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Abstract

Imitation learning (IL) enables agents to learn policies by mimicking expert demonstra-
tions. While online IL. methods require interaction with the environment, which is costly,
risky, or impractical, offline IL allows agents to learn solely from expert datasets without
any interaction with the environment. In this paper, we propose Preference Optimiza-
tion for Imitation Learning (POIL), a novel approach inspired by preference optimization
techniques in large language model alignment. POIL eliminates the need for adversarial
training and reference models by directly comparing the agent’s actions to expert actions
using a preference-based loss function. We evaluate POIL on MuJoCo control tasks and
Adroit manipulation tasks. Our experiments show that POIL consistently delivers supe-
rior or competitive performance against state-of-the-art methods in the past, including
Behavioral Cloning (BC), IQ-Learn, MCNN, and O-DICE, especially in data-scarce sce-
narios, such as using single trajectory. These results demonstrate that POIL enhances
data efficiency and stability in offline imitation learning, making it a promising solution for
applications where environment interaction is infeasible and expert data is limited, even in
high-dimensional and complex control tasks.

Keywords: Offline Imitation Learning; Preference Optimization

1. Introduction

Reinforcement learning (RL) (Sutton, 2018) has achieved remarkable success across vari-
ous domains, including video games (Mnih et al., 2015; Schrittwieser et al., 2020), robotics
(Kober et al., 2013), and even nuclear fusion control (Degrave et al., 2022). However, defin-
ing suitable reward functions remains a significant challenge (Eschmann, 2021), especially
in tasks where desired behaviors are abstract or hard to specify, such as control problems
(Kiumarsi et al., 2017). Poorly designed reward functions can lead to unintended or un-
safe behaviors (Amodei et al., 2016), and deep RL algorithms are often sensitive to reward
sparsity (Ladosz et al., 2022), complicating the development of effective reward signals.
Imitation learning (IL) (Zare et al., 2024) offers an alternative by learning policies di-
rectly from expert demonstrations without requiring explicit reward functions. In online IL,
the agent interacts with the environment to learn the expert’s behavior. Prominent methods
like generative adversarial imitation learning (GAIL) (Ho and Ermon, 2016), adversarial in-
verse reinforcement learning (AIRL) (Fu et al., 2017), and discriminator actor-critic (DAC)
(Kostrikov et al., 2018) employ a generator (the policy) and a discriminator (distinguish-
ing between expert and agent behaviors) in an adversarial setup to encourage the agent
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to mimic the expert closely (Garg et al., 2021). Despite their effectiveness, these methods
face practical challenges: the adversarial optimization process can be unstable and diffi-
cult to train, leading to biased, high-variance gradient estimators and convergence issues
(Garg et al., 2021). Moreover, the need for environment interaction makes them impracti-
cal in real-world scenarios where such interaction is costly, risky, or infeasible (Lyu, 2024;
Prudencio et al., 2023).

To address these limitations, offline IL methods have been developed to learn from
pre-collected expert demonstrations without environment interaction. Behavior cloning
(BC) (Pomerleau, 1991) is a straightforward approach that directly replicates expert ac-
tions through supervised learning. However, BC suffers from compounding errors due to
distribution shifts and often requires large amounts of expert data. Recent advances aim
to mitigate these issues by correcting for distribution discrepancies. The DICE family of
algorithms, including ValueDICE (Kostrikov et al., 2019), DemoDICE (Kim et al., 2022),
and O-DICE (Mao et al., 2024), improve upon BC by addressing distribution shift.

In this paper, we propose a novel offline imitation learning method called preference
optimization for imitation learning (POIL), inspired by recent advances in preference-based
alignment techniques in large language models (LLMs) (Wang et al., 2024), and clearly
different from previous offline IL. methods. An overview of the POIL process is illustrated
in Figure 1, described in more detail in Subsection 3.3. Specifically, we draw inspiration
from direct preference optimization (DPO) (Rafailov et al., 2024), contrastive preference
optimization (CPO) (Xu et al., 2024), and self-play fine-tuning (SPIN) (Chen et al., 2024).
These methods have been successful in aligning LLMs with human preferences but have
specific requirements that limit their direct application to offline IL, namely, DPO and CPO
require preference datasets and, in the case of DPO, a reference model. SPIN leverages an
expert dataset but still relies on a reference model during training.

