from large foundation
models for specific chemical subdomains such as selected element families, space groups, or molec-
ular families while preserving throughput, deployment friendliness, and consistent energy and force
accuracy. We first present a spectral analysis of Hessian distillation, formalizing that the errors
of energy, forces, and Hessians share the same Fourier coefficients weighted by 1, ω2, and ω4,
respectively. Building on this insight, we propose joint Atomic Energy–Energy Hessian distilla-
tion. Atomic energy decomposition is a commonly used method in MLFFs and can complement
low-frequency components without incurring much overhead. We demonstrate our method on the
foundation models MACE-OFF (Kovács et al., 2025) trained on SPICE (Eastman et al., 2023; 2024),
MACE-MP (Batatia et al., 2023) trained on MPtrj (Deng et al., 2023), and eSEN (Fu et al., 2025)
trained on MPtrj, sAlex, and OMat24 (Barroso-Luque et al., 2024), where the joint objective con-
sistently outperforms Hessian distillation on energy MAE (averaging 48.3% on SPICE and 6.1% on
MPtrj) with minimal computational overhead (<0.5%), while achieving comparable force MAE to
Hessian distillation (average improvement of 1.4%). Ultimately, our method delivers a 78%–98% re-
duction in parameter counts, enabling fast and deployment-friendly specialized models for targeted
chemical subdomains.

2 PRELIMINARIES

Machine Learning Force Fields. Given a system of N atoms with Cartesian coordinates R =
(r(1), . . . , r(N)) ∈ RN×3 and atomic numbers Z = (z(1), . . . , z(N)) ∈ RN , a MLFF predicts the
total potential energy Êtot ∈ R and per-atom forces F̂ = (f (1), . . . ,f (N)) ∈ RN×3. Typically, the
total energy is parameterized via an atomic decomposition. The model first outputs atomic energies
Êatom = (Ê

(1)
atom, . . . , Ê

(N)
atom) ∈ RN , and aggregates them as:

Êtot =

N∑
i=1

Ê
(i)
atom. (1)

With reference labels Etot and F from first-principles calculations, the MLFF is generally trained
with the energy–force objective:

L0 = λELE(Êtot, Etot) + λFLF(F̂ ,F ), (2)
where LE and LF are typically mean square (or mean absolute) errors weighted by λE, λF ∈ R+.

Knowledge Distillation(KD). In KD, a pretrained teacher model provides auxiliary supervision
through an additional loss term LKD. Augmenting the base objective yields the final training objec-
tive:

L = L0 + LKD. (3)

Energy Hessian distillation. As proposed by Amin et al. (2025), the energy Hessians of the teacher
HT =

∂2ET
tot

∂R2 can serve as a curvature target. The student matches this curvature by aligning its
Hessians:

LKD = λHLH(
∂2Êtot

∂R2
,HT ), (4)
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where λH is a hyperparameter controlling the strength of KD. For models that predict forces directly,
HT can equivalently be realized as the negative Jacobian of the predicted forces HT = −∂FT

∂R . To
reduce computational cost, Amin et al. (2025) further supervises only a subsample of Hessian rows
through Vector–Jacobian products, which preserves curvature guidance while scaling linearly with
the number of sampled rows (see Appendix A.1 for details).

3 METHOD

In this section, we first analyze the energy Hessian distillation from a frequency-domain perspective.
This objective assigns larger weights to higher-frequency components and smaller weights to lower-
frequency components (Section 3.1). Based on this, we combine it with atomic energy supervision,
which introduces a frequency-independent spectral floor for the total energy error, thereby directly
constraining low-frequency components while retaining strong suppression of high-frequency com-
ponents (3.2). All proofs are given in the Appendix A.2.

3.1 ANALYSIS OF ENERGY HESSIAN DISTILLATION

We analyze how distillation with energy Hessians shapes the error spectrum of energies and forces.
Because forces are the negative gradient of energy and Hessians are its second derivative, their errors
are intrinsically correlated. We formalize this correlation using a Fourier analysis below.

Setting and notation. Let N be the number of atoms and set d = 3N for the number of Cartesian
degrees of freedom. Fix a reference configuration R⋆ ∈ Rd and write displacements x = R−R⋆ ∈
Rd. Let ET

tot, E
S
tot : X → R denote the total energies of the teacher and the student on a domain

X ⊂ Rd containing a neighborhood of 0. The associated forces and Hessians are defined by:

F T (x) = −∇ET
tot(R⋆ + x), HT (x) = ∇2ET

tot(R⋆ + x), (5)

F S(x) = −∇ES
tot(R⋆ + x), HS(x) = ∇2ES

tot(R⋆ + x). (6)
We define the energy, force, and Hessian errors by:

δEtot(x) = ES
tot(R⋆+x)−ET

tot(R⋆+x), δF (x) = F S(x)−F T (x), δH(x) = HS(x)−HT (x).
(7)

For vectors we use the Euclidean norm ∥ · ∥2, and for matrices the Frobenius norm ∥ · ∥F . Equipping
X with the Lebesgue measure, we define the L2 norms by:

∥δEtot∥2L2 =

∫
X
|δEtot(x)|2dx, ∥δF ∥2L2 =

∫
X
∥δF (x)∥22dx, ∥δH∥2L2 =

∫
X
∥δH(x)∥2F dx.

(8)

To simplify the treatment of boundary terms in Fourier expansions, we assume periodic boundary
conditions in space. This assumption is natural for crystalline systems. For aperiodic systems, since
our interest is typically limited to the rational chemical space within a finite region, it is unnecessary
to integrate over the entire space when evaluating errors. In such cases, the boundary can be reason-
ably approximated as periodic to avoid complications from boundary terms, without affecting the
validity of results in the local region.

Assumptions. We make the following assumptions used in the analyses.

(A1) (Periodicity) There exists L > 0 such that X is identified with the d-dimensional flat torus
Td := (R/LZ)d, equipped with the Lebesgue measure. We therefore regard ET

tot and ES
tot

as L-periodic functions on Td.
(A2) (Regularity) ET

tot, E
S
tot, δEtot ∈ C2(Td). In particular, ∇δEtot and ∇2δEtot exist pointwise

and belong to L2(Td,dx).

Fourier basis and frequencies. Let {φk}k∈Zd be the orthonormal Fourier basis of L2(Td,dx):

φk(x) := L−d/2 exp
(
i
2π

L
k·x

)
, k ∈ Zd, (9)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

so that
∫
Td φkφℓdx = δkℓ. We expand

δEtot(x) =
∑
k∈Zd

akφk(x), ak =

∫
Td

δEtot(x)φk(x)dx ∈ C, (10)

and for real-valued δEtot we have a−k = ak. Define the angular frequency ωk := 2π
L ∥k∥2.

