
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARETOROUTER: VLSI GLOBAL ROUTING
WITH MULTI-OBJECTIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Global routing (GR) has been a central task in modern chip design. Many efforts,
either ML-based or heuristic, have been proposed that seek to optimize specific
business goals, such as overflow (OF) and wirelength (WL) of generated routes.
Notably, recent end-to-end neural routers have demonstrated significant speed
advantages in optimizing wirelength, yet they struggle to achieve efficiency in
reducing overflow. In fact, a good trade-off between the above two metrics has not
been achieved, especially when overall efficiency is pursued, as existing ML-based
methods often optimize only a single metric. To bridge this gap for more practical
industry applications, we propose a flow-matching-based router for GR, called
ParetoRouter, which achieves trade-offs between WL and OF, generating highly
connected routes at high speed and quality. In the training phase, two differential
metric-oriented routing results are utilized to build the training datasets. They
are leveraged to design an ‘Average Flow’ between initial pins and final routings.
A Pareto sampling method, based on the Das-Dennis method, is also devised
to achieve trade-offs between OF and WL in the inference phase. Extensive
experimental results show that it achieves SOTA performance on the overflow
reduction with less superfluous routes across all benchmarks with x10 times
speedup over the peer SOTA ML-based method.

1 INTRODUCTION

Global routing (GR) (McMurchie et al., 1995; Cheng et al., 2022; Liao et al., 2020) has become one of
the most intricate and time-consuming phases in modern VLSI design flows (Kramer & Van Leeuwen,
1984), among the other stages such as logic synthesis (Neto et al., 2021), floorplanning (Li et al.,
2022a), and placement (Hao et al., 2021; Shi et al., 2023). With netlists containing millions to billions
of nets, global routers interconnect pins, aiming to minimize wirelength and avoid overflow under
limited routing resources. In fact, even the simplified ‘2-pin’ case, i.e., connecting each net with
exactly two pins under specified constraints, is NP-complete (Paulus et al., 2021).

Classical works on heuristics (Cho et al., 2007; Kastner et al., 2002) often require continuous
updates and improvements by human experts to route greedily. To mitigate the reliance on manual
effort and enhance design automation and quality, learning-based approaches have been introduced.
Notably, as shown in Table 1, most existing ML-based works often rely on generative models or
classical solvers (Li et al., 2022b; Yan et al., 2018; Li et al., 2021; 2024; Feng & Feng, 2025) to
predict Steiner points (Hwang, 1979) and heuristics post-processing or deep reinforcement learning
(DRL) (Mahboubi et al., 2021) to route the discrete predicted points, e.g. NeuralSteiner (Liu et al.,
2024) and Hubrouter (Du et al., 2023). DSBRouter (Shi et al., 2025) leverages Diffusion Schrödinger
Bridge (DSB) (De Bortoli et al., 2021) to design an end-to-end ML-based router (e.g., from discrete
initial pins to connected routes), but it is hard to train and suffers a great generation time. In addition,
most ML-based methods optimize only a single metric: for example, Hubrouter primarily targets
wirelength, whereas NeuralSteiner and DSBRouter focus on overflow, making it challenging to
achieve trade-offs between these two metrics.

Motivated by accelerated diffusion sampling paradigms (e.g., Consistency Models (Song et al., 2023),
CM, Flow Matching (Lipman et al., 2023), FM), can we design an end-to-end global router that
optimizes both overflow and wirelength simultaneously, generating high-quality connected routes
while significantly reducing generation time?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Summary of existing machine learning-based solvers for GR.

METHOD TYPE END-TO-END MOO SUPPORT

Hubrouter (Du et al., 2023) GENERATIVE + RL ✗ ✗
NeuralSteiner (Liu et al., 2024) CNN + POST-PROCESSING ✗ ✗
DSBRouter (Shi et al., 2025) GENERATIVE ✓ ✗
ParetoRouter (ours) GENERATIVE ✓ ✓

Thus, in this paper, we propose ParetoRouter, which is an FM-based global router that integrates
a carefully designed yet simple ‘Average Flow’ (AF) to fulfill the diversity of predicted routes,
facilitating on-demand sampling of routing results. Simply put, during training, ParetoRouter utilizes
the combination of two differential metric-oriented connected routes as supervisory signals, enabling
the model to predict the AF in latent space. The design of AF is detailed in Sec 4.1. The FM model
and the DSB module in DSBRouter serve similar functions.

However, as demonstrated by the experimental results in Appendix A.2.2 and A.6.2, FM achieves
comparable performance to DSB at a lower training cost. In the sampling phase, a fast one-step
Pareto sampling method based on Das-Dennis approach (Das & Dennis, 1998) is designed to realize
a controllable generation of routes, which means that ParetoRouter can generate connected routes
that are more inclined towards overflow (or wirelength) to approximate Pareto Front (PF). This
sampling module is detailed in Sec. 4.2. Extensive experiments show that ParetoRouter can not only
generate routes with diversity, but also significantly reduce the generation time and generate nearly
state-of-the-art (SOTA) routing results under rationally specified parameters. This paper contributes
as follows:

1) To the best of our knowledge, the proposed ParetoRouter is the first ML-based multi-objective
global router that produces preference-compliant routing solutions and explicitly explores the Pareto
front between wirelength (WL) and overflow (OF).

2) ParetoRouter incorporates a fast Das–Dennis–based Pareto sampling scheme to approximate Pareto
Front in GR, which substantially reduces solution-generation time by up to 90% compared with
DSBRouter (Shi et al., 2025). It enables on-demand OF-oriented or WL-oriented routing results,
compared to SOTA ML-based methods Du et al. (2023); Liu et al. (2024).

3) Experimental results demonstrate that ParetoRouter achieves SOTA OF performance across all
evaluated benchmarks, reducing OF by an average of 68% and markedly decreasing superfluous
routing on large-scale nets compared to the SOTA ML-based DSBRouter.

2 PRELIMINARIES AND PROBLEM DEFINITION

2.1 OFFLINE MULTI-OBJECTIVE OPTIMIZATION

Offline multi-objective optimization (MOO) aims to simultaneously minimize multiple objectives
using an offline dataset D of designs and their corresponding labels. Let the design space be X ⊆ Rd,
where d denotes the dimensionality of the design. The goal of MOO is to identify solutions that
achieve the best trade-offs among conflicting objectives. Formally, the multi-objective optimization
problem is defined as:

Find x∗ ∈ X such that there is no x ∈ X with f(x) ≺ f(x∗), (1)

where f : X → Rm is a vector-valued map of m objective functions, and ≺ denotes Pareto dominance.
A solution x Pareto dominates another solution x∗ (denoted f(x) ≺ f(x∗)) if:

∀i ∈ {1, . . . ,m}, fi(x) ≤ fi(x
∗) and ∃j ∈ {1, . . . ,m} such that fj(x) < fj(x

∗). (2)

In other words, x is no worse than x∗ on every objective and strictly better on at least one. A solution
x∗ is Pareto optimal if there is no x ⊆ X that Pareto dominates x∗. The set of all Pareto-optimal
solutions is the Pareto set (PS). The corresponding set of objective vectors, {f(x) | x ∈ PS}, is
known as the Pareto front (PF).

The goal of MOO is to compute a set of solutions that closely approximates the PF, providing a
comprehensive representation of the best attainable trade-offs among the objectives.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 FLOW MATCHING

Flow matching (FM) (Lipman et al., 2023) is an advanced generative modeling framework that
has demonstrated superior effectiveness and efficiency compared to other models (Ho et al., 2020;
Song et al., 2021b;a). At its core is a conditional probability path pt(x | x0) for t ∈ [0, 1],
which evolves from the initial distribution p0(x | x0) = q(x0) to an approximate Dirac delta
p1(x | x0) ≈ δ(x− x0). This evolution is conditioned on a specific point x0 drawn from q(x0) and
is governed by the conditional vector field ut(x | x0). A neural network with parameters θ is trained
to learn the marginal vector field v(x, t):

v̂(x, t;θ) ≈ v(x, t) = Ex0∼pt(x|x0)[ut(x | x0)]. (3)

The modeled vector field v̂(x, t;θ) serves as a neural Ordinary Differential Equation (ODE) that
guides the transport from q(x0) to pdata(x1). Normally, FM begins with a sampled noise x0 from
q(x0) (Pooladian et al., 2023). Then a linear interpolation with the uncorrupted data x1 is constructed:

x | x0, t = (1− t) · x0 + t · x1, x0 ∼ q(x0). (4)

The conditional vector field is readily derived as ut(x | x0) = (x0 − x)/(1 − t). Equivalently,
ut(x | x0) = x1 − x0. The following objective is used to minimize the conditional FM:

Et,pdata(x0),q(x1) ∥ v̂(x, t;θ)− (x1 − x0) ∥2 . (5)

After training, samples are generated by integrating the neural ODE driven by the learned vector field
v̂(x, t;θ).