In contrast, POIL adapts these techniques to the offline IL setting by introducing a
framework that directly compares the agent’s actions to expert actions without the need
for a discriminator or a reference model, as illustrated in Figure 1. By eliminating the need
for preference datasets and reference models, POIL simplifies the learning process, avoids
adversarial training instabilities, and enhances computational efficiency. This approach
allows POIL to effectively overcome key constraints of existing methods in offline IL while
improving overall performance.

We evaluate POIL on standard MuJoCo control tasks, including HalfCheetah, Hopper,
and Walker2d, as well as on complex Adroit dexterous manipulation tasks (Rajeswaran
et al., 2017). POIL consistently delivers superior or competitive results compared to state-
of-the-art methods, particularly excelling in data-scarce scenarios, e.g., a single demonstra-
tion or small fractions of the dataset.

Our contributions are summarized as follows:

e We introduce POIL, a novel offline imitation learning method that eliminates the
need for adversarial training, preference datasets, and reference models by directly
comparing agent and expert actions.

e We provide empirical evidence on MuJoCo and Adroit tasks showing that POIL
achieves superior or competitive performance against state-of-the-art methods in the
past, especially in data-limited scenarios and complex manipulation tasks.
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e We conduct ablation studies to analyze the impact of some key hyper-parameters on
POIL’s performance, providing insights into its robustness and applicability.

These results suggest that preference optimization techniques from LLM alignment are
effectively adapted to offline imitation learning, opening new avenues for research and ap-
plications in control and robotics.

2. Related Work

2.1. Offline Imitation Learning

Offline imitation learning methods (Zare et al., 2024) learn from static datasets without
needing interaction with the environment. An early approach, behavior cloning (Pomerleau,
1991), learns directly from expert demonstrations but has issues with compounding errors
and distribution shift, especially with limited data.

To overcome these issues, the DICE (DIstribution Correction Estimation) family of
algorithms provides improvements. ValueDICE (Kostrikov et al., 2019) minimizes the KL
divergence between stationary distributions, while Soft DICE (Sun et al., 2021) employs the
Earth-Mover distance for distribution matching. DemoDICE (Kim et al., 2022) can use
demonstrations of varying quality, and ODICE (Mao et al., 2024) adds orthogonal-gradient
updates to handle conflicting gradients in learning. Other methods include adaptations of
inverse reinforcement learning for offline use (Zolna et al., 2020; Yue et al., 2023), energy-
based models (Jarrett et al., 2020), and OTR (Luo et al., 2023). Despite these advances,
challenges remain. Some methods, such as DemoDICE and SMODICE (Ma et al., 2022),
need extra data beyond expert demonstrations. Others struggle with limited datasets or
single demonstrations.

2.2. Preference-based Reinforcement Learning

Preference-based RL (PbRL) (Wirth et al., 2017) has emerged as a promising approach to
address the challenges of reward function design in traditional RL by incorporating human
preferences into the learning process. Early work by Christiano et al. (2017) demonstrated
the potential of PbRL using deep learning techniques. This pioneering work opened new
avenues for tackling challenging domains but relied heavily on external preference feedback.
Subsequent research focused on reducing this dependency. Lee et al. (2021) introduced
PEBBLE, which improved feedback efficiency through experience relabeling and unsuper-
vised pre-training. Park et al. (2022) further improved this with SURF, a semi-supervised
approach leveraging data augmentation, yet neither fully eliminated the need for human
feedback.