We next make explicit how derivative relationships translate into frequency-weighted errors. The
following two lemmas formalize this link and set up the spectral identities we will use throughout.
Lemma 3.1 (Force/Hessian errors are derivatives of the energy error). For all x ∈ Td,

δF (x) = −∇δEtot(x), δH(x) = ∇2δEtot(x). (11)

This identity lets us study all three errors via a single scalar δEtot. With this representation, Parseval–
Plancherel turns L2 norms into weighted sums over Fourier coefficients.
Lemma 3.2 (Parseval–Plancherel identities for δEtot, δF , δH).

∥δEtot∥2L2 =
∑
k∈Zd

|ak|2, (12)

∥δF ∥2L2 =
∑
k∈Zd

ω2
k |ak|2, (13)

∥δH∥2L2 =
∑
k∈Zd

ω4
k |ak|2. (14)

Hence, energy, force, and Hessian share the same Fourier coefficients ak, weighted respectively
by 1, ω2

k, and ω4
k. This frequency weighting underlies all subsequent bounds. The ω2

k versus ω4
k

weighting immediately yields an L2 control of force error by Hessian error.
Theorem 3.3 (Force is controlled by Hessian).

∥δF ∥2L2 ≤
( L

2π

)2∥δH∥2L2 . (15)

Moreover, if the Fourier expansion of δE satisfies a spectral gap ωk ≥ Ω0 > 0 whenever ak ̸= 0
and k ̸= 0, then

∥δF ∥2L2 ≤ Ω−2
0 ∥δH∥2L2 . (16)

The constant (L/2π) is optimal and dimension-free, and the equality holds for any single Fourier
mode with ∥k∥2 = 1.

This shows that reducing Hessian error necessarily reduces force error, up to a sharp constant. Be-
cause higher frequencies are amplified more strongly (ω4) in the Hessian norm, minimizing Hessian
error preferentially suppresses high-frequency components of δEtot. The next result quantifies this
suppression above any frequency threshold Ω.
Theorem 3.4 (High-frequency suppression under Hessian-only training). For any Ω > 0 and define
K≥Ω := {k ∈ Zd : ωk ≥ Ω} and K<Ω := Zd \ K≥Ω. Then∑

k∈K≥Ω

|ak|2 ≤ Ω−4∥δH∥2L2 , (17)

∑
k∈K≥Ω

ω2
k|ak|2 ≤ Ω−2∥δH∥2L2 . (18)

Thus, Hessian-only training enforces small high-frequency content both in energy error and in the
induced force error. However, the same argument provides only weak control at low frequencies,
where the ω weights are small. Decomposing δEtot into low- and high-frequency parts yields the
following corollary.
Corollary 3.5 (Limited control of energy by Hessian-only). For any Ω > 0,

∥δEtot∥2L2 =
∑

k∈K<Ω

|ak|2 +
∑

k∈K≥Ω

|ak|2 ≤
∑

k∈K<Ω

|ak|2 +Ω−4 ∥δH∥2L2 . (19)

In particular, the constant mode a0 is completely unconstrained by Hessian training.

4
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Teacher

Student

Energy

Low Freqency

High Freqency

Real Space Fourier Space

Figure 1: Joint Atomic Energy–Energy Hessian Distillation. The knowledge distillation loss
includes matching of atomic energies (low-frequency supervision) and energy Hessians (high-
frequency supervision) between the teacher and student models.

3.2 JOINT ATOMIC ENERGY–ENERGY HESSIAN DISTILLATION

Section 3.1 shows that Hessian-only training strongly damps high-frequency errors but leaves low-
frequency components weakly constrained. Here, we augment the objective with atomic energy
supervision from the teacher model to improve total energy prediction.

Our distillation objective is as follows:

LKD = λEatomLEatom(Êatom,E
T
atom) + λHLH(

∂2Êtot

∂R2
,HT ), (20)

where λEatom , λH ∈ R+ control the relative weights of the two terms. Here, ET
atom and HT denote the

atomic energies and energy Hessians of the teacher, while Êatom and Êtot are the student’s atomic
energies and total energy predictions.

In practice, we adopt the same sampling strategy and implementation settings as in energy Hessian
distillation (Amin et al., 2025). The atomic energy term complements curvature matching by pro-
viding localized supervision on per-atom contributions. Importantly, supervising atomic energies
incurs negligible overhead: it only requires caching the model’s intermediate per-atom outputs at
inference time, without additional forward passes beyond those already performed for energy/force
prediction.

Let atomic energies error be δE
(i)
atom = E

S,(i)
atom − E

T,(i)
atom and assume δE

(i)
atom ∈ L2(Td). The total

energy error is the sum of atomic energies error δEtot =
∑N

i=1 δE
(i)
atom. We reanalyze the joint

training objectives.

Intuitively, atomic energy matching should impose a uniform, frequency-agnostic penalty, whereas
Hessian matching amplifies penalties at higher frequencies. The following theorem makes this de-
composition precise by exhibiting an explicit mode-wise lower bound.
Theorem 3.6 (Atomic energy and energy Hessian supervision induces a uniform spectral floor).
Define the joint objective

Lα,β := α

N∑
i=1

∥δE(i)
atom∥2L2 + β∥∇2δEtot∥2L2 , α, β > 0. (21)

then ∑
k∈Zd

(
α

N
+ βω4

k)|ak|2 ≤ Lα,β . (22)

Hence every frequency component of δEtot is penalized by at least α/N , and the constant mode is
directly constrained.

5
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Decomposing the spectrum at an arbitrary threshold Ω turns the mode-wise bound into controls for
low and high frequencies. The corollary below quantifies these two regimes.
Corollary 3.7 (Uniform low-frequency and high-frequency suppression). For any Ω > 0 and define
K≥Ω := {k ∈ Zd : ωk ≥ Ω} and K<Ω := Zd \ K≥Ω. Then∑

k∈K<Ω

|ak|2 ≤ N

α
Lα,β , (23)

∑
k∈K≥Ω

|ak|2 ≤ 1

α/N + βΩ4
Lα,β . (24)

In particular, for the constant mode, |a0|2 ≤ (N/α)Lα,β .