2.3 GLOBAL ROUTING VIA FM
Typically, given a physical chip and a netlist, a chip canvas is created along with several nets (as shown
in Fig. 1 (a)), where each net includes pins placed at fixed positions determined by the placement
of macros and standard cells. The primary goal of global routing (GR) is to establish connections
for all required pins while simultaneously minimizing the routing WL and OF. Existing ML-based
methods (Li et al., 2024; Du et al., 2023; Liu et al., 2024) generally approach GR as a two-phase task
(refer to Fig. 1(a), (b), and (c)): first, the Steiner points (pins) are predicted, and then post-processing
algorithms are applied to connect the initial pins with the predicted Steiner points. Some approaches,
such as DSBRouter (Shi et al., 2025), aim to create an end-to-end pipeline (see Fig. 1(a) and (d)).
However, the DSB used in DSBRouter suffers from efficiency problems, and it is unable to sample
routes that satisfy multi-objective optimization (MOO).

In contrast, ParetoRouter, depicted in Fig. 1(e), leverages a flow-based model (FM) to learn the
distribution pθ(x1|x0) of routes x1 with high diversity for a given instance x0. Design of the AF
will be discussed in Sec. 4.1. For sampling, we design a one-step, Das-Dennis-based Pareto sampling
method, which accelerates the generation process and leads to routing results approximating the
Pareto Front. The design of the sampling method is detailed in Sec. 4.2.

3 RELATED WORKS

Due to page limits, we leave partial related works to Appendix A.1.

The Task of Global Routing. Owing to the complexity of VLSI routing, the circuit layout is
partitioned into rectangular regions, called global cells (GCells) (Cho et al., 2007). Global routing
is modeled as a grid graph G = (V,E), where each GCell corresponds to a vertex (v ∈ V) and
adjacent GCells are connected by an edge (e ∈ E) representing their shared boundary. Modern chip
designs employ two or more metal layers for routing, where each layer is assigned either a horizontal
or vertical direction, yielding a two-dimensional grid abstraction. For each net, the global router
assigns a connected subset of GCells—linked via multiple edges—to interconnect all pins, typically
producing a rectilinear Steiner tree (RST) (Chu & Wong, 2005). The Hanan grid (Hanan, 1966) and
the escape graph (Ganley & Cohoon, 1994) are often exploited to construct a shortest rectilinear
Steiner minimum tree (RSMT) while avoiding obstacles (Liu et al., 2012), by treating intersection
points in these graphs as candidate Steiner points.

Classical Global Router. Global routing is a combinatorial optimization problem that can be
formulated as a 0–1 integer linear program and solved with a general-purpose solver. In practice,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Difference between ParetoRouter and other solvers. (a): initial pins and nets. (b):
predicted pins and initial pins. (c) and (d): Generated routes via post-processing algorithms. (e):
One-step Pareto sampling within ParetoRouter.
classical routers decompose the task into two stages aimed at congestion management: Steiner
topology generation and rip-up-and-reroute (RRR). The former commonly relies on FLUTE (Chu
& Wong, 2005), which uses lookup tables to build near-optimal Steiner trees in terms of WL for
each net, but it is oblivious to congestion. During congestion mitigation, many routers perform
edge shifting to move routing demand out of congested regions (Chu & Wong, 2005). NTHU-Route
2.0 (Chang et al., 2008) further introduces a history-based cost that accumulates past congestion and
dynamically adjusts routing costs, improving overall quality and efficiency. NCTU-GR 2.0 (Liu et al.,
2013) adopts an SMT-aware routing scheme to achieve shorter WL. However, as design complexity
and scale grow, these procedures become increasingly time-consuming. Consequently, accelerating
congestion resolution with deep learning–based techniques can improve the overall performance of
global routing.

Learning-based Router. A growing body of works investigates learning to optimize WL and the
use of neural networks for global routing, including generating pin-connection orders (Liao et al.,
2020), routing segments (Cheng et al., 2022), and customized hub points for rectilinear Steiner trees
(RSTs) (Du et al., 2023; Li et al., 2024; Feng & Feng, 2025). The primary practical challenges,
however, lie in handling large-scale nets to mitigate overflow (OF) and maintain short WL under
limited routing resources. In such settings, judicious detours are essential for relieving congestion,
because the WL-minimal RST, e.g., that in Fig. 1(c) produced by Hubrouter (Du et al., 2023) or
NeuralSteiner (Liu et al., 2024), may be infeasible in practice. DSBRouter (Shi et al., 2025) can
produce low-OF solutions (Fig. 1(d)), but often introduces excessive redundant routing and incurs
prohibitive generation time on large-scale nets. PatLabor (Chen et al., 2025b) considers the MOO
constraint, but its focus is on balancing WL and RSMT construction delay. Moreover, global routers
must be able to generalize to unseen circuit distributions. To meet these challenges, we propose
ParetoRouter, which enables explicit trade-offs between OF and WL, yielding on-demand routing
solutions for nets of arbitrary scale.

4 FRAMEWORK OF PARETOROUTER

For ML-based global routing (GR) solvers, the two-stage paradigm of first predicting Steiner points
and then performing routing is intuitive and straightforward. However, it exhibits several limitations:
(i) the neural networks used to predict Steiner points are typically trained in a supervised manner,
making them brittle under distribution shift and prone to inflating the time complexity of downstream
post-processing due to prediction noise; (ii) relying on a single classical solver to provide training
targets restricts the diversity of Steiner points available to the model; and (iii) post-processing
algorithms are often focused primarily on WL (or OF) minimization, which makes it challenging to
satisfy multi-objective optimization (MOO) constraints.

To address these issues, this section introduces ParetoRouter, which integrates MOO into GR to
handle constraints explicitly and perform GR in an end-to-end manner. The next two sections first
present AF, a training-time mechanism that leverages routing results from multiple classical solvers

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: For training, ParetoRouter applies the average of two different solvers’ routing results
(NTHURouter and NCTU-GR) to construct the supervisory signals x0 to enable the NN module
to predict more potential routes. While in the sampling phase, weights ω = {ωi} subdivide the
objective space into equal partitions. Each weight ωi ∈ ω maps to a sampled routing result xi

0.

to enable the model to predict a diverse set of routes. Then, during sampling, we introduce a one-step
Pareto sampling pipeline based on the Das–Dennis method to initialize multiple weight matrices,
thereby guiding the rapid generation of MOO-compliant routes under different weightings in a single
step. Fig. 2 depicts the pipeline of proposed ParetoRouter.

4.1 AVERAGE FLOW

Diffusion solvers for GR are not something new; both Hubrouter (Du et al., 2023) and DSBRouter (Shi
et al., 2025) try to fulfill the potential of diffusion models for GR. Hubrouter leverages GAN (Goodfel-
low et al., 2014), DDPM (Ho et al., 2020), and VAE (Kingma & Welling, 2013) to sample predicted
‘hubs’ from simulated Gaussian noise. Anchoring the generative process to stationary noise to enable
standard sampling paradigms is intuitive but exhibiting a disconnect between the diffusion trajectory
and the structured nature of solution spaces, i.e., the generative process operates in the Gaussian
noise space for pin prediction rather than the solution (routes), which causing the restriction on both
the controllability of the intermediate states within the generation and the exploitation of prior pin
knowledge and need of post-processing algorithms for connected routes. In contrast, DSBRouter (Shi
et al., 2025) designs a post-processing-free paradigm that better aligns with heuristic search dynamics,
but it is hard to train the backbone and takes a great time for generation due to the inherent constraints
of DSB (De Bortoli et al., 2021). Besides, all the ML-based solvers discussed above optimize
either WL or OF; none of them can generate routes according to the realistic needs. Consequently,
ParetoRouter introduces AF as:

Et,pdata(x1),q(x0) ∥ v̂(x, t;θ)− (ḟ(xNTHU
1 + xNCTU

1)/2− x0) ∥2, (6)

where xNTHU
1 and xNCTU

1 represent the routing results of NTHURouter (Chang et al., 2008) and
NCTU-GR (Liu et al., 2013), respectively. ḟ is a scale function to scale the differential routes of
these two solvers. x0 is the noisy pins with congestion map. We introduce Gaussian noise n0 to
corrupt the initial pins pcurr, resulting in an initial sample x0 = fn(n0 + pcurr) drawn from q(x0),
where fn represents the normalization function. Reasons for noise corruption will be discussed
in Appendix A.2.1. Given two flows, starting with the same x0, ending in xNTHU

1 and xNCTU
1

respectively, the loss design is like predicting the flow in between. This is why we name it Average
Flow. This design is straightforward but has been proven to be very effective in the experiments,
which will be discussed in Sec. 5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 ONE STEP DAS-DENNIS-BASED PARETO SAMPLING

This section first elucidates the concept of gradient guidance under multi-objective optimization
(MOO) constraints within the ParetoRouter sampling pipeline, along with the design. Then, the
detailed formulation of a weighted score distribution induced by the Das–Dennis method is introduced
to fulfill guided Pareto sampling.

