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ABSTRACT

Atomistic foundation models, trained on extensive and diverse datasets, now
achieve near ab initio accuracy across broad molecular and material systems while
demonstrating strong transferability across chemical spaces. However, their large
parameter counts result in high inference latency and large memory requirements,
hindering long-time-scale molecular dynamics simulations and deployment on
resource-constrained hardware. In practice, researchers in physical chemistry of-
ten focus on specific chemical subdomains, where compact specialized models
with fewer parameters would be sufficient—provided they inherit appropriate in-
ductive biases from large foundation models. This need motivates distillation tech-
niques that compress foundation models into efficient specialized models while
preserving accuracy. In this paper, we propose an architecture-agnostic distilla-
tion method: Joint Atomic Energy—Energy Hessian Distillation. This approach
augments state-of-the-art Hessian supervision with atomic energy, which comple-
ments low-frequency components at minimal computational overhead (<0.5%).
Compared with the current state-of-the-art method, our method consistently im-
proves energy MAE over Hessian-only distillation (averaging 48.3% on SPICE
and 6.1% on MPtrj datasets) while achieving comparable force MAE (average
improvement of 1.4%). Ultimately, our approach reduces parameter counts by
78%—98%, enabling fast and deployment-friendly specialized models for targeted
chemical subdomains.

1 INTRODUCTION

Foundation models (FMs) have emerged as a powerful tool in computational materials science,
demonstrating remarkable accuracy and generalization capabilities in property prediction and ma-
terials discovery (Deng et al.l 2023 |Batatia et al., |2023} |[Fu et al.l 2025; [Kovacs et al.l 2025;
Wood et al.| 2025). These gains stem from large, heterogeneous quantum-based datasets span-
ning molecules and materials, including OC20/0OC22 for catalysis (Chanussot et al., [2021} Tran
et al.| [2023), SPICE/OMol25 for molecules (Eastman et al., 2023 2024} |[Levine et al., [2025), and
MPtrj/OMat24 for materials (Deng et al.|, 2023} |Barroso-Luque et al., [2024), as well as architec-
tures that combine message passing with strong physical inductive biases such as invariance and
equivariance to capture complex interatomic interactions.

Despite this progress, the architectural complexity and large parameter counts of FMs limit their
practicality for million-step molecular dynamics and large-scale relaxations. specialized machine
learning force fields (MLFFs) such as DeePMD (Wang et al.| [2018)), PaiNN (Schiitt et al.| [2021)),
and GemNet (Gasteiger et al., |2021) provide much faster inference and can support billion-atom
simulations at nanoseconds per day on top supercomputers (Jia et al., 2020; |Guo et al.| [2022). In
many studies, researchers focus on specific chemical subdomains, such as specific elements, space
groups, or biomolecular families. In such settings, compact and fast models are sufficient (Unke
et al.,[2021). This motivates transferring the capabilities of FMs into small specialized models.

Knowledge distillation (KD) (Hinton et al.,[2015; |Gou et al.| [2021) is a well-established method for
improving the speed-accuracy trade-off by transferring information from a large teacher model to a
smaller student model. Beyond classic logit-based KD, feature-based protocols align intermediate
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representations (e.g., node, edge, or vector features) and have recently been adapted to molecular
graph neural networks (GNNSs), yielding accuracy gains in energy/force regression without chang-
ing student architectures or reducing throughput (Das et al., |2023; |[Ekstrom Kelvinius et al., 2023
Sheshanarayana & Youl 2025)). However, feature matching can be brittle when teacher and student
differ in inductive biases and internal feature parameterizations.

A complementary approach is to distill architecture-agnostic and physically meaningful informa-
tion directly from the energy surface itself. Recently, |Amin et al| (2025) proposed the current
state-of-the-art Hessian distillation method, which aligns rows of the teacher’s energy Hessians
with those of the student during training. This Hessian distillation transfers local curvature (Ro-
driguez et al.| [2025), while remaining agnostic to internal feature choices and working across direc-
tional/equivariant designs and across direct-force/conservative-force parameterizations. Conceptu-
ally, training to match function derivatives echoes the broader idea of Sobolev training (Czarnecki
et al.,|2017), which can improve sample efficiency and generalization by supervising gradients or
higher-order derivatives.

In this paper, our goal is to distill fast, domain-specialized small models from large foundation
models for specific chemical subdomains such as selected element families, space groups, or molec-
ular families while preserving throughput, deployment friendliness, and consistent energy and force
accuracy. We first present a spectral analysis of Hessian distillation, formalizing that the errors
of energy, forces, and Hessians share the same Fourier coefficients weighted by 1, w?, and w?,
respectively. Building on this insight, we propose joint Atomic Energy—Energy Hessian distilla-
tion. Atomic energy decomposition is a commonly used method in MLFFs and can complement
low-frequency components without incurring much overhead. We demonstrate our method on the
foundation models MACE-OFF (Kovacs et al.,2025) trained on SPICE (Eastman et al., 2023} 2024),
MACE-MP (Batatia et al., [2023) trained on MPtrj (Deng et al., 2023)), and eSEN (Fu et al.| [2025)
trained on MPtrj, sAlex, and OMat24 (Barroso-Luque et al., |2024)), where the joint objective con-
sistently outperforms Hessian distillation on energy MAE (averaging 48.3% on SPICE and 6.1% on
MPtrj) with minimal computational overhead (<0.5%), while achieving comparable force MAE to
Hessian distillation (average improvement of 1.4%). Ultimately, our method delivers a 78 %—98% re-
duction in parameter counts, enabling fast and deployment-friendly specialized models for targeted
chemical subdomains.