4 EXPERIMENTS

To evaluate our proposed method, we present a comprehensive comparison of the three objectives
under strictly matched conditions for distilling student models in specific chemical subdomains:

No distillation: L = L0 = λELE(Êtot, Etot) + λFLF(F̂ ,F ),

Hessian: L = L0 + λHLH(
∂2Êtot

∂R2
,HT ),

Atomic Energy + Hessian: L = L0 + λEatomLEatom(Êatom,E
T
atom) + λHLH(

∂2Êtot

∂R2
,HT ),

where Etot,F in L0 are DFT labels from training datasets, while ET
atom,H

T are provided by the
teacher model.

4.1 EXPERIMENTAL SETUP

Teacher Models. We consider three pretrained teachers that span organic and inorganic domains
and differ in the architecture and training datasets. MACE-OFF (Kovács et al., 2025) is a short-
range, higher-order equivariant message passing potential trained primarily on an augmented subset
of SPICE (Eastman et al., 2023; 2024) at the ωB97M–D3(BJ)/def2–TZVPPD level of quantum
mechanics, covering neutral organic molecules with elements H, C, N, O, F, P, S, Cl, Br, and I.
It provides high-accuracy energies and forces suitable for small molecules and biomolecular frag-
ments. MACE-MP (Batatia et al., 2023) is a universal materials model trained on MPtrj (Deng et al.,
2023) of DFT (PBE/GGA+U) relaxation trajectories for ∼150,000 inorganic crystals, designed to
deliver stable molecular dynamics and transferable accuracy across diverse inorganic systems. Fi-
nally, eSEN (Fu et al., 2025) is a recent smooth and expressive equivariant interatomic potential
introduced to improve downstream physical-property predictions (e.g., stability, phonons, thermal
transport) and trained on MPtrj, sAlex, and OMat24 dataset (Barroso-Luque et al., 2024). For each
dataset, we use the teacher trained on that subdomain to generate labels, including atomic energies
ET

atom and Hessians HT via second-order derivatives.

Datasets and Metrics. We distill student models on representative subsets from the organic SPICE
dataset and the inorganic MPtrj dataset. For SPICE, we use Monomers, Solvated Amino Acids, and
Systems with Iodine as three subdomains. For MPtrj, we use Pm3m Spacegroup, Systems with
Yttrium, and Systems with band gap ≥ 5meV. These selections follow previous work (Amin et al.,
2025) and span small organic molecules, solvated biomolecular fragments, heavy-atom systems,
high-symmetry crystalline configurations, Y-containing materials, and electronically filtered mate-
rials, covering both near-equilibrium and perturbed configurations. Primary metrics are: (i) energy
MAE (lower is better), reported as total MAE (meV) or per-atom MAE (meV/atom); (ii) force MAE
(meV/Å) (lower is better). We also provide a MD stability analysis in Appendix A.9.

Student Models. We adopt three widely used rotational equivariant graph neural networks as stu-
dents: GemNet-dT, PaiNN, and GemNet-T. GemNet-dT and GemNet-T (Gasteiger et al., 2021) are
directional message passing architectures with angle and dihedral angle features designed to cap-
ture higher-order geometric correlations in local neighborhoods, while PaiNN (Schütt et al., 2021)

6
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Figure 2: Accuracy of student models on energy and forces. (a) Results of distilling MACE-OFF
trained on SPICE into student MLFFs. (b) Results of distilling MACE-MP trained on MPtrj into
student MLFFs. (c) Results of distilling eSEN-OAM trained on MPtrj into student MLFFs.

is a tensorial message passing network that enforces rotational equivariance through separate scalar
and vector channels. Unless otherwise stated, model-specific hyperparameters (e.g., embedding
width, number of interaction blocks) are chosen from commonly used configurations validated in
prior work. To ensure fairness across three objectives, we use identical training hyperparameters
(optimizer, learning rate schedule, batch size, etc.). Training details are listed in Appendix A.3 A.6.

4.2 ACCURACY OF STUDENT MODELS

Using MACE-OFF as the teacher, we train each student model separately on each SPICE subset
(Monomers, Solvated Amino Acids, Systems with Iodine) and compare their accuracy on energy
and forces using the test set. As shown in Figure 2 (a), the joint objective (Atomic Energy + Hes-
sian) consistently improves energy MAE over Hessian distillation by an average of 48.3%, while
maintaining comparable force MAE across GemNet-dT, PaiNN, and GemNet-T. Detailed numbers
including teacher accuracy are provided in Table 2.

On MPtrj, we use MACE-MP and eSEN-OAM as teachers and train the same students on subsets of
MPtrj (Pm3m Spacegroup, Systems with Yttrium, and Systems with band gap ≥ 5meV). Figure 2
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Figure 3: Epochs to match Hessian final energy MAE. (a) Results of distilling MACE-OFF. (b)
Results of distilling MACE-MP.

(b)(c) shows that the joint objective again outperforms Hessian distillation on energy MAE, with a
mean gain of 6.1%, while maintaining comparable force MAE. Detailed numbers including teacher
accuracy are provided in Table 3 4. For band gap ≥ 5meV subset, we were unable to generate
Hessian labels from eSEN-OAM, because only a single sample exhausts the available 80 GB of
GPU memory, so results for that configuration are not reported.

4.3 EFFICIENCY OF STUDENT MODELS

Fast Convergency. We compare the training process between Hessian and Atomic Energy + Hes-
sian. Specifically, we record the training epoch at which each method first reaches the final energy
MAE of the Hessian baseline. For this analysis, teachers are MACE-OFF (SPICE) and MACE-
MP (MPtrj), and the student models are GemNet-dT and PaiNN. Results are shown in Figure 3.
Across datasets and these student architectures, the joint objective consistently attains this energy
accuracy in fewer epochs, indicating that adding the atomic energy term accelerates convergence on
energy. Meanwhile, the convergence speed for forces is broadly similar between the two objectives
throughout the training process.

Training Overhead. Compared to Hessian distillation, the extra atomic energy loss requires no
additional forward evaluations. It only caches intermediate model outputs, thus incurring minimal
overhead. On the Solvated Amino Acids subset of SPICE, using MACE-OFF as the teacher, the
additional atomic energy loss increases end-to-end iteration time by less than 0.5%. This negligible
overhead, combined with the accuracy gains reported in Figure 2, yields a favorable accuracy-time
trade-off. Full experimental details are provided in the Appendix A.5.

Throughput. We evaluate the accuracy-throughput trade-off across GemNet-dT student scales on
the Solvated Amino Acids subset, varying the number of parameters by adjusting the embedding
dimension. Throughput is estimated from single-step molecular dynamics wall-clock time with
a 1 fs timestep. Timings are per step and measured after warm-up under an identical hardware
platform. Figure 4 shows that, relative to Hessian, the joint Atomic Energy + Hessian objective
further improves the balance between energy accuracy and simulation speed across most model
sizes. Force accuracy exhibits the same overall trend between the two methods. For the smallest
student, the two objectives yield nearly identical energy and force MAE, likely because limited
model capacity constrains the benefit obtainable from the joint loss.

