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ABSTRACT

Deterministic neural operators perform well on many PDEs but can struggle with
the approximation of high-frequency wave phenomena, where strong input-to-
output sensitivity makes operator learning challenging and spectral bias blurs
oscillations. We argue for a probabilistic approach, and use a conditional diffusion
operator as a concrete tool to investigate it. Our study couples theory with practice:
a theoretical sensitivity analysis explains why high frequency amplifies prediction
errors, and suggests an evaluation protocol (including an energy-form metric) to test
whether learned surrogates preserve stable quantities while capturing uncertainty.
Across a range of regimes, the probabilistic neural operator is found to produce
robust, full-domain predictions, better preserves energy at high frequency, and
provides calibrated uncertainty that reflects input sensitivity, whereas deterministic
approaches tend to oversmooth. These results position probabilistic operator
learning as a principled and effective approach for solving complex PDEs such as
Helmholtz in the challenging high-frequency regime.

1 INTRODUCTION

Helmholtz equation are a class of elliptic PDEs that arise in modeling time-harmonic wave propagation
with a wide range of applications in applied silences from geophysics to medical fields such as imaging
and therapeutic via ultrasound (Amundsen & Ursin, 2023; Huttunen et al., 2005; Sarvazyan et al.,
2010; Rybyanets et al., 2015; Salahshoor et al., 2020; Juraev et al., 2024). Solving Helmholtz equation
in high-frequency regimes in heterogeneous media require very fine computational grids that often
renders the problem as computationally prohibitive (Chen, 2025; Bootland et al., 2021; Bao et al.,
2004). This, in turn, motivates learning-based surrogates that remarkably reduce computational cost
via fast inference while aiming to preserve fidelity. Among these, operator learning targets mappings
between function spaces rather than pointwise inputs and outputs, with representative approaches
including DeepONet and the Fourier Neural Operator (FNO), as well as physics-tailored extensions
for wave physics and elasticity (Lu et al., 2021; Li et al., 2021; Zhang et al., 2023; Lehmann
et al., 2024; Zou et al., 2024b; Chen et al., 2024; You et al., 2024). However, high-frequency
wavefields in heterogeneous media expose two persistent limitations of deterministic operators: (i)
operator spectral bias, wherein models preferentially capture low-frequency content and oversmooth
oscillatory structure, degrading phase accuracy and interference patterns critical to acoustics and
seismics (Fanaskov & Oseledets, 2023; Khodakarami et al., 2025; Xu et al., 2025); and (ii) sensitivity
to small perturbations in inputs (e.g., sound speed, geometry, or frequency), which can induce
multi-modality or sharply varying responses that point-estimate predictors neither represent nor
calibrate (Ivanovs et al., 2021; Le & Dik, 2024; Behroozi et al., 2025). Probabilistic learning offers
an alternative to deterministic (single-output) surrogates by modeling a distribution over solutions,
thereby capturing multi-modality and input sensitivity (Stanziola et al., 2021; Vertes, 2020; Wu et al.,
2022; Alkhalifah et al., 2021; Lobato et al., 2024). In this paper we use a conditional diffusion model
as one concrete tool to examine probabilistic operator learning for high-frequency acoustics governed
by the Helmholtz equation (Shysheya et al., 2024; Huang et al., 2024; Bastek et al., 2025b; Lim
et al., 2023; Wang et al., 2024; Yao et al., 2025): we instantiate a conditional diffusion operator
that maps problem inputs (sound-speed map, source mask, positional encodings) to the complex
frequency-domain wavefield and evaluate it on a controlled 2D J-Wave benchmark spanning low to
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high frequencies, comparing against strong deterministic baselines (FNO, HNO, and a backbone-
matched U-Net). Our study revolves around two questions central to high-frequency prediction:
(Q1) can a probabilistic operator preserve stable quantities—e.g., energies in sub-regions—more
reliably than deterministic surrogates; and (Q2) can it produce calibrated uncertainty that faithfully
reflects sensitivity to input perturbations? Although the underlying forward map is deterministic,
practical indeterminacy at high frequencies makes single-output surrogates brittle. We therefore
adopt a probabilistic formulation that learns a conditional distribution over solutions, using its mean
for accuracy and its dispersion to encode epistemic sensitivity.

Our contributions. We introduce a new paradigm for approximating high-frequency waves in
heterogeneous media and conducting uncertainty quantification. We learn Helmholtz solution
operator through a probabilistic lens, instantiating a conditional diffusion model and benchmarking it
against reputable deterministic baselines (FNO, HNO, backbone-matched U-Net). Across all tested
frequencies, diffusion achieves the lowest errors in L2, H1, and energy norm. We also demonstrate
that diffusion model can predict the statistics of amplitudes in the far-field. We further investigate
perturbations of sound speed field and investigate whether diffusion models can capture statistics
of wavefields as the push-forward by the Helmholtz solution operator. Our sensitivity analysis
show that diffusion robustly mirrors the ground-truth variability and produces calibrated uncertainty,
whereas deterministic operators are systematically under-dispersed and miss small-variance modes.
Taken together, our results show that probabilistic operator learning is a promising approach for
approximating high-frequency solutions of PDEs.

2 RELATED WORK

Operator learning for Helmholtz. Neural operators promise fast surrogates for PDEs at scale,
but Helmholtz problems expose their core weakness: preserving high-frequency structure. Fourier
Neural Operators can model elastic waves efficiently, yet their spectra skew low and tend to smooth
oscillations—an instance of spectral bias (Zhang et al., 2023; Lehmann et al., 2024; Benítez et al.,
2024). In response, Helmholtz-specific designs emerged. Helmholtz Neural Operators (HNO)
move to the frequency domain, exchanging time stepping for per-frequency solves and delivering
substantial memory/runtime benefits while retaining accuracy on elastic wavefields (Zou et al.,
2024a;b). Complementary efforts build analytic structure into the surrogate: Neumann–series neural
operators target large wavenumbers to improve stability and error (Chen et al., 2024), while multi-
scale architectures inject resolution where spectral bias hurts most (You et al., 2024). Together, these
works sharpen the central challenge—phase/interference fidelity under input sensitivity—and set the
stage for probabilistic alternatives.

Diffusion models for PDE solution fields. Diffusion models approach the problem from the
opposite direction: rather than a single point estimate, learn a distribution over solutions that
can express multi-scale detail and uncertainty. Conditional diffusion has shown strong fidelity on
challenging, high-frequency targets (Shysheya et al., 2024). The next question is physics compliance:
physics-informed diffusion introduces residual penalties and priors in training/sampling (or via
post-hoc distillation) so generated fields satisfy governing equations without sacrificing fidelity
(Bastek et al., 2025b; Zhou et al., 2025; Zhang & Zou, 2025). When observations are partial, guided
diffusion couples coefficients and solutions—enabling inference from sparse or indirect data and
scaling across setups (Huang et al., 2024; Cao et al., 2025; Gao et al., 2024; 2025; Bergamin et al.,
2025). Moving beyond grids, function-space diffusion defines priors directly on continuous fields,
supporting discretization-agnostic learning and transfer across resolutions (Lim et al., 2023; Yao
et al., 2025; Bastek et al., 2025a). Related score-based solvers extend these ideas to inverse problems
and safe control with calibrated uncertainty (Haitsiukevich et al., 2024; Hu et al., 2025).