Sampling with Gradient Guidance. Classifier guidance was initially introduced to steer sample
generation toward designated image categories (Dhariwal & Nichol, 2021). This concept has since
been extended to regression contexts, where it is employed to guide molecular generation (Lee et al.,
2023; Jian et al., 2024; Chen et al., 2025a). Building upon Lemma 1 from Zheng et al. (2023), we
derive the formulation of gradient guidance within the framework of flow matching as follows:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇xt log p(s | h(xt, t)), (7)

where p(s | xt, t) denotes the distribution of predicted routing score and s denotes the computed
properties through classifier function h whose implementation will be detailed in Sec. A.2.2. More
details of Eq.(7) can be found in Appendix A.3. In implementation, as we assume a one-step
sampling procedure, where the NN module within the ParetoRouter framework is designed to predict
the difference between x1 and x0. Consequently, we adopt the following formulation to better align
with this one-step sampling scheme:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇x log p(s | h(v̂(x, t;θ) + x0, t)). (8)

Weighted Score Distribution. Preceding ML-based works like DSBRouter primarily address the
generation of samples that satisfy a single score s. In contrast, our proposed ParetoRouter is designed
to optimize two properties, namely OF and WL simultaneously, represented as s = [f̂1(xt), f̂2(xt)].
To address the increased complexity inherent in this multi-objective setting, we decompose the overall
generation task into a series of weighted single-objective subproblems. Specifically, we introduce a
weight vector ω = [ω1, ω2], where each ωi > 0 and

∑m
i=1 γiωi = 1. The resulting weighted score is:

f̂ω(xt) = −h

(
n∑

i=1

γif̂i(xt)ωi

)
. (9)

Here, f̂i denotes the predicted score of the ith objective for xt. Given that the scales of OF and WL
differ, a scaling factor γ is introduced to ensure compatibility. The negative sign reflects that the
objective is minimization. Following the approach in Lee et al. (2023), we define the weighted score
distribution:

p(s | v̂(x, t;θ) + x0, t) = ef̂ω(v̂(x,t;θ)+x0)/Z, (10)

where Z is the normalization constant. By incorporating this formulation into Eq.8, we arrive at the
following predictor update:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇xf̂ω(v̂(x, t;θ) + x0). (11)

This vector field ṽ(x, t;θ) effectively guides the sampling process toward regions in the input space
that satisfy the desired multi-objective properties encoded by the weighted distribution. To achieve
comprehensive coverage of the Pareto objective space, we employ the Das-Dennis approach (Das
& Dennis, 1998), which partitions the objective space uniformly to generate a diverse set of weight
vectors ω. Each weight vector corresponds to a distinct sampled route, thereby facilitating exploration
across the entire trade-off front. The sampling step is performed using the Euler method (Van Kampen,
1976), formulated as:

x̂j = xt + ṽ(x, t;θ)∆t, (12)

where j = t+∆t represents the next time step. In the ParetoRouter framework, we set t = 0 and
∆t = 1. The complete procedure is summarized in Algorithm 1.

5 EXPERIMENTS

In this section, we empirically compare our proposed ParetoRouter with other ML-based and classical
solvers on ISPD benchmarks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 One-Step Pareto Sampling
Input: Dataset D, epochs T ;
Output: Generated connected router set R;

1: Train the vector field v̂(x, t;θ) of FM using loss from Eq.(6) on D.
2: Generate weight vectors {ωi}Ni=1 using the Das-Dennis method.
3: Initialize x1 with scaled Gaussian noise n using two classical GR solvers.
4: for t = 1 to T do
5: Set ∆t = 1
6: Calculate the score distribution using Eq.(10).
7: Calculate the guided vector field ṽ(x, t;θ) using Eq.(11).
8: Derive sampled routes (Pareto Front) with Eq.(12).
9: end for

10: return R

Table 2: Crrt, WLR and generation time on ISPD07 benchmarks. Note GAN-HubRouter can
not directly produces a fully connected result, while DSBRouter consumes a great generation time.
Compared with them, our ParetoRouter achieves 100% correctness rate with a small generation time.

METRIC CASE
HUBROUTER (GAN)
(DU ET AL., 2023)

DSBROUTER
(SHI ET AL., 2025)

PARETOROUTER
(OURS)

Correctness
Rate

SMALL-4 0.48 ± 0.004 1.000 ± 0.000 1.000 ± 0.000
SMALL 0.12 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

LARGE-4 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LARGE 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Wirelength
Ratio

SMALL-4 1.012 ± 0.011 1.015 ± 0.000 1.016 ± 0.000
SMALL 1.002 ± 0.001 1.001 ± 0.000 1.002 ± 0.000

LARGE-4 1.004 ± 0.021 1.001 ± 0.000 1.002 ± 0.000
LARGE 1.001 ± 0.000 1.002 ± 0.000 1.003 ± 0.000

Generation Time
(GPU Sec)

SMALL-4 5.88 ± 0.11 2643 ± 3.11 7.66 ± 0.30
SMALL 7.15 ± 0.09 2671 ± 1.68 8.92 ± 0.06

LARGE-4 6.00 ± 0.07 2687 ± 3.30 8.27 ± 0.19
LARGE 7.82 ± 0.10 2571 ± 2.24 12.33 ± 0.11

5.1 SETTINGS

For evaluation, we conduct experiments on both ISPD07 (newblue04–newblue07 and
adaptec01–adaptec05) and ISPD98 (ibm01–ibm06) benchmarks (Alpert, 1998). For both benchmarks,
we use WL, OF, and generation time as the primary evaluation criteria. Our proposed ParetoRouter is
compared with three classical routing algorithms — GeoSteiner (Juhl et al., 2018), Labyrinth (Kastner
et al., 2002), FlUTE (Wong & Chu, 2008) and ES (Chu & Wong, 2005) — as well as three SOTA
ML-based methods: Hubrouter (Du et al., 2023), NeuralSteiner (Liu et al., 2024) and DSBRouter (Shi
et al., 2025). We also stduy the Correctness Rate (Crrt), Wirelength Ratio (WLR) (Cheng et al., 2022)
and Generation Time on newblue04–newblue07 as DSBRouter does.

It is worth noting that four SOTA solvers (Liu et al., 2024; Feng & Feng, 2025; Chen et al., 2025b; Li
et al., 2024) are either tailored to benchmarks with different standards (Liang et al., 2024; Dolgov
et al., 2019) or have not been publicly released (Liu et al., 2024; Chen et al., 2025b; Feng & Feng,
2025). Because NeuralSteiner evaluates on the same benchmarks as the two open-source solvers
(Hubrouter and DSBRouter), we report its results as provided in the original paper to enable a
fair comparison. Further details on the experimental benchmarks and additional supplementary
experiments are given in Appendix A.5.2; A.6.1.

5.2 CRRT AND WLR ON PARTIAL ISPD07 BENCHMARKS

Following prior ML-based studies Shi et al. (2025), we evaluate ParetoRouter against existing
ML-based solvers on the ISPD07 benchmarks (newblue04–newblue07), partitioned into four cate-
gories—small, small-4, large, and large-4—consistent with earlier works. For simplicity, we report
results only for GAN-Hubrouter, as other Hubrouter variants yield less competitive results. We
also cancel RL-based post-processing for GAN-Hubrouter to ensure a fair comparison (Shi et al.,
2025). As shown in Table 2, ParetoRouter and DSBRouter, as two end-to-end solvers, achieve
routing solutions with 100% connectivity, whereas Hubrouter without post-processing maintains

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Wirelength (WL) & overflow (OF) on ISPD98: classical global routing (GeoSteiner,
Labyrinth, Flute+RES) and ML-based methods (Hubrouter, NeuralSteiner, DSBRouter).

METRICS MODEL IBM01 IBM02 IBM03 IBM04 IBM05 IBM06

WL

GEOSTEINER 60142 165863 145678 162734 409709 275868
LABYRINTH 75909 201286 187345 195856 420581 341618
FLUTE+ES* 61492 169251 146287 167547 411936 280477

HR-VAE 64703 ± 1498 176492 ± 6830 159968 ± 3281 179895 ± 5274 434942 ± 2916 301144 ± 5832
HR-DPM 66464 ± 1586 190588 ± 2337 168454 ± 2486 183696 ± 1736 475820 ± 5516 320423 ± 2958
HR-GAN 61056 ± 151 167545 ± 236 147050 ± 208 164298 ± 326 411857 ± 472 277977 ± 514

NEURALSTEINER* 61735 170405 148036 166648 415684 283727
DSBROUTER 61435 174016 152862 163942 420464 342349

PARETOROUTER (OURS) 63386 174896 155993 171859 482016 307696

OF

GEOSTEINER 3342 7399 3944 7420 401 8033
LABYRINTH 292 384 122 1124 0 502
FLUTE+ES* 3100 7121 3699 6889 317 7821

HR-VAE 4721 ± 667 9919 ± 801 7311 ± 692 10433 ± 1299 909 ± 106 14103 ± 1684
HR-DPM 4933 ± 700 14117 ± 1309 9344 ± 818 11471 ± 871 2390 ± 126 17229 ± 1500
HR-GAN 3491 ± 64 7481 ± 31 4010 ± 42 7551 ± 22 419 ± 7 8039 ± 12

