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Abstract

The double descent (DD) paradox, where over-
parameterized models see generalization improve
past the interpolation point, remains largely unex-
plored in the non-stationary domain of Deep Re-
inforcement Learning (DRL). We present prelimi-
nary evidence that DD exists in model-free DRL,
investigating it systematically across varying model
capacity using the Actor-Critic framework. We rely
on an information-theoretic metric, Policy Entropy,
to measure policy uncertainty throughout training.
Preliminary results show a clear epoch-wise DD
curve; the policy’s entrance into the second descent
region correlates with a sustained, significant reduc-
tion in Policy Entropy. This entropic decay sug-
gests that over-parameterization acts as an implicit
regularizer, guiding the policy towards robust, flat-
ter minima in the loss landscape. These findings
establish DD as a factor in DRL and provide an
information-based mechanism for designing agents
that are more general, transferable, and robust.

1 Introduction & Motivation

The classical machine learning theory posits a U-
shaped bias-variance curve, suggesting that excessive
model complexity leads to overfitting and degraded
generalization. The discovery of Double Descent
(DD) [1] has fundamentally challenged this, show-
ing that test error can fall again as model capacity
increases far beyond the point of perfect fit (the inter-
polation threshold). While DD has been widely ob-
served within the Supervised Learning (SL) regime
[2], its presence in Deep Reinforcement Learning
(DRL) has, to the best of our knowledge, not yet
been characterized. We argue that the reason for
this gap is that studying DD in DRL is particularly
complex. Unlike static supervised tasks, DRL in-
volves a non-stationary environment where the data
distribution (experience) changes with the evolving
policy. Crucially, there are no predefined training
and validation sets that can be used to observe and
characterize the generalization properties of the phe-
nomenon. Furthermore, typical DRL losses are not
reliable indicators of generalization. Let us take as

*Corresponding Author.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

On The Presence of Double-Descent in Deep Reinforcement

Viktor Vesely', Aleksandar Todorov', and Matthia Sabatelli*!

an example, the classic Mean Squared Error (MSE)
loss used by a variety of value-based and actor-critic
algorithms for the value function (V):
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In this expression, 6, represents the value network
parameters; 7 is the instantaneous reward; v € [0, 1]
is the discount factor; V(si41;6,) is the estimated
value of the next state (the bootstrap target); and
V' (st; 0,) is the current state value estimation. Con-
trary to the Supervised Learning case, where high
losses are usually correlated with poor learning per-
formance, this Temporal Difference (TD) loss can
increase throughout training and also be a sign of
successful learning. As the loss rises, it often sig-
nifies that the agent is learning to bootstrap more
effectively with respect to temporal difference tar-
gets likely associated with novel states, suggesting
a better coverage of the state space underlying the
Markov Decision Process. This ambiguity makes
typical DRL losses ill-suited for the generalization
analysis required to characterize DD. Yet, under-
standing whether DD governs DRL performance is
crucial, as modern agents overwhelmingly rely on
vast, over-parameterized neural networks [3]. This
phenomenon is particularly interesting to study be-
cause of its practical implications: DRL agents cur-
rently suffer from poor generalization [4], exhibit a
loss of plasticity [5], and rarely transfer well between
tasks [6]. Therefore, there is much to gain if one
could quantify how general a DRL agent can be. We
aim to establish the presence of DD in model-free
DRL and identify the key dynamics accompanying it,
thereby linking the phenomenon to the core problem
of generalization in DRL.

2 Experimental Approach

To investigate DD, we employed the Actor-Critic
(A2C) algorithm on the popular Frozen-Lake envi-
ronment. We define model complexity by varying
the hidden layer width and depth (capacity) of the
shared policy/value backbone, exploring configura-
tions such as [64], [64, 64], [128,128], [64, 64, 64], and
[128,128,128] following approaches alike to Super-
vised Learning [2]. The core of our analysis lies in
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tracking the dynamics of policy uncertainty during
training, using the information-theoretic metric of
Policy Entropy as our primary lens. This metric
measures the randomness of the action distribution,
providing insights into the policy’s confidence and
exploration throughout the learning process. For a
given policy 7(+|s) in state s, the policy entropy is
defined as:

H(r) = —E, [logw(als)] = — Z 7(als)log(als).
acA

We track this entropy across training episodes to
establish the correlation between policy uncertainty
and the onset of the second descent.