4.4 DIHEDRAL SCAN OF THE POTENTIAL ENERGY SURFACE
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Figure 4: Accuracy-Throughput trade-off across model scales. Dot size indicates relative train-
able parameters. The label shows parameter count in millions (M). Results are measured on Solvated
Amino Acids subset using GemNet-dT student models.

A dihedral scan rotates a molecule around a selected dihedral and evaluates the relative energy
at each angle to trace a low-dimensional slice of the potential energy surface (PES), which directly
identifies energy minima and thus efficiently finds stable conformations. We conduct a dihedral-scan
experiment on the 3-(benzyloxy)pyridin-2-amine (3BPA) (Kovács et al., 2021) dataset to evaluate
the extrapolation ability of two distillation strategies on out-of-distribution PES. 3BPA is a drug-like
molecule that is large and highly flexible in conformation. The test set comprises “optimized dihe-
dral slices” obtained by systematically rotating key dihedral angles, covering PES regions far from
the training distribution. In this experiment, we use GemNet-dT as the student model and, under
identical training settings and data splits, perform distillation using Hessian and distillation using
both atomic energy and Hessian. We then compute and compare the PES along three representative
dihedral slices against DFT references.

The results in Figure 5 show that distillation with both atomic energy and Hessian yields PES curves
that align more closely with DFT in the downstream dihedral-scan task. In particular, the Atomic
Energy + Hessian model matches DFT better in both the positions and heights of energy barriers,
with peak γ angles and amplitudes closer to the reference. It also better reproduces the locations and
depths of minima, capturing the relative energies and associated angles of low-energy conformations
more accurately. These observations indicate that incorporating both atomic energy and Hessian in
distillation reconstructs the key geometric features of the PES more faithfully, leading to stronger
extrapolation performance in out-of-distribution dihedral-scan scenarios.

5 RELATED WORK

Specilized Machine Learning Force Field. Specialized MLFFs are data-driven models that ap-
proximate a system’s potential energy surface and forces from atomic structures. They typically
fall into descriptor-based models and GNNs. Descriptor-based models (e.g., DeePMD (Wang et al.,
2018; Zeng et al., 2023), NEP (Fan et al., 2022)) construct efficient invariant local descriptors and
regress energy and forces. GNNs rely on message passing and geometric inductive biases and can
be grouped into invariant feature based models (e.g. SchNet (Schütt et al., 2017), PhysNet (Unke &
Meuwly, 2019), DimeNet (Gasteiger et al., 2020), TorchMD-NET (Pelaez et al., 2024)) and equiv-
ariant feature based models (e.g. EGNN (Satorras et al., 2021), NequIP (Batzner et al., 2022),
MACE (Batatia et al., 2022), Allegro (Musaelian et al., 2023), eSCN (Passaro & Zitnick, 2023),
HDGNN (An et al., 2024), GotenNet (Aykent & Xia, 2025),). These architectures trade off com-
putational cost, conservative force vs. direct force parameterization, and locality vs. long-range
handling, providing a broad design space for knowledge distillation.

MLFF Foundation Models. MLFF foundation models are MLFFs pretrained on diverse, large-
scale atomistic datasets to enable broad transfer and stronger zero-shot robustness. The rapid emer-
gence of open datasets has made large-scale pretraining feasible and reproducible. This progress
has spurred a wave of general-purpose models, including CHGNet (Deng et al., 2023), MACE-
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Figure 5: Dihedral Scan of the Potential Energy Surface (3BPA). Across three dihedral slices,
Atomic Energy + Hessian aligns more closely with DFT, matching peak positions/heights and min-
ima locations/depths better than Hessian.

MP (Batatia et al., 2023), MatterSim (Yang et al., 2024), eqV2 (Liao et al., 2024), SevenNet (Park
et al., 2024), eSEN (Fu et al., 2025), ORB (Rhodes et al., 2025), DPA (Zhang et al., 2025), and
MACE-OFF (Kovács et al., 2025), which can be used in various tasks including molecular and
materials property prediction, structure relaxation, molecular dynamics, and reaction modeling.

Knowledge Distillation (KD). Knowledge distillation transfers behaviors from high-capacity
teachers to compact students through softened output matching and intermediate-feature align-
ment (Hinton et al., 2015; Romero et al., 2015; Gou et al., 2021). In natural language processing,
distillation compresses large language models through token-, layer-, or sequence-level supervision,
exemplified by DistilBERT (Sanh, 2019), TinyBERT (Jiao et al., 2019), and MiniLM (Wang et al.,
2020). In computer vision, methods progressed from logit matching to feature, attention, relational,
and contrastive objectives (Wang & Yoon, 2021). Related ideas also appear in MLFFs, where FMs
serve as teachers, and specialized MLFFs distill intermediate geometric features or physical infor-
mation from teachers (Ekström Kelvinius et al., 2023; Amin et al., 2025).

6 LIMITATIONS AND FUTURE WORK

Our approach inherits limitations from the quality of the teacher: Because atomic energy supervi-
sion is derived from the teacher, the student’s asymptotic energy accuracy is bounded by the teacher,
and gains taper for very small students due to capacity constraints. Moreover, Hessian distilla-
tion requires second-order labels, which remain costly to generate and may hinder scalability to
larger datasets and higher-capacity teachers. Future work includes calibrating the teacher, exploring
teacher ensembles or self-distillation to mitigate teacher bias, and developing cheaper curvature or
implicit objectives that approximate Hessian guidance without full second-order labeling.

7 CONCLUSION

In this work, we introduce a joint Atomic Energy–Energy Hessian distillation method that aug-
ments the state-of-the-art Hessian distillation at minimal cost. Across datasets and teacher-student
pairs (MACE-OFF/MACE-MP/eSEN-OAM → GemNet-dT, PaiNN, GemNet-T), the joint loss de-
livers lower energy MAE with negligible training overhead (<0.5% in our timing study), maintains
comparable force accuracy, accelerates convergence to target energy accuracy, and achieves a more
favorable accuracy-throughput trade-off for molecular dynamics across model scales.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide anonymous code repository. All detailed hyperparameters are
listed in Appendix A.6, and all datasets used are publicly available. For the theoretical results, we
include complete proofs in Appendix A.2.
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Duignan, and Mark Neumann. Orb-v3: atomistic simulation at scale. arXiv preprint
arXiv:2504.06231, 2025.