NEURALSTEINER 2200 3800 2100 2700 18 2833
DSBROUTER 1430 0 4 10 0 11858

PARETOROUTER (OURS) 1051 0 0 0 0 0

TIME

GEOSTEINER 3.08 6.91 6.80 9.07 7.72 7.66
LABYRINTH * 7.11 11.08 11.61 42.03 12.70 21.02
FLUTE+ES * 3.14 4.90 5.88 15.49 7.88 14.11

HR-VAE 9.66± 0.08 9.69± 0.04 10.19± 0.06 12.93± 0.07 14.58± 0.00 17.28± 0.16
HR-DPM 1796.09± 38.68 2772.29± 16.83 2936.52± 21.23 3865.21± 25.07 4369.47± 22.56 4965.08± 121.46
HR-GAN 41.02± 0.51 46.58± 0.56 52.04± 2.35 67.31± 3.51 72.28± 3.72 88.02± 4.45

NEURALSTEINER * 27.18 34.79 46.24 50.37 75.99 70.32
DSBROUTER 4991 5667 8418 10745 11313 11858

PARETOROUTER (OURS) 42.37 61.96 68.09 91.20 131.80 121.76
* EXPERIMENTAL RESULTS CITED FROM RAW MANUSCRIPTS.

only about 30% connectivity on average. ParetoRouter preserves WLR performance comparable
to both Hubrouter and DSBRouter, while delivering generation time on par with Hubrouter and
superior to DSBRouter. Unless otherwise noted, all reported ParetoRouter results were obtained with
ω1 = ω2 = 0.5.

5.3 OF AND WLR ON REAL-WORLD BENCHMARKS

Noting that, as ParetoRouter produces multiple results to satisfy the MOO constraints and OF is
relatively important than WL (Liu et al., 2024), we present the WL and OF of the sampled routes that
reduce OF the most.

Routing Results on ISPD98. Table 3 shows the WL, OF and generation time for all tested methods
on ISPD98 benchmarks. For OF, ParetoRouter achieves the most OF reduction. Compared with
the SOTA ML-based OF-oriented DSBRouter, ParetoRouter significantly reduces the total OF with
a reduction of 36.06% on ibm01 and 100% on ibm05 and only uses an average 1/10 generation
time of DSBRouter. In terms of wirelength, ParetoRouter does not incur too much loss, with the
least 5.24% on ibm01 and the most 15.00% on ibm05 compared with GeoSteiner. For generation
time, ParetoRouter remains at the same level as NeuralSteiner, but there is still a gap compared to
VAE-based Hubrouter and other classical methods.

Routing Results on ISPD07. Table 4 shows the WL, OF and generation time for selected tested
methods on ISPD07 benchmarks. We keep the GAN-based Hubrouter and skip other variants of
Hubrouter, as the GAN variant gets the best outcome. With the size of nets increasing, ParetoRouter
and DSBRouter get the most OF reduction compared to all other methods across all tested benchmarks.
But, compared to DSBRouter, ParetoRouter does not incur much increase in WL. For WL and
generation time, ParetoRouter shows a similar performance compared to ISPD98.

5.4 ABLATION STUDY

Table 5: OF & WL w/ varying ablated compo-
nents on ibm01.

Loss OF WL Time

w/o xNCTU
1 1211 63771 41.11

w/o xNTHU
1 1379 63529 42.56

w/o NN 1565 63450 27.07
w/o Guidance - - -
ParetoRouter 1051 63386 42.37

Series of ablation studies are conducted to study
the effectiveness of classifier gradient guidance, pro-
posed loss function, NN module, as well as classifier
guidance module.

Role of Loss Function, NN Module, and Classi-
fier Guidance Module. To assess the roles of these
three components within the ParetoRouter frame-
work, we perform ablations separately. For the loss
function, we remove the xNTHU

1 term. For the NN
module and the classifier-gradient guidance module,
we remove the corresponding components from the model architecture. We report results for OF and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Wirelength (WL) & overflow (OF) on ISPD07. Comparison of 2 selected classical global
routing (GeoSteiner, Flute+RES) and 3 ML-based methods (Hubrouter, NeuralSteiner, DSBRouter).

METRICS MODEL ADAPTEC01 ADAPTEC02 ADAPTEC03 ADAPTEC04 ADAPTEC05

WL

GEOSTEINER 3389601 3209172 9330748 8865643 9784471
NCTU-GR 3623718 3331725 9598156 9087206 10560933

NTHUROUTER* 5344000 5229000 13101000 12169000 15538000
FLUTE+ES* 3418461 3235803 9417934 8896007 9886249

HR-GAN 3407033 3229110 9355980 8888775 9832110
NEURALSTEINER* 3438717 3247429 9459117 9003952 9915795

DSBROUTER 12299050 10072054 29478326 24276147 -
PARETOROUTER(OURS) 3522091 3386722 9502199 9021491 10288329

OF

GEOSTEINER 35945 53848 142254 45050 102300
NCTU-GR 0 0 0 0 0

NTHUROUTER* 0 0 0 0 0
FLUTE+ES* 32518 50947 137104 42306 957704

HR-GAN 35441 53652 142131 45230 102108
NEURALSTEINER* 82 255 728 97 431

DSBROUTER 0 0 0 0 -
PARETOROUTER(OURS) 0 0 0 0 0

TIME

GEOSTEINER 92.70 123.00 371.02 311.19 320.07
NCTU-GR 8.96 8.31 26.67 21.00 27.45

NTHUROUTER* 10.0 2.10 10.90 2.60 23.00
FLUTE+ES * 118.48 187.03 396.51 376.72 360.68

HR-GAN 593.02 780.44 1324.81 1387.01 1384.96
NEURALSTEINER* 347.20 461.35 1351.91 1138.66 1106.54

DSBROUTER 65624 119353 115438 125589 -
PARETOROUTER(OURS) 422.20 469.51 1561.30 1418.09 1500.11

* EXPERIMENTAL RESULTS CITED FROM RAW MANUSCRIPTS.

WL on ibm01. As ParetoRouter cannot guarantee connectivity of the generated routes without the
guidance module, we thus don’t report results of the NN-ablated ParetoRouter. Table 5 shows that
both WL and OF are affected by all three components. When xNTHU

1 is ablated, both OF and WL
increase compared to the complete ParetoRouter. When the guidance module is ablated, OF increases
markedly, whereas WL decreases, which is reasonable since Geostiner emphasizes WL optimization.
Taken together, these results demonstrate the effectiveness of the proposed components within the
ParetoRouter framework.

Table 6: OF & WL w/ varying γi · ωi on
ibm01.

γ1 · ω1 γ2 · ω1 OF WL

0 1 1505 63317
0.2 0.8 1051 63386
0.5 0.5 1493 63563
0.8 0.2 1671 63847
1 0 1682 63956

Influence of ω. To evaluate whether the proposed
Das–Dennis–based sampling can effectively manage the
Pareto Front, we examine the generated weightings γi ·
ωi. The performance variation observed across different
weightings underscores the effectiveness of the proposed
sampling scheme in controlling the Pareto front. Specif-
ically, we generate 10 uniformly spaced weightings to
approximate the Pareto front in GR. For illustration, we
select four distinct ω for ParetoRouter and conduct exper-
iments on ibm01, as ibm01 exhibits greater variability
in OF.As shown in Table 6, as the ratio γ1 · ω1 increases from 0 to 0.2, OF reaches its minimum
at γ1 · ω1 = 0.2 and then increases as γ1 · ω1 continues to grow, whereas WL increases monotoni-
cally. This pattern suggests that generating more routes (i.e., larger WL) can exacerbate congestion
along existing routes. These observations also provide indirect evidence for the effectiveness of the
proposed guided sampling in managing the Pareto Front.

6 CONCLUSION AND OUTLOOK

In this paper, we introduce ParetoRouter, an end-to-end ML-based global router. Equipped with a
simple AF loss and a classifier-gradient guidance module subject to multi-objective optimization
(MOO) constraints, ParetoRouter can generate either OF-oriented or WL-oriented routes with 100%
connectivity for previously unseen large-scale nets in a single step. Experimental results show that
ParetoRouter reduces overflow by an average of 68% while incurring only a modest wirelength
penalty—particularly on large-scale nets, thereby narrowing the gap between ML-based solvers and
practical chip-design applications.

Limitations and Future Work. However, the NN module can still predict superfluous routes that
are incorporated into the final routing solution, increasing WL. Moreover, compared with some
ML-based solvers (e.g., GAN-Hubrouter and NeuralSteiner), ParetoRouter exhibits slightly longer
generation times, which we attribute to the additional gradient computations. In future work, we will
focus on optimizing generation time and further reducing WL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper aims to advance the state of the art in machine learning and artificial intelligence for
electronic design automation (AI4EDA). This paper does not present immediate, direct negative
social impacts. While the research may entail various societal implications, we do not identify any
that warrant specific emphasis in this paper.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, description of our methodology is detailed compre-
hensively, so as the implementation and experimental setups. All experimental results in the paper
are reproducible, and the implementation code of ParetoRouter/code for reproducing experimental
results will be fully open sourced on Github upon publication of this paper.

