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ABSTRACT

Irregular and asynchronous sampled multivariate time series (MTS) data is of-
ten filled with missing values. Most existing methods embed features accord-
ing to their timestamps, requiring imputing missing values. However, imputed
values can drastically differ from real values, resulting in inaccurate predictions
made based on imputation. To address the issue, we propose a novel concept,
“each value as a token (EVAT),” treating each feature value as an independent
token, which allows for bypassing imputing missing values. To realize EVAT,
we propose scalable numerical embedding, which learns to embed each feature
value by automatically discovering the relationship among features. We inte-
grate the proposed embedding method with the Transformer Encoder, yielding
the Scalable nUMerical eMbeddIng Transformer (SUMMIT), which can produce
accurate predictions given MTS with missing values. We induct experiments on
three distinct electronic health record datasets with high missing rates. The exper-
imental results verify SUMMIT’s efficacy, as it attains superior performance than
other models that need imputation.

1 INTRODUCTION

Multivariate time series (MTS) data constitutes a series of full observations registered at isometric
timestamps, encompassing a multitude of interconnected variables. Nevertheless, most MTS data
are irregular and asynchronously sampled. The irregularity causes the interval between two adjacent
timestamps and their corresponding numbers to vary. Not all feature variables are observed for each
timestamp, creating data with a high missing rate. Traditionally, people first impute the missing
values via statistic-based (Little & Rubin, 2019) or learning-based models (Mattei & Frellsen, 2019;
Du et al., 2023; Kim et al., 2023; Zhao et al., 2023) to obtain timestamp embeddings to the models
(Hochreiter & Schmidhuber, 1997; Breiman, 2001; Chung et al., 2014; Chen & Guestrin, 2016;
Vaswani et al., 2017). In such scenarios, imputation is inevitable. However, the rationale behind
imputation is complicated and challenging to justify in some domains, especially in healthcare.
Imputations that make sense to physicians may not work well for the learning model, while methods
that learn well may not convince medical experts.

To combat missing values in MTS while avoiding imputation, we propose the concept of “each
value as a token (EVAT).” We consider each value as an independent token, like the word tokens
(Mikolov et al., 2013) in the natural language process (NLP) tasks. With this concept, we can further
view the missing values as the paddings in a sentence and mask them. Moreover, the downstream
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Figure 1: (a) Embedding Multivariate Time Series Values: The figure records MTS data with
three variables and five timestamps. Colored dots are observed values. The rectangles bound by
yellow lines are timestamp embedding which needs imputation to implement. Blue lines bind the
proposed EVAT embeddings. Under this scenario, missing values can be neglected. (b) Scalable
Numerical Embedding: Take ”age 41.82 years old” as an example. First, the ”age” feature indicator
is mapped to the feature embedding uj via a learnable function f . Second, we scale this feature
embedding uj according to its observed value.

module would have more freedom to interact with the observed variables along both the temporal
and feature-wise dimensions. However, there are still several bottlenecks to embedding continuous
values. The tokens with the same numerical value but different feature types should be mapped
to different embedding, or it would confuse the downstream modules. Traditionally, people try to
quantize the numerical values (Gao et al., 2022), but the performance is poor and highly dependent
on the quantization resolution.

To implement EVAT and solve the above bottlenecks, we propose SCAlable Numerical Embed-
ding (SCANE), a novel embedding method that learns to embed both the feature type and quantity
simultaneously. We take the Transformer Encoder (Vaswani et al., 2017) with SCANE to build
Scalable nUMerical eMbeddIng Transformer (SUMMIT), followed by fully connected layers to
form a complete classifier. With the inherent masking mechanism in the Transformer Encoder and
the help of SCANE, we can perfectly mask all missing values. Based on SCANE, SUMMIT is a
truly imputation-free model. It distills the information from the observed values without interfer-
ence from the missing ones, and it can freely interact with variables across temporal and feature-wise
dimensions.

We evaluate SUMMIT with five other models, including the SOTA model (GRU-D). The experi-
ments are conducted on three distinct EHR datasets, one for chronic illness prediction and the other
two for acute illness prediction. Experiment results show that SUMMIT surpasses all baselines on
all datasets with an average AUPRC improvement of 4.2% on these three datasets.