Hybrid diffusion + operators for Helmholtz. An innovation is to condition diffusion on a neural
operator: the operator supplies coarse, global structure, while diffusion restores high-frequency detail
and quantifies uncertainty. Such hybrids have reduced spectral bias in turbulence and fluid statistics
(Oommen et al., 2025; Molinaro et al., 2024). For Helmholtz, physics-informed diffusion has been
applied to radio-map generation with embedded Helmholtz constraints (Wang et al., 2025; Sortino
et al., 2024; Jia et al., 2025), but these systems do not pair diffusion with a learned operator that maps
coefficients to wavefields end-to-end. To our knowledge, a diffusion + operator hybrid for Helmholtz
operators remains unexplored, so our work fills this gap by uniting operator learning with conditional
diffusion to preserve phase-sensitive structure while providing calibrated uncertainty.
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3 THEORETICAL FRAMEWORK

3.1 PROBABILISTIC OPERATOR LEARNING FOR PDES

Consider a boundary–value problem on an open, connected domain Ω ⊂ Rd with boundary ∂Ω,

Lκ u = f in Ω, B u = g on ∂Ω, (1)

where Lκ is a differential operator depending on coefficient fields κ (e.g., sound speed, density), f is
a source term, and g encodes boundary data. Under standard well-posedness assumptions, equation 1
induces a solution operator

S : Z → Y, z := (κ, f, g) ∈ Z 7→ u = S(z) ∈ Y, (2)

for suitable function spaces (e.g., Z ⊂ L∞ × L2 ×H1/2, Y ⊂ H1). Classical solvers approximate
S per query by discretizing equation 1 and computing uh ≈ u, which is expensive in many-query
regimes (varying z across geometries, coefficients, and frequencies). Operator learning seeks a
data-driven surrogate Ŝθ : Z → Y trained from pairs {(zi, ui)}Ni=1 with ui = S(zi), solving

θ⋆ ∈ argmin
θ

1

N

N∑
i=1

L
(
Ŝθ(zi), ui

)
,

L(a, b) := ∥a− b∥Y ,

(3)

where ∥ · ∥Y is the norm in the solution space. Popular deterministic architectures (e.g., Fourier
Neural Operators (FNOs) (Li et al., 2021), DeepONets (Lu et al., 2021)) realize Ŝθ via learned
integral kernels or spectral multipliers and return a single prediction ûθ = Ŝθ(z) for input z. A
probabilistic operator instead models the conditional law of the solution: For each input z ∈ Z , define
the conditional probability distribution P(u | z) of outputs u given the conditioning variable z. The
goal of probabilistic approaches, including conditional diffusion models, is to learn to (approximately)
sample from this conditional probability distribution. In practice, we parameterize a generator Tϑ

and draw samples via Gaussian noise η ∼ N (0, I),

u = Tϑ(η; z) ∼ pϑ( · | z), (4)

where the law pϑ( · | z) = Tϑ,#N (0, I) is the push-forward of the reference Gaussian under the
learned generator. After training ϑ with score-based objectives, inference then allows us to draw new
samples from the learned conditional law. Typical probabilistic operators can be instantiated with
conditional diffusion models, normalizing flows, or function-space priors (Lim et al., 2023; Wang
et al., 2024; Yao et al., 2025; Shysheya et al., 2024; Huang et al., 2024; Chen & Vanden-Eijnden,
2025).

3.2 HIGH-FREQUENCY HELMHOLTZ AND WHY PROBABILISTIC HELPS

We consider the Helmholtz equation

c2∇2u+ k2u = 0, (5)

with inhomogeneous sound map c = c(x). The Helmholtz equation underpins time-harmonic wave
modeling in acoustics, elasticity, and scattering. Despite its ubiquity, its numerical solution is still
facing many challenges. The reader is referred to Ernst & Gander (2011) for a detailed description of
the challenges in solving Helmholtz equation. In a nutshell, Helmholtz operator is neither Hermitian
symmetric nor coercive, and is poorly conditioned, which makes it hard to solve via iterative methods.
With these difficulties in place, in the high wavenumber regime additionally requires resolving short
wavelengths and controlling dispersion (”pollution“) errors, which, collectively renders approximating
high frequency solutions of Helmholtz a difficult problem. These difficulties have motivated studies
on using neural operators for Helmholtz (Zhang et al., 2023; Lehmann et al., 2024; Benítez et al.,
2024; Zou et al., 2024a;b).

Two obstacles for deterministic operators are aggravated by considering the high-frequency regime of
the Helmholtz equations: (i) spectral bias, causing neural networks to preferentially fit low-frequency
content and oversmooth oscillations, degrading phase/interference fidelity; and (ii) input sensitivity,
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where tiny coefficient perturbations induce large phase shifts in the solution. Let S : Z→Y map a
sound-speed field c to the complex wavefield u = S(c). Linearizing around a baseline c0 yields

δu ≈ DS[c0] (δc), L(c0) := ∥DS[c0]∥op, so
∥δu∥
∥u0∥

≲ L(c0)
∥δc∥
∥c0∥

, (6)

with u0 := S(c0). A 1D WKB argument, detailed in Appendix A.2, at large wavenumber k makes
the scaling explicit: along a ray parameterized by arclength s ∈ [0, ℓ] to r, the WKB analysis implies
that the wavefield u and sound map c are approximately related by

u(r) ≈ A0 exp
(
± ik

∫ ℓ

0

ds
c(s)

)
, (7)

so for small perturations c = c0 + δc with ∥δc∥∞/∥c0∥∞ ≪ 1, we obtain

δu(r)

u0(r)
≈ exp

(
± i

k

c20

∫ ℓ

0

δc(s) ds
)
− 1,

∣∣∣ δu(r)u0(r)

∣∣∣ ≲
k ℓ

c0︸︷︷︸
=:L(k,ℓ,c0)

∥δc∥∞
c0

, (8)

(where c0 is locally constant along the ray). Sensitivity thus grows linearly with frequency k
and propagation distance ℓ (and is minimal near the source). If the induced phase shift δϕ(r) ≈
k
c20

∫ ℓ

0
δc(s) ds can be considered random (reflecting unresolved input variability/modeling error), the

MSE-optimal deterministic predictor collapses oscillations by vector-averaging on the unit circle:

ûMSE(r) = E[u(r) | z] ≈ u0(r)E
[
e iδϕ(r)

]
≈ u0(r) e

− 1
2Var[δϕ(r)]. (9)

The last exponential factor produces amplitude shrinkage, blurred interference, and lost high-
frequency contrast—precisely when L(k, ℓ, c0) ∝ kℓ is large. This happens when either the wave-
number k is large (high-frequency limit), or when the distance to the source ℓ is large.

A probabilistic operator instead models the conditional law pϑ(u | z) by internalizing phase ambiguity
and input sensitivity rather than collapsing them into a single output. Drawing samples {u(s)}Ss=1 ∼
pϑ(· |x) allows: (i) preserving oscillations and multi-modality at prediction time (via samples
representing e.g. uncertain phase statistics, not just a learned mean); (ii) quantifying calibrated
uncertainty that tracks sensitivity; and (iii) reporting stable functionals where phase cancels. For
example, the energy

E(u) =

∫
Ω

(
∥∇u(r)∥2 + k2

c0(r)2
|u(r)|2

)
dr (10)

can be estimated in a Bayes-optimal way for energy risk by Ê = E[E(u) | z] ≈ 1
S

∑S
s=1 E(u(s)),

which remains stable even when E[u | z] is attenuated by phase dispersion. Practically, pϑ(u | z)
lets us decouple fragile quantities (phase, pointwise fields) from stable ones (energy, band-limited
summaries), deliver coverage diagnostics for sensitivity-aware calibration, and choose decision
rules matched to the evaluation metric—yielding robustness exactly where deterministic surrogates
struggle.