2 PRELIMINARIES

Machine Learning Force Fields. Given a system of N atoms with Cartesian coordinates R =
(rW .. r(N)) € RNV*3 and atomic numbers Z = (z(M),..., (™)) € RN, a MLFF predicts the
total potential energy Ei, € R and per-atom forces F' = (f(1), ..., f(V)) € RN*3_ Typically, the
total energy is parameterized via an atomic decomposition. The model first outputs atomic energies

Eyom = (Eéé)m, e ,Eégn)l) € RY, and aggregates them as:
N
Etol = Z Eéfo)m- (1
i=1

With reference labels Ey, and F' from first-principles calculations, the MLFF is generally trained
with the energy—force objective:

Lo = ML (Bt Bot) + ArLi(F, F), @
where Lg and L are typically mean square (or mean absolute) errors weighted by Ag, Ar € RY.

Knowledge Distillation(KD). In KD, a pretrained teacher model provides auxiliary supervision
through an additional loss term Lxp. Augmenting the base objective yields the final training objec-
tive:

L =Ly + Lkp. 3)

Energy Hessians distillation. As proposed by |Amin et al.| (2025), the energy Hessians of the
a2 T

teacher H” = da g‘;‘ can serve as a curvature target. The student matches this curvature by aligning

its Hessians:

B

Lxp = AuLu( IR’

H"), )
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where Ay is a hyperparameter controlling the strength of KD. For models that predict forces directly,

HT can equivalently be realized as the negative Jacobian of the predicted forces H” = — %. To
reduce computational cost,|Amin et al.| (2025) further supervises only a subsample of Hessian rows
through Vector—Jacobian products, which preserves curvature guidance while scaling linearly with
the number of sampled rows (see Appendix [A.T|for details).

3 METHOD

In this section, we first analyze the energy Hessian distillation from a frequency-domain perspective.
This objective assigns larger weights to higher-frequency components and smaller weights to lower-
frequency components (Section [3.1)). Based on this, we combine it with atomic energy supervision,
which introduces a frequency-independent spectral floor for the total energy error, thereby directly
constraining low-frequency components while retaining strong suppression of high-frequency com-
ponents ([3.2). All proofs are given in the Appendix [A.2]

3.1 ANALYSIS OF ENERGY HESSIAN DISTILLATION

Setting and notation. Let [V be the number of atoms and set d = 3NV for the number of Cartesian
degrees of freedom. Fix a reference configuration R, € R? and write displacements z = R— R, €
Re. Let EL, B3 : X — R denote the total energies of the teacher and the student on a domain
X C R? containing a neighborhood of 0. The associated forces and Hessians are defined by:

FT(x) = -VEL(R, +x), H"(x)=V?El (R, +x), (5)
FS(x) = -VES (R, +x), H%x)=V?EJ(R,+x). (6)

We define the energy, force, and Hessian errors by:

§Ew(z) = Egy(Ro+x)—EL(Ro+x), 0F (z) = F¥(x)—F" (z), 6H(x) = H*(x)-H" (z).

(7
For vectors we use the Euclidean norm || - ||2, and for matrices the Frobenius norm || - || #. Equipping
X with the Lebesgue measure, we define the L? norms by:

16 B2 = /X (6 E()2d,  ||F |2, = /X |6F (2)|2dz, [6H|2, = /X |5 H () 3 de.
®)

Assumptions. We make the following assumptions used in the analyses.

(A1) (Periodicity) There exists L > 0 such that & is identified with the d-dimensional flat torus
T? := (R/LZ)%, equipped with the Lebesgue measure. We therefore regard £, and ES

tot
as L-periodic functions on T¢.
(A2) (Regularity) EL B3 §E € C?(T%). In particular, VS Ey, and V26 F, exist pointwise

and belong to L2(T¢, dz).

Fourier basis and frequencies. Let {( }xcza be the orthonormal Fourier basis of L?(T¢, dz):

2
vr(x) = L~/? exp(ifﬂ-k-w), k ez, 9)
so that [, prPede = dxe. We expand
0B (x) = Z arr(x), ap = /d 0B (x)pg(x)dx € C, (10)
keZ T

and for real-valued ¢ Fi,; we have a_j, = ag. Define the angular frequency wy, := QT” |I&]|2-
Lemma 3.1 (Force/Hessian errors are derivatives of the energy error). For all x € T¢,

dF(x) = —VE(x), SH (x) = V26 E,p(x). (11)
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Lemma 3.2 (Parseval-Plancherel identities for § E, 0. F, d H).

16 Bl = Y laxf?, (12)
keZd

I6F|72 = > wilal, (13)
keZd

I6H |72 = Y wi lax|*. (14)
keZd

Theorem 3.3 (Force is controlled by Hessian).
L2
IoF|72 < (5) I0H |72 (15)

Moreover, if the Fourier expansion of 6 E satisfies a spectral gap wy, > Qg > 0 whenever ay, # 0
and k # 0, then
IOF|Z2 < Q0 *|6H | |Z.. (16)

The constant (L/27) is optimal and dimension-free, and the equality holds for any single Fourier
mode with || k|2 = 1.

Theorem 3.4 (High-frequency suppression under Hessian-only training). For any ) > 0 and define
Ksq:={ke€Z: wp >Q}and K_.q := 7%\ K>q. Then

> ekl < Q7Y[sH| e, (17)
keEK>q
> wilak> < Q2|0H|3-. (18)
ke]CZQ

Corollary 3.5 (Limited control of energy by Hessian-only). For any Q2 > 0,

Bl = Y laxl+ Y sl < Yl 4@t eHIE 9
ke <q k!E’CZQ ke <q

In particular, the constant mode ag is completely unconstrained by Hessian training.

Lemma @] shows that the energy, force, and Hessian errors share the same Fourier coefficients,
weighted by 1, w?, and w?, respectively. Consequently, minimizing the Hessian error suppresses
high-frequency components (Theorem and yields a L? bound on the force error, with a sharp
and dimension-free constant (Theorem [3.3). At the same time, low-frequency components of the
energy error, including the constant mode, remain weakly constrained or entirely unconstrained by
Hessian-only training, as stated by the Corollary[3.5]

3.2  JOINT ATOMIC ENERGY-ENERGY HESSIAN DISTILLATION

Section shows that Hessian-only training strongly damps high-frequency errors but leaves low-
frequency components weakly constrained. Here, we augment the objective with atomic energy
supervision from the teacher model to improve total energy prediction.