A significant advancement in the field came with the inverse preference learning (IPL)
proposed by Hejna and Sadigh (2024). IPL represents a novel approach specifically de-
signed for learning from offline preference data. It leverages the key insight that for a fixed
policy, the Q-function encodes all necessary information about the reward function. Using
the Bellman operator, IPL eliminates the need for an explicit reward model, thereby sim-
plifying the algorithm and improving parameter efficiency. This innovation marks a crucial
step towards more efficient and scalable PbRL methods. However, IPL still requires an
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external preference dataset and remains a value-based method, leaving room for further
improvements in data efficiency and algorithmic approach.

2.3. Alignment Techniques in Large Language Models

Reinforcement learning from human feedback (RLHF) (Kaufmann et al., 2023; Wang et al.,
2024) has emerged as a powerful approach for aligning large language models (LLMs) with
human preferences. Pioneered by InstructGPT (Ouyang et al., 2022) and further developed
by Bai et al. (2022), RLHF involves training a reward model based on human preference data
and then optimizing the policy using reinforcement learning guided by this reward model.
While effective, RLHF is computationally intensive and requires careful hyper-parameter
tuning.

To address these challenges, a class of methods known as DPO-like methods has been
proposed as simpler alternatives that bypass explicit reward modeling. DPO (Rafailov
et al., 2024) directly optimized the policy to match preference data using a classification
loss. The standard DPO loss function is defined as:

w|T x
[’DPO(TrQ; 7Tref) = _]E(:c,yw,yl)wD [10g o (5 (log’rre(y’) — log 7r0(yl‘)> )] s (1)

Tref (Y |7) Teet (Y1) )

where 7y is the agent’s policy parameterized by 6, ms is the reference model, o(z) =
1/(1+e~#) is the sigmoid function, 3 is a scaling factor, D is the dataset of preference pairs
(z,Yw, Y1), and y,, and y; denote the preferred and less preferred responses given a prompt
x, respectively.

Several variants of DPO, collectively referred to as DPO-like methods, have been devel-
oped to improve performance or address specific issues. For instance, identity preference
optimization (IPO) (Azar et al., 2024) aimed to mitigate overfitting in preference learning,
DPO-positive (DPOP) (Pal et al., 2024) introduced additional regularization to prevent
reward degradation, and Kahneman-Tversky optimization (KTO) (Ethayarajh et al., 2024)
incorporated insights from prospect theory to better model human decision-making.

Recent researches have focused on developing reference-free DPO-like methods to elim-
inate the need for a fixed reference model. Simple preference optimization (SimPO) (Meng
et al., 2024) introduced a loss function with length normalization and a reward margin,
enabling reference-free optimization while addressing response length control. CPO (con-
strastive preference optimization) (Xu et al., 2024) showed that when the reference model
perfectly aligns with the true data distribution of preferred data, the DPO loss is upper-
bounded by a simpler loss function without a reference model by assuming a uniform dis-
tribution U. The preference part of the CPO loss function is given by:

Lept™ " (m0) = Loro(m9:U) = ~E(y,y,, yy~p [l0g o (8 (log m (o |x) — log mo (31]))]

(2)

These DPO-like methods not only enhance computational and memory efficiency but
also retain comparable optimization performance to the standard DPO.

Most closely related to our work is SPIN (self-play fine-tuning) (Chen et al., 2024), which

employed a self-play mechanism to improve an LLM without additional human preference
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data iteratively. SPIN generated its training data and refines itself by distinguishing between
current and previous outputs, continuously updating its reference model.

Our research bridges the gap between language model alignment and imitation learning,
demonstrating how DPO-like alignment techniques, originally developed for text genera-
tion problems in LLMs, can be successfully adapted to control problems in reinforcement
learning. This cross-domain application opens up new possibilities for improving imitation
learning in complex, real-world tasks, and highlights the potential of adapting DPO-like
methods.

3. Preference Optimization for Imitation Learning

4 Preference Optimization for Imitation Learning )
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Figure 1: Process overview of preference optimization for imitation learning (POIL). The
agent, guided by an expert dataset, compares the agent’s actions with expert actions and
computes the preference loss for updating the policy parameters. This process does not
require environmental interaction, as the red cross indicates.