3.3 CONDITIONAL DIFFUSION MODEL FOR PROBABILISTIC LEARNING

In this subsection, we describe our adopted conditional diffusion models for probabilistic learning
of wavefields. Let us denote the Helmholtz solution as u0, our objective is to approximate the
conditional law pθ(u0 | z) given the PDE inputs, where u0 ∈ CH×W and z = [ c, m, PEx, PEy ]
concatenates the sound-speed map c, a binary source mask m, and sinusoidal positional encodings
(we are assuming a 2D square domain for the sake of simplicity). This is achieved through noising
and denoising process. For the first step, a forward noising chain progressively corrupts u0 to uT as

q(ut | ut−1) = N
(
ut;
√
αt ut−1, (1− αt)I

)
, q(ut | u0) = N

(
ut;
√
ᾱt u0, (1− ᾱt)I

)
, (11)

with schedule {βt}Tt=1 ⊂ (0, 1), αt = 1− βt, and ᾱt =
∏

s≤t αs. Then, for the next step we use a
time-indexed Gaussian family to approximate the reverse conditionals

pθ(ut−1 | ut, z) = N
(
ut−1; µθ(ut, t, z), σ

2
t I

)
,

µθ(ut, t, z) =
1
√
αt

(
ut −

βt√
1− ᾱt

εθ(ut, t, z)

)
,

(12)
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Figure 1: Conditional diffusion for Helmholtz. Forward diffusion (top): the wavefield u0 is
progressively noised by a fixed schedule to a Gaussian field uT . Reverse denoising (bottom):
sampling starts from pure Gaussian uT and is conditioned on the inputs z comprised of sound-speed
map c, as well as source mask and positional encodings that are not shown. A time-indexed U-Net
(“Trained Score Net”) predicts noise and removes it iteratively over T ≈ 1000 steps to produce
samples u(s)

0 that approximate the conditional distribution of solutions.

where a U-Net with time embeddings parametrizes the noise predictor εθ. We note that the condi-
tioning z is never noised. The learning objective aligns with conditional denoising score matching
is:

L(θ) = Eu0,z,t,ε

∥∥∥ε− εθ
(
ut, t, z

)∥∥∥2
2
, ut =

√
ᾱt u0 +

√
1− ᾱt ε, ε ∼ N (0, I), (13)

During the inference, we generate S ancestral samples by iterating uT ∼N (0, I) through t = T→1

to obtain {u(s)
0 }Ss=1 ∼ pθ(· | z).

4 DETAILS OF DATASETS AND TRAINING

In this section we delineate the details of data generation and diffusion model training.

Data generation. For a fixed frequency, we synthesize a dataset comprised of 10000 pairs of sound
speed maps and Helmholtz solution, i.e. {cj(x), uj(x)}10000j=1 . Each cj is generated using a family of
Gaussian random fields (GRFs; see Appendix B.1) where GRF parameters are randomly chosen from
a range of amplitudes and correlation lengths. Out of the 10000 synthesized data, we allocate 8190,
1020, and 500 respectively for training, validation, and testing. The dataset is generated with recourse
to the Helmholtz PDE solver J-Wave, which is a powerful spectral method based solver developed
via JAX (Stanziola et al., 2022). In particular, for each sound speed map cj , we solve the Helmholtz
equation: (

∇2 + ω2

cj(x)2

)
uj = F, (14)

where uj is the complex pressure field at angular frequency ω = 2πf in a square domain with a
256× 256 Cartesian grid, F is a masked source term with a disk mask of radius rs=10 in terms of
the grid points, and perfectly matched layers (PML) is implemented in the boundaries to eliminate
the effects of boundary reflections. We repeat the aforementioned to generate six datasets for six
different frequencies, ranging from 1.5×105 to 2.5×106 Hz. Without loss of generality, and to reflect
a concrete application, both frequencies and sound speed ranges are chosen to reflect modeling
ultrasonic waves in tissues. During the learning process, we expand the input to include normalized c,
source mask, and sinusoidal positional encodings, with the wavefield solutions as target.

5
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Conditional diffusion for Helmholtz operator. Unlike existing application of Diffusion models
in time-dependent PDEs, such as PDE–DIFF (Shysheya et al., 2024), we learn a solution operator
that corresponds to steady state waves, which means there is no temporal stacking and each training
example is a single instance at a fixed frequency. We adopt the conditional denoising formulation,
where only the target wavefield is noised, while the inputs are kept clean and given as conditioning.
The backbone score net is a 2D U-Net with five down/up stages (widths [48, 96, 192, 384, 768]),
three residual blocks per stage, LayerNorm, SiLU, and circular padding (Fig. 1). A sinusoidal time
embedding is passed through an MLP (128→ 256→ 64) to produce a 64-D context vector. The
conditioning tensor C is used two ways: (i) concatenated to the input image stack, and (ii) mapped
(via a linear layer) from the 64-D context to the current block’s channel width to generate FiLM
scale/shift (γ, β) ∈ Rf , applied as y = γ ⊙ h + β. Lastly, the network predicts a single output
channel (wavefield amplitude). See Figure 1 for an overview of the training/sampling pipeline and
the FiLM-conditioned U-Net. For further details, the reader is referred to Appendix B).

Table 1: Relative errors across frequencies. Diffusion reports mean±std over K=10 samples.

Frequency (Hz) Metric U-Net FNO HNO Diffusion

1.5e5
L2 0.040 0.167 0.115 0.027 ± 0.004
H1 0.071 0.219 0.164 0.045 ± 0.004
Energy 0.022 0.114 0.071 0.016 ± 0.003

2.5e5
L2 0.077 0.190 0.153 0.028 ± 0.001
H1 0.121 0.278 0.219 0.044 ± 0.001
Energy 0.026 0.086 0.075 0.013 ± 0.002

5e5
L2 0.083 0.176 0.133 0.018 ± 0.002
H1 0.122 0.223 0.189 0.035 ± 0.002
Energy 0.036 0.105 0.069 0.013 ± 0.005

1e6
L2 0.101 0.306 0.177 0.025 ± 0.005
H1 0.150 0.352 0.254 0.040 ± 0.007
Energy 0.033 0.091 0.082 0.017 ± 0.008

1.5e6
L2 0.464 0.363 0.398 0.046 ± 0.011
H1 0.639 0.434 0.557 0.070 ± 0.015
Energy 0.249 0.103 0.162 0.026 ± 0.015

2.5e6
L2 0.767 0.412 0.802 0.095 ± 0.019
H1 1.000 0.494 0.996 0.135 ± 0.028
Energy 0.514 0.141 0.590 0.036 ± 0.016

5 RESULTS

We present the results of our experiments under two categories: (i) error analysis: where we
demonstrate capabilities of our probabilistic framework to outperform other neural operator techniques
with quantitative results, and (ii) sensitivity analysis: where we systematically demonstrate that our
approach enables capturing the perturbations incurred in wavefields via uncertainties in sound speeds.