Austin Rodriguez, Justin S Smith, and Jose L Mendoza-Cortes. Does hessian data improve the
performance of machine learning potentials? Journal of Chemical Theory and Computation,
2025.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets, 2015. URL https://arxiv.org/abs/
1412.6550.

V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In Proceedings of
Thirty-third Conference on Neural Information Processing Systems (NIPS2019), 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.
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A APPENDIX

A.1 HESSIAN DISTILLATION

Amin et al. (2025) introduce Hessian distillation to transfer information from a large MLFF foun-
dation model (teacher) to a smaller, faster specialized student. Beyond the standard energy/force
supervision, the objective adds a Hessian alignment term that matches the rows of the teacher’s
energy Hessians to the negative Jacobian of the student forces with respect to the positions:

L(ϕ) = Ezi,ri,Hi∼DKD

[
LEF (ϕ) + λKD∥Hi +

∂Fϕ(zi, ri)

∂r
∥22
]
.

This method is architecture-agnostic: It applies to teachers and students with different inductive
biases, including conservative or direct-force parameterizations and models with or without explicit
SO(3) equivariance.

To make Hessian supervision efficient, Amin et al. (2025) supervise only a small, randomly sampled
set of Hessian rows per iteration.

L(ϕ) = Ezi,ri,Hi∼DKD

[
LEF (ϕ) + λKD · EJi∼Us(1,3N)

1

s

∑
j∈Ji

∥∥∥∥∥H(j)
i +

∂F
(j)
ϕ (zi, ri)

∂r

∥∥∥∥∥
2

2

]
.

These rows are computed on the student via vector-Jacobian products (VJPs), avoiding the con-
struction of full Hessian matrices. In practice, sampling as few as s=1 row per structure typically
preserves accuracy while limiting the training cost to roughly 1.6–2.0× that of undistilled training.
On the teacher side, Hessians are precomputed once over the dataset and cached.

A.2 PROOFS

Lemma A.1 (Force/Hessian errors are derivatives of the energy error). For all x ∈ Td,

δF (x) = −∇δEtot(x), δH(x) = ∇2δEtot(x). (25)

Proof. By the definitions,

δF (x) = −∇ES
tot(R⋆ + x) +∇ET

tot(R⋆ + x) = −∇
[
ES

tot(R⋆ + x)− ET
tot(R⋆ + x)

]
, (26)

and

δH(x) = ∇2ES
tot(R⋆ + x)−∇2ET

tot(R⋆ + x) = ∇2
[
ES

tot(R⋆ + x)− ET
tot(R⋆ + x)

]
. (27)

The interchange of differentiation with subtraction is justified since ES
tot, E

T
tot ∈ C2(Td).

Lemma A.2 (Parseval–Plancherel identities for δEtot, δF , δH).

∥δEtot∥2L2 =
∑
k∈Zd

|ak|2, (28)

∥δF ∥2L2 =
∑
k∈Zd

ω2
k |ak|2, (29)

∥δH∥2L2 =
∑
k∈Zd

ω4
k |ak|2. (30)

Proof. By orthonormality of {φk} in L2(Td,dx),

∥δEtot∥2L2 =
∑
k∈Zd

|ak|2. (31)

For the force, using ∇φk = i 2πL kφk,

δF (x) = −∇δEtot(x) =
∑
k

(
− i

2π

L
kak

)
φk(x), (32)
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hence
∥δF ∥2L2 =

∑
k

∥∥2π
L

kak
∥∥2
2
=

∑
k

(2π
L

)2∥k∥22|ak|2 =
∑
k

ω2
k|ak|2. (33)

For the Hessian, since ∂2
ijφk = −( 2πL )2kikjφk, we get

δH(x) = ∇2δEtot(x) =
∑
k

(
− (

2π

L
)2kk⊤ak

)
φk(x), (34)

and thus

∥δH∥2L2 =
∑
k

∥∥(2π
L

)2kk⊤ak
∥∥2
F
=

∑
k

(2π
L

)4 ∑
i,j

k2i k
2
j |ak|2 =

∑
k

ω4
k|ak|2. (35)

Here we use
∑

i,j k
2
i k

2
j = (

∑
i k

2
i )

2 = ∥k∥42.

Theorem A.3 (Force is controlled by Hessian).

∥δF ∥2L2 ≤
( L

2π

)2∥δH∥2L2 . (36)

Moreover, if the Fourier expansion of δE satisfies a spectral gap ωk ≥ Ω0 > 0 whenever ak ̸= 0
and k ̸= 0, then

∥δF ∥2L2 ≤ Ω−2
0 ∥δH∥2L2 . (37)

The constant (L/2π) is optimal and dimension-free, and the equality holds for any single Fourier
mode with ∥k∥2 = 1.

Proof. By Parseval–Plancherel identities,

∥δF ∥2L2 =
∑
k∈Zd

ω2
k |ak|2 =

∑
k ̸=0

ω2
k|ak|2, ∥δH∥2L2 =

∑
k∈Zd

ω4
k |ak|2 =

∑
k ̸=0

ω4
k|ak|2. (38)

Since ωk ≥ 2π
L for k ̸= 0, ω2

k ≤ ( L
2π )

2ω4
k, summing gives equation 36. If ωk ≥ Ω0 on the Fourier

expansion, then ω2
k ≤ Ω−2

0 ω4
k, yielding equation 37. Optimality follows by taking a single mode

with ∥k∥2 = 1.

Theorem A.4 (High-frequency suppression under Hessian-only training). For any Ω > 0 and define
K≥Ω := {k ∈ Zd : ωk ≥ Ω} and K<Ω := Zd \ K≥Ω. Then∑

k∈K≥Ω

|ak|2 ≤ Ω−4∥δH∥2L2 , (39)

∑
k∈K≥Ω

ω2
k|ak|2 ≤ Ω−2∥δH∥2L2 . (40)

Proof. Using ∥δH∥2L2 =
∑

k ω
4
k|ak|2,∑

k∈K≥Ω

|ak|2 ≤ Ω−4
∑

k∈K≥Ω

ω4
k|ak|2 ≤ Ω−4∥δH∥2L2 , (41)

giving equation 39. Similarly,∑
k∈K≥Ω

ω2
k|ak|2 =

∑
k∈K≥Ω

ω−2
k ω4

k|ak|2 ≤ Ω−2
∑

k∈K≥Ω

ω4
k|ak|2 ≤ Ω−2∥δH∥2L2 , (42)

which is equation 40.