3.1. Adapting DPO-like Methods for Imitation Learning

Our approach leverages the strengths of DPO-like methods and, namely, combines the self-
play mechanism from SPIN with the reference-free optimization from CPO, to enhance the
imitation learning process. In this method, we eliminate the need for a reference model in
the self-play setup by adopting CPQO’s reference-free loss function and allowing us to apply
self-play in offline imitation learning without the computational overhead of maintaining a
reference model. Specifically, we focus on iteratively refining the agent’s policy by directly
comparing its actions to those of experts, thus enabling the model to align more closely
with expert behavior while reducing computational complexity.

In SPIN, a model generates synthetic data and refines itself by distinguishing between
current and previous outputs using a continuously updated reference model. However,
maintaining and updating this reference model adds computational complexity. To address
this, we adapt CPO’s reference-free optimization, eliminating the need for a reference model
while retaining the benefits of self-play.

In our approach, expert demonstrations serve as positive samples (y,, = ag), while
the model’s own actions during training are treated as negative samples (y; = a), where
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a denotes the agent’s action and ag denotes the expert’s action. This direct comparison
enables the model to prioritize actions that align more closely with expert behavior. By
progressively learning from its own generated data in relation to expert demonstrations,
the agent refines its policy, achieving a more stable and efficient imitation learning process
without relying on predefined rewards or reference models.

3.2. POIL Objective

Our goal is to adapt DPO-like methods to the offline IL setting by eliminating the need
for a reference model and incorporating a BC regularization term to enhance performance.
Inspired by the findings of CPO as described in Subsection 2.3, we consider the expert’s
policy as the true data distribution of preferred actions. First, we obtain a reference-free
loss function for imitation learning as follows.

LroiL(me) = —E(sap,a)~pp [log o (B (log mg(ap|s) — log mg(als)))] , (3)

This loss function is designed to achieve two main objectives:

1. Align with expert behavior. By maximizing log mg(ag|s), we encourage the agent to
assign higher probabilities to the expert’s actions.

2. Discourage sub-optimal actions. By minimizing logmy(als), we encourage the agent
to move away from sub-optimal (agent’s) behaviors.

The loss design of POIL (Equation 3) is to minimize the divergence between the expert’s
behavior and the agent’s behavior while maximizing the preference of expert actions over
the agent’s current actions.

To further encourage the policy to closely mimic expert actions, we incorporate a BC
(behavior cloning) regularization term, similar to the approach in Xu et al. (2024). Specif-
ically, we add the negative log-likelihood of expert actions under the agent’s policy:

Lpc(mg) = —E(s.qp)~py l0g To(ap]s)] . (4)

Our overall augmented POIL loss function then combines the preference optimization
and the BC regularization:

LEG (m0) = Lroiw(mg) + A - Lpc(m), (5)

where A is a hyper-parameter that balances the trade-off between preference optimiza-
tion and behavior cloning.

By incorporating A as a tunable parameter, we allow for greater flexibility in balancing
the influence of the BC regularization term, which is crucial in scenarios with varying quality
or quantity of expert data.

Our approach builds upon the proof provided by Xu et al. (2024), adapting it to the
offline imitation learning setting and introducing A to enhance the method’s adaptability.
This results in a loss function that effectively guides the policy towards aligning with the
expert data distribution without the need for a reference model.
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3.3. Algorithm

The POIL algorithm, detailed in Algorithm 1, iteratively refines the agent’s policy to better
align with expert behavior through preference-based optimization and behavior cloning
regularization. As shown in Figure 1, the process begins by initializing the policy parameters
randomly. During each iteration, the algorithm samples state-action pairs from the expert
demonstrations, which serve as the basis for learning.