2 PROBLEM FORMULATION

X = [Xi,j ], is an m × n matrix, representing a time series data irregularly and asynchronously
sampled and comprising n variables at m timestamps. In this matrix, missing values are denoted by
Nan. The sequence of MTS data’s timestamps is arranged in ascending order. We denote Xi,j as
the entry of the j-th feature at the i-th timestamp.

The goal of the EVAT problem is to map each value Xi,j , which is a scalar, to a vector in a higher
dimensional vector space. The assigned vector should represent the information of the feature type
and quantity simultaneously.

3 SUMMIT: SCALABLE NUMERICAL EMBEDDING TRANSFORMER

Scalable Numerical Embedding. To implement EVAT, we propose Scalable Numerical Embedding
(SCANE). To carry the feature type and quantity information, it needs both the feature indicator
and a way to represent the feature quantity. The mask M = [Mi,j ] is the mask to indicate if
the corresponding entry is missing. (0 for missing and 1 for non-missing.) SCANE first maps the
feature indicator to a target vector space U with dimension d. We call these assigned vectors feature
embeddings. SCANE then scales feature embeddings with each variable’s observed values. The
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design of scaling avoids the challenge of quantization resolution in the EVAT problem. Equation 1
illustrates how SCANE embeds a single variable into a vector.

SCANE (Xi,j , Mi,j) = (Xi,j ·Mi,j) f (j) = (Xi,j ·Mi,j)uj , (1)

where f : N → U is realized through a single linear layer different for each feature, and uj is feature
j’s feature embedding ∈ U. SCANE assigns a missing value to zero vector 0d. We do not put any
restrictions on the feature embeddings. The direction and the length of the feature embeddings are
updated according to the training data. It is entirely data-driven.

To generalize SCANE to its matrix form, we have:

SCANE (X, M) =


X1,1M1,1u1 X1,2M1,2u2 . . . X1,nM1,nun

X2,1M2,1u1 X2,2M2,2u2 . . . X2,nM2,nun

...
...

. . .
...

Xm,1Mm,1u1 Xm,2Mm,2u2 . . . Xm,nMm,nun

 .

SCANE (X, M) is an m × n × d tensor. Every feature embedding in the SCANE (X, M) is
scaled by the corresponding observed values.

Compared to the embedding method in NLP to solve the EVAT problem, SCANE does not need to
worry about the precision of the numerical value due to the ”scaling” mechanism. For example, the
embedding method in NLP may disassemble the embedding target ”age 41.8263. . . years old” into
”age + 4 + 1 + 8 + 2 + . . . ”. We do not know how many digits should be included to precisely embed
the value. Moreover, the testing set must have some unique values. These are all unlearned values
for the embedding module in the NLP flavor. SCANE avoids this situation by learning the feature
embedding only. With SCANE’s design, we can resolve the issues related to the EVAT problem.
These are SCANE’s advantages.

Transformer Encoder with Scalable Numerical Embedding. We flatten and transpose
SCANE (X, M) into a mn× d matrix. Similarly, we flatten the matrix M into a 1×mn matrix.

X̄ = (flatten (SCANE (X,M)))
T
= [X1,1M1,1u1 X1,2M1,2u2 . . . Xm,nMm,nun]

T
,

M̄ = flatten (M) = [M1,1 M1,2 . . . Mm,n] .

In the Transformer Encoder’s self-attention module, we take Z = X̄ + PE to obtain the query
Q = ZWq , the key K = ZWk, and the value V = ZWv . PE is the positional encoding. The
Wq,Wk,Wv ∈ Rd×d are learnable weights. To avoid paying attention to missing values, we use
the masking mechanism (Vaswani et al., 2017) to mask them in Z. This can only be realized under
the EVAT concept.

Attention
(
Q,K,V ,M̄

)
= softmax

(
lim

β→−∞

(
(β)k(n+1)×1 (11×k(n+1) − M̄

)
+
(
QKT

)
√
d

))
V , (2)

where d is the dimension of embeddings as a suggested scaling factor (Vaswani et al., 2017) and β
is a number approach negative infinity. 11×k(n+1) is an 1 × k (n+ 1) matrix whose entries are all
1. The matrix limβ→−∞ (β)

k(n+1)×1 is a k (n+ 1) × 1 and its entries all equal β. All attention
weights with missing values as keys will be suppressed by the number β, which approaches negative
infinity and will be zero after the softmax. Equation 2 shows how to use the mask to avoid paying
attention to missing values in the self-attention module with SCANE.