5.1 ERROR ANALYSIS

We have investigated different diffusion frameworks with different noise scheduling, where we ablate
diffusion samplers (computed once per setting) across step budgets Nt∈{10, 50, 100, 1000}: DDPM
with both linear and cosine noise schedules, DDIM (cosine), and SDE (cosine) (in Appendix C).
Among them, DDPM with a cosine schedule achieves the best accuracy at our highest step budget
(Nt=1000). We thus fix DDMP as the sampler of choice. To compare our results against deterministic
frameworks, we have adopted Fourier Neural Operator (FNO) and the more recent Helmholtz
Neural Operator (HNO), and trained them on the identical datasets used for the diffusion models
(details of FNO and HNO can be found in Appendix B). We have computed and interrogated FNO,
HNO, and backbone U-Net results as baseline deterministic approaches against our probabilistic
framework. Table 3 summarizes the relative L2 and H1 errors for six different frequencies, ranging
from low 150 kHz to 2.5 MHz. Since often in practice one is interested in energy, we have also
quantified the relative energy errors defined as Eenergy(û, u) = |E(û) − E(u)|/E(u) with E(u) =∫
Ω
(∥∇u∥2 + k2

c(x)2 |u|
2) dx. We note that diffusion results are obtained by drawing K = 10 samples

6
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(f = 1.5× 105 Hz)

(f = 5× 105 Hz)

(f = 1× 106 Hz)

(f = 2.5× 106 Hz)

Prediction vs. Ground Truth Residual (Pred−GT)
Figure 2: Qualitative comparisons across selected frequencies. Each row shows, left-to-right, Sound Map (c),
Ground Truth (GT), U-Net, FNO, HNO, Diffusion, followed by the comparison to GT.

per test input, and mean±std are reported. Our results demonstrate that diffusion models consistently
yield smaller errors, and as frequency is ramped up, our probabilistic approach exhibits an order of
magnitude lower errors compared to the best of three deterministic approaches. Notably, at 2.5 MHz,
relative L2 error for diffusion model is 0.095±0.019, while the same quantity is computed for U-Net,
FNO, and HNO as 0.767, 0.412, and 0.802, respectively. We further illustrate the computed wavefield
solutions for a randomly chosen sound speed map. Figure. 2 shows the ground truth (GT), U-Net,
FNO, HNO, and Diffusion results and their corresponding errors at a subset of four frequencies
(see Appendix C.3 for more results). We observe that the Diffusion model outperforms the other
deterministic approaches in capturing wave patterns and fine features of solutions.

5.2 SENSITIVITY ANALYSIS

To quantify how uncertainties in sound speed map is pushed forward to wavefields, we construct
parametrized perturbation paths in coefficient function space as a homotopy from a randomly chosen

7
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Figure 3: Sampling along a parametrized path in coefficient function space. We vary s in
cs = (1 − s)c0 + s c1 and track amplitude at fixed probe pixels (left: near source; right: near
boundary).

reference medium to diverse realizations: starting from c0 and D=100 GRF draws {c(d)}Dd=1, we
define c(d)(s) = (1 − s)c0 + s c(d) with S=100 steps s ∈ [0, 1] (as depicted in Figure 6 of the
Appendix). For every cd(s), we then evaluate model’s prediction uM (s, d; y, x) at 8 probe pixels
(4 near the source center and 4 near the PML boundary). For the sake of brevity, we report one
representative from each of the near and far locations in the main text (for all eight points we refer it
in Appendix C). For small s, the slope along a path provides a local, directional view of sensitivity,
since d

dsu
∣∣
s=0
≈ DS[c0] [c

(d)−c0], which ties directly to the bound |δu/u0| ≲ (k r/c0) (∥δc∥/c0)
(see section 3). As s increases, the sound map becomes increasingly different from center c0.

Placing probes both near and far allows a direct examination of the distance-to-source dependence
L ∝ k r/c0. We utilize two complementary visualizations-sampling along a fixed direction d to show
rate-of-change along a single path, and kernel density estimate (KDE) (details in Appendix C.4)
across directions at fixed s to estimate the pushforward variability of u under random coefficient
perturbations. Hence, we interrogate sensitivity locally near c0 (at s=0 and s=0.1) and at finite
amplitudes (around s ≈ 1) within one unified experimental design. At the highest frequency (2.5×106
Hz), sampling plot reveals a clear separation: at the near-source probe, both diffusion model and
majority of deterministic models can follow the ground-truth trajectory u⋆(s, d⋆; y, x) across the
entire path, matching both amplitude and phase; but at the near-boundary probe the discrepancy
amplifies—only diffusion reproduces the rapid, non-monotone oscillations and turning points of the
complex trajectory, while most deterministic models drift or flatten, consistent with the boundary
oversmoothing in Figure 2 (Figure 3). In the density plot view, at s=0 all inputs satisfy c(d)(0) = c0,
so the solver produces a single spike; deterministic models also produce a spike but it is biased relative
to the solver’s value, whereas diffusion yields a narrow yet non-degenerate predictive distribution that
covers the ground-truth spike—reflecting the fact that at high frequency the map c 7→u is effectively
one-to-many (phase ambiguity, discretization/model mismatch, and measurement noise make several
wavefields plausible for the same inputs). We turn this stochasticity to our benefit as diffusion
model learns p(u | x) rather than a single point, quantifying the push-forward distribution instead
of committing to a potentially biased mean (Figure 4). At s=1, only diffusion captures the ground
truth’s broad amplitude distribution across directions, again consistent with the qualitative boundary
behavior (Figures 2 and 4). We also note that for all sensitivity plots we use one diffusion sample per
input to expose the predicted distribution rather than its mean.

6 DISCUSSION & CONCLUSION

We universally observe that diffusion models yield lower errors L2 : at 2.5×106 Hz it preserves fine
interference and overall energy while deterministic baselines (U-Net, FNO, HNO) oversmooth and
lose phase coherence, especially at the boundary (Figure 2; Table 1). Two regularities emerge: errors
increase from low to high frequency, and accuracy declines with distance from the source, consistent
with the sensitivity lens L≈ kr/c0 introduced earlier. By learning a conditional distribution over
wavefields rather than a single point estimate, diffusion yields robust high-frequency predictions
that better preserve the stable energy form and retain faint boundary patterns; sensitivity diagnostics

8
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s = 0

s = 0.1

s = 1

Figure 4: Kernel density estimates across directions at selected interpolation levels. Rows: s = 0,
s = 0.1, s = 1. Left column: near the source. Right column: near the boundary.

(sampling along a fixed direction and density plots) corroborate these advantages by showing trajectory
fidelity along perturbation paths and alignment with ground-truth amplitude distributions (Figures 3
and 4).

Limitations & Future Work. The main trade-off is sampling cost: our best configuration uses
1000 DDPM steps, which yields strong accuracy but slower inference; accelerating sampling via
distillation/consistency training, improved ODE/SDE solvers, or latent/patchwise diffusion is a
priority. Our study is currently restricted to a 2D domain with a single, centered point source and
GRF-generated sound-speed fields; next, we will move beyond this controlled setting by (i) replacing
GRFs with anatomically realistic, labeled brain media (including skull/soft-tissue heterogeneity
and absorption) and (ii) testing multi-source/array configurations that better reflect therapeutic use.
Finally, we will extend to full 3D Helmholtz propagation, addressing the associated memory and
compute demands with multi-resolution architectures and efficient samplers, and we will reassess
accuracy, energy-form stability, and uncertainty calibration under these more realistic conditions.
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A DETAILED THEORY

A.1 DATA GENERATION FOR 1D HELMHOLTZ

We complement the 2D study with a matched 1D Helmholtz experiment that uses the same data–model
pipeline but replaces J-Wave for a finite-difference frequency-domain (FDFD) Helmholtz solver.
Given samples of the wave speed, which is from the same GRF family as in 2D (varying length scales
and amplitudes), we assemble the tridiagonal system for −u′′ + k(x)2u = 0 with a left Dirichlet
source and a right Sommerfeld (outgoing) boundary, and solve it in banded form (see Algorithm 1).
Here we evaluate five frequencies f ∈ {1.5×105, 2.5×105, 5×105, 7.5×105, 1×106}Hz.