Algorithm 1 Preference Optimization for Imitation Learning (POIL)

Require: Expert dataset Dp = {(s;,ap )}, scaling factor 3, regularization coefficient
A, batch size m, learning rate 1, number of iterations 7.
1: Randomly initialize policy parameters 6
2: for iteration =1 to 7' do
3:  Sample a batch of expert state-action pairs {(s;,ag ;) }jL, from Dg
4:  Sample agent actions a; from 7g(als;) for all j
5. for each (sj,ap ;,a;) in batch do
6 Compute the POIL loss: Lporm, = —logo (8 (log me(ak,j|s;) — logme(ajs;)))
7 Compute the BC regularization term: Lpc = —logmp(ag j|s;)
8 Combine the losses: E;lé)gIL = LpoiL. + A - Lpc
9 Update policy parameters: 6 < 6 — anE;u(%L
10:  end for
11: return ¢
12: end for

In Algorithm 1, Dg represents the dataset of expert demonstrations, and N is the
total number of expert state-action pairs. The regularization coefficient A controls the
weight of the BC regularization relative to the preference-based loss, while the scaling
factor (8, learning rate 1, and number of iterations 7" are hyper-parameters that control the
optimization process. The batch size m determines how many samples are used in each
iteration to compute the gradient.

The algorithm proceeds by sampling batches of expert data and generating correspond-
ing agent actions. The total loss Liota is computed for each sample in the batch, balancing
between preference optimization and behavior cloning. The policy parameters 6 are then
updated using gradient descent to minimize the total loss, thereby improving the agent’s
policy to better match the expert’s behavior.

4. Experiments

In this section, we evaluate the performance of POIL on control tasks in the MuJoCo
environment (?) and Adroit dexterous manipulation tasks from the D4RL benchmark (Fu
et al., 2020). We conduct several experiments to demonstrate the effectiveness of POIL
under different settings and compare it against some baseline methods, which include those
state-of-the-art in the past.

We compare the performance of POIL against several baseline methods, including BC
(Pomerleau, 1991), IQ-Learn (Garg et al., 2021), MCNN (Sridhar et al., 2023) and O-DICE
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Environment Traj. BC IQ-Learn MCNN

trajl = 2775.39 £296.23  3416.38 £ 285.19  4435.17 + 310.87

HalfCheetah  traj2 3031.12 4+ 727.32  3938.39 + 352.01  4186.35 + 121.60
trajd  2927.38 £967.15  3405.82 £ 681.51  3590.01 &+ 537.49

trajl  1548.32 +£108.74  3497.65 4+ 80.21 1327.03 £ 230.00

Hopper traj2  1687.93+70.75 3332.26 + 186.25 2783.80 + 228.24
trajd  1850.54 + 870.87  2860.63 +498.47  1553.76 + 409.65

trajl 881.23 + 68.44 618.00 £+ 255.96 1288.02 £ 887.30

Walker2d traj2  1023.85 £ 124.71 873.80 £ 64.50 2198.08 4= 741.59
traj3d  935.63 £ 76.50 924.57 + 230.85 1127.44 £+ 405.91

Environment Traj. O-DICE POIL)_, POIL,_,

trajl  1532.63 + 716.74 3843.75 + 379.47 4628.88 + 183.47

HalfCheetah  traj2  1801.12 4+ 697.67 2228.04 +797.59 4833.13 + 30.95
traj3d  1032.74 £1104.10 2645.44 + 876.50 4309.46 + 247.95
trajl  1672.45 +441.29 2426.22 + 622.98 3501.67 + 469.42

Hopper traj2  1748.63 +204.60 2534.35 £ 398.42  3066.00 + 158.89
trajd  1797.43 +145.06 3372.09 +52.41  3499.08 £+ 58.08
trajl  1543.67 £ 445.67  2645.29 £+ 840.42 4722.79 £+ 521.90
Walker2d traj2  1392.54 £ 1106.87 1826.08 +490.14 5233.93 £+ 234.21
traj3  1483.52 + 716.27  2493.53 £+ 729.79 3745.50 + 445.90

Table 1: performance of various methods trained with a single expert demonstration on
MudJoCo tasks. The results are averaged over 3 different runs, each using a unique random
seed, and the scores represent the average over the last ten epochs. (The bold numbers
represent the best, while the underscored numbers are the second best. Note that the
scores are not normalized to expert data because we cannot directly get the expert scores
from this dataset (Kostrikov et al., 2019)).