Corollary A.5 (Limited control of energy by Hessian-only). For any Ω > 0,

∥δEtot∥2L2 =
∑

k∈K<Ω

|ak|2 +
∑

k∈K≥Ω

|ak|2 ≤
∑

k∈K<Ω

|ak|2 +Ω−4 ∥δH∥2L2 . (43)

In particular, the constant mode a0 is completely unconstrained by Hessian training.
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Theorem A.6 (Atomic energy and energy Hessian supervision induces a uniform spectral floor).
Define the joint objective

Lα,β := α

N∑
i=1

∥δE(i)
atom∥2L2 + β∥∇2δEtot∥2L2 , α, β > 0. (44)

then ∑
k∈Zd

(
α

N
+ βω4

k)|ak|2 ≤ Lα,β . (45)

Hence every frequency component of δEtot is penalized by at least α/N , and the constant mode is
directly constrained.

Proof. By Cauchy–Schwarz,

N∑
i=1

∥δE(i)
atom∥2L2 ≥ 1

N
∥

N∑
i=1

δE
(i)
atom∥2L2 =

1

N

∑
k

|ak|2. (46)

By Parseval–Plancherel,

∥∇2δEtot∥2L2 =
∑
k

ω4
k|ak|2. (47)

Summing the two contributions yields equation 45.

Corollary A.7 (Uniform low-frequency and high-frequency suppression). For any Ω > 0 and define
K≥Ω := {k ∈ Zd : ωk ≥ Ω} and K<Ω := Zd \ K≥Ω. Then∑

k∈K<Ω

|ak|2 ≤ N

α
Lα,β , (48)

∑
k∈K≥Ω

|ak|2 ≤ 1

α/N + βΩ4
Lα,β . (49)

In particular, for the constant mode, |a0|2 ≤ (N/α)Lα,β .

A.3 ABLATION ON ATOMIC ENERGY DISTILLATION WEIGHT

We perform a grid scan over λEatom ∈ {0, 1, 10, 20, 100, 1000} with all other training settings fixed
to isolate its effect. On the Solvated Amino Acids subset of SPICE, using GemNet-dT as the student,
the results (see table 1) show that λEatom = 20 achieves the best balance between energy accuracy
and force accuracy.

Table 1: Energy MAE (meV/atom) and force MAE (meV/Å) achieved by Atomic Energy + Hessian
distillation on the Solvated Amino Acid subset of SPICE, using different values of λEatom .

λEatom Energy MAE Force MAE
0 1.5 12.8
1 1.1 12.4
10 0.9 12.2
20 0.8 12.1
100 0.9 12.4
1000 1.0 14.4

We perform a similar sweep for MPTrj and find that λEatom = 10 is optimal.
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A.4 ACCURACY RESULTS

Using MACE-OFF as the teacher, we train each student model separately on each SPICE subset
(Monomers, Solvated Amino Acids, Systems with Iodine). Each dataset is split into train, val-
idation, and test sets. All metrics are reported on the test set. “No distillation” baselines are
taken from previous work (Amin et al., 2025). For the conservative student GemNet-T, we use
the Hessian results reported by Amin et al. (2025). For the non-conservative students GemNet-
dT and PaiNN, the Hessian results in Amin et al. (2025) provide additional gradient supervision
on the energy head. We re-evaluate pure Hessian distillation under the same experimental setting
for fair comparison. The accuracy across students and datasets is summarized in Table 2. To iso-
late the impact of adding atomic energy supervision to Hessians, we report the relative change
∆% = 100× (MAEAtomic Energy + Hessian − MAEHessian)/MAEHessian for both energy and forces. Our
method consistently improves energy accuracy over both the No distillation and Hessian baselines
while maintaining force accuracy comparable to Hessian distillation. In most cases, our distilled
models also outperform teacher models, likely because they can allocate their full capacity to a
targeted subdomain of the chemical space, as noted by Amin et al. (2025).

Table 2: Results of distilling MACE-OFF trained on SPICE into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

Subset Size Model
(Parameter Count) Method Energy MAE (↓)

(meV/atom)
Force MAE (↓)

(meV/Å)

Monomers 14,331

(T) MACE-OFF Large (4.7M) Pretrained 0.65 6.6

(S) GemNet-dT (0.67M)
No distillation 1.27 11.3
Hessian 1.2 5.9
Atomic Energy + Hessian (ours) 1.1 (-8.3%) 5.9 (0.0%)

(S) PaiNN (1.0M)
No distillation 2.3 25.0
Hessian 2.1 8.5
Atomic Energy + Hessian (ours) 1.5 (-28.6%) 8.6 (+1.2%)

(S) GemNet-T (0.57M)
No distillation 3.8 7.9
Hessian 6.8 5.1
Atomic Energy + Hessian (ours) 0.7 (-89.7%) 5.2 (+2.0%)

Solvated Amino Acids 805

(T) MACE-OFF Large (4.7M) Pretrained 1.3 19.4

(S) GemNet-dT (0.67M)
No distillation 2.2 22.4
Hessian 1.5 12.8
Atomic Energy + Hessian (ours) 0.8 (-46.7%) 12.1 (-5.5%)

(S) PaiNN (1.0M)
No distillation 3.3 50.1
Hessian 3.3 18.6
Atomic Energy + Hessian (ours) 1.2 (-63.6%) 18.5 (-0.5%)

(S) GemNet-T (0.57M)
No distillation 1.7 18.3
Hessian 1.2 11.2
Atomic Energy + Hessian (ours) 0.4 (-66.7%) 11.3 (+0.9%)

Systems with Iodine 11,171

(T) MACE-OFF Large (4.7M) Pretrained 1.3 15.3

(S) GemNet-dT (0.67M)
No distillation 2.68 23.4
Hessian 2.4 14.4
Atomic Energy + Hessian (ours) 1.7 (-29.2%) 14.2 (-1.4%)

(S) PaiNN (1.0M)
No distillation 3.3 51.2
Hessian 3.3 23.6
Atomic Energy + Hessian (ours) 2.6 (-21.2%) 23.4 (-0.8%)

(S) GemNet-T (0.57M)
No distillation 4.0 15.9
Hessian 5.8 11.7
Atomic Energy + Hessian (ours) 1.1 (-81.0%) 11.2 (-4.3%)

On MPtrj, we use MACE-MP and eSEN-OAM as teachers and train the same students on subsets
of MPtrj (Pm3m Spacegroup, Systems with Yttrium, and Systems with band gap ≥ 5meV). Due
to the reasons mentioned above, the Hessian baseline of non-conservative students GemNet-dT and
PaiNN is re-measured without using gradient supervision on the energy head. The accuracy across
students and datasets is summarized in Table 3 4. Notably, the students already surpass the teachers
on energy accuracy by a wide margin, which may explain why the atomic energy term yields a
smaller gain than on SPICE. Nevertheless, the joint loss still further improves energy accuracy.
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Table 3: Results of distilling MACE-MP trained on MPtrj into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