Algorithm 1 1D FDFD Helmholtz solver

Require: Wave speed samples c[0:N−1] on [0, L], frequency input (angular ω ← 2πf )
Ensure: Complex field u[0:N−1] solving −u′′(x) + k(x)2u(x) = 0, k(x)=ω/c(x)

1: ∆x← L/(N − 1)
2: for j = 0 to N − 1 do
3: k[j]← ω/c[j]
4: end for
5: Allocate ab ∈ C3×N and b ∈ CN ; initialize to 0
6: Interior stencil (implicit via diagonals):
7: Set ab[0, j−1]← 1, ab[1, j]← −2 + (k[j]∆x)2, ab[2, j+1]← 1 for j = 1, . . . , N − 2
8: Left BC (Dirichlet) u(0)=ω:
9: ab[1, 0]← 1; ab[0, 1]← 0; b[0]← ω

10: Right BC (Sommerfeld) u′(L) + i k(L)u(L)=0:
11: ab[1, N−1]← i k[N−1]∆x− 1; ab[2, N−1]← 1; b[N−1]← 0
12: Solve ab · u = b with a tridiagonal banded solver (e.g., solve_banded((1,1), ab, b))
13: return u

A.2 1D WKB ANALYSIS

We consider the 1D variable-coefficient Helmholtz problem on x ∈ [0, ℓ],

u′′(x) + k2n(x)2 u(x) = 0, n(x) :=
1

c(x)
, k :=

ω

c̄
, (15)

with a choice of boundary conditions that select a left-going branch. In the high-frequency regime
(k ≫ 1) and under the standard WKB assumptions (smooth c, no turning points, a single ray without
caustics), we seek a solution of the form

u(x) = a(x) exp
(
ik ϕ(x)

)
. (16)

Substituting equation 16 into equation 15 and balancing powers of k yields the eikonal and transport
equations:

O(k2) :
(
ϕ′(x)

)2
= n(x)2, ⇒ ϕ′(x) = ±n(x), (17)

O(k) : 2a′(x)ϕ′(x) + a(x)ϕ′′(x) = 0 ⇒ a(x)
√

ϕ′(x) = const. (18)

Defining the travel time (phase)

τ(x) :=

∫ x

0

n(s) ds =

∫ x

0

ds

c(s)
, (19)

and absorbing the slow amplitude factor into a constant A0 (this is justified since a′(x) = O(1) while
phase varies at rate k), the leading-order WKB solution reads

u(x) ≈ A0 exp
(
± ik τ(x)

)
. (20)

Then, perturbate the phase by small coefficient changes: let c0 be a baseline field with
u0(x) ≈ A0e

±ikτ0(x) where τ0(x) =
∫ x

0
ds/c0(s). For a small perturbation c = c0 + δc with

13
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∥δc∥∞/∥c0∥∞ ≪ 1, the refractive index n = 1/c satisfies

n(x) =
1

c0(x) + δc(x)
= n0(x)+δn(x), n0(x) =

1

c0(x)
, δn(x) = − δc(x)

c0(x)2
+ O(δc2).

(21)
Hence the perturbed travel time τ(x) = τ0(x) + δτ(x) obeys

δτ(x) =

∫ x

0

δn(s) ds = −
∫ x

0

δc(s)

c0(s)2
ds + O(δc2). (22)

To leading order (neglecting the subleading amplitude change), the perturbed field is

u(x) ≈ A0 exp
(
± ik

[
τ0(x) + δτ(x)

])
= u0(x) exp

(
± ik δτ(x)

)
. (23)

Thus the relative perturbation is phase-dominated:

δu(x)

u0(x)
= exp

(
± ik δτ(x)

)
− 1 = ±ik δτ(x) +O

(
(k δτ)2

)
. (24)

Bounding equation 22 by ∥δc∥∞ and c0,min := infs∈[0,ℓ] c0(s) gives

|δτ(x)| ≤
∫ x

0

|δc(s)|
c0(s)2

ds ≤ x

c20,min

∥δc∥∞ ≤ ℓ

c20,min

∥δc∥∞. (25)

Combining with equation 24 yields the high-frequency sensitivity estimate∣∣∣δu(x)
u0(x)

∣∣∣ ≲ k
ℓ

c20,min

∥δc∥∞ (to leading order in ∥δc∥∞). (26)

In the special case of constant baseline speed c0, equation 26 simplifies to∣∣∣δu(x)
u0(x)

∣∣∣ ≲
k ℓ

c0︸︷︷︸
=:L(k,ℓ,c0)

∥δc∥∞
c0

, (27)

which makes explicit that the effective local Lipschitz factor grows linearly with wavenumber and
path length.

As connection to the previous discussion of linearized operator sensitivity, recall the linearization of
the solution map S : Z→Y at c0,

δu ≈ DS[c0] (δc), L(c0) := ∥DS[c0]∥op,
∥δu∥
∥u0∥

≲ L(c0)
∥δc∥
∥c0∥

. (28)

The WKB bound equation 27 shows that, along a single ray of length ℓ, the phase contribution
enforces

L(c0) ≳
k ℓ

c0
(constant c0), or more generally L(c0) ≳ k ℓ c−2

0,min ∥c0∥∞. (29)

Consequently, even tiny relative coefficient errors produce order-one relative wavefield errors when
kℓ ≫ 1 (large phase accumulation). Deterministic ℓ2-trained operators therefore average over
phase-inconsistent targets and attenuate oscillations, whereas probabilistic models that learn the
conditional law p(u | c) can sample a coherent phase mode consistent with c, preserving high-
frequency interference.

B METHOD DETAILS

B.1 GAUSSIAN RANDOM FIELDS

We synthesize heterogeneous acoustic media by sampling stationary Gaussian random fields (GRFs)
on the simulation grid and mapping them to sound speed. Specifically, we construct a mean-zero GRF
in the Fourier domain by filtering complex white noise with an exponential spectral envelope and
then applying an inverse real FFT (see Algorithm 2). This yields families of coefficient fields with
controllable smoothness and correlation length, providing ground-truth dataset across frequencies for
the Helmholtz operator-learning benchmarks in the main text.
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Algorithm 2 Sampling heterogeneous sound-speed fields via spectral GRFs

Require: Grid size (Nx, Ny); background speed cbg; scale σc; bounds [cmin, cmax]
1: Sample hyperparameters: α ∼ U(0.5, 2.5), ℓ ∼ U(0.35, 0.7)
2: Construct frequency grids kx = fftfreq(Nx), ky = rfftfreq(Ny); form mesh K =

√
k2x + k2y

3: Define spectral envelope λ← exp
(
− (ℓK)α

)
4: repeat
5: Draw complex white noise η ← ηr + i ηi, with ηr, ηi

i.i.d.∼ N (0, 1)
6: Spectral field û← λ⊙ η
7: Realization u← irfft2(û; Nx, Ny); mean–center: u← u−mean(u)
8: Map to sound speed: c(x)← cbg + σc u(x)
9: until cmin < c(x) < cmax for all grid points x

10: return c

B.2 DENOISER ARCHITECTURE (CONDITIONAL U -NET)

Convolution (Conv1d/Conv2d). Let z ∈ RH×W×C be an input tensor and K ∈ Rk×k×C×Ĉ a
kernel bank producing Ĉ output channels. For stride s ∈ N, the discrete multichannel convolution
C : RH×W×C → RĤ×Ŵ×Ĉ is

(
C(z)

)
[i, j, ℓ̂] =

k−1∑
m=0

k−1∑
n=0

C∑
ℓ=1

K[m,n, ℓ, ℓ̂] z[i s+m, j s+ n, ℓ],

i = 0, . . . , Ĥ−1,
j = 0, . . . , Ŵ−1,
ℓ̂ = 1, . . . , Ĉ.

(30)

(To handle outofbounds indices, we use circular padding to mitigate boundary artifacts in phaselike
Helmholtz fields.) The encoder downsamples with k=3, stride s=2 (no stride at the first scale), while
the decoder mirrors this via nearestneighbor upsampling by a factor 2 followed by a k=3 refinement
convolution.