Task BC IQ-Learn ODICE MCNN POIL»_; POIL)—

Pen 2633 662.81 £ 881.71 2712.92 + 200.53 3405 + 328 3036.04 £ 180.60 4077.04 + 66.77
Hammer 16140 18.97 £ 96.21 10921.48 + 829.98 16387 + 682 15904.91 + 173.60 16295.94 + 49.67

Door 969 1950.80 + 730.36 3003.24 + 61.04 3035 + 7 2438.69 + 576.73 3040.88 + 12.33
Relocate 4289 32.86 + 49.95 4429.50 £ 29.50 4566 + 47 4090.77 £ 157.97 4606.51 + 45.64

Table 2: Performance comparison on Adroit tasks using the full expert dataset (5,000
demonstrations). The results are averaged over three runs with different random seeds.
(The bold numbers indicate the best performance, while the underscored numbers are the
second best.)
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(Mao et al., 2024), many of which were state-of-the-art in offline imitation learning in the
past. For fair comparison, we use the same neural network architecture for all methods.
The policy network consists of two fully connected layers, each with 256 units, with ReLLU
activation functions applied after each layer. All models are trained for 100k timesteps. We
use the Adam optimizer (?) for optimization with default parameters. The experiments
are conducted on a system equipped with 4 NVIDIA RTX A6000 GPUs, 128GB of RAM,
and an AMD Threadripper PRO 5965WX processor featuring 24 cores and 48 threads.

4.1. Single Demonstration Learning

We conduct experiments on standard MuJoCo control tasks, specifically HalfCheetah-v2,
Hopper-v2, and Walker2d-v2. These tasks are widely used as benchmarks in reinforcement
learning, requiring agents to learn complex locomotion behaviors in high-dimensional state
and action spaces. For the single demonstration experiments, we utilize one expert trajec-
tory per task, sourced from the same dataset as used in ValueDICE (Kostrikov et al., 2019).
These expert trajectories generated by well-trained policies present a challenging setting for
imitation learning due to the limited data available.

In this experiment, we evaluate the ability of POIL to learn effective policies from a single
expert trajectory. The hyper-parameter 3 is set to 0.2 in this experiment. This experiment
tests the data efficiency of imitation learning methods when only minimal expert data is
available.

As shown in Table 1, POIL with A\ = 0 achieves the best performance on eight out
of nine trajectories across all tasks, only falling behind IQ-Learn on trajectory 2 of the
Hopper-v2 task. This demonstrates POIL’s ability to effectively utilize limited expert data
and suggests superior data efficiency compared to other methods. More discussion about A
is given in Subsection 4.3.2.

4.2. Adroit Dexterous Manipulation

In this experiment, we focused on the expert datasets from D4RL within the Adroit tasks,
following the same settings as in MCNN (Sridhar et al., 2023) to ensure consistency and
allow for a direct comparison between POIL and other methods under similar conditions.
Adroit tasks have been considered challenging benchmarks in the field of robotics and
reinforcement learning, involving dexterous manipulation with high-dimensional human-
like five-finger hands. These tasks simulate complex real-world scenarios, requiring precise
control and coordination of multiple joints. The complexity of these tasks makes them
particularly demanding for imitation learning algorithms, providing a rigorous test of an
algorithm’s ability to learn and replicate sophisticated motor skills.

Specifically, the experiment is conducted for the following tasks: pen-expert-v1, hammer
-expert-vl, door-expert-vl, and relocate-expert-vl. For our POIL, we empirically
set the the scaling factor 8 = 1. For baseline methods, we obtained the results of O-DICE
and IQ-Learn by running their official implementation, while the results of other meth-
ods are directly inherited from MCNN. Namely, the one for MCNN is the best one with
tuned hyperparameters, denoted by MCNN+MLP in Sridhar et al. (2023). As shown in
Table 2, POIL outperforms all methods for all cases except for the case hammer-expert-vi



Huang Liu MENG WU

for MCNN, where POIL with A = 0 achieves comparable performance with only a slight
difference.