LLM USAGE STATEMENT

The contribution of Large Language Models (LLMs) in the work presented in this article is limited to:
1. polishing the given written statements; 2. reviewing the syntax of the written sentences. We declare
that no experimental results, core implementation of our search, core scientific ideas, experimental
designs, or conclusions have been generated or modified by LLMs. The LLM we used is GPT-5,
owned by OpenAI, and no other LLMs were utilized. All authors have reviewed the final version of
the manuscript and take full responsibility for its content and originality.

REFERENCES

Charles J Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998 international
symposium on Physical design, pp. 80–85, 1998.

Yen-Jung Chang, Yu-Ting Lee, and Ting-Chi Wang. Nthu-route 2.0: A fast and stable global router.
In 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 338–343. IEEE,
2008.

Can Chen, Karla-Luise Herpoldt, Chenchao Zhao, Zichen Wang, Marcus Collins, Shang Shang,
and Ron Benson. Affinityflow: Guided flows for antibody affinity maturation. arXiv preprint
arXiv:2502.10365, 2025a.

Can Sam Chen, Christopher Beckham, Zixuan Liu, Xue Steve Liu, and Chris Pal. Parallel-mentoring
for offline model-based optimization. Advances in Neural Information Processing Systems, 36:
76619–76636, 2023.

Can Sam Chen, Christopher Beckham, Zixuan Liu, Xue Liu, and Christopher Pal. Robust guided
diffusion for offline black-box optimization. arXiv preprint arXiv:2410.00983, 2024.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks, 2018. URL https:
//arxiv.org/abs/1711.02257.

Zhiyang Chen, Hailong Yao, and Xia Yin. Patlabor: Pareto optimization of timing-driven routing
trees. In 2025 62nd ACM/IEEE Design Automation Conference (DAC), pp. 1–7. IEEE, 2025b.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Information
Processing Systems, 35:26350–26362, 2022.

Minsik Cho, Katrina Lu, Kun Yuan, and David Z Pan. Boxrouter 2.0: Architecture and implementation
of a hybrid and robust global router. In 2007 IEEE/ACM International Conference on Computer-
Aided Design, pp. 503–508. IEEE, 2007.

Chris Chu and Yiu-Chung Wong. Fast and accurate rectilinear steiner minimal tree algorithm for vlsi
design. In Proceedings of the 2005 international symposium on Physical design, pp. 28–35, 2005.

10

https://arxiv.org/abs/1711.02257
https://arxiv.org/abs/1711.02257

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for generating the
pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization, 8
(3):631–657, 1998.

Sam Daulton, Maximilian Balandat, and Eytan Bakshy. Hypervolume knowledge gradient: a looka-
head approach for multi-objective bayesian optimization with partial information. In International
Conference on Machine Learning, pp. 7167–7204. PMLR, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Sergei Dolgov, Alexander Volkov, Lutong Wang, and Bangqi Xu. 2019 cad contest: Lef/def based
global routing. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1–4. IEEE, 2019.

Xingbo Du, Chonghua Wang, Ruizhe Zhong, and Junchi Yan. Hubrouter: Learning global routing
via hub generation and pin-hub connection. Advances in Neural Information Processing Systems,
36, 2023.

Junxi Feng and Lang Feng. A dynamic congestion-aware analytic initial routing flow for vlsi designs.
In 2025 Conference of Science and Technology of Integrated Circuits (CSTIC), pp. 1–3. IEEE,
2025.

Justin Fu and Sergey Levine. Offline model-based optimization via normalized maximum likelihood
estimation. arXiv preprint arXiv:2102.07970, 2021.

Joseph L Ganley and James P Cohoon. Routing a multi-terminal critical net: Steiner tree construction
in the presence of obstacles. In Proceedings of IEEE International Symposium on Circuits and
Systems-ISCAS’94, volume 1, pp. 113–116. IEEE, 1994.

Daniel Golovin and Qiuyi Zhang. Random hypervolume scalarizations for provable multi-objective
black box optimization, 2020. URL https://arxiv.org/abs/2006.04655.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
diffusion. Advances in neural information processing systems, 36:12489–12517, 2023.

Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, and Dongsheng Li. Training-
free multi-objective diffusion model for 3d molecule generation. In The Twelfth International
Conference on Learning Representations, 2023.

Maurice Hanan. On steiner’s problem with rectilinear distance. SIAM Journal on Applied mathematics,
14(2):255–265, 1966.

Rui Hao, Yici Cai, Qiang Zhou, and Rui Wang. Drplace: A deep learning based routability-driven vlsi
placement algorithm. Journal of Computer-Aided Design & Computer Graphics, 33(4):624–631,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Frank K Hwang. An o (n log n) algorithm for rectilinear minimal spanning trees. Journal of the ACM
(JACM), 26(2):177–182, 1979.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International
conference on machine learning, pp. 14631–14653. PMLR, 2023.

11

https://arxiv.org/abs/2006.04655

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yue Jian, Curtis Wu, Danny Reidenbach, and Aditi S Krishnapriyan. General binding affinity
guidance for diffusion models in structure-based drug design. arXiv preprint arXiv:2406.16821,
2024.

Jiyan Jiang, Wenpeng Zhang, Shiji Zhou, Lihong Gu, Xiaodong Zeng, and Wenwu Zhu. Multi-
objective online learning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=dKkMnCWfVmm.

Daniel Juhl, David M Warme, Pawel Winter, and Martin Zachariasen. The geosteiner software
package for computing steiner trees in the plane: an updated computational study. Mathematical
Programming Computation, 10(4):487–532, 2018.

Ryan Kastner, Elaheh Bozorgzadeh, and Majid Sarrafzadeh. Pattern routing: Use and theory for
increasing predictability and avoiding coupling. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(7):777–790, 2002.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui
Wang, Aaron Ferber, Yi-An Ma, Carla P Gomes, et al. Diffusion models as constrained samplers
for optimization with unknown constraints. arXiv preprint arXiv:2402.18012, 2024.

MR Kramer and J Van Leeuwen. The complexity ofwirerouting and finding minimum area layouts
for arbitrary vlsicircuits. Adv. Comput. Res, 2:129–146, 1984.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pp. 18872–18892.
PMLR, 2023.

Ke Li. A survey of multi-objective evolutionary algorithm based on decomposition: Past and future.
IEEE Transactions on Evolutionary Computation, 2024.

Wei Li, Rongjian Liang, Anthony Agnesina, Haoyu Yang, Chia-Tung Ho, Anand Rajaram, and
Haoxing Ren. Dgr: Differentiable global router. In Proceedings of the 61st ACM/IEEE Design
Automation Conference, pp. 1–6, 2024.

Ximeng Li, Keyu Peng, Fuxing Huang, and Wenxing Zhu. Pef: Poisson’s equation-based large-scale
fixed-outline floorplanning. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 42(6):2002–2015, 2022a.

Yang Li, Liangliang Shi, and Junchi Yan. Iid-gan: an iid sampling perspective for regularizing mode
collapse. arXiv preprint arXiv:2106.00563, 2021.

Yang Li, Yichuan Mo, Liangliang Shi, and Junchi Yan. Improving generative adversarial networks
via adversarial learning in latent space. Advances in neural information processing systems, 35:
8868–8881, 2022b.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=JtF0ugNMv2.

Rongjian Liang, Anthony Agnesina, Wen-Hao Liu, and Haoxing Ren. Gpu/ml-enhanced large scale
global routing contest. In Proceedings of the 2024 International Symposium on Physical Design,
pp. 269–274, 2024.

Haiguang Liao, Wentai Zhang, Xuliang Dong, Barnabas Poczos, Kenji Shimada, and Levent Bu-
rak Kara. A deep reinforcement learning approach for global routing. Journal of Mechanical
Design, 142(6):061701, 2020.

12

https://openreview.net/forum?id=dKkMnCWfVmm
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Chih-Hung Liu, Sy-Yen Kuo, DT Lee, Chun-Syun Lin, Jung-Hung Weng, and Shih-Yi Yuan. Obstacle-
avoiding rectilinear steiner tree construction: A steiner-point-based algorithm. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 31(7):1050–1060, 2012.

Ruizhi Liu, Shizhe Ding, Jingyan Sui, Xingquan Li, Dongbo Bu, et al. Neuralsteiner: Learning
steiner tree for overflow-avoiding global routing in chip design. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. Nctu-gr 2.0: Multithreaded collision-
aware global routing with bounded-length maze routing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(5):709–722, 2013. doi: 10.1109/TCAD.2012.
2235124.

Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, et al. A nesterov’s accelerated
quasi-newton method for global routing using deep reinforcement learning. Nonlinear Theory and
Its Applications, IEICE, 12(3):323–335, 2021.