We can mask missing values independently due to EVAT. If we apply timestamp embedding instead,
the missing values would be bound together with other non-missing ones. It is impossible to avoid
imputation in this case. The missing value would be assigned to a zero vector in SCANE, and its
contextual embedding from the second Transformer Encoder stack would be composed of other
non-missing values’ embeddings. So, we only mask missing values in the first layer in the entire
Transformer Encoder stacks.

4 EXPERIMENTS

Datasets. For robustness, we conduct experiments on three distinct EHR datasets: the Anonymous
Hospital Hepatocellular Carcinoma Dataset (private), PhysioNet2012 (public), and MIMIC-III (pub-
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lic). All three datasets originate from the healthcare domain and are characterized by irregular sam-
pling and unsynchronized measurement, thereby presenting challenges for MTS binary classifica-
tion tasks. To align the number of timestamps, we follow Zheng’s work to apply the summarization
strategy (detailed in Appendix D) on these datasets’ data.

• Anonymous Hepatocellular Carcinoma Dataset (HCC): This dataset comprises records
from patients over a one-year-length observation window since patients’ first diagnosis
record. It includes 30 numerical features and 8 categorical features. The objective is to
predict if a patient will develop hepatocellular carcinoma within the ensuing five years.
After the summarization with a summarization window length of 90 days, the average
missing rate of all features amounts to 0.7464.

• PhysioNet2012 (P12): P12 is a public dataset (Goldberger et al., 2000), encompassing
11988 intensive care unit (ICU) stays lasting at least 48 hours. The task is to predict if the
patient dies during their hospital stay. The dataset consists of 40 numerical and 2 categorical
features. The observation window spans 48 hours, with a summarization window length
set to 2 hours. After summarization, the average missing rate of all features is 0.7377.

• MIMIC-III (MI3) (Harutyunyan et al., 2019): The public dataset comprises numerous
ICU patients with laboratory test results, encompassing 13 numerical features and 4 cate-
gorical features. The task for this dataset entails predicting patients’ survival during their
hospital stay. The observation window spans 48 hours after patients’ initial hospitalization,
with the summarization window length set to 2 hours. After summarization, the average
missing rate of all features in the summarized data is 0.4423.

More dataset details can be found in Appendix E.
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Figure 2: Models’ AUPRC Performance on Each Dataset: Due to the imbalance issue in these
datasets, we choose the area under the precision-recall curve (AUPRC) as the main metric (Saito &
Rehmsmeier, 2015).

Results. Figure 2 depicts the performance of all models on the datasets. Our model, SUMMIT,
outperforms other models in all datasets on AUPRC. With this result, we can confirm that it can learn
well from data featuring high missing rates without the need for imputation. SUMMIT faithfully
learns from what we observed and surpasses all benchmarks on the main metric, AUPRC. This
supports the idea that SUMMIT is a promising choice for irregular and asynchronous MTS data.
More detailed results can be found in Appendix A.

We also train and test our model on these datasets without masking missing values, dubbed SUM-
MIT w/o mask. The missing values here are imputed with the global mean and the global mode of
the training set. Figure 2 shows that our model performs better with masking the missing on each
dataset. This may imply the imputation confuses the model when training and testing, and the impu-
tation in these three datasets may not be a good solution for missing values. Other ablation studies
can be found in Appendix B. Training and testing details can be found in Appendix F.
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5 CONCLUSION

We propose to combat missing values in multivariate time series by learning to embed each value as
a token, which requires no imputation. We propose a novel embedding mechanism integrated with a
Transformer encoder, achieving state-of-the-art results across three electronic health record datasets.
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APPENDIX

A EXTENDED EXPERIMENTAL RESULTS

We present extended experimental results in Table 1. SUMMIT also performs well in other auxiliary
metrics, getting the best and second-best values in terms of AUROC and accuracy on the P12.