4.3. Ablation Study
4.3.1. COMPONENT ANALYSIS OF POIL

Recent theoretical analysis (Swamy et al., 2025) has provided important insights into
the relationship between POIL and behavioral cloning. Specifically, Theorem 2.4 in that
work demonstrates that under idealized conditions—infinite sampling and linear loss func-
tion—POIL should converge to the behavioral cloning gradient. The same work also argues
from an information-theoretic perspective (Section 3.1) that on-policy data is redundant via
the data-processing inequality, questioning the value of stochastic sampling in preference
optimization. However, our empirical results consistently show POIL outperforming BC
across all experimental settings, motivating a systematic investigation into which specific
components drive this performance advantage.

To understand the contribution of each component in POIL, we conduct a controlled
ablation study examining two key design choices: the sigmoid nonlinearity logo(-) in the
loss function and the stochastic sampling strategy for generating negative examples. We
evaluate variants of POILy—y on the Adroit manipulation tasks, where A = 0 is selected
based on our findings in Subsection 4.3.2.

We test the complete POIL method, a linear version without sigmoid nonlinearity
("POIL w/o sigmoid”), a variant using deterministic policy mean py(s) instead of stochas-
tic sampling ("POIL w/o stochastic”), and a version combining both modifications (" POIL
w/o both”). The linear variant follows the form:

Liinear (71'9) = _E(s,aE,a)NDE [5 (log Ty (aE‘S) — log my (CL|S))] (6)
Task BC POIL POIL w/o sigmoid POIL w/o stochastic POIL w/o both
Pen 2633 4077.04 + 66.77 3149.52 + 32.37 3091.31 +44.35 253.26 £2.30
Hammer 16140 16295.94 + 49.67 15402.48 + 455.17 15486.26 + 199.52 —238.37 £20.21
Door 969 3040.88 £12.33 2265.42 4 435.28 1653.31 £ 476.53 —52.73 £ 3.04
Relocate 4299 4606.51 + 45.64 4377.92 + 15.88 4374.64 £ 21.17 —4.78 +1.86

Table 3: Component analysis of POILy—q variants compared with BC baseline on Adroit
tasks. Results are averaged over three runs with different random seeds.(The bold numbers
indicate the best performance.)

Table 3 presents the experimental results compared with the BC baseline. The origi-
nal POIL substantially outperforms BC across all tasks. Individual component removals
("POIL w/o sigmoid” and "POIL w/o stochastic”) show comparable performance to BC in
most cases, while the combined removal ("POIL w/o both”) leads to catastrophic failure
with performance dramatically worse than BC.

These results illuminate the gap between theoretical predictions and practical perfor-
mance in continuous control settings. While theory suggests linear POIL should converge to
BC and that self-sampling provides no additional information, our experiments demonstrate
that both components are essential for maintaining POIL’s performance advantages. The
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catastrophic failure when both are removed reveals that POIL’s effectiveness stems from
synergistic component interactions that emerge under practical constraints rather than the
idealized conditions assumed in theoretical analysis.
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Figure 2: Performance comparison between different A and g values on the HalfCheetah-v2,
Hopper-v2, and Walker2d-v2 tasks.

4.3.2. IMPACT OF HYPERPARAMETERS 8 AND A

We conduct a comprehensive ablation study to analyze the impact of both the scaling factor
[ and the BC coefficient A on POIL’s performance. These experiments were conducted using
only a single expert demonstration for each of the three environments: HalfCheetah-v2,
Hopper-v2, and Walker2d-v2, with results averaged over three different random seeds to
ensure robust evaluation.

Figure 2 illustrates the performance of POIL across the three tasks as A\ varies from 0
to 3, specifically A = [0,0.2,0.4,0.6,0.8,1.0, 3.0], for five different 5 = [0.1,0.2,0.5,0.8, 1.0].
Our findings reveal several important insights about both hyperparameters.