L McMurchie, C Ebeling, and PathFinder. A negotiation-based performance-driven router for fpgas.
In Proceedings of the 1995 ACM 3rd International Symposium on Field-Programmable Gate
Arrays, pp. 111–117, 1995.

Gi-Joon Nam, Mehmet Yildiz, David Z Pan, and Patrick H Madden. Ispd placement contest updates
and ispd 2007 global routing contest. In Proceedings of the 2007 international symposium on
Physical design, pp. 167–167, 2007.

Walter Lau Neto, Matheus T Moreira, Yingjie Li, Luca Amarù, Cunxi Yu, and Pierre-Emmanuel
Gaillardon. Slap: A supervised learning approach for priority cuts technology mapping. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 859–864. IEEE, 2021.

Ji Won Park, Nataša Tagasovska, Michael Maser, Stephen Ra, and Kyunghyun Cho. Botied: Multi-
objective bayesian optimization with tied multivariate ranks. arXiv preprint arXiv:2306.00344,
2023.

Anselm Paulus, Michal Rolı́nek, Vı́t Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In International Conference
on Machine Learning, pp. 8443–8453. PMLR, 2021.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Jixiang Qing, Henry B. Moss, Tom Dhaene, and Ivo Couckuyt. {pf}2es: Parallel feasible pareto
frontier entropy search for multi-objective bayesian optimization, 2023. URL https://arxiv.
org/abs/2204.05411.

Liangliang Shi, Shenhui Zhang, Xingbo Du, Nianzu Yang, and Junchi Yan. Dsbrouter: End-to-end
global routing via diffusion schrödinger bridge. In The Forty-second International Conference on
Machine Learning, 2025.

Yunqi Shi, Ke Xue, Song Lei, and Chao Qian. Macro placement by wire-mask-guided black-box
optimization. NeurIPS, 2023.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–1428,
2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

13

https://arxiv.org/abs/2204.05411
https://arxiv.org/abs/2204.05411

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, pp.
32211–32252, 2023.

Nataša Tagasovska, Nathan C Frey, Andreas Loukas, Isidro Hötzel, Julien Lafrance-Vanasse,
Ryan Lewis Kelly, Yan Wu, Arvind Rajpal, Richard Bonneau, Kyunghyun Cho, et al. A pareto-
optimal compositional energy-based model for sampling and optimization of protein sequences.
arXiv preprint arXiv:2210.10838, 2022.

Zhicong Tang, Tiankai Hang, Shuyang Gu, Dong Chen, and Baining Guo. Simplified diffusion
schrödinger bridge. CoRR, abs/2403.14623, 2024. URL https://doi.org/10.48550/
arXiv.2403.14623.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective models
for effective offline model-based optimization. In International Conference on Machine Learning,
pp. 10358–10368. PMLR, 2021.

Nicolaas G Van Kampen. Stochastic differential equations. Physics reports, 24(3):171–228, 1976.

Jike Wang, Chang-Yu Hsieh, Mingyang Wang, Xiaorui Wang, Zhenxing Wu, Dejun Jiang, Benben
Liao, Xujun Zhang, Bo Yang, Qiaojun He, et al. Multi-constraint molecular generation based
on conditional transformer, knowledge distillation and reinforcement learning. Nature Machine
Intelligence, 3(10):914–922, 2021.

Shiyu Wang, Xiaojie Guo, Xuanyang Lin, Bo Pan, Yuanqi Du, Yinkai Wang, Yanfang Ye, Ashley
Petersen, Austin Leitgeb, Saleh AlKhalifa, et al. Multi-objective deep data generation with
correlated property control. Advances in neural information processing systems, 35:28889–28901,
2022.

Yiu-Chung Wong and Chris Chu. A scalable and accurate rectilinear steiner minimal tree algorithm.
In 2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp.
29–34. IEEE, 2008.

Ke Xue, Rong-Xi Tan, Xiaobin Huang, and Chao Qian. Offline multi-objective optimization. arXiv
preprint arXiv:2406.03722, 2024.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum
likelihood estimation of temporal point process via discriminative and adversarial learning. In
IJCAI, pp. 2948–2954, 2018.

Yinghua Yao, Yuangang Pan, Jing Li, Ivor Tsang, and Xin Yao. Proud: Pareto-guided diffusion
model for multi-objective generation. Machine Learning, 113(9):6511–6538, 2024.

Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. Roma: Robust model adaptation for offline
model-based optimization. Advances in Neural Information Processing Systems, 34:4619–4631,
2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning, 2020. URL https://arxiv.org/abs/2001.
06782.

Ye Yuan, Can Sam Chen, Zixuan Liu, Willie Neiswanger, and Xue Steve Liu. Importance-aware
co-teaching for offline model-based optimization. Advances in Neural Information Processing
Systems, 36:55718–55733, 2023.

Ye Yuan, Youyuan Zhang, Can Chen, Haolun Wu, Zixuan Li, Jianmo Li, James J Clark, and Xue Liu.
Design editing for offline model-based optimization. arXiv preprint arXiv:2405.13964, 2024.

Ye Yuan, Can Chen, Christopher Pal, and Xue Liu. Paretoflow: Guided flows in multi-objective
optimization, 2025. URL https://arxiv.org/abs/2412.03718.

Peng Zhang, Yiyu Qian, and Quan Qian. Multi-objective optimization for materials design with
improved nsga-ii. Materials today communications, 28:102709, 2021.

14

https://doi.org/10.48550/arXiv.2403.14623
https://doi.org/10.48550/arXiv.2403.14623
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/2412.03718

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36:79667–79684, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Training of FM within ParetoRouter
Input: Dataset D, epochs epos, Time scheduler T , NthuRouter (Chang et al., 2008) NTHU ,

NCTU-GR (Liu et al., 2013) NCTU ;
Output: Vector field v̂(x, t;θ);

1: Initialize model parameters θ.
2: Construct q(x0) and pdata(x1) utilizing D.
3: for epo = 1 to epos do
4: Sample a batch of pcurr from q(x0).
5: Sample a Gaussian noise n0 like pcurr.
6: Construct x0 utilizing n0 and pcurr under x0 = fn(n0 + pcurr).
7: Derive xNTHU

1 and xNCTU
1 from NTHU(pcurr) and NCTU(pcurr), respectively.

8: Sample t from T .
9: Derive xt using Eq. 4.

10: Derive output of the vector field v̂(x, t;θ).
11: Compute loss L = Et,pdata(x0),q(x1) using Eq. 6.
12: Loss.backward().
13: end for
14: return v̂(x, t;θ).

A APPENDIX

A.1 SUPPLEMENTAL RELATED WORKS

The section reviews works on offline multi-objective optimization and guided generative modeling.

Offline Multi-Objective Optimization (MOO). Most MOO research has focused on the online
setting, where a black-box function is queried interactively to optimize multiple objectives simultane-
ously (Jiang et al., 2023; Park et al., 2023; Gruver et al., 2023). By contrast, offline MOO is often
more realistic because online queries may be costly or risky (Xue et al., 2024). In the offline regime,
a learned predictor serves as the oracle and enables two classical families of methods. Evolutionary
algorithms conduct population-based search via iterative parent selection, reproduction, and survivor
selection (Zhang et al., 2021; Li, 2024; Yuan et al., 2025). Bayesian optimization instead leverages
the predictor within an acquisition function to select promising candidates, iteratively refining the
search through sampled evaluations (Daulton et al., 2023; Golovin & Zhang, 2020; Qing et al., 2023).
Training the predictor can be further improved by techniques such as COMs (Trabucco et al., 2021),
ROMA (Yu et al., 2021), NEMO (Fu & Levine, 2021), ICT (Yuan et al., 2023), Tri-mentoring (Chen
et al., 2023), GradNorm (Chen et al., 2018), and PcGrad (Yu et al., 2020), which enhance training
efficiency and stability. Guided Generative Modeling. A parallel line of work develops generative
models that produce samples meeting multiple desired properties. For example, Wang et al. (2021)
incorporates structure–property relations into a conditional Transformer to bias generation, and Wang
et al. (2022) employs a VAE to recover semantics and property correlations by modeling weights
in the latent space. Tagasovska et al. (2022) apply multiple-gradient descent to trained EBMs to
synthesize new samples, though training an EBM per property is complex. Han et al. (2023) explores
a distinct setting aimed at generating modules that satisfy specified conditions. Zhu et al. (2023)
use GFlowNets as acquisition functions, and Jain et al. (2023) integrate multiple objectives into
GFlowNets. Yao et al. (2024) induce diversity via hand-crafted penalties rather than uniform weight
vectors in a white-box setting. Gruver et al. (2023) investigate online multi-objective optimization
within a diffusion framework, using an acquisition function to guide sampling, while Kong et al.
(2024) apply multi-objective guidance under diffusion but assume equal weights across properties,
which cannot recover the Pareto front. Related work on guided diffusion also targets single-objective
optimization (Chen et al., 2024; Yuan et al., 2024). Overall, many of these approaches rely on
generators that are either less expressive or difficult to train De Bortoli et al. (2021). In contrast,
ParetoRouter pairs a SOTA flow-matching model with classifier-gradient guidance for sampling.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 Classifier Function h

Input: Vector field v̂(x, t;θ), x0, scaling factors γ;
Output: Weighted score f̂ω(xt);

1: Derive weightings ω leveraging Das-Dennis approach (Das & Dennis, 1998).
2: Derive sampled x

′

1 using the vector field v̂(x, 0;θ) and x0.
3: Extract predicted routing map r from x

′

1.
4: Compute complete routing map r

′
under minimal

∑n
i=1 γif̂i(x

′

1)ωi.
5: Require x

′

1.gradient.
6: Initialize mask map m = 0.
7: for r ∈ R′ ∪ R do
8: if r ∈ R ∧ r ∈ R′

then
9: pass

10: else if r ∈ R ∧ r /∈ R′
then

11: mask map m(r) = 1.
12: else r /∈ R ∧ r ∈ R′

13: mask map m(r) = −1.
14: end if
15: end for
16: h(v̂(x, t;θ) + x0) = r ·m
17: Compute f̂ω(xt) utilizing Eq. 9.
18: return f̂ω(xt).