Our distillation objective is as follows:

LKD = AByon LE o (Batom, Brom) + MLt (

atom

; (20)

where \g

atomic energies and energy Hessians of the teacher, while E,, and Ey are the student’s atomic
energies and total energy predictions.

Au € R control the relative weights of the two terms. Here, EZT and HT denote the

atom 7 atom

In practice, we adopt the same sampling strategy and implementation settings as in energy Hessian
distillation (Amin et al., 2025). The atomic energy term complements curvature matching by pro-
viding localized supervision on per-atom contributions. Importantly, supervising atomic energies
incurs negligible overhead: it only requires caching the model’s intermediate per-atom outputs at
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Figure 1: Joint Atomic Energy—Energy Hessian Distillation. The knowledge distillation loss
includes matching of atomic energies (low-frequency supervision) and energy Hessians (high-
frequency supervision) between the teacher and student models.

inference time, without additional forward passes beyond those already performed for energy/force
prediction.

Let atomic energies error be 6B\, = EalY — ET and assume §E), € L2(T9). The total
energy error is the sum of atomic energies error § F,, = Ef\il 5E§fo)m.

Theorem 3.6 (Atomic energy and energy Hessian supervision induces a uniform spectral floor).
Define the joint objective

N
Lag=aY [8ESl2: + BIV?0Ew]?2, a8 > 0. @1
1=1
then
[0
> (5 +Awidlarf* < Lags. (22)
kezd

Hence every frequency component of 6 Ey is penalized by at least /N, and the constant mode is
directly constrained.

Corollary 3.7 (Uniform low-frequency and high-frequency suppression). For any 2 > 0 and define
Ksq:=1{k€Z: wp > Q}and K.q := 7%\ K>q. Then

N
>l < —Lag, (23)
kek<q
1
< ———  _L.s. 24
2l < g e &9
>Q

In particular, for the constant mode, |ag|* < (N/a) Ly, .

Theorem [3.6] shows that the joint objective weights each Fourier mode by a sum of a constant term
(from atomic energies) and a quartic frequency term (from Hessians), thereby enforcing a spectral
floor that directly constrains the constant mode and uniformly controls low frequencies. Corollary
[3.7] then quantifies the resulting trade-off: low-frequency components are bounded by the atomic
energy weight, while high-frequency components retain the strong w* suppression from the Hessian
term, yielding simultaneous control across the entire spectrum.
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4 EXPERIMENTS

To evaluate our proposed method, we present a comprehensive comparison of the three objectives
under strictly matched conditions for distilling student models in specific chemical subdomains:

No distillation: L = Lo = AgLg(Eir, Biot) + ArLp(E, F),

Hessian: L = Lo + AgL (aQE“’t HT)
. - 0 HL4H 8R2 ) ?
. . _ 7 T 82Etol T
Atomic Energy + Hessian: L = Lo + Mg, LE,., (Patom, Paom) + MuLu( IR SHY),

where E, F' in Lq are DFT labels from training datasets, while EX  H7 are provided by the

atom?
teacher model.

4.1 EXPERIMENTAL SETUP

Teacher Models. We consider three pretrained teachers that span organic and inorganic domains
and differ in the architecture and training datasets. MACE-OFF (Kovacs et al., |2025) is a short-
range, higher-order equivariant message passing potential trained primarily on an augmented subset
of SPICE (Eastman et al., 2023} 2024) at the wB97M-D3(BJ)/def2-TZVPPD level of quantum
mechanics, covering neutral organic molecules with elements H, C, N, O, F, P, S, Cl, Br, and L.
It provides high-accuracy energies and forces suitable for small molecules and biomolecular frag-
ments. MACE-MP (Batatia et al.||2023) is a universal materials model trained on MPtrj (Deng et al.,
2023)) of DFT (PBE/GGA+U) relaxation trajectories for ~150,000 inorganic crystals, designed to
deliver stable molecular dynamics and transferable accuracy across diverse inorganic systems. Fi-
nally, eSEN (Fu et al.| [2025) is a recent smooth and expressive equivariant interatomic potential
introduced to improve downstream physical-property predictions (e.g., stability, phonons, thermal
transport) and trained on MPtrj, sAlex, and OMat24 dataset (Barroso-Luque et al.,|2024)). For each
dataset, we use the teacher trained on that subdomain to generate labels, including atomic energies

El  and Hessians H” via second-order derivatives.

Datasets and Metrics. We distill student models on representative subsets from the organic SPICE
dataset and the inorganic MPtrj dataset. For SPICE, we use Monomers, Solvated Amino Acids, and
Systems with Iodine as three subdomains. For MPtrj, we use Pm3m Spacegroup, Systems with
Yttrium, and Systems with band gap > SmeV. These selections follow previous work (Amin et al.,
2025)) and span small organic molecules, solvated biomolecular fragments, heavy-atom systems,
high-symmetry crystalline configurations, Y-containing materials, and electronically filtered mate-
rials, covering both near-equilibrium and perturbed configurations. Primary metrics are: (i) energy
MAE (lower is better), reported as total MAE (meV) or per-atom MAE (meV/atom); (ii) force MAE
(meV/A) (lower is better). We also provide a MD stability analysis in Appendix

Student Models. We adopt three widely used rotational equivariant graph neural networks as stu-
dents: GemNet-dT, PaiNN, and GemNet-T. GemNet-dT and GemNet-T (Gasteiger et al.,[2021) are
directional message passing architectures with angle and dihedral angle features designed to cap-
ture higher-order geometric correlations in local neighborhoods, while PaiNN (Schiitt et al., [2021)
is a tensorial message passing network that enforces rotational equivariance through separate scalar
and vector channels. Unless otherwise stated, model-specific hyperparameters (e.g., embedding
width, number of interaction blocks) are chosen from commonly used configurations validated in
prior work. To ensure fairness across three objectives, we use identical training hyperparameters
(optimizer, learning rate schedule, batch size, etc.). Training details are listed in Appendix