3 Preliminary Findings

Our results provide initial evidence for the exis-
tence of the Double Descent phenomenon in Deep
Reinforcement Learning. Our preliminary findings,
detailed in Figure 1, illustrate this effect. The graph
plots the average Policy Entropy, H (), as a function
of training episodes for five distinct actor-critic net-
work architectures. Policy Entropy #H () is the core
metric, quantifying the uncertainty of the agent’s ac-
tion selection. We can see that as training progresses,
agents across the capacity spectrum exhibit the clas-
sic DD curve: models that pass the interpolation
point enter a regime where generalization initially
degrades (first descent) but then dramatically im-
proves (second descent) as training continues. This
transition to the second descent is strongly coupled
with the dynamics of policy uncertainty. Specifically,
agents entering the second descent display a consis-
tent and sustained decrease in Policy Entropy. This
decrease indicates that the over-parameterized mod-
els are efficiently pruning uncertainty and settling
on highly deterministic, high-information policies
that maximize reward. The dynamics of this en-
tropic compression are strongly capacity-dependent.
Small capacity models (e.g., [64] and [64, 64]) demon-
strate rapid convergence to near-zero entropy within
2,000 episodes, indicating policy fixation on a locally
optimal solution. In contrast, the characteristic en-
tropy signature associated with the Double Descent
phenomenon is clearly visible in the highly over-
parameterized networks (purple: [128, 128, 128]),
which maintain significantly higher average entropy
and larger variance for an extended duration. Fur-
thermore, the [64, 64, 64] capacity (red line) exhibits
an intriguing multi-phase descent pattern, suggest-
ing a prolonged, high-entropy exploration followed
by a re-ascent (around episode 3,500) before its final
descent, a behavior sometimes associated with Triple
Descent in highly complex, over-parameterized mod-
els [7]. This delayed descent in uncertainty is the-
orized to be the result of implicit regularization,
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Figure 1. Policy Entropy, H(w), as a function of train-
ing episodes across five distinct actor-critic network ar-
chitectures. The shaded regions represent the 95% con-
fidence interval (CI) over fifteen independent runs.

guiding the models toward flatter, more generaliz-
able minima. We posit that this sustained entropic
compression reflects this implicit regularization ef-
fect: the over-parameterized system uses its high
capacity to discard irrelevant or non-robust policies
and converge to a simpler, low-entropy solution cor-
responding to a flat, highly-generalizing minimum
in the objective landscape. The shaded regions in
the graph represent the 95% confidence interval (CI)
across fifteen independent experimental runs.

4 Future Implications

These initial results demonstrate that the Double
Descent phenomenon extends to model-free DRL,
confirming that over-parameterized agents use re-
dundancy to find better solutions rather than simply
overfitting. Our results seem to suggest that this
performance is a direct result of implicit regulariza-
tion guiding agents toward deterministic policies in
flat, robust minima. This finding has profound im-
plications, but we must formally evaluate whether
the policy stability and entropic compression ob-
served here translate to superior out-of-distribution
(OOD) generalization. As a crucial next step, we
will evaluate whether there is a significant difference
in generalization for models that exhibit Double De-
scent. We aim to test this on OOD tasks using the
procedurally generated environments introduced by
Cobbe et al. [8] to rigorously assess the models’ abil-
ity to transfer learned skills to unseen environment
variations. Understanding the dynamics between
capacity and policy uncertainty could lead to novel,
explicit regularization techniques, pushing agents
more reliably into the second descent regime for
highly general, transferable, and flexible DRL sys-
tems.
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