A.2 SUPPLEMENTAL ALGORITHMS

This section introduces the training algorithms in Algorithm. 1 (Line 1) and classifier function h in
Eq. 7.

A.2.1 TRAINING OF FM

Training of the FM within ParetoRouter is summarized in Algorithm 2. We inject scaled noise n0

into the clean data for the following reasons: Through experiments, we find that the intensity of
the injected noise has a negligible effect on both FM training and Das–Dennis sampling. However,
without this perturbation the backbone converges poorly (i.e., the trained FM module cannot reliably
compute, under supervision, the flow that bridges the initial pins x0 and the final connected routes
x1.) We therefore conclude that adding appropriately scaled noise to clean data facilitates the model
training. In practice, we sample Gaussian noise, add it to the clean pcurr, and then normalize the
corrupted x0 using the normalization function fn.

A.2.2 CLASSIFIER FUNCTION

ParetoRouter employs a guidance module, first introduced in DSBRouter (Shi et al., 2025), to steer
route generation, as shown in Algorithm 3. Nevertheless, there are essential differences between the
guidance used by ParetoRouter and that in DSBRouter.

Firstly, DSBRouter applies an SDE-based gradient guidance (Li et al., 2023) to drive DSB generation,
whereas ParetoRouter operates within the FM framework. DSBRouter adopts SDSB (Tang et al.,
2024) as its backbone and leverages the series proposed theories in Tang et al. (2024) together with
the energy-function formalism (LeCun et al., 2006) to justify an SDE-based guidance of the form:

pθ(xt | xt+1, g
∗) = Zpθ(xt | xt+1)p(g

∗ | xt) (13)

where g∗ denotes the optimal objective score. Since ParetoRouter uses Eq. 7 within the FM framework
to guide the generation process, the underlying working principles are different, and the DSBRouter
guidance cannot be directly applied to ParetoRouter.

Secondly, ParetoRouter integrates multi-objective optimization (MOO) constraints into the design
of its classifier-guidance module, whereas DSBRouter considers only the reduction of the objective

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

function (OF). In DSBRouter, the following formula:

▽xt+1
log p(g∗|xt+1) = ▽xt+1

(Eo
xt+1∼pr(xt+1|xt+2)

(η(xt+1))−O(η(xt+1))) (14)

is used to approximate p(g∗ | xt) ∝ exp([▽xt+1
(Eo

xt+1∼pr(xt+1|xt+2)
(η(xt+1)) −

O(η(xt+1)))]
⊺xt). Because the gradient of O(η(xt+1)) is zero, Eq. 14 effectively uses the gra-

dient of Eo
xt+1∼pr(xt+1|xt+2)

(η(xt+1)) to compute ▽xt+1 log p(g
∗|xt+1). Here, Eo in DSBRouter

is the expected routing given xt+2, and E is computed under the constraint:

argmin
x̄t

|Eo
x̄t∼pr(x̄t|xt+1)

(η(x̄t))−O(η(x̄t)) + c(x̄t)| (15)

which indicates that DSBRouter aims solely to minimize the OF. In contrast, ParetoRouter employs a
neural-network–free classifier that explicitly accounts for MOO constraints:

argmin
x

′
t

|
n∑

i=1

γif̂i(x
′

t)ωi| (16)

This design aligns with the objective of ParetoRouter’s generation process and enables more diverse
routing results compared with DSBRouter (Shi et al., 2025).

A.3 DERIVATION OF EQ. 7

This section derives Eq. 7. By Lemma 1 in Zheng et al. (2023), the guided vector field takes the form:

ṽ(x, t;θ) = atxt + bt∇x log p(xt | s) (17)

where at =
ȧt

at
and bt = (ȧtσt − atσ̇t)

σt

at
. Setting at = t and σt = 1− t, Eq. 17 simplifies to:

ṽ(x, t;θ) =
1

t
xt +

1− t

t
∇x log p(xt | s) (18)

The conditional log-probability function is written as

log p(xt | y) = log pθ(xt) + log p(s | h(xt, t))− log p(s) (19)

where pθ(xt) denotes the data distribution learned by the flow matching model and p(s | h(xt, t)) is
the classified property distribution.

Substituting these expressions yields

ṽ(x, t, y;θ) =
1

t
xt +

1− t

t
∇x log pθ(xt) +

1− t

t
∇xt log p(s | h(xt, t)) (20)

= ṽ(x, t;θ) +
1− t

t
∇xt

log p(s | h(xt, t)) (21)

A.4 PARETOROUTER NETWORK ARCHITECTURE

A.4.1 BACKBONE

We adopt a symmetric U-Net with time-conditioned residual blocks and attention. Starting from
64×64 RGB inputs, a 7×7 stem (3→64) feeds four encoder stages with channel widths [64, 64,
128, 256] and a 512-channel bottleneck. Each encoder stage contains two ResNet blocks with
adaptive instance normalization (AdaIN) modulated by a learned time embedding, a self-attention
module (linear attention in the first three stages and full attention at the deepest stage), and a 2×
downsampling operation, producing the resolution sequence 64→32→16→8→4. Attention uses
four heads with 32-dimensional subspaces and four learnable memory key–value pairs. At 4×4,
the bottleneck expands into two hyperconnected residual streams, applies two 512-channel ResNet
blocks interleaved with full attention, and then reduces back to a single stream. The decoder mirrors
the encoder: at each resolution it concatenates the corresponding skip features (doubling the channel
dimensionality), applies two ResNet blocks with 1×1 residual projections, inserts attention (full at
the first decoder stage, linear thereafter), and upsamples via nearest-neighbor interpolation followed
by a convolution. RMSNorm is used throughout, linear attention is employed at higher resolutions to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Summary of the test dataset. We respectively show the scale size, verticalhorizontal
capacity, number of nets, and average/maximum number of pins for each net.

CASE IBM01 IBM02 IBM03 IBM04 IBM05 IBM06 ADA01 ADA02 ADA03 ADA04 ADA05

SIZE 64 × 64 80 × 64 80 × 64 96 × 64 128 × 64 128 × 64 324 × 324 424 × 424 774 × 779 774 × 779 465 × 468
CAP.(V/H) 24/28 44/68 40/60 40/46 84/126 40/66 70/70 80/80 62/62 62/62 110/110

NETS 11507 18429 21621 26163 27777 33354 219794 260159 466295 515304 867441
AVG.PINS 4.31 4.88 4.10 3.86 5.25 4.21 4.29 4.09 4.02 3.71 4.03

MAX.PINS 42 134 55 46 17 35 2271 1935 3713 3974 9863

reduce complexity from O(n²) to O(n), while full attention is retained at the lowest resolution. The
overall downsampling factor is 16, so input height and width must be divisible by 16.

Temporal conditioning is provided by a 64-D sinusoidal positional encoding passed through a
two-layer GELU MLP to produce a 256-D time embedding, in each ResNet block, AdaIN applies
feature-wise scaling and shifting derived from this embedding, i.e., norm(x)·(scale+1)+shift. Under
a conventional instantiation with two 3×3 convolutions per residual block, 1×1 projections where
required, 128-D attention projections (4×32 heads), and the above time-conditioning MLP, the
model comprises approximately 21.5 million trainable parameters: 20.9M in convolutional/residual
pathways, 0.79M in attention projections, and 0.08M in the time-embedding MLP, with normalization
parameters being negligible.

A.4.2 MOEL PARAMETERS

For training, learning rate lr is fixed to 0.0003 and batch size is set to 256. Training of FM is under
fp16 precision. For sampling, the sampling steps is set to 1, aligned with the description in 4.2.