Activation functions (SiLU). We use the SiLU nonlinearity with β=1. For a scalar z,

SiLU(z) = z σ(z) =
z

1 + e−z
,

where σ(z) is the logistic sigmoid. SiLU is smooth and self-gating (the input modulates its own
pass-through), and unlike ReLU it preserves small negative activations.

Normalization. To stabilize training with small batches typical in PDE settings, we normalize
activations either by group normalization (GN) or layer normalization (LN).

Group Normalization (GN). Given z ∈ RH×W×C , split the channel axis into G groups of size C/G.
Let Gg be the index set of group g with m = HW · (C/G). Per–group statistics and normalization
are

µg =
1

m

∑
(h,w,c)∈Gg

zh,w,c, σ2
g =

1

m

∑
(h,w,c)∈Gg

(zh,w,c − µg)
2, (31)

ẑh,w,c =
zh,w,c − µg√

σ2
g + ε

, (h,w, c) ∈ Gg, z̃h,w,c = γc ẑh,w,c + βc, (32)

with learnable per–channel scale γc and shift βc.

Layer Normalization (LN). LN normalizes all features of a sample jointly (channel+space). Let
I = {(h,w, c) : 1≤h≤H, 1≤w≤W, 1≤c≤C} and M = HWC. Then

µ =
1

M

∑
(h,w,c)∈I

zh,w,c, σ2 =
1

M

∑
(h,w,c)∈I

(zh,w,c − µ)2, (33)

ẑh,w,c =
zh,w,c − µ√

σ2 + ε
, z̃h,w,c = γc ẑh,w,c + βc. (34)

For simplicity, in our code we use LayerNorm by default.
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Diffusion time embedding. The denoiser conditions on diffusion time t ∈ [0, 1] via a sinusoidal
Fourier feature map followed by a small MLP:

ϕ(t) =
[
cos(ω1t), . . . , cos(ω64t), sin(ω1t), . . . , sin(ω64t)

]
∈ R128, ωr = π

2 · 10
3 r−1

63 . (35)

This produces multi–scale time features spanning several orders of magnitude. Another MLP then
maps ϕ(t) to the per–block conditioning width:

e(t) = Linear128→256

(
ϕ(t)

) SiLU−−−→ Linear256→d ∈ Rd, (36)

after which a per–scale linear projection broadcasts e(t) over space and injects it additively into each
context residual block (FiLM–style conditioning) prior to the two k=3 convolutions. This ensures
that denoising decisions are time–aware at every resolution.

Positional encodings for coordinates. In addition to time conditioning, we con-
catenate sinusoidal spatial encodings to the input channels (part of z): in 2D,
{sin(2ℓπx), cos(2ℓπx), sin(2ℓπy), cos(2ℓπy)}L−1

ℓ=0 . These multi–frequency positional cues
help align phase and interference patterns across the domain, particularly at high Helmholtz
wavenumber k.

U -Net layout. Here we specify implementation choices that were only summarized in the paper.
The backbone is an encoder–decoder with skip connections and context residual blocks that inject
the diffusion time embedding e(t) at every depth. At scale s with channel width Cs, a block applies
FiLM–style additive conditioning and two same–width convolutions with normalization and SiLU:

z ← z +
(
Conv3

(
σ(Norm(z +Πse(t)))

)
−→ Conv3

)
︸ ︷︷ ︸

residual branch

,

where Πs : Rd→RCs is a linear projection of e(t) followed by unflattening broadcast over space,
Conv3 denotes a kernel-3 circularly padded convolution (Conv1d/2d depending on dimensionality),
Norm is LayerNorm by default, and σ is SiLU. Downsampling “heads” are strided convolutions
(kernel 3, stride 2 at all but the first scale); upsampling “tails” perform Norm→ nearest–neighbor
upsample ×2→ kernel-3 convolution and are added to the aligned encoder feature (skip connection).
Circular padding is used throughout to reduce boundary artifacts for Helmholtz phase fields.

Training We train the conditional U -Net as a score network within a variance–preserving SDE
(VPSDE) using mini-batch denoising score matching on tensors X ∈ RB×C×H×W with H=W =
256 and a small batch size B = 32; the channel stack is a single solution channel that is noised, and
three clean conditioning channels (e.g., sound speed, source mask, positional encodings). At each
iteration we sample t ∼ Unif(0, 1), obtain ut via the VPSDE perturbation kernel implemented in our
forward function, and minimize a mean-squared denoising objective,

LVPSDE(θ) = Eu0, z, t

[
w(t)

∥∥ sθ(ut, z, t
)
− ỹ(ut, t)

∥∥2
2

]
, (37)

where sθ is the U -Net denoiser, ỹ(ut, t) is the VPSDE target produced by forward diffusion, and
w(t) ≡ 1 in our runs; in code this appears as mse = (net(ut, z, t) − output)2 averaged over
spatial/channel dimensions, followed by mean() over the batch. Each epoch iterates over mini-
batches on the selected GPU device, updates an EMA of parameters for more stable sampling with a
standard learning-rate scheduler, and evaluates the same loss on a held-out validation split without
gradients. At inference, we use different sampling methods (see more details in Appendix C.2).

B.3 FOURIER NEURAL OPERATOR (FNO)

We implement a 2D tensorized Fourier neural operator as a strong deterministic baseline. Let
z ∈ Z ⊂ RH×W×du denote the input stack of channels (here dz=3: sound speed, source mask,
positional encodings) and Gϕ : Z → Y the learned operator producing the target wavefield. The
FNO is composed as

Gϕ = Q ◦ LL ◦ · · · ◦ L1 ◦R,

with a lifting R : Rdu → Rdv (pointwise 1×1 conv) that increases channel width to dv, followed
by L Fourier layers Lℓ, and a projection Q : Rdv → Rdy (pointwise head) back to output channels.
Each Fourier layer is

vℓ+1(z) = σ
(
Wℓvℓ(z) + F−1

[
Pℓ(k) · F [vℓ](k)

]
(z)

)
, (38)
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where vℓ ∈ RH×W×dv , Wℓ is a learned local (linear/skip) operator, F is the 2D FFT, and Pℓ(k) ∈
Cdv×dv are learned complex multipliers applied only on a truncated band of modes. Here we retain
(nh

modes, n
w
modes) = (64, 64) in every Fourier layer and use GeLU nonlinearity (preactivation=0);

the spectral update is the factorized/tensorized variant that parameterizes Pℓ(k) with low-rank factors
(rank=1.0), reducing memory and improving stability at 256 × 256. After each spectral block,
a lightweight channel MLP (use_channel_mlp=1, expansion=0.5, dropout=0) mixes features
in the spatial domain. We employ group normalization and linear residual skips, while domain
padding is off by default. The architecture uses L = 4 Fourier layers with hidden width dv =32 and
projection ratio 2× inside the spectral block, taking data_channels=3 as input and producing a
single output channel per component. Optimization follows standard operator-learning practice: 1000
epochs with AdamW (lr = 5× 10−3, weight decay = 10−4), batch size 32, StepLR scheduler (step
size=60, γ = 0.5), and an H1 training loss to encourage gradient fidelity. Overall, this FNO baseline
provides a fair deterministic comparator focused on frequency-domain accuracy under controlled
memory/compute.

B.4 HELMHOLTZ NEURAL OPERATOR (HNO)

Our HNO baseline follows a UNO–style spectral operator with U–shaped skip connections tailored
to 256×256 grids. Inputs are tensors z ∈ RB×H×W×C with H=W=256 and C=3 channels (sound
speed, source mask, positional features); outputs are u ∈ RB×H×W×1. Then, we concatenate a
coordinate grid (linear [0, 1]) to the input, lift with two pointwise MLPs (fc_n1, fc0), permute
to (B,C,H,W ), and pass through eight operator blocks with encoder–decoder topology and skip
concatenations. Each block is

OperatorBlock2D: SpectralConv2d_Uno︸ ︷︷ ︸
FFT → low-rank spectral map → iFFT

+ pointwise_op_2D︸ ︷︷ ︸
1x1 conv + bicubic resize

GELU−−−−−→ MLP(1x1)
LayerNorm−−−−−−−−→ residual add GELU−−−−−→ .