4.2 ACCURACY OF STUDENT MODELS

Using MACE-OFF as the teacher, we train each student model separately on each SPICE subset
(Monomers, Solvated Amino Acids, Systems with Iodine) and compare their accuracy on energy
and forces using the test set. As shown in Figure [2] (a), the joint objective (Atomic Energy + Hes-
sian) consistently improves energy MAE over Hessian distillation by an average of 48.3%, while
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Figure 2: Accuracy of student models on energy and forces. (a) Results of distilling MACE-OFF
trained on SPICE into student MLFFs. (b) Results of distilling MACE-MP trained on MPtrj into
student MLFFs. (c) Results of distilling eSEN-OAM trained on MPtrj into student MLFFs.

maintaining comparable force MAE across GemNet-dT, PaiNN, and GemNet-T. Detailed numbers
are provided in Table2]

On MPtrj, we use MACE-MP and eSEN-OAM as teachers and train the same students on subsets
of MPtrj (Pm3m Spacegroup, Systems with Yttrium, and Systems with band gap > 5meV). Figure
[2] (b)(c) shows that the joint objective again outperforms Hessian distillation on energy MAE, with
a mean gain of 6.1%, while maintaining comparable force MAE. Detailed numbers are provided in
Table 3|4 For band gap > 5meV subset, we were unable to generate Hessian labels from eSEN-
OAM, because only a single sample exhausts the available 80 GB of GPU memory, so results for
that configuration are not reported.

4.3 EFFICIENCY OF STUDENT MODELS

Fast Convergency. We compare the training process between Hessian and Atomic Energy + Hes-
sian. Specifically, we record the training epoch at which each method first reaches the final energy
MAE of the Hessian baseline. For this analysis, teachers are MACE-OFF (SPICE) and MACE-
MP (MPtrj), and the student models are GemNet-dT and PaiNN. Results are shown in Figure EI
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Figure 3: Epochs to match Hessian final energy MAE. (a) Results of distilling MACE-OFF. (b)
Results of distilling MACE-MP.

Across datasets and these student architectures, the joint objective consistently attains this energy
accuracy in fewer epochs, indicating that adding the atomic energy term accelerates convergence on
energy. Meanwhile, the convergence speed for forces is broadly similar between the two objectives
throughout the training process.

Training Overhead. Compared to Hessian distillation, the extra atomic energy loss requires no
additional forward evaluations. It only caches intermediate model outputs, thus incurring minimal
overhead. On the Solvated Amino Acids subset of SPICE, using MACE-OFF as the teacher, the
additional atomic energy loss increases end-to-end iteration time by less than 0.5%. This negligible
overhead, combined with the accuracy gains reported in Figure[2] yields a favorable accuracy-time
trade-off. Full experimental details are provided in the Appendix [A.5]

Throughput. We evaluate the accuracy-throughput trade-off across GemNet-dT student scales on
the Solvated Amino Acids subset, varying the number of parameters by adjusting the embedding
dimension. Throughput is estimated from single-step molecular dynamics wall-clock time with
a 1 fs timestep. Timings are per step and measured after warm-up under an identical hardware
platform. Figure [ shows that, relative to Hessian, the joint Atomic Energy + Hessian objective
further improves the balance between energy accuracy and simulation speed across most model
sizes. Force accuracy exhibits the same overall trend between the two methods. For the smallest
student, the two objectives yield nearly identical energy and force MAE, likely because limited
model capacity constrains the benefit obtainable from the joint loss.

5 RELATED WORK

Specilized Machine Learning Force Field. Specialized MLFFs are data-driven models that ap-
proximate a system’s potential energy surface and forces from atomic structures. They typically
fall into descriptor-based models and GNNs. Descriptor-based models (e.g., DeePMD (Wang et al.,
2018 Zeng et al., 2023), NEP (Fan et al., 2022))) construct efficient invariant local descriptors and
regress energy and forces. GNNs rely on message passing and geometric inductive biases and can
be grouped into invariant feature based models (e.g. SchNet (Schiitt et al.,2017), PhysNet (Unke &
Meuwlyl 2019), DimeNet (Gasteiger et al., |2020), TorchMD-NET (Pelaez et al., 2024)) and equiv-
ariant feature based models (e.g. EGNN (Satorras et all [2021), NequlP (Batzner et al.l 2022),
MACE (Batatia et al., [2022), Allegro (Musaelian et al., 2023), eSCN (Passaro & Zitnick, [2023)),
HDGNN (An et al.|, 2024), GotenNet (Aykent & Xial [2025),). These architectures trade off com-
putational cost, conservative force vs. direct force parameterization, and locality vs. long-range
handling, providing a broad design space for knowledge distillation.
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Figure 4: Accuracy-Throughput trade-off across model scales. Dot size indicates relative train-
able parameters. The label shows parameter count in millions (M).

MLFF Foundation Models. MLFF foundation models are MLFFs pretrained on diverse, large-
scale atomistic datasets to enable broad transfer and stronger zero-shot robustness. The rapid emer-
gence of open datasets has made large-scale pretraining feasible and reproducible. This progress
has spurred a wave of general-purpose models, including CHGNet (Deng et al., 2023), MACE-
MP (Batatia et al., [2023)), MatterSim (Yang et al.| |2024)), eqV2 (Liao et al., 2024), SevenNet (Park’
et al.l 2024)), eSEN (Fu et al 2025), ORB (Rhodes et al., |2025), DPA (Zhang et al) 2025}, and
MACE-OFF (Kovacs et al., [2025), which can be used in various tasks including molecular and
materials property prediction, structure relaxation, molecular dynamics, and reaction modeling.