Dataset HCC P12 MI3
Metric AUPRC AUROC c-index AUPRC AUROC accuracy AUPRC AUROC accuracy

Random Forest 0.3934
±0.0583

0.8705
±0.0232

0.8637
±0.0227

0.4805
±0.0533

0.8270
±0.0228

0.8663
±0.0146

0.4367
±0.0517

0.8319
±0.0209

0.8965
±0.0105

XGBoost 0.3887
±0.0592

0.8714
±0.0215

0.8644
±0.0209

0.4980
±0.0544

0.8453
±0.0203

0.8708
±0.0140

0.4553
±0.0527

0.8247
±0.0209

0.8968
±0.0105

GRU 0.4209
±0.0579

0.8991
±0.0156

0.8915
±0.0152

0.5222
±0.0571

0.8573
±0.0196

0.8750
±0.0138

0.4971
±0.0502

0.8537
±0.0203

0.9012
±0.0107

GRU-D 0.4519
±0.0571

0.9012
±0.0171

0.8934
±0.0167

0.5314
±0.0575

0.8524
±0.0215

0.8804
±0.0135

0.4752
±0.0551

0.8415
±0.0214

0.8959
±0.0105

Transformer Encoder 0.4139
±0.0571

0.8964
±0.0171

0.8888
±0.0171

0.5435
±0.0560

0.8572
±0.0200

0.8767
±0.0131

0.5074
±0.0510

0.8606
±0.0187

0.8953
±0.0105

SUMMIT 0.4553
±0.0577

0.8943
±0.0179

0.8867
±0.0179

0.5504
±0.0563

0.8602
±0.0197

0.8783
±0.0129

0.5233
±0.0511

0.8492
±0.0205

0.8910
±0.0104

Table 1: This shows the overall results of each model on the three test sets. We mark the best value
in boldface and underline the second-best value for each metric. The value in parentheses is the
95% of the confidence interval of the 1000 bootstrap times in the test set.

B ABLATION STUDY

B.1 SUMMARIZATION WINDOW LENGTH

In this section, we redo the summarization on MI3 with the summarization window length (p) of
1 hour and 4 hours. The average missing rate in all the features is 0.5383 with the p = 1 hour,
and the missing rate is 0.3225 with the p = 4 hours. We then retrain and retest all models on these
MI3 datasets with different p. Again, we take AUPRC as the metric. Figure 3 depicts the models’
performance in different summarization time lengths MI3. The optimal summarization window
length for all models in the MI3 seems to be 2 hours. Compared to the summarization window
length of 1 hour and 2 hours, the dataset will have a higher missing rate when p = 1 hour and there
is more noise from imputation. As a result, models perform worse. When p changes to 4 hours, the
”resolution” is lower. This may be the reason why almost all models perform worse.

According to this ablation study, we can find the trade-off between the longer p and the shorter
p. When p becomes longer, the resolution and the missing rate will decrease. Despite the lower
missing rate, the important events may be blurred. This may cause the model to lose the important
information. On the other hand, the resolution and the missing rate increase when the p becomes
shorter. Memory consumption also increases as p gets shorter.

SUMMIT and GRU-D are more stable than other benchmarks, but SUMMIT surpasses other models
under different p. Unlike other benchmarks, these two models are more emphasized on both tem-
poral and feature-wise dimensions. GRU-D takes all variables at the previous timestamp to impute
the missing value, which helps it capture the feature-wise relation. SUMMIT may get help from
SCANE to give the Transformer Encoder more freedom to learn the latent relation across temporal
and feature-wise dimensions.
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Figure 3: Performance of All Models on MI3s with Different Summarization Window Length:
The models’ setting here is based on the models trained on the default summarization window length
p = 2 hours. The training, the validation, and the testing samples are identical in every summariza-
tion window length setting. We only adjust the p to a different scale.

C RELATED WORK

Sequence-to-sequence models such as gated recurrent unit (GRU) (Chung et al., 2014), Long-
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), and Transformer-based models
(Vaswani et al., 2017) have been widely used for MTS data (Ma et al., 2019; Xu et al., 2022; Zuo
et al., 2023; Grigsby et al., 2023). Che, Purushotham, Cho, Sontag, and Liu proposed GRU-D,
a GRU-based model containing an imputation module, to handle the MTS data from the health-
care domain. Sagheer and Kotb proposed a Deep LSTM architecture model (DLSTM) to forecast
petroleum production. More recent works have focused on Transformer-based models (Vaswani
et al., 2017). One prominent instantiation is the Time Series Transformer (TST), which proposes
a Transformer-based framework for MTS representation learning (Zerveas et al., 2021). Addition-
ally, Wu et al. have employed a Transformer encoder-decoder architecture for forecasting influenza
prevalence, highlighting the superior performance of Transformer models compared to other deep
learning and statistical models in forecasting tasks.