The spectral layer performs z 7→ F−1
(
P (k) ⊙ Fz

)
with two learnable complex weight tensors

(weights1, weights2) applied to the positive and negative vertical bands of retained modes. In
parallel, a pointwise 1x1 convolution is up-/down–scaled via bicubic interpolation to the block’s
output resolution and added to the spectral path, improving locality and stabilizing high–k con-
tent. Each block ends with an MLP (two 1x1 convs with GeLU) and LayerNorm over [H,W],
followed by a residual addition with the pointwise branch and GeLU. The U–shaped pathway uses
resolutions (256, 256)→ (128, 128)→ (64, 64)→ (32, 32) and back, with mode budgets matched
per scale: conv1: (dim = 256, 256; modes = 192, 96), conv2: (128, 128; 128, 64), conv3:
(64, 64; 64, 32), conv4: (32, 32; 32, 16), then symmetric values on the way up. After the decoder,
features are concatenated with the lifted input, projected by a kernel MLP to output a per–pixel scalar
kernel, and contracted with features via a normalized Einstein sum, yielding a per–pixel reduction. A
final two–layer head with tanh maps to outputs.

During the training, we instantiate UNO2D with width=16, in_channels=3,
out_channels=1 and train on 256×256 fields using Adam (lr 10−3, weight decay 10−5),
StepLR (step=30, γ=0.5), batch size 32, for up to 1000 epochs. The loss combines 0.9L1 +0.1L2

on the real component trained per pass. This HNO baseline thus realizes a frequency–domain,
multi–scale spectral operator that couples learned Fourier multipliers with local pointwise updates
and U–shaped skips, providing a strong deterministic comparator for our probabilistic diffusion
operator on Helmholtz problems.

C ADDITIONAL RESULTS

This section provides extended qualitative and quantitative results that complement the main text.

C.1 DATA EXAMPLE

Figure 5 shows representative input–output pairs across frequencies: as the driving rate increases, the
Helmholtz solution exhibits denser interference fringes and faster phase oscillations. Using angular
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frequency ω = 2πf and local sound speed c(x), the wavelength is

λ(x) =
2π c(x)

ω
.

With an average speed c̄ ≈ 2000 (simulation units) and our largest angular frequency ωmax =
2.5× 106 rad/s, the shortest wavelength is

λmin =
2π c̄

ωmax
=

2π × 2000

2.5× 106
≈ 5× 10−3.

We use a uniform grid with ∆x = ∆y = 10−3, yielding λmin/∆x ≈ 5 samples per shortest
wavelength, which is adequate to resolve the fine oscillatory structure in the ground-truth wavefields.

f = 1.5× 105 Hz f = 2.5× 105 Hz f = 5× 105 Hz

f = 1× 106 Hz f = 1.5× 106 Hz f = 2.5× 106 Hz

Figure 5: Input–output data pairs by frequency. Each tile shows one random test example:
left—coefficient field c; right—solution P . Color scales are set per panel.

C.2 SAMPLER ABLATION

For completeness we describe the three samplers used in our ablation, in the same notation as the main
text. Let {βt}Tt=1 be a discrete noise schedule (linear or cosine), αt := 1− βt, and ᾱt :=

∏t
s=1 αs.

The forward process is q(zt |z0) = N
(√

ᾱt z0, (1− ᾱt)I
)

and the network predicts noise εθ(zt, t, c)
given the condition c. DDPM (ancestral): We use the standard Gaussian reverse transition

pθ(zt−1 | zt, c) = N
(
zt−1; µθ(zt, t, c), β̃tI

)
,

µθ(zt, t, c) =
1
√
αt

(
zt −

βt√
1− ᾱt

εθ(zt, t, c)

)
.

(39)

with posterior variance β̃t =
1−ᾱt−1

1−ᾱt
βt. We ablate linear and cosine schedules and step budgets

T ∈ {10, 50, 100, 1000}. Over T steps, the update draws z ∼ N (0, I) at each step (t > 1) and

sets zt−1 = µθ + σtz with σt =

√
β̃t. DDIM (implicit): Using the same schedule, define the

predicted clean sample ẑ0(zt, t, c) = 1√
ᾱt

(
zt −

√
1− ᾱt εθ(zt, t, c)

)
. For a decreasing sequence

t1>t2> · · ·>tS , DDIM updates deterministically (η=0) as

zti+1
=

√
ᾱti+1

ẑ0 +
√
1− ᾱti+1

εθ(zti , ti, c), (40)

or stochastically with η∈ [0, 1] by decomposing the second term into an ηz component plus a (1−
η2)1/2εθ component. In our ablation we use the cosine schedule and report the η=0 (deterministic)
case. Score-based SDE (continuous-time): In the variance-preserving formulation dz =− 1

2β(t) z dt+√
β(t) dWt, the closed-form mean/variance maps from t to t − ∆t can be written as zt−∆t =

r(t,∆t) zt+
(
σ(t−∆t)−r(t,∆t)σ(t)

)
εθ(zt, t, c), where r(t,∆t) = µ(t−∆t)/µ(t) and (µ, σ) are

the analytic solution scalings of the VP–SDE1. This implements an ancestral sampler in continuous
1In code, mu() and sigma() implement these scalings, and we integrate t linearly from 1→0 with step

1/T .
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Table 2: Sampler–step ablation at f = 2.5 × 106 Hz (relative error; lower is better). Cosine
schedule unless noted. Values rounded to 3 decimals; best per metric in bold.

EL2 ↓ EH1 ↓ Eenergy ↓

Sampler 10 50 100 1000 10 50 100 1000 10 50 100 1000

DDPM (linear) 0.999 0.956 0.942 0.918 0.999 0.797 0.720 0.631 0.999 0.949 0.932 0.901
DDPM (cosine) 0.457 0.268 0.234 0.188 0.180 0.106 0.095 0.078 0.138 0.100 0.093 0.082
DDIM (cosine) 0.470 0.333 0.305 0.284 0.189 0.139 0.129 0.122 0.137 0.122 0.124 0.125
SDE (cosine) 0.458 0.373 0.358 0.336 0.190 0.151 0.146 0.138 0.168 0.126 0.124 0.129

time, and we use the cosine schedule for β(t) via its discretized counterpart and the same step budgets
as above. Across methods, DDPM introduces stepwise Gaussian noise (higher diversity, slightly
higher variance at small T ), DDIM provides a deterministic path given the same εθ (lower variance
and faster convergence at small T ), and the SDE sampler follows the continuous-time ancestral
update governed by (µ, σ). Our ablation (Appendix Table 2) compares these choices under identical
networks and conditions.

C.3 ADDITIONAL QUALITATIVE RESULTS

Here we provide an expanded set of visual comparisons across all evaluated frequencies and multiple
randomly drawn sound–speed maps (see App. Figs. 10–15). For each case, we show GT, U-Net,
FNO, HNO, and Diffusion predictions alongside per-pixel error maps. The trends observed in the
main text persist: the Diffusion model consistently resolves interference patterns and high-frequency
details with reduced artifacts, while deterministic operators exhibit smoothing and phase misalign-
ment—especially in far-field regions and at higher k. These supplemental examples demonstrate
that our main-figure selection is representative rather than cherry-picked, and that the qualitative
advantage of the probabilistic approach is robust across frequencies.

Table 3: 1D relative errors vs. frequency. Diffusion reports mean±std over K=10 samples.