Knowledge Distillation (KD). Knowledge distillation transfers behaviors from high-capacity
teachers to compact students through softened output matching and intermediate-feature align-
ment (Hinton et al.;, [2015; [Romero et al.| 2015} |Gou et al., |2021). In natural language processing,
distillation compresses large language models through token-, layer-, or sequence-level supervision,
exemplified by DistilBERT (Sanh, [2019), TinyBERT (Jiao et al., [2019), and MiniLM (Wang et al.,
2020). In computer vision, methods progressed from logit matching to feature, attention, relational,
and contrastive objectives (Wang & Yoon, [2021)). Related ideas also appear in MLFFs, where FMs
serve as teachers, and specialized MLFFs distill intermediate geometric features or physical infor-
mation from teachers (Ekstrom Kelvinius et al., 2023} /Amin et al., [2025]).

6 LIMITATIONS AND FUTURE WORK

Our approach inherits limitations from the quality of the teacher: Because atomic energy supervi-
sion is derived from the teacher, the student’s asymptotic energy accuracy is bounded by the teacher,
and gains taper for very small students due to capacity constraints. Moreover, Hessian distilla-
tion requires second-order labels, which remain costly to generate and may hinder scalability to
larger datasets and higher-capacity teachers. Future work includes calibrating the teacher, exploring
teacher ensembles or self-distillation to mitigate teacher bias, and developing cheaper curvature or
implicit objectives that approximate Hessian guidance without full second-order labeling.

7 CONCLUSION

In this work, we introduce a joint Atomic Energy—Energy Hessian distillation method that aug-
ments the state-of-the-art Hessian distillation at minimal cost. Across datasets and teacher-student
pairs (MACE-OFF/MACE-MP/eSEN-OAM — GemNet-dT, PaiNN, GemNet-T), the joint loss de-
livers lower energy MAE with negligible training overhead (<0.5% in our timing study), maintains
comparable force accuracy, accelerates convergence to target energy accuracy, and achieves a more
favorable accuracy-throughput trade-off for molecular dynamics across model scales.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide anonymous code repository. All detailed hyperparameters are
listed in Appendix and all datasets used are publicly available. For the theoretical results, we
include complete proofs in Appendix[A.2]
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A APPENDIX

A.1 HESSIAN DISTILLATION

Amin et al.|(2025)) introduce Hessian distillation to transfer information from a large MLFF foun-
dation model (teacher) to a smaller, faster specialized student. Beyond the standard energy/force
supervision, the objective adds a Hessian alignment term that matches the rows of the teacher’s
energy Hessians to the negative Jacobian of the student forces with respect to the positions:

OF, 13 (Zi7 I‘i) 2
or HQ
This method is architecture-agnostic: It applies to teachers and students with different inductive

biases, including conservative or direct-force parameterizations and models with or without explicit
SO(3) equivariance.

‘C(d)) = EZi,ri,HiNDKD ‘CEF(QZ)) + AKDHHZ +

To make Hessian supervision efficient, |Amin et al.|(2025) supervise only a small, randomly sampled
set of Hessian rows per iteration.

2

)l

These rows are computed on the student via vector-Jacobian products (VJPs), avoiding the con-
struction of full Hessian matrices. In practice, sampling as few as s=1 row per structure typically
preserves accuracy while limiting the training cost to roughly 1.6-2.0x that of undistilled training.
On the teacher side, Hessians are precomputed once over the dataset and cached.

aF;j) (Zi; I'i)
or

1
£(¢) = Ezl‘,rq‘,,HiNDKD [EEF(¢) + AKD ! EjiNus(173N) g Z

JET;

HY +

A.2 PROOFS

Lemma A.1 (Force/Hessian errors are derivatives of the energy error). Forall x € T¢,

SF(x) = —VE,,(x), SH(x) = V?6Ey(x). (25)

Proof. By the definitions,
6F(x) = ~VE(R. + )+ VEL (R, + o) = —V[Eg(R. + ) — EL(R. + )], (26)
and

SH(z) = V’E (R, + x) — VEL (R, + ) = V?[Eg(R. + ) — EL(R. +x)]. (27

The interchange of differentiation with subtraction is justified since E3,, EL, € C?(T?). O
Lemma A.2 (Parseval-Plancherel identities for 6 Fi, 0 F', 6 H).
16 Eurl|7= = > laxl?, (28)
kezd
I6F|72 = > wi lal, (29)
kezd
I6H |72 = Y wi |ax|*. (30)
kezd

Proof. By orthonormality of {pg} in L?(T¢, dz),
16Ewll7e = ) laxl*. 31)
kezd

For the force, using Vi, = i2X key,

2
" kar)on (), (32)

0F (z) = ~VéBu(x) = > (- i

k
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hence
I6F (|72 =) H%TkakH; =3 (%)ﬂlkll%lam2 = wirlakl*. (33)
k k k
For the Hessian, since afjcpk = —(25)%k;k;p, we get
SH(z) = V2B (x) =Y (- (2%)21.:1@%,@)%(9@)7 (34)
k
and thus
I6H (7. = H(%)kaakui =3 (%”)4 S kR akl? = > wilak  (35)
k k i k
Here we use 3, k7ks = (32, k7)) = [[k|2. O

Theorem A.3 (Force is controlled by Hessian).
L2
IoF|72 < (5) IO H |7z (36)

Moreover, if the Fourier expansion of JE satisfies a spectral gap wi, > Q¢ > 0 whenever ay, # 0
and k # 0, then
I6F |72 < Q52 |0H 7. 37)

The constant (L/27) is optimal and dimension-free, and the equality holds for any single Fourier
mode with || k|2 = 1.

