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ABSTRACT

Global routing (GR) has been a central task in modern chip design. Many efforts,
either ML-based or heuristic, have been proposed that seek to optimize specific
business goals, such as overflow (OF) and wirelength (WL) of generated routes.
Notably, recent end-to-end neural routers have demonstrated significant speed
advantages in optimizing wirelength, yet they struggle to achieve efficiency in
reducing overflow. In fact, a good trade-off between the above two metrics has not
been achieved, especially when overall efficiency is pursued, as existing ML-based
methods often optimize only a single metric. To bridge this gap for more practical
industry applications, we propose a flow-matching-based router for GR, called
ParetoRouter, which achieves trade-offs between WL and OF, generating highly
connected routes at high speed and quality. In the training phase, two differential
metric-oriented routing results are utilized to build the training datasets. They
are leveraged to design an ‘Average Flow’ between initial pins and final routings.
A Pareto sampling method, based on the Das-Dennis method, is also devised
to achieve trade-offs between OF and WL in the inference phase. Extensive
experimental results show that it achieves SOTA performance on the overflow
reduction with less superfluous routes across all benchmarks with x10 times
speedup over the peer SOTA ML-based method.

1 INTRODUCTION

Global routing (GR) (McMurchie et al., 1995; Cheng et al., 2022; Liao et al., 2020) has become one of
the most intricate and time-consuming phases in modern VLSI design flows (Kramer & Van Leeuwen,
1984), among the other stages such as logic synthesis (Neto et al., 2021), floorplanning (Li et al.,
2022a), and placement (Hao et al., 2021; Shi et al., 2023). With netlists containing millions to billions
of nets, global routers interconnect pins, aiming to minimize wirelength and avoid overflow under
limited routing resources. In fact, even the simplified ‘2-pin’ case, i.e., connecting each net with
exactly two pins under specified constraints, is NP-complete (Paulus et al., 2021).

Classical works on heuristics (Cho et al., 2007; Kastner et al., 2002) often require continuous
updates and improvements by human experts to route greedily. To mitigate the reliance on manual
effort and enhance design automation and quality, learning-based approaches have been introduced.
Notably, as shown in Table 1, most existing ML-based works often rely on generative models or
classical solvers (Li et al., 2022b; Yan et al., 2018; Li et al., 2021; 2024; Feng & Feng, 2025) to
predict Steiner points (Hwang, 1979) and heuristics post-processing or deep reinforcement learning
(DRL) (Mahboubi et al., 2021) to route the discrete predicted points, e.g. NeuralSteiner (Liu et al.,
2024) and Hubrouter (Du et al., 2023). DSBRouter (Shi et al., 2025) leverages Diffusion Schrödinger
Bridge (DSB) (De Bortoli et al., 2021) to design an end-to-end ML-based router (e.g., from discrete
initial pins to connected routes), but it is hard to train and suffers a great generation time. In addition,
most ML-based methods optimize only a single metric: for example, Hubrouter primarily targets
wirelength, whereas NeuralSteiner and DSBRouter focus on overflow, making it challenging to
achieve trade-offs between these two metrics.

Motivated by accelerated diffusion sampling paradigms (e.g., Consistency Models (Song et al., 2023),
CM, Flow Matching (Lipman et al., 2023), FM), can we design an end-to-end global router that
optimizes both overflow and wirelength simultaneously, generating high-quality connected routes
while significantly reducing generation time?
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Table 1: Summary of existing machine learning-based solvers for GR.

METHOD TYPE END-TO-END MOO SUPPORT

Hubrouter (Du et al., 2023) GENERATIVE + RL ✗ ✗
NeuralSteiner (Liu et al., 2024) CNN + POST-PROCESSING ✗ ✗
DSBRouter (Shi et al., 2025) GENERATIVE ✓ ✗
ParetoRouter (ours) GENERATIVE ✓ ✓

Thus, in this paper, we propose ParetoRouter, which is an FM-based global router that integrates
a carefully designed yet simple ‘Average Flow’ (AF) to fulfill the diversity of predicted routes,
facilitating on-demand sampling of routing results. Simply put, during training, ParetoRouter utilizes
the combination of two differential metric-oriented connected routes as supervisory signals, enabling
the model to predict the AF in latent space. The design of AF is detailed in Sec 4.1. The FM model
and the DSB module in DSBRouter serve similar functions.

However, as demonstrated by the experimental results in Appendix A.2.2 and A.6.2, FM achieves
comparable performance to DSB at a lower training cost. In the sampling phase, a fast one-step
Pareto sampling method based on Das-Dennis approach (Das & Dennis, 1998) is designed to realize
a controllable generation of routes, which means that ParetoRouter can generate connected routes
that are more inclined towards overflow (or wirelength) to approximate Pareto Front (PF). This
sampling module is detailed in Sec. 4.2. Extensive experiments show that ParetoRouter can not only
generate routes with diversity, but also significantly reduce the generation time and generate nearly
state-of-the-art (SOTA) routing results under rationally specified parameters. This paper contributes
as follows:

1) To the best of our knowledge, the proposed ParetoRouter is the first ML-based multi-objective
global router that produces preference-compliant routing solutions and explicitly explores the Pareto
front between wirelength (WL) and overflow (OF).