L2 H1 Energy

Freq (Hz) Diffusion U-Net Diffusion U-Net Diffusion U-Net

1.5e5 0.022±0.0003 0.065 0.036±0.0003 0.108 0.014±0.0001 0.032
2.5e5 0.030±0.001 0.087 0.046±0.001 0.130 0.010±0.0002 0.025
5e5 0.091±0.002 0.174 0.114±0.002 0.242 0.011±0.0003 0.044
7.5e5 0.093±0.004 0.295 0.117±0.004 0.389 0.018±0.001 0.096
1e6 0.215±0.003 0.395 0.264±0.004 0.510 0.050±0.002 0.181

C.4 COMPLETE SENSITIVITY PANELS (NEAR/FAR)

To quantify input–output sensitivity, we construct a perturbation-driven dataset around a fixed
reference field c0. We sample D = 100 independent Gaussian random–field (GRF) realizations
{c(d)}Dd=1 and, for each direction d, define a fixed direction in coefficient space as the straight line

c(d)(s) = (1− s) c0 + s c(d), s ∈ [0, 1],

which linearly connects the common reference c0 (s=0) to a particular perturbation c(d) (s=1). We
solve the Helmholtz problem at 100 uniformly spaced s-values along every line, yielding trajectories
that move from c0 toward increasingly perturbed media. A schematic in coefficient space is provided
in Figure 6: black markers indicate the sampled endpoints {c(d)}, while gray contours illustrate
intermediate states c(d)(s) for s ∈ {0.3, 0.5, 0.7, 1.0}, contracting smoothly toward c0.

Sampling along a fixed direction. For a chosen spatial probe (pixel) x∗, a sampling curve plots the
wavefield amplitude u

(
x∗; c(d)(s)

)
as a function of s ∈ [0, 1] for a single direction d. This reveals

how the output at x∗ responds as the input medium moves along one line in coefficient space. In
App. Figs. 16–18 we show these curves for eight probes (4 near the source and 4 far near the PML
boundary) and for different directions.
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Kernel density estimate (KDE) across directions. To summarize variability across directions at
a fixed interpolation level s, we form the set {u(x∗; c(d)(s)) }Dd=1 for a probe x∗ and estimate its
distribution with a one-dimensional kernel density estimator. Writing the scalar quantity of interest
as yd = g

(
u(x∗; c(d)(s))

)
, the KDE is

p̂s(y) =
1

Dh

D∑
d=1

K

(
y − yd

h

)
,

with kernel K (Gaussian in our plots) and bandwidth h>0. The KDE panel therefore shows how
dispersed (broad) or concentrated (narrow) the responses are across GRF directions at a given s.
Broad, multi-modal densities indicate amplified sensitivity and interference variability, while narrow
peaks indicate low variability. We report KDEs at representative s-values (e.g., s=0, 0.1, and 1) for
both near and far probes to contrast regimes of low vs. high sensitivity (see App. Figs. 19–21).

In summary, the sampling plots diagnose direction-wise response along a line in coefficient space,
while the density (KDE) plots aggregate across directions at fixed s to characterize variability and
calibration of the predictive models.

Figure 6: Illustration of unit ball in function space of coefficient fields.

The 1D experiment reproduces the main 2D trends. We report relative L2, H1, and energy errors
across frequencies in Table 3, comparing only the diffusion model and a backbone-matched U-Net.
As frequency increases, errors rise for both models, but the diffusion model consistently maintains a
clear advantage, including at the highest tested frequency (106 Hz). Sensitivity diagnostics mimic the
2D setup: at f=106 Hz the cross-sampling trajectories and direction-wise density plots (Figures 7
and 8) show that diffusion tracks the ground-truth path along s and recovers the broadened amplitude
distribution across directions, while the U-Net under-responds and tends toward collapse in the far
field.

Beyond pointwise trajectories, we summarize sensitivity by an average directional variance curve:
for each s, we compute the variance across directions d of the predicted amplitude at every pixel
and then average over the domain. As frequency increases, the domain-averaged variance shrinks,
making the target curve increasingly subtle; deterministic surrogates (U-Net, FNO, HNO) fail to
resolve these small variations and tend to under-curve, whereas the diffusion operator continues to
track the ground-truth trajectory across s, including the late sharp rise toward s=1 (Figure 9).
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Figure 7: Sampling along a linear path in coefficient space (1D). Example curves from c0 to the target
sound-speed map along direction d=10 with s∈ [0, 1] (100 samples). Top: near the source. Bottom: far from
the source.

Figure 8: Density plot (1D). Kernel density estimates of {uM (s, d; y, x) }100d=1 at s = 0 (top) and s = 1
(bottom), shown for a near point (left) and a far point (right). At s = 0 all inputs equal c0, so deterministic
models collapse to a spike, whereas diffusion exhibits calibrated spread; at s ≈ 1, all methods broaden, with
diffusion better capturing the high-variance regime.

f = 1.5× 105 Hz f = 2.5× 105 Hz f = 5× 105 Hz

f = 1× 106 Hz f = 1.5× 106 Hz f = 2.5× 106 Hz

Figure 9: Average directional variance vs. interpolation s across frequencies. Each panel shows
domain-averaged variance across 100 directions as a function of s.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 10: Qualitative comparisons at f = 1.5× 105 Hz.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 11: Qualitative comparisons at f = 2.5× 105 Hz.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 12: Qualitative comparisons at f = 5× 105 Hz.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 13: Qualitative comparisons at f = 1× 106 Hz.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 14: Qualitative comparisons at f = 1.5× 106 Hz.
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Prediction vs. Ground Truth Residual (Pred−GT)

Figure 15: Qualitative comparisons at f = 2.5× 106 Hz.
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Near source Near boundary
Figure 16: Sampling along a coefficient path d=1 (all 4 near vs. all 4 far). For each pair of media,
we linearly interpolate the sound speed cs = (1− s)c0 + s c1 with s ∈ [0, 1] and track the wavefield
amplitude at fixed probe pixels. Left column: near-source probes. Right column: near-boundary
probes.
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Near source Near boundary
Figure 17: Sampling along a coefficient path d=50 (all 4 near vs. all 4 far). For each pair of
media, we linearly interpolate the sound speed cs = (1 − s)c0 + s c1 with s ∈ [0, 1] and track
the wavefield amplitude at fixed probe pixels. Left column: near-source probes. Right column:
near-boundary probes.
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Near source Near boundary
Figure 18: Sampling along a coefficient path d=99 (all 4 near vs. all 4 far). For each pair of
media, we linearly interpolate the sound speed cs = (1 − s)c0 + s c1 with s ∈ [0, 1] and track
the wavefield amplitude at fixed probe pixels. Left column: near-source probes. Right column:
near-boundary probes.
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Near source Near boundary
Figure 19: Kernel density estimates across directions for s=0 (all 4 near vs. all 4 far). Left
column: near the source. Right column: near the boundary.
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Near source Near boundary
Figure 20: Kernel density estimates across directions for s=0.1 (all 4 near vs. all 4 far). Left
column: near the source. Right column: near the boundary.
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Near source Near boundary
Figure 21: Kernel density estimates across directions for s=1 (all 4 near vs. all 4 far). Left
column: near the source. Right column: near the boundary.
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LLM USAGE DISCLOSURE

In accordance with ICLR policy, we disclose our limited use of large language models (LLMs)
during manuscript preparation. LLMs (e.g. ChatGPT) were used only as general-purpose writing
assistants for copy-editing and presentation polish, including: tightening grammar and style, clari-
fying phrasing, and harmonizing notation descriptions. LLMs were not used for research ideation,
problem formulation, method design, data generation, implementation, experiments, analysis, or
result interpretation.
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