Deep learning models (Choi et al., 2020; Zhang et al., 2022; 2023) have also found their popularity
in the healthcare domain dealing with EHR data. Deep STI (Zheng, 2021) proposed an RNN-
VAE-based model to impute missing values in the EHR data. Deep STI can outperform traditional
machine learning algorithms and statistical algorithms on the HCC prediction task with the GRU-
based classifier. mTAND (Shukla & Marlin, 2021) uses an attention-mechanism-based network to
learn the representation from EHR data. These studies have promoted further development of deep
learning in healthcare. However, due to the inherent limitation that embeds variables according
to the timestamp, most models in these works must consider imputation. This conflicts with the
concern from the imputation mentioned above. Our model, SUMMIT, can perfectly relieve the
issues. Because we separated each variable, there is no need for imputation. Moreover, it can
entirely avoid the effect of imputation during model training.

D SUMMARIZATION STRATEGY

To align the number of timestamps of each sample, we follow Zheng’s work to apply the summa-
rization strategy on the input data. Specifically, given a summarization time duration p, we obtain
k (= ⌊T/p⌋) summarization intervals, where T is the observation window length. The formed
summarization intervals are [t1, t1 + p), [t1 + p, t1 + 2p), ..., and [t1 + (k − 1) p, t1 + T ). We
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then assign the rows of X to the summarization intervals where their timestamps belong. Every
summarization window uses the mean, the mode (the most frequently observed value), or the last
observed value of the collected rows to represent the value of features in the interval. The mean is
used to represent the numerical feature; the mode and the last observed value are used to represent
the categorical feature. The mean and the mode are computed by dropping missing values. If there
is no observation of a feature in the interval, it will assign Nan for this feature. This strategy also
counts the number of rows in each summarization window and records it as an additional feature,
”segment entry count,” to the X .

The input time series data are then summarized into a k × (n+ 1) matrix, X ′ =
[
x′
i,j

]
. The first

subscript of x′
i,j is the index of the summarization window, and the second subscript is the feature

indicator. We defined a k × (n+ 1) missing mask matrix M = [mi,j ] to indicate the entry that is
not missing in X ′:

mi,j =

{
0 , if x′

i,j is missing.
1 , otherwise.

E DATASETS

Tables 2 to 4 list the full feature set of the datasets applied. In Table 2, ”fatty liver” is a categorical
feature to show the fatty liver severity; ”parenchymal liver disease” is also a categorical feature
to represent the severity of cirrhosis; ”hosp days” is the number of hospitalization days; ”sono”
represents whether a patient has the abdominal ultrasound imaging. In Table 3, ”MechVent” means
whether a patient uses mechanical ventilation in the ICU.

F TRAINING SETUP

F.1 MODELS

We have selected a set of models to compare against our proposed model, SUMMIT. The non-
sequential benchmarks encompass Random Forest (Breiman, 2001) and XGBoost (Chen & Guestrin,
2016), while the deep-learning-based benchmarks include GRU (Chung et al., 2014), GRU-D (Che
et al., 2018), and the original Transformer Encoder (Vaswani et al., 2017). These models have
garnered widespread use in healthcare, particularly with EHR data.

For Random Forest and XGBoost, we have employed their empirically optimal default hyperparam-
eters. The data for these two models is subjected to a summarization strategy, wherein the missing
mask is concatenated to the original data by timestamps. We take each variable’s global mean and
mode from the training set to impute what is missing in the training and testing sets. Before being
fed to the model, data is flattened into a one-dimensional matrix.

All the deep learning benchmarks adhere to a common architectural structure, detailed in Section ??.
These models take timestamp embedding as the models’ input. They comprise a feature extractor
and a classifier, consisting of a dense layer followed by a linear layer, while the feature extractors
vary across these models. Specifically, GRU utilizes a GRU-based feature extractor, GRU-D em-
ploys a GRU-D-based feature extractor, and the Transformer Encoder adopts a Transformer Encoder
as the feature extractor. The summarization strategy is also applied to these models and imputes the
missing values with the same logic mentioned above. The sequence data for GRU and Transformer
Encoder is concatenated with the missing mask for each timestamp.