Subset Size Model
(Parameter Count) Method Energy MAE (↓)

(meV)
Force MAE (↓)

(meV/Å)

Pm3m Spacegroup 9,725

(T) MACE-MP0 (15.8 M) Pretrained 1815.5 4.6

(S) GemNet-dT (0.67M)
No distillation 206.5 13.4
Hessian 204.7 8.8
Atomic Energy + Hessian (ours) 195.9 (-4.3%) 8.8 (0.0%)

(S) PaiNN (1.0M)
No distillation 335.9 15.4
Hessian 361.1 9.1
Atomic Energy + Hessian (ours) 342.8 (-5.1%) 9.0 (-1.1%)

Systems with Yttrium 30,436

(T) MACE-MP0 (15.8M) Pretrained 9351.1 40.5

(S) GemNet-dT (0.67M)
No distillation 190.0 33.1
Hessian 148.1 21.6
Atomic Energy + Hessian (ours) 138.5 (-6.5%) 21.8 (+0.9%)

(S) PaiNN (1.0M)
No distillation 309.6 41.0
Hessian 200.4 26.2
Atomic Energy + Hessian (ours) 193.8 (-3.3%) 25.9 (-1.1%)

Band Gap ≥ 5 meV 36,150

(T) MACE-MP0 (15.8 M) Pretrained 16909.8 31.2

(S) GemNet-dT (0.67M)
No distillation 108.4 18.2
Hessian 109.1 13.6
Atomic Energy + Hessian (ours) 97.4 (-10.7%) 13.7 (+0.7%)

(S) PaiNN (1.0M)
No distillation 161.1 27.7
Hessian 110.8 17.4
Atomic Energy + Hessian (ours) 103.8 (-6.3%) 17.6 (+1.1%)

Table 4: Results of distilling eSEN-OAM trained on MPtrj into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

Subset Size Model
(Parameter Count) Method Energy MAE (↓)

(meV)
Force MAE (↓)

(meV/Å)

Pm3m Spacegroup 9,725

(T) eSEN-30M-OAM (30.2 M) Pretrained 1774.3 1.1

(S) GemNet-dT (0.67M)
No distillation 206.5 13.4
Hessian 181.6 6.4
Atomic Energy + Hessian (ours) 180.3 (-0.7%) 6.1 (-4.7%)

(S) PaiNN (1.0M)
No distillation 335.9 15.4
Hessian 365.2 7.1
Atomic Energy + Hessian (ours) 317.6 (-13.0%) 7.0 (-1.4%)

(S) GemNet-T (0.57M)
No distillation 188.3 9.7
Hessian 227.2 6.3
Atomic Energy + Hessian (ours) 225.5 (-0.7%) 6.1 (-3.2%)

Systems with Yttrium 30,436

(T) eSEN-30M-OAM (30.2 M) Pretrained 9344.1 10.9

(S) GemNet-dT (0.67M)
No distillation 190.0 33.1
Hessian 150.5 14.9
Atomic Energy + Hessian (ours) 137.2 (-8.8%) 15.2 (+2.0%)

(S) PaiNN (1.0M)
No distillation 309.6 41.0
Hessian 214.4 22.6
Atomic Energy + Hessian (ours) 189.8 (-11.5%) 22.5 (-0.4%)

(S) GemNet-T (0.57M)
No distillation 155.7 27.3
Hessian 140.5 17.5
Atomic Energy + Hessian (ours) 137.8 (-1.9%) 15.2 (-13.1%)

A.5 TRAINING OVERHEAD

Taking the Solvated Amino Acids subset of SPICE as a case study, we measure the training overhead
of adding the atomic energy term. Figure 6 shows that the extra loss increases end-to-end iteration
time by under 0.5%. Timings cover data loading, neighbor list construction, forward/backward
passes, and optimizer steps, and were recorded post warm-up under identical hardware platform and
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0.10%

GemNet-dT

0.28%

PaiNN

0.46%

GemNet-T

Hessian Atomic Energy

Figure 6: Training overhead from atomic energy supervision.

batch settings. Coupled with the accuracy gains in Figure 2, this yields a favorable accuracy-time
trade-off.

A.6 TRAINING DETAILS

We provide training details for GemNet-dT, GemNet-T, PaiNN models used in this work. Unless
otherwise noted, The same hyperparameters are used for No distillation, Hessian and Atomic Energy
+ Hessian training to ensure fair comparisons.

Table 5 lists the architectural settings for GemNet-dT and GemNet-T, including the basis sizes,
embedding dimensions, number of blocks, cutoff, neighbor cap, and activation/initialization choices
aligned with the prior stable configurations.

Table 5: Hyperparameters for GemNet-dT and GemNet-T student models.

Parameter Value
Number of Spherical 7
Radial Basis Functions 6
Blocks 4
Atom Embedding Size 64
Edge Embedding Size 64
Triplet Embedding Size 32
RBF Embedding Size 16
CBF Embedding Size 16
Bilinear Triplet Embedding Size 64
Number Before Skip 1
Number After Skip 1
Number of Concatenations 1
Number of Atoms 2
Cutoff 5.0 (SPICE) / 6.0 (MPtrj)
Maximum Neighbors 50
RBF Function Gaussian
Envelope Function Polynomial (Exponent: 5)
CBF Function Spherical Harmonics
Output Initialization HeOrthogonal
Activation Function SiLU

Table 6 are the architecture hyperparameters for PaiNN student models. For the MPtrj dataset, the
three slash-separated cutoffs are used for Pm3m Spacegroup, Systems with Yttrium, and Systems
with band gap ≥ 5meV, respectively.
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Table 6: Hyperparameters for PaiNN student models.

Parameter Value
Hidden Channels 128
Layers 4
Radial Basis Functions 128
Cutoff 12.0 (SPICE) / [14.0 / 16.0 / 6.0] (MPtrj)
Maximum Neighbors 50

Tables 7 8 9 10 summarize optimization schedules, total epochs, loss weights, and batch sizes.
We use AdamW with AMSGrad, ReduceLROnPlateau scheduling, gradient clipping, and EMA.
Training epoch are subset- and model-specific to match dataset size.

Table 7: Optimization hyperparameters for student models.