A.4.3 REASONS FOR CHOOSING NCTU-GR AND NTHUROUTER

Previously, single-objective ML-based solvers typically used the solutions produced by a traditional
solver as supervisory signals. For example, HubRouter Du et al. (2023) is supervised using NCTU-
GR (Liu et al., 2013), whereas DSBRouter Shi et al. (2025) is supervised using NTHURouter (Chang
et al., 2008). In our initial experiments, we also used only the outputs of NTHURouter as the
supervisory signal and observed performance comparable to DSBRouter. This naturally raises the
question of whether combining the outputs of multiple solvers as a weighted supervisory signal can
enlarge the effective search space explored by the CFG-guided reverse (denoising) diffusion process,
thereby improving the results of multi-objective optimization. Motivated by this hypothesis, we
incorporate supervision from two empirically strong solvers, NTHURouter and NCTU-GR. Our
ablation study confirms the effectiveness of the proposed loss design. However, although we do not
include additional solver outputs, we argue that the benefit of such supervision is unlikely to grow
linearly with the number of solvers. A larger effective search space implies a longer guided generation
trajectory, and as the search space grows without bound, the additional exploration becomes almost
indistinguishable from the noise injected at time t0, ultimately degrading the model’s performance.

A.5 EXPERIMENTAL PROTOCOLS

A.5.1 DATASETS AND HARDWARE FOR EXPERIMENTS

We evaluate our approach on the real-world datasets ISPD07 (Nam et al., 2007) and ISPD98 (Alpert,
1998). Following Du et al. (2023); Shi et al. (2025); Liu et al. (2024), we build low-overflow expert
training datasets by using Nthurouter (Chang et al., 2008) and low-wirelength expert training datasets
by using NCTU-GR (Liu et al., 2013) to route a subset of the ISPD07 benchmarks—bigblue1,
bigblue2, bigblue3, bigblue4, newblue4, newblue5, newblue6, and newblue7. The dataset pre-
processing follows the pipeline outlined in Hubrouter (Du et al., 2023). Interaction of the two solvers’
routing results are selected, resulting in nearly 220k samples in total. We initialize the capacities as
specified by the benchmarks and route the nets sequentially using the results of Chang et al. (2008).
After each capacity update, we generate a condition image comprising the current capacity and the pin
locations for the next net, and we simultaneously produce and store the corresponding ground-truth
route image. Both images are randomly clipped, when feasible, to a common resolution of 64 × 64.
For the evaluation reported in Table. 2, we select newblue1, newblue2 from ISPD07—outside the
training set—with a total of 10k samples. A summary of the ISPD98 test cases is provided in Table. 7.
We prepare the ISPD98 test cases using the same processing pipeline as in Du et al. (2023).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Relative error on ISPD98. The routing results of Juhl et al. (2018) are treated as the
theoretical lower bound. Optimal results are in bold.

MODEL IBM01 IBM02 IBM03 IBM04 IBM05 IBM06

LOWER BOUND 60142 165863 145678 162734 409709 275868

LABYRINTH 0.262 0.213 0.286 0.203 0.026 0.238
FLUTE+ES 0.023 0.017 0.007 0.027 0.007 0.016

HR-VAE 0.075 ± 0.024 0.064 ± 0.04 0.098 ± 0.022 0.105 ± 0.032 0.061 ± 0.007 0.091 ± 0.021
HR-DPM 0.105 ± 0.026 0.149 ± 0.014 0.156 ± 0.017 0.128 ± 0.010 0.161 ± 0.013 0.161 ± 0.010
HR-GAN 0.022 ± 0.002 0.010 ± 0.001 0.009 ± 0.001 0.009 ± 0.002 0.005 ± 0.001 0.007 ± 0.001

NEURALSTEINER 0.026 0.027 0.016 0.024 0.014 0.028
DSBROUTER 0.021 0.049 0.049 0.007 0.026 0.240

PARETOROUTER 0.053 0.054 0.070 0.056 0.179 0.115

Table 9: Relative error on ISPD07. The routing results of Juhl et al. (2018) are treated as the
theoretical lower bound. Optimal results are in bold.

MODEL ADAPTEC01 ADAPTEC02 ADAPTEC03 ADAPTEC04 ADAPTEC05

LOWER BOUND 3389601 3209172 9330748 8865643 9784471

FLUTE+ES 0.008 0.008 0.009 0.003 0.010
HR-GAN 0.005 0.006 0.002 0.002 0.004

NEURALSTEINER 0.014 0.011 0.013 0.015 0.013
DSBROUTER 2.628 2.138 - 2.159 1.738

PARETOROUTER 0.039 0.055 0.018 0.017 0.051

Training of FM and all subsequent experiments are conducted on a machine equipped with an Intel
Xeon Platinum 8558 CPU, 8 NVIDIA H200 GPUs (143 GB memory each), and 1600 GB of RAM.

A.5.2 BASELINES

The baselines referred in Table. 3 are introduced as follows:

1) GeoSteiner (Juhl et al., 2018): An optimal RSMT construction solver which get results with SOTA
WL.

2) Labyrinth (Kastner et al., 2002): A classical routing algorithm that explores how the concept of
pattern routing can be utilized to guide the router toward a solution that minimizes interconnect delay
while preserving the routability of the circuit.

3) FLUTE (Wong & Chu, 2008): A fast and accurate RSMT construction method using a look-up
table. It is important to note that this approach can achieve the optimal solution for nets with up to 9
degrees.

4) Edge Shifting (Chu & Wong, 2005): A fast, practical RSMT-based algorithm that leverages a
specialized lookup table for small nets and a refined recursive splitting approach for larger nets.

5) Hubrouter (Du et al., 2023): A global router for RST construction based on reinforcement
learning. The hub is generated using a diffusion model, followed by reinforcement learning for RST
construction.

6) NeuralSteiner (Liu et al., 2024): A two-stage global router. The candidate points are predicted by
an RCCA-enhanced CNN, and routing is performed by an RST construction algorithm based on a
greedy strategy.

7) DSBRouter (Shi et al., 2025): An end-to-end global router based on Diffusion Schrödinger Bridge
(DSB) which reach SOTA OF reduction, but is behind in generation time.

A.6 MORE DISCUSSIONS ABOUT TESTED BASELINES.

In this section, we discuss the related error (Du et al., 2023) of selected tested methods and conver-
gence of proposed training of FM within ParetoRouter.

A.6.1 RELATED ERROR ON ISPD98 AND ISPD07 CASES

To assess improvements relative to the optimal wirelength rather than absolute values, we compare
the relative error on ISPD98 and ISPD07 across all tested methods (Table 8 and Table 9). The relative
error is defined as (WL−LB)/LB, where LB denotes the theoretical lower bound. On the ISPD98
benchmarks, ParetoRouter produces slightly more superfluous routes than other SOTA ML-based

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: Convergence of Backbones within different solvers. Blue line, orange line and green line
denote training of FM within ParetoRouter, GAN-based Hubrouter and DSB in DSBRouter.

methods (i.e., DSBRouter (Shi et al., 2025), Hubrouter (Du et al., 2023), NeuralSteiner (Liu et al.,
2024)). On the ISPD07 benchmarks, GAN-Hubrouter leads, and ParetoRouter eliminates many
superfluous routes compared with DSBRouter, but it still lags behind NeuralSteiner, indicating
remaining room for improvement.

A.6.2 CONVERGENCE OF TRAINING OF FM

To study the convergence of the proposed AF and evaluate the training cost of ParetoRouter, we
compare the loss variation during training process across Hubrouter (Du et al., 2023), DSBRouter (Shi
et al., 2025) and our proposed ParetoRouter. It needs to be declare that NeuralSteiner (Liu et al.,
2024) still disclose the implementation details, so NeuralSteiner is not considered. As shown in
Fig. 3, Hubrouter and ParetoRouter can reach convergence in nearly 10 epochs, however, DSBRouter
needs 20 epochs to get similar convergence due to alternating training of forward and backward
models. This reveals that ParetoRouter can reduce training cost significantly compared to the SOTA
ML-based DSBRouter.

A.7 ADDITIONAL RESULTS

Generated routing results of ParetoRouter across different net scales, along with initial pins, real
routing results (ground truth) are shown in Fig. 4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 4: Examples. Initial pins pcurr (first line), real routing results (second line), generated routing
results of ParetoRouter with varying γ1 · ω1 = 0, 0.2, 0.5, 1 (third line - sixth line), respectively.

22

	Introduction
	Preliminaries and Problem Definition
	Offline Multi-Objective Optimization
	Flow Matching
	Global Routing via FM

	Related Works
	Framework of ParetoRouter
	Average Flow
	One step Das-Dennis-based Pareto Sampling

	Experiments
	Settings
	Crrt and WLR on Partial ISPD07 benchmarks
	OF and WLR on real-world benchmarks
	Ablation Study

	Conclusion and Outlook
	Appendix
	Supplemental Related Works
	Supplemental Algorithms
	Training of FM
	Classifier Function

	Derivation of Eq. 7
	ParetoRouter Network Architecture
	Backbone
	Moel Parameters
	Reasons for choosing NCTU-GR and NTHURouter

	Experimental protocols
	Datasets and Hardware for experiments
	Baselines

	More Discussions about Tested baselines.
	Related Error on ISPD98 and ISPD07 Cases
	Convergence of Training of FM

	Additional Results