Our proposed model, SUMMIT, adheres to the same architectural structure outlined in Section ??. It
employs a Transformer Encoder with SCANE as the feature extractor. Since we have both numerical
and categorical features, we form two separate SCANE modules for each.

F.2 EXPERIMENTAL SETUP

All deep models are trained under a uniform framework and on the same platform (detailed in Ap-
pendix F.3) to ensure a fair comparison. Given the inherent class imbalance in the datasets, we adopt
focal loss (Lin et al., 2018). To optimize the performance of the models, we employ a grid search
strategy, with the search ranges for each model’s hyperparameters provided in Appendix G. We
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Feature Feature Type
AFP (Alpha-Fetoprotein) Numerical

ALB (Albumin) Numerical
ALP (Alkaline Phosphatase) Numerical

ALT (Alanine Aminotransferase) Numerical
AST (Aspartate Aminotransferase) Numerical

Anti-HBc (Hepatitis B Core Antibody) Categorical
Anti-HBe (Anti-Hepatitis B e-Antigen) Categorical

Anti-HBs (Hepatitis B Surface Antibody) Categorical
Anti-HCV (Anti-Hepatitis C Virus Antibody) Categorical

BUN (Blood Urea Nitrogen) Numerical
CRE (Creatinine) Numerical

D-BIL (Direct Bilirubin) Numerical
GGT (gamma-Glutamyltransferase) Numerical

Glucose AC Numerical
HB (Hemoglobin) Numerical

HBVDNA (Hepatitis B Virus DNA) Numerical
HBeAg (Hepatitis B e-Antigen) Categorical

HBsAg (Hepatitis B Surface Antigen) Categorical
HCVRNA (Hepatitis C Virus RNA) Numerical

HbA1c (Glycated Haemoglobin) Numerical
Lym (Lymphocyte) Numerical

Na (Sodium) Numerical
PLT (Platelet) Numerical

PT (Prothrombin Time) Numerical
PT INR (PT International Normalized Ratio) Numerical

Seg (Neutrophils) Numerical
T-BIL (Total Bilirubin) Numerical

TP (Total Protein) Numerical
WBC (White Blood Cell) Numerical

Height Numerical
Weight Numerical

fatty liver Categorical
paranchymal liver disease Categorical

Age Numerical
hosp days Numerical

Sex Categorical
sono Categorical

Table 2: Feature in Anonymous Hepatocellular Carcinoma Dataset.

select hyperparameters according to models’ performance on the validation set, which constitutes
20% of the training set. Throughout the training process, we monitor the model’s performance on
the validation set every 5 epochs and halt the process if there is no improvement in AUPRC or the
area under the receiver operating characteristic curve (AUROC) for a continuous span of 30 epochs.
The batch size is fixed at 256 for all experiments. The maximal training epochs for the HCC, P12,
and MI3 are set to 100, 500, and 400, respectively, ensuring adequate training for each dataset to
capture underlying patterns and achieve convergence.

F.3 PLATFORM INFORMATION

This is the information on the platform we used to conduct all the experiments in the paper:

• CPU: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz

• Memory: 64GB

• GPU: RTX 3060 with 12GB VRAM
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Feature Feature Type
Weight Numerical

ALP (Alkaline Phosphatase) Numerical
ALT (Alanine Aminotransferase) Numerical

AST (Aspartate Aminotransferase) Numerical
ALB (Albumin) Numerical

BUN (Blood Urea Nitrogen) Numerical
Bilirubin Numerical

Cholesterol Numerical
Creatinine Numerical

DiasABP (Diastolic Arterial Blood Pressure) Numerical
FiO2 (Inspired Fraction of Oxygen) Numerical

GCS (Glasgow Coma Scale) Categorical
Glucose Numerical

HCO3 (Bicarbonate) Numerical
HCT (Hematocrit) Numerical
HR (Heart Rate) Numerical
K (Potassium) Numerical