Parameter GemNet-dT/GemNet-T PaiNN
Initial Learning Rate 0.001 0.001
Optimizer AdamW AdamW
Weight Decay 0.000002 0.000002
Amsgrad True True
Adam epsilon 1.e-7 1.e-7
Scheduler ReduceLROnPlateau ReduceLROnPlateau
Patience 5 10
Factor 0.8 0.8
Minimum Learning Rate 0.000001 0.000005
EMA Decay 0.999 0.999
Clip Gradient Norm 10 10

Table 8: Training epochs for student models.

Subset Model Epochs

Monomers
GemNet-dT 600
PaiNN 1400
GemNet-T 500

Solvated Amino Acids
GemNet-dT 2000
PaiNN 1000
GemNet-T 2500

Systems with Iodine
GemNet-dT 600
PaiNN 1500
GemNet-T 600

Pm3m Spacegroup
GemNet-dT 500
PaiNN 500
GemNet-T 500

Systems with Yttrium
GemNet-dT 500
PaiNN 1000
GemNet-T 500

Band Gap ≥ 5 meV GemNet-dT 350
PaiNN 1000
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Table 9: Loss weights for student models.

Subset λE λF λEatom λH

Monomers 5 100 20 400
Solvated Amino Acids 5 100 20 400
Structures with Iodine 5 100 20 400
Pm3m Spacegroup 5 100 10 200
Structures with Yttrium 5 100 10 200
Band gap ≥ 5meV 5 100 10 200

Table 10: Training batch size for student models.

Subset GemNet-dT/GemNet-T PaiNN
Monomers 4 8
Solvated Amino Acids 4 4
Structures with Iodine 4 8
Pm3m Spacegroup 16 16
Structures with Yttrium 16 16
Band Gap ≥ 5meV 32 32

Table 11 shows the number of rows sampled from Hessian used in each training iteration. These
settings follow previous work (Amin et al., 2025).

Table 11: Number of rows sampled from Hessian.

Subset GemNet-dT/GemNet-T PaiNN
Monomers 4 4
Solvated Amino Acids 1 1
Structures with Iodine 4 4
Pm3m Spacegroup 4 4
Structures with Yttrium 1 4
Band Gap ≥ 5meV 1 4

A.7 ABLATION ON DFT LABELS

We conduct an ablation study on the Solvated Amino Acids dataset to evaluate the role of explicit
DFT labels. The student model is GemNet-dT and all training hyperparameters, data splits, and
evaluation protocols match those in the main experiments. The experimental results in the Table
12 show that removing the labels from the DFT reduces accuracy. Furthermore, since the total
energy E is the sum of atomic energies Eatom, we also experiment with removing only the DFT
energy labels. The results likewise showed decreased accuracy, which may be due to inaccuracies
in the teacher model’s energy predictions, suggesting that supervision from the DFT energy is still
necessary. Another possible approach is to replace the DFT force labels with the forces predicted
by the teacher model. However, previous studies Amin et al. (2025) have demonstrated that this
substitution also results in degraded performance. In summary, partially or completely removing
DFT supervision, or replacing it with the teacher model’s predictions, all lead to lower accuracy.
Therefore, we adopt a strategy that combines both DFT energy and force supervision together with
the distillation loss.
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Table 12: Energy MAE (meV/atom) and force MAE (meV/Å) on the Solvated Amino Acid subset
of SPICE, comparing training with and without DFT supervision.

λE λF λEatom λH Energy MAE Force MAE
5 100 0 0 2.2 22.4
0 0 20 400 1.4 46.4
0 100 20 400 1.1 12.1
5 100 20 400 0.8 12.1
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Figure 7: Cumulative distribution of formation energy absolute errors. Results are shown for
Monomers, Solvated Amino Acids, and Systems with Iodine.

A.8 FORMATION ENERGY

Stability is a prerequisite for using any material in applications. The formation energy is the key
quantity for assessing relative thermodynamic stability and the tendency toward decomposition. It
measures the energy difference between a compound and its constituent elements in their stable
reference states. For a composition AxBy . . . , the formation energy is defined as

Eformation(AxBy . . . ) = E(AxBy . . . )− xEA − yEB − . . . , (50)

where EA denotes the energy of element A in its reference phase. A negative value with a sufficiently
large magnitude of Eformation indicates a more stable phase. Otherwise, the compound is more likely
to decompose into the elements or into other phases. In materials design and screening, formation
energies are used to construct phase diagrams, compute convex hulls, and evaluate decomposition
energies.

In our comparative study, we evaluate the error distributions of formation energies for two training
strategies. We present the results as cumulative distribution functions of the absolute error in Table
7. The Atomic Energy + Hessian curve largely coincides with the Hessian curve or shifts to the
left, with consistent modest improvements in the middle to high error quantiles. This indicates that
adding atomic energy supervision helps reduce the long tail of formation energy errors, which makes
this metric of relative stability more robust.

A.9 NVT MD SIMULATIONS

To further evaluate distilled MLFFs, we follow previous work Amin et al. (2025) and run 100 ps,
constant temperature (NVT) MD simulations with systems from the Solvated Amino Acid subset.
We choose 5 random structures from the test set as initial structures and perform Langevin dynamics
at a temperature of 300K, a timestep of 1.0 fs, and a friction coefficient of 0.01 fs−1, for 100,000
steps, corresponding to 100 ps. Consistent with (Fu et al., 2022), we use a metric of the maximum
bond length deviation to measure stability. We keep track of stability through the bond lengths and
say that a simulation becomes “unstable” at time T if:

max
(i,j)∈B

|(∥ri(T )− rj(T )∥ − bi,j)| > ∆, (51)
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Figure 8: Stability of NVT MD. × denotes the point at which the simulation becomes unstable.
The numbers in brackets in the right figure represent the number of model parameters. Our distilled
models are generally more stable than the undistilled model.

where B is the set of all bonds, i, j are the two endpoint atoms of the bond, and bi,j is the equilibrium
bond length computed from the training dataset. Following (Fu et al., 2022), we set ∆ = 0.5A.

Experimental results from Amin et al. (2025) show that small undistilled models are unstable in
MD, while Hessian distilled students markedly improve stability. Our results are shown in Figure 8
and findings are consistent: Atomic Energy + Hessian distillation maintains stable MD trajectories.
We further compare students across sizes and observe generally robust stability. Only a single run
with a smaller model exceeded the stability threshold. This indicates that adding Atomic Energy
does not diminish the stability gains provided by Hessian distillation.

A.10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to assist with drafting and polishing the manuscript text
(improving clarity, grammar, and consistency of terminology). The LLM was not used to generate,
analyze, or filter scientific results, and all LLM-assisted text was reviewed and edited by the authors.
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