Proof. By Parseval-Plancherel identities,

IOF|72 = > wilarl> =D wilawl®s  0H|Z: = Y wilaw* =) wilakl* (38)
kezd k#0 kezd k#0

Since wy, > 2F for k # 0, wi < (i)Qw,‘i, summing gives equation If wg > Qp on the Fourier

expansion, then w? < Qg 2wi, yielding equation Optimality follows by taking a single mode

with || k|2 = 1. O

Theorem A.4 (High-frequency suppression under Hessian-only training). For any §2 > 0 and define
Ksq:={k¢€ 74w > QY and Kq == 74\ K>q. Then

Y law? <QY6H|Z:, (39)
keKZQ
Y wilakl* < Q7P6H| 7. (40)
ke >q

2

[l

Proof. Using ||6H |2, = >, witlak

Yoo lalP <t Y wila <QTY0H| 7, 41)
kGKZQ kGKZQ

giving equation[39] Similarly,
o wilal = Y wlwilaF <7 Y wila <Q0H|T., (42

kEICZQ ke’CZQ ke’CZQ
which is equation O
Corollary A.5 (Limited control of energy by Hessian-only). For any 2 > 0,
I0Emllz== > lacl*+ > laul* < D lawl> + Q7 |0H|[7-. (43)
ke <q kE’CZQ kek<q

In particular, the constant mode ag is completely unconstrained by Hessian training.
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Theorem A.6 (Atomic energy and energy Hessian supervision induces a uniform spectral floor).
Define the joint objective

N
Lo =Y [6ES,l3: + BIV20Ew]32, a8 > 0. (44)
=1
then
[0
> (5 +Bw)lanl” < Las. (4$)
kezd

Hence every frequency component of § Eyot, is penalized by at least o/ N, and the constant mode is
directly constrained.

Proof. By Cauchy—Schwarz,

N N
i 1 i 1

DI Egenllz > 351> 6 BuomllF = 5 D laxl* (46)

i=1 i=1 k
By Parseval-Plancherel,

V2Bl = > witlax|. (47)
k

Summing the two contributions yields equation O

Corollary A.7 (Uniform low-frequency and high-frequency suppression). For any €2 > 0 and define
Ksq:={k¢€ 74w > QY and Kq == 74\ K>q. Then

N
> lak? < —Lag, (48)
ke <q
1
P Q— 49
2 Ll < gL “9)
>Q

In particular, for the constant mode,

aol?> < (N/a) La,p.

A.3 ABLATION ON ATOMIC ENERGY DISTILLATION WEIGHT

We perform a grid scan over Ag,, € {0,1,10,20,100,1000} with all other training settings fixed
to isolate its effect. On the Solvated Amino Acids subset of SPICE, using GemNet-dT as the student,
the results (see table|1) show that Ag, , = 20 achieves the best balance between energy accuracy
and force accuracy.

Table 1: Energy MAE (meV/atom) and force MAE (meV/A) achieved by Atomic Energy + Hessian
distillation on the Solvated Amino Acid subset of SPICE, using different values of Az,

AE,om Energy MAE  Force MAE

0 1.5 12.8
1 1.1 12.4
10 0.9 12.2
20 0.8 12.1
100 0.9 12.4
1000 1.0 14.4

We perform a similar sweep for MPTrj and find that Ag, = 10 is optimal.

atom
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A.4 ACCURACY RESULTS

Using MACE-OFF as the teacher, we train each student model separately on each SPICE subset
(Monomers, Solvated Amino Acids, Systems with Iodine). Each dataset is split into train, val-
idation, and test sets. All metrics are reported on the test set. “No distillation” baselines are
taken from previous work (Amin et al., 2025). For the conservative student GemNet-T, we use
the Hessian results reported by |Amin et al.| (2025). For the non-conservative students GemNet-
dT and PaiNN, the Hessian results in |[Amin et al.| (2025) provide additional gradient supervision
on the energy head. We re-evaluate pure Hessian distillation under the same experimental setting
for fair comparison. The accuracy across students and datasets is summarized in Table 2} To iso-
late the impact of adding atomic energy supervision to Hessians, we report the relative change
A% =100 x (MAEAawomic Energy + Hessian — MAEHessian) /MAEHessian for both energy and forces. Our
method consistently improves energy accuracy over both the No distillation and Hessian baselines
while maintaining force accuracy comparable to Hessian distillation. In most cases, our distilled
models also outperform teacher models, likely because they can allocate their full capacity to a
targeted subdomain of the chemical space, as noted by Amin et al.| (2025).

Table 2: Results of distilling MACE-OFF trained on SPICE into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

Model Energy MAE (]) Force MAE (])

Subset Size (Parameter Count) Method (meV/atom) (meV/A)
(T) MACE-OFF Large (4.7M)  Pretrained 0.65 6.6
No distillation 1.27 11.3
(S) GemNet-dT (0.67M) Hessian 1.2 59
Atomic Energy + Hessian (ours) 1.1 (-8.3%) 5.9 (0.0%)
Monomers 14,331 No distillation 23 25.0
(S) PaiNN (1.0M) Hessian 2.1 8.5
Atomic Energy + Hessian (ours) 1.5 (-28.6%) 8.6 (+1.2%)
No distillation 3.8 7.9
(S) GemNet-T (0.57M) Hessian 6.8 51
Atomic Energy + Hessian (ours) 0.7 (-89.7%) 5.2 (+2.0%)
(T) MACE-OFF Large (4.7M)  Pretrained 1.3 194
No distillation 22 22.4
(S) GemNet-dT (0.67M) Hessian 1.5 12.8
Atomic Energy + Hessian (ours) 0.8 (-46.7%) 12.1 (-5.5%)
Solvaied Amino Acids 803 No distillation 33 50.1
(S) PaiNN (1.0M) Hessian 33 18.6
Atomic Energy + Hessian (ours) 1.2 (-63.6%) 18.5 (-0.5%)
No distillation 1.7 18.3
(S) GemNet-T (0.57M) Hessian 1.2 11.2
Atomic Energy + Hessian (ours) 0.4 (-66.7%) 11.3 (+0.9%)
(T) MACE-OFF Large (4.7M)  Pretrained 1.3 15.3
No distillation 2.68 234
(S) GemNet-dT (0.67M) Hessian 2.4 14.4
Atomic Energy + Hessian (ours) 1.7 (-29.2%) 14.2 (-1.4%)
Systems with Todine 11,171 No distillation 33 512
(S) PaiNN (1.0M) Hessian 33 23.6
Atomic Energy + Hessian (ours) 2.6 (-21.2%) 23.4 (-0.8%)
No distillation 4.0 15.9
(S) GemNet-T (0.57M) Hessian 5.8 11.7
Atomic Energy + Hessian (ours) 1.1 (-81.0%) 11.2 (-4.3%)

