
NLDL
#42

NLDL
#42

NLDL 2026 Abstract Submission #42. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

On The Presence of Double-Descent in Deep Reinforcement
Learning
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Abstract001

The double descent (DD) paradox, where over-002

parameterized models see generalization improve003

past the interpolation point, remains largely unex-004

plored in the non-stationary domain of Deep Re-005

inforcement Learning (DRL). We present prelimi-006

nary evidence that DD exists in model-free DRL,007

investigating it systematically across varying model008

capacity using the Actor-Critic framework. We rely009

on an information-theoretic metric, Policy Entropy,010

to measure policy uncertainty throughout training.011

Preliminary results show a clear epoch-wise DD012

curve; the policy’s entrance into the second descent013

region correlates with a sustained, significant reduc-014

tion in Policy Entropy. This entropic decay sug-015

gests that over-parameterization acts as an implicit016

regularizer, guiding the policy towards robust, flat-017

ter minima in the loss landscape. These findings018

establish DD as a factor in DRL and provide an019

information-based mechanism for designing agents020

that are more general, transferable, and robust.021

1 Introduction & Motivation022

The classical machine learning theory posits a U-
shaped bias-variance curve, suggesting that excessive
model complexity leads to overfitting and degraded
generalization. The discovery of Double Descent
(DD) [1] has fundamentally challenged this, show-
ing that test error can fall again as model capacity
increases far beyond the point of perfect fit (the inter-
polation threshold). While DD has been widely ob-
served within the Supervised Learning (SL) regime
[2], its presence in Deep Reinforcement Learning
(DRL) has, to the best of our knowledge, not yet
been characterized. We argue that the reason for
this gap is that studying DD in DRL is particularly
complex. Unlike static supervised tasks, DRL in-
volves a non-stationary environment where the data
distribution (experience) changes with the evolving
policy. Crucially, there are no predefined training
and validation sets that can be used to observe and
characterize the generalization properties of the phe-
nomenon. Furthermore, typical DRL losses are not
reliable indicators of generalization. Let us take as
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an example, the classic Mean Squared Error (MSE)
loss used by a variety of value-based and actor-critic
algorithms for the value function (V ):

LV (θv) =
1

2
E
[
(rt + γV (st+1; θv)− V (st; θv))

2
]
.

In this expression, θv represents the value network 023

parameters; rt is the instantaneous reward; γ ∈ [0, 1] 024

is the discount factor; V (st+1; θv) is the estimated 025

value of the next state (the bootstrap target); and 026

V (st; θv) is the current state value estimation. Con- 027

trary to the Supervised Learning case, where high 028

losses are usually correlated with poor learning per- 029

formance, this Temporal Difference (TD) loss can 030

increase throughout training and also be a sign of 031

successful learning. As the loss rises, it often sig- 032

nifies that the agent is learning to bootstrap more 033

effectively with respect to temporal difference tar- 034

gets likely associated with novel states, suggesting 035

a better coverage of the state space underlying the 036

Markov Decision Process. This ambiguity makes 037

typical DRL losses ill-suited for the generalization 038

analysis required to characterize DD. Yet, under- 039

standing whether DD governs DRL performance is 040

crucial, as modern agents overwhelmingly rely on 041

vast, over-parameterized neural networks [3]. This 042

phenomenon is particularly interesting to study be- 043

cause of its practical implications: DRL agents cur- 044

rently suffer from poor generalization [4], exhibit a 045

loss of plasticity [5], and rarely transfer well between 046

tasks [6]. Therefore, there is much to gain if one 047

could quantify how general a DRL agent can be. We 048

aim to establish the presence of DD in model-free 049

DRL and identify the key dynamics accompanying it, 050

thereby linking the phenomenon to the core problem 051

of generalization in DRL. 052

2 Experimental Approach 053

To investigate DD, we employed the Actor-Critic
(A2C) algorithm on the popular Frozen-Lake envi-
ronment. We define model complexity by varying
the hidden layer width and depth (capacity) of the
shared policy/value backbone, exploring configura-
tions such as [64], [64, 64], [128, 128], [64, 64, 64], and
[128, 128, 128] following approaches alike to Super-
vised Learning [2]. The core of our analysis lies in
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tracking the dynamics of policy uncertainty during
training, using the information-theoretic metric of
Policy Entropy as our primary lens. This metric
measures the randomness of the action distribution,
providing insights into the policy’s confidence and
exploration throughout the learning process. For a
given policy π(·|s) in state s, the policy entropy is
defined as:

H(π) = −Eπ [log π(a|s)] = −
∑
a∈A

π(a|s) log π(a|s).