Lactate Numerical
MAP (Mean Arterial Pressure) Numerical

MechVent (Mechanical Ventilation) Categorical
Mg (Magnesium) Numerical

PaCO2 (Partial Pressure of Carbon Dioxide) Numerical
PaO2 (Partial Pressure of Oxygen) Numerical

PLT (Platelets) Numerical
RespRate (Respiratory Rate) Numerical

SaO2 (Arterial Oxygen Saturation) Numerical
SysABP (Systolic Arterial Blood Pressure) Numerical

Temp (Temperature) Numerical
TroponinI Numerical
TroponinT Numerical

Urine Numerical
WBC (White Blood Cell) Numerical

pH (Body Fluid) Numerical
Age Numerical

Height Numerical
Gender Categorical

ICU Type Categorical

Table 3: Feature in PhysioNet2012 Dataset.

• CUDA version: 11.4

• gcc version: 7.5.0

• pytorch version: 1.13.1

• sklearn version: 1.1.2

• xgboost version: 1.7.5

G SEARCH RANGE OF HYPERPARAMETERS

Table 5 shows the hyperparameter grid searching range of all deep learning models. ”d model”
means the dimension of embeddings. ”num head” is the number of attention heads. ”ff dim” is the
feed-forward dimension of attention module in the transformer-based models. ”hidden size” is the
dimension of hidden vectors in the GRU-based models. ”num layer” is the number of unit stacks.
We use Adam optimizer (Kingma & Ba, 2017) to optimize all models. After the grid searching, we
will do a little perturbation on the learning rate to see if the model performs better. Restricted by the
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Feature Feature Type
Weight Numerical

Heart Rate Numerical
Mean Blood Pressure Numerical

Diastolic Blood Pressure Numerical
Systolic Blood Pressure Numerical

Oxygen Saturation Numerical
Respiratory Rate Numerical

Capillary Refill Rate Numerical
Glucose Numerical

pH (Body Fluid) Numerical
Temperature Numerical

Height Numerical
Fraction Inspired Oxygen Numerical

Glasgow Coma Scale Eye Opening Categorical
Glasgow Coma Scale Motor Response Categorical

Glasgow Coma Scale Total Categorical
Glasgow Coma Acale Verbal Response Categorical

Table 4: Feature in MIMIC-III Dataset.

GPU memory, the ”num layer” of SUMMIT on the PhysioNet2012 dataset is set to 1. We also list
all settings of all models in Table 6, 7, and 8.
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Hyperparameter GRU GRU-D Transformer Encoder SUMMIT
d model X X 112, 128, 144, 160 112, 128, 144, 160

num head X X 1 1

ff dim X X 64, 80, 96, ..., 240, 256 64, 80, 96, ..., 240, 256

hidden size 64, 80, 96, ..., 240, 256 16, 18, 20, ..., 48 X X

num layer 1, 2, 3, ..., 15, 16 1, 2, 3, ..., 15, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16

classifier down factor 2 2 2 2

learning rate 3e-3, 3e-4, 3e-5 3e-3, 3e-4, 3e-5 3e-3, 3e-4, 3e-5 3e-3, 3e-4, 3e-5

Optimizer Adam Adam Adam Adam

Table 5: Grid Searching Range of All Deep Learning Models
Hyperparameter GRU GRU-D Transformer Encoder SUMMIT

d model X X 144 144

ff dim X X 144 144

hidden size 64 38 X X

num layer 6 1 16 8

learning rate 3e-4 3e-4 3e-5 3.00009e-5

early stopping epoch 30 75 85 100

Table 6: The Setting of Hyperparameter in HCC Dataset
Hyperparameter GRU GRU-D Transformer Encoder SUMMIT

d model X X 144 144

ff dim X X 144 144

hidden size 128 42 X X

num layer 6 1 8 1

learning rate 3e-5 3e-5 3e-5 3e-5

early stopping epoch 100 480 75 350

Table 7: The Setting of Hyperparameter in P12 Dataset
Hyperparameter GRU GRU-D Transformer Encoder SUMMIT

d model X X 128 144

ff dim X X 144 80

hidden size 128 18 X X

num layer 6 1 8 1

learning rate 3e-5 3e-5 3e-5 3e-5

early stopping epoch 280 400 125 380

Table 8: The Setting of Hyperparameter in MI3 Dataset
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