2) ParetoRouter incorporates a fast Das–Dennis–based Pareto sampling scheme to approximate Pareto
Front in GR, which substantially reduces solution-generation time by up to 90% compared with
DSBRouter (Shi et al., 2025). It enables on-demand OF-oriented or WL-oriented routing results,
compared to SOTA ML-based methods Du et al. (2023); Liu et al. (2024).

3) Experimental results demonstrate that ParetoRouter achieves SOTA OF performance across all
evaluated benchmarks, reducing OF by an average of 68% and markedly decreasing superfluous
routing on large-scale nets compared to the SOTA ML-based DSBRouter.

2 PRELIMINARIES AND PROBLEM DEFINITION

2.1 OFFLINE MULTI-OBJECTIVE OPTIMIZATION

Offline multi-objective optimization (MOO) aims to simultaneously minimize multiple objectives
using an offline dataset D of designs and their corresponding labels. Let the design space be X ⊆ Rd,
where d denotes the dimensionality of the design. The goal of MOO is to identify solutions that
achieve the best trade-offs among conflicting objectives. Formally, the multi-objective optimization
problem is defined as:

Find x∗ ∈ X such that there is no x ∈ X with f(x) ≺ f(x∗), (1)

where f : X → Rm is a vector-valued map of m objective functions, and ≺ denotes Pareto dominance.
A solution x Pareto dominates another solution x∗ (denoted f(x) ≺ f(x∗)) if:

∀i ∈ {1, . . . ,m}, fi(x) ≤ fi(x
∗) and ∃j ∈ {1, . . . ,m} such that fj(x) < fj(x

∗). (2)

In other words, x is no worse than x∗ on every objective and strictly better on at least one. A solution
x∗ is Pareto optimal if there is no x ⊆ X that Pareto dominates x∗. The set of all Pareto-optimal
solutions is the Pareto set (PS). The corresponding set of objective vectors, {f(x) | x ∈ PS}, is
known as the Pareto front (PF ).

The goal of MOO is to compute a set of solutions that closely approximates the PF, providing a
comprehensive representation of the best attainable trade-offs among the objectives.
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2.2 FLOW MATCHING

Flow matching (FM) (Lipman et al., 2023) is an advanced generative modeling framework that
has demonstrated superior effectiveness and efficiency compared to other models (Ho et al., 2020;
Song et al., 2021b;a). At its core is a conditional probability path pt(x | x0) for t ∈ [0, 1],
which evolves from the initial distribution p0(x | x0) = q(x0) to an approximate Dirac delta
p1(x | x0) ≈ δ(x− x0). This evolution is conditioned on a specific point x0 drawn from q(x0) and
is governed by the conditional vector field ut(x | x0). A neural network with parameters θ is trained
to learn the marginal vector field v(x, t):

v̂(x, t;θ) ≈ v(x, t) = Ex0∼pt(x|x0)[ut(x | x0)]. (3)

The modeled vector field v̂(x, t;θ) serves as a neural Ordinary Differential Equation (ODE) that
guides the transport from q(x0) to pdata(x1). Normally, FM begins with a sampled noise x0 from
q(x0) (Pooladian et al., 2023). Then a linear interpolation with the uncorrupted data x1 is constructed:

x | x0, t = (1− t) · x0 + t · x1, x0 ∼ q(x0). (4)

The conditional vector field is readily derived as ut(x | x0) = (x0 − x)/(1 − t). Equivalently,
ut(x | x0) = x1 − x0. The following objective is used to minimize the conditional FM:

Et,pdata(x0),q(x1) ∥ v̂(x, t;θ)− (x1 − x0) ∥2 . (5)

After training, samples are generated by integrating the neural ODE driven by the learned vector field
v̂(x, t;θ).

2.3 GLOBAL ROUTING VIA FM
Typically, given a physical chip and a netlist, a chip canvas is created along with several nets (as shown
in Fig. 1 (a)), where each net includes pins placed at fixed positions determined by the placement
of macros and standard cells. The primary goal of global routing (GR) is to establish connections
for all required pins while simultaneously minimizing the routing WL and OF. Existing ML-based
methods (Li et al., 2024; Du et al., 2023; Liu et al., 2024) generally approach GR as a two-phase task
(refer to Fig. 1(a), (b), and (c)): first, the Steiner points (pins) are predicted, and then post-processing
algorithms are applied to connect the initial pins with the predicted Steiner points. Some approaches,
such as DSBRouter (Shi et al., 2025), aim to create an end-to-end pipeline (see Fig. 1(a) and (d)).
However, the DSB used in DSBRouter suffers from efficiency problems, and it is unable to sample
routes that satisfy multi-objective optimization (MOO).