On MPtrj, we use MACE-MP and eSEN-OAM as teachers and train the same students on subsets
of MPtrj (Pm3m Spacegroup, Systems with Yttrium, and Systems with band gap > 5meV). Due
to the reasons mentioned above, the Hessian baseline of non-conservative students GemNet-dT and
PaiNN is re-measured without using gradient supervision on the energy head. The accuracy across
students and datasets is summarized in Table 3|4} Notably, the students already surpass the teachers
on energy accuracy by a wide margin, which may explain why the atomic energy term yields a
smaller gain than on SPICE. Nevertheless, the joint loss still further improves energy accuracy.
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Table 3: Results of distilling MACE-MP trained on MPtrj into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

. Model Energy MAE (]) Force MAE ()
Subset Size (Parameter Count) Method (meV) (meV/A)
(T) MACE-MPO (15.8 M)  Pretrained 1815.5 4.6
No distillation 206.5 13.4
Prdm S 9725 (S)GemNet-dT (0.67M)  Hessian 204.7 8.8
'm3m Spacegroup s Atomic Energy + Hessian (ours) 195.9 (-4.3%) 8.8 (0.0%)
No distillation 335.9 154
(S) PaiNN (1.0M) Hessian 361.1 9.1
Atomic Energy + Hessian (ours) 342.8 (-5.1%) 9.0 (-1.1%)
(T) MACE-MPO (15.8M)  Pretrained 9351.1 40.5
No distillation 190.0 33.1
R i (S) GemNet-dT (0.67M) Hessian 148.1 21.6
Systems with Yttrium 30,436 Atomic Energy + Hessian (ours) 138.5 (-6.5%) 21.8 (+0.9%)
No distillation 309.6 41.0
(S) PaiNN (1.0M) Hessian 200.4 26.2
Atomic Energy + Hessian (ours) 193.8 (-3.3%) 25.9 (-1.1%)
(T) MACE-MPO (15.8 M)  Pretrained 16909.8 31.2
No distillation 108.4 18.2
(S) GemNet-dT (0.67M) Hessian 109.1 13.6
Band Gap = 5meV 36,150 Atomic Energy + Hessian (ours)  97.4 (-10.7%) 13.7 (+0.7%)
No distillation 161.1 27.7
(S) PaiNN (1.0M) Hessian 110.8 17.4

Atomic Energy + Hessian (ours)

103.8 (-6.3%)

17.6 (+1.1%)

Table 4: Results of distilling eSEN-OAM trained on MPtrj into student MLFFs. (T) indicates
teacher model, while (S) indicates student model. The percentages in parentheses for the Atomic
Energy + Hessian results indicate the change relative to the Hessian.

. Model Energy MAE (]) Force MAE (])
Subset Size (Parameter Count) Method (meV) (meV/A)

(T) eSEN-30M-OAM (30.2 M) Pretrained 1774.3 1.1
No distillation 206.5 134

(S) GemNet-dT (0.67M) Hessian 181.6 6.4
Atomic Energy + Hessian (ours) 180.3 (-0.7%) 6.1 (-4.7%)

Pm3m Spacegroup 9,725 No distillation 3359 15.4

(S) PaiNN (1.0M) Hessian 365.2 7.1
Atomic Energy + Hessian (ours) 317.6 (-13.0%) 7.0 (-1.4%)
No distillation 188.3 9.7

(S) GemNet-T (0.57M) Hessian 227.2 6.3
Atomic Energy + Hessian (ours) 225.5 (-0.7%) 6.1 (-3.2%)

(T) eSEN-30M-OAM (30.2 M) Pretrained 9344.1 10.9
No distillation 190.0 33.1

(S) GemNet-dT (0.67M) Hessian 150.5 14.9
Atomic Energy + Hessian (ours) 137.2 (-8.8%) 15.2 (+2.0%)

Systems with Yttrium 30,436 No distillation 30.6 41.0

(S) PaiNN (1.0M) Hessian 214.4 226
Atomic Energy + Hessian (ours) 189.8 (-11.5%) 22.5 (-0.4%)
No distillation 155.7 27.3

(S) GemNet-T (0.57M) Hessian 140.5 17.5

Atomic Energy + Hessian (ours)

137.8 (-1.9%)

15.2 (-13.1%)

A.5 TRAINING OVERHEAD

Taking the Solvated Amino Acids subset of SPICE as a case study, we measure the training overhead
of adding the atomic energy term. Figure [5]shows that the extra loss increases end-to-end iteration
time by under 0.5%. Timings cover data loading, neighbor list construction, forward/backward
passes, and optimizer steps, and were recorded post warm-up under identical hardware platform and
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Figure 5: Training overhead from atomic energy supervision.

batch settings. Coupled with the accuracy gains in Figure [2] this yields a favorable accuracy-time
trade-off.

A.6 TRAINING DETAILS

We provide training details for GemNet-dT, GemNet-T, PaiNN models used in this work. Unless
otherwise noted, The same hyperparameters are used for No distillation, Hessian and Atomic Energy
+ Hessian training to ensure fair comparisons.

Table E] lists the architectural settings for GemNet-dT and GemNet-T, including the basis sizes,
embedding dimensions, number of blocks, cutoff, neighbor cap, and activation/initialization choices
aligned with the prior stable configurations.

Table 5: Hyperparameters for GemNet-dT and GemNet-T student models.