We track this entropy across training episodes to054

establish the correlation between policy uncertainty055

and the onset of the second descent.056

3 Preliminary Findings057

Our results provide initial evidence for the exis-058

tence of the Double Descent phenomenon in Deep059

Reinforcement Learning. Our preliminary findings,060

detailed in Figure 1, illustrate this effect. The graph061

plots the average Policy Entropy, H(π), as a function062

of training episodes for five distinct actor-critic net-063

work architectures. Policy Entropy H(π) is the core064

metric, quantifying the uncertainty of the agent’s ac-065

tion selection. We can see that as training progresses,066

agents across the capacity spectrum exhibit the clas-067

sic DD curve: models that pass the interpolation068

point enter a regime where generalization initially069

degrades (first descent) but then dramatically im-070

proves (second descent) as training continues. This071

transition to the second descent is strongly coupled072

with the dynamics of policy uncertainty. Specifically,073

agents entering the second descent display a consis-074

tent and sustained decrease in Policy Entropy. This075

decrease indicates that the over-parameterized mod-076

els are efficiently pruning uncertainty and settling077

on highly deterministic, high-information policies078

that maximize reward. The dynamics of this en-079

tropic compression are strongly capacity-dependent.080

Small capacity models (e.g., [64] and [64, 64]) demon-081

strate rapid convergence to near-zero entropy within082

2,000 episodes, indicating policy fixation on a locally083

optimal solution. In contrast, the characteristic en-084

tropy signature associated with the Double Descent085

phenomenon is clearly visible in the highly over-086

parameterized networks (purple: [128, 128, 128]),087

which maintain significantly higher average entropy088

and larger variance for an extended duration. Fur-089

thermore, the [64, 64, 64] capacity (red line) exhibits090

an intriguing multi-phase descent pattern, suggest-091

ing a prolonged, high-entropy exploration followed092

by a re-ascent (around episode 3,500) before its final093

descent, a behavior sometimes associated with Triple094

Descent in highly complex, over-parameterized mod-095

els [7]. This delayed descent in uncertainty is the-096

orized to be the result of implicit regularization,097

0 2000 4000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(
)

Entropy vs Episodes (Smoothed, 95\% CI)

Model Capacities

Capacity [64]
Capacity [64, 64]
Capacity [128, 128]
Capacity [64, 64, 64]
Capacity [128, 128, 128]

Figure 1. Policy Entropy, H(π), as a function of train-
ing episodes across five distinct actor-critic network ar-
chitectures. The shaded regions represent the 95% con-
fidence interval (CI) over fifteen independent runs.

guiding the models toward flatter, more generaliz- 098

able minima. We posit that this sustained entropic 099

compression reflects this implicit regularization ef- 100

fect: the over-parameterized system uses its high 101

capacity to discard irrelevant or non-robust policies 102

and converge to a simpler, low-entropy solution cor- 103

responding to a flat, highly-generalizing minimum 104

in the objective landscape. The shaded regions in 105

the graph represent the 95% confidence interval (CI) 106

across fifteen independent experimental runs. 107

4 Future Implications 108

These initial results demonstrate that the Double 109

Descent phenomenon extends to model-free DRL, 110

confirming that over-parameterized agents use re- 111

dundancy to find better solutions rather than simply 112

overfitting. Our results seem to suggest that this 113

performance is a direct result of implicit regulariza- 114

tion guiding agents toward deterministic policies in 115

flat, robust minima. This finding has profound im- 116

plications, but we must formally evaluate whether 117

the policy stability and entropic compression ob- 118

served here translate to superior out-of-distribution 119

(OOD) generalization. As a crucial next step, we 120

will evaluate whether there is a significant difference 121

in generalization for models that exhibit Double De- 122

scent. We aim to test this on OOD tasks using the 123

procedurally generated environments introduced by 124

Cobbe et al. [8] to rigorously assess the models’ abil- 125

ity to transfer learned skills to unseen environment 126

variations. Understanding the dynamics between 127

capacity and policy uncertainty could lead to novel, 128

explicit regularization techniques, pushing agents 129

more reliably into the second descent regime for 130

highly general, transferable, and flexible DRL sys- 131

tems. 132
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