Impact of A (BC Coefficient): Our results consistently show that smaller values of
A lead to higher performance across all three tasks for most £ values. In particular, A = 0
yields the highest returns for most 8 configurations in all three environments. As A increases,
performance decreases notably, especially for larger values such as 3.0, where performance
deteriorates significantly across the board. This suggests that the preference-based loss
alone is sufficient for effective policy learning from demonstrations, and the additional BC
regularization term may unnecessarily constrain the policy optimization process.

Impact of 5 (Scaling Factor): The scaling factor 5 also demonstrates significant
influence on performance. Smaller values of 3, particularly 8 = 0.2, consistently yield
better performance across most tasks and A settings. This suggests that choosing an ap-
propriate scaling factor effectively controls the sharpness of the preference function in the
loss, influencing how strongly the model distinguishes between expert and agent actions. A
smaller § value tends to smooth the preference function, leading to more stable gradients
and improved training dynamics.

The interaction between S and A reveals that the combination of A = 0 and 8 = 0.2
provides the most consistent performance improvements across all evaluated environments.
While g = 0.2 performed well in most cases, different environments may require different
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scaling factors based on their complexity and the nature of the expert data. The consistent
observation that smaller values for both hyperparameters yield better performance suggests
that a smoother preference function with minimal BC regularization is generally beneficial
in offline imitation learning with POIL.

4.3.3. COMPARISON BETWEEN VARYING NUMBERS OF DEMONSTRATIONS

Task Demos MCNN-+MLP POIL

Door 100 2725 £ 139 3015 + 3
500 2931 + 32 3025 £ 1
1000 2992 £ 18 3027 £ 7
2000 3017 £ 10 3028 + 22
4000 3025 £ 3 3033 + 3
5000 3035 £ 7 3041 £+ 12

Pen 100 — 4146 + 104
500 3712 £ 32 4127 £ 8
1000 3808 £ 6 4141 + 38
2000 3858 £ 29 4197 + 136
4000 3934 £ 42 4172 + 113
5000 4051 £ 195 4078 + 66

Table 4: Performance comparison on Adroit tasks with varying numbers of demonstrations.
Results are averaged over three runs with different random seeds. (The bold numbers
indicate the best performance for each dataset size)

To assess POIL’s performance across varying dataset sizes, we conducted experiments
on datasets of different scales. The experimental setup follows that of MCNN, with data
directly sourced from the MCNN paper to ensure result comparability. Table 4 demonstrates
that POIL consistently achieves superior performance across all tasks and dataset sizes.
Notably, POIL shows strong performance even with a limited number of demonstrations
(e.g., 100 demos), highlighting its data efficiency and robustness in data-scarce scenarios.

5. Discussion

In this paper, we introduce POIL, a novel method inspired by preference optimization tech-
niques from large language model alignment. POIL eliminates the need for adversarial
training by directly comparing agent actions to expert actions. Through extensive ex-
periments on MuJoCo tasks, and Adroit manipulation tasks, we demonstrate that POIL
performs best or competitively against state-of-the-art methods, particularly in data-scarce
settings.

Our study reveals interesting insights about the regularization coefficient A. While it
plays a crucial role in CPO, we found that in our imitation learning context, setting A = 0
often leads to better performance across various tasks and dataset sizes. This suggests that
POIL can effectively learn from expert demonstrations without additional regularization,
highlighting the method’s robustness in capturing expert behavior.
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Notably, our experiments on the Adroit manipulation tasks showcase POIL’s exceptional
performance in complex, high-dimensional control problems. These tasks involve dexterous
manipulation of objects, presenting a significant challenge in robotics and control. POIL
consistently outperformed state-of-the-art methods in these tasks, demonstrating its ability
to handle intricate action spaces and learn sophisticated behaviors.

Overall, POIL offers a robust solution for offline imitation learning, especially when
expert data is limited or challenging to learn from. Its flexibility in adapting to different
dataset sizes and task difficulties makes it a promising direction for future research in
imitation learning and related fields.
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