Parameter Value

Number of Spherical 7

Radial Basis Functions 6

Blocks 4

Atom Embedding Size 64

Edge Embedding Size 64

Triplet Embedding Size 32

RBF Embedding Size 16

CBF Embedding Size 16

Bilinear Triplet Embedding Size 64

Number Before Skip 1

Number After Skip 1

Number of Concatenations 1

Number of Atoms 2

Cutoff 5.0 (SPICE) / 6.0 (MPtrj)
Maximum Neighbors 50

RBF Function Gaussian

Envelope Function Polynomial (Exponent: 5)
CBF Function Spherical Harmonics

Output Initialization
Activation Function

HeOrthogonal
SiLU

Table [0 are the architecture hyperparameters for PaiNN student models. For the MPtrj dataset, the
three slash-separated cutoffs are used for Pm3m Spacegroup, Systems with Yttrium, and Systems
with band gap > SmeV, respectively.
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Table 6: Hyperparameters for PaiNN student models.

Parameter Value

Hidden Channels 128

Layers 4

Radial Basis Functions 128

Cutoff 12.0 (SPICE) / [14.0/ 16.0 / 6.0] (MPtrj)

Maximum Neighbors 50

Tables [7][8] O] [T0] summarize optimization schedules, total epochs, loss weights, and batch sizes.
We use AdamW with AMSGrad, ReduceLROnPlateau scheduling, gradient clipping, and EMA.
Training epoch are subset- and model-specific to match dataset size.

Table 7: Optimization hyperparameters for student models.

Parameter GemNet-dT/GemNet-T  PaiNN
Initial Learning Rate 0.001 0.001
Optimizer AdamW AdamW
Weight Decay 0.000002 0.000002
Amsgrad True True
Adam epsilon l.e-7 l.e-7
Scheduler ReduceLLROnPlateau ReduceL.ROnPlateau
Patience 5 10
Factor 0.8 0.8
Minimum Learning Rate  0.000001 0.000005
EMA Decay 0.999 0.999
Clip Gradient Norm 10 10

Table 8: Training epochs for student models.

Subset Model Epochs
GemNet-dT 600
Monomers PaiNN 1400

GemNet-T 500

GemNet-dT 2000
Solvated Amino Acids PaiNN 1000
GemNet-T 2500

GemNet-dT 600
Systems with Iodine PaiNN 1500
GemNet-T 600

_ GemNet-dT 200
Pm3m Spacegroup PaiNN 500
GemNet-T 500

GemNet-dT 500
Systems with Yttrium  PaiNN 900
GemNet-T 450

GemNet-dT 350
PaiNN 1000

Band Gap > 5 meV
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Table 9: Loss weights for student models.

Subset >\E )\F >\Ealum )\H
Monomers 5 100 20 400
Solvated Amino Acids 5 100 20 400
Structures with Iodine 5 100 20 400
Pm3m Spacegroup 5 100 10 200
Structures with Yttrium 5 100 10 200
Band gap > SmeV 5 100 10 200

Table 10: Training batch size for student models.

Subset GemNet-dT/GemNet-T PaiNN
Monomers 4 8
Solvated Amino Acids 4 4
Structures with Iodine 4 8
Pm3m Spacegroup 16 16
Structures with Yttrium 16 16
Band Gap > SmeV 32 32

Table |11| shows the number of rows sampled from Hessian used in each training iteration. These
settings follow previous work (Amin et al.| [2025).

Table 11: Number of rows sampled from Hessian.

Subset GemNet-dT/GemNet-T PaiNN

Monomers

Solvated Amino Acids
Structures with Iodine
Pm3m Spacegroup
Structures with Yttrium
Band Gap > 5SmeV

(SN N N
ARBR A~

A.7 NVT MD SIMULATIONS

To further evaluate distilled MLFFs, we follow previous work |Amin et al.| (2025) and run 100 ps,
constant temperature (NVT) MD simulations with systems from the Solvated Amino Acid subset.
We choose 5 random structures from the test set as initial structures and perform Langevin dynamics
at a temperature of 300K, a timestep of 1.0 fs, and a friction coefficient of 0.01 f s~ 1, for 100,000
steps, corresponding to 100 ps. Consistent with (Fu et al., [2022)), we use a metric of the maximum
bond length deviation to measure stability. We keep track of stability through the bond lengths and
say that a simulation becomes “unstable” at time 7 if:
mav |(r3(7) =75 (T)] = bi)| > A, (50
(1,5)EB
where B is the set of all bonds, 7, j are the two endpoint atoms of the bond, and b; ; is the equilibrium
bond length computed from the training dataset. Following (Fu et al.}[2022)), we set A = 0.5A.

Experimental results from |Amin et al.[(2025) show that small undistilled models are unstable in
MD, while Hessian distilled students markedly improve stability. Our results are shown in Figure [f]
and findings are consistent: Atomic Energy + Hessian distillation maintains stable MD trajectories.
We further compare students across sizes and observe generally robust stability. Only a single run
with a smaller model exceeded the stability threshold. This indicates that adding Atomic Energy
does not diminish the stability gains provided by Hessian distillation.

21



Under review as a conference paper at ICLR 2026

< 10 <

c c

Lo Lo

-~ +~J

i L 100 4

o 1004 CrARE N

L= N N A A A SRR ©

c <

- -

g g

@ 10-1 © 107 5

- —=—- Stability Threshold - — ==~ Stability Threshold

g Teacher g Atomic Energy + Hessian (2.3M)

o No distillation Ke] Atomic Energy + Hessian (0.22M)

X i i x i i

g 10-2 4 Atomic Energy + Hessian g 10-2 4 Atomic Energy + Hessian (0.08M)
0 20 40 60 80 100 0 20 40 60 80 100

Simulation time (ps) Simulation time (ps)

Figure 6: Stability of NVT MD. x denotes the point at which the simulation becomes unstable.
The numbers in brackets in the right figure represent the number of model parameters. Our distilled
models are generally more stable than the undistilled model.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)
We used large language models (LLMs) to assist with drafting and polishing the manuscript text

(improving clarity, grammar, and consistency of terminology). The LLM was not used to generate,
analyze, or filter scientific results, and all LLM-assisted text was reviewed and edited by the authors.
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