In contrast, ParetoRouter, depicted in Fig. 1(e), leverages a flow-based model (FM) to learn the
distribution pθ(x1|x0) of routes x1 with high diversity for a given instance x0. Design of the AF
will be discussed in Sec. 4.1. For sampling, we design a one-step, Das-Dennis-based Pareto sampling
method, which accelerates the generation process and leads to routing results approximating the
Pareto Front. The design of the sampling method is detailed in Sec. 4.2.

3 RELATED WORKS

Due to page limits, we leave partial related works to Appendix A.1.

The Task of Global Routing. Owing to the complexity of VLSI routing, the circuit layout is
partitioned into rectangular regions, called global cells (GCells) (Cho et al., 2007). Global routing
is modeled as a grid graph G = (V,E), where each GCell corresponds to a vertex (v ∈ V ) and
adjacent GCells are connected by an edge (e ∈ E) representing their shared boundary. Modern chip
designs employ two or more metal layers for routing, where each layer is assigned either a horizontal
or vertical direction, yielding a two-dimensional grid abstraction. For each net, the global router
assigns a connected subset of GCells—linked via multiple edges—to interconnect all pins, typically
producing a rectilinear Steiner tree (RST) (Chu & Wong, 2005). The Hanan grid (Hanan, 1966) and
the escape graph (Ganley & Cohoon, 1994) are often exploited to construct a shortest rectilinear
Steiner minimum tree (RSMT) while avoiding obstacles (Liu et al., 2012), by treating intersection
points in these graphs as candidate Steiner points.

Classical Global Router. Global routing is a combinatorial optimization problem that can be
formulated as a 0–1 integer linear program and solved with a general-purpose solver. In practice,
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Figure 1: Difference between ParetoRouter and other solvers. (a): initial pins and nets. (b):
predicted pins and initial pins. (c) and (d): Generated routes via post-processing algorithms. (e):
One-step Pareto sampling within ParetoRouter.
classical routers decompose the task into two stages aimed at congestion management: Steiner
topology generation and rip-up-and-reroute (RRR). The former commonly relies on FLUTE (Chu
& Wong, 2005), which uses lookup tables to build near-optimal Steiner trees in terms of WL for
each net, but it is oblivious to congestion. During congestion mitigation, many routers perform
edge shifting to move routing demand out of congested regions (Chu & Wong, 2005). NTHU-Route
2.0 (Chang et al., 2008) further introduces a history-based cost that accumulates past congestion and
dynamically adjusts routing costs, improving overall quality and efficiency. NCTU-GR 2.0 (Liu et al.,
2013) adopts an SMT-aware routing scheme to achieve shorter WL. However, as design complexity
and scale grow, these procedures become increasingly time-consuming. Consequently, accelerating
congestion resolution with deep learning–based techniques can improve the overall performance of
global routing.

Learning-based Router. A growing body of works investigates learning to optimize WL and the
use of neural networks for global routing, including generating pin-connection orders (Liao et al.,
2020), routing segments (Cheng et al., 2022), and customized hub points for rectilinear Steiner trees
(RSTs) (Du et al., 2023; Li et al., 2024; Feng & Feng, 2025). The primary practical challenges,
however, lie in handling large-scale nets to mitigate overflow (OF) and maintain short WL under
limited routing resources. In such settings, judicious detours are essential for relieving congestion,
because the WL-minimal RST, e.g., that in Fig. 1(c) produced by Hubrouter (Du et al., 2023) or
NeuralSteiner (Liu et al., 2024), may be infeasible in practice. DSBRouter (Shi et al., 2025) can
produce low-OF solutions (Fig. 1(d)), but often introduces excessive redundant routing and incurs
prohibitive generation time on large-scale nets. PatLabor (Chen et al., 2025b) considers the MOO
constraint, but its focus is on balancing WL and RSMT construction delay. Moreover, global routers
must be able to generalize to unseen circuit distributions. To meet these challenges, we propose
ParetoRouter, which enables explicit trade-offs between OF and WL, yielding on-demand routing
solutions for nets of arbitrary scale.

4 FRAMEWORK OF PARETOROUTER

For ML-based global routing (GR) solvers, the two-stage paradigm of first predicting Steiner points
and then performing routing is intuitive and straightforward. However, it exhibits several limitations:
(i) the neural networks used to predict Steiner points are typically trained in a supervised manner,
making them brittle under distribution shift and prone to inflating the time complexity of downstream
post-processing due to prediction noise; (ii) relying on a single classical solver to provide training
targets restricts the diversity of Steiner points available to the model; and (iii) post-processing
algorithms are often focused primarily on WL (or OF) minimization, which makes it challenging to
satisfy multi-objective optimization (MOO) constraints.

To address these issues, this section introduces ParetoRouter, which integrates MOO into GR to
handle constraints explicitly and perform GR in an end-to-end manner. The next two sections first
present AF, a training-time mechanism that leverages routing results from multiple classical solvers

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: For training, ParetoRouter applies the average of two different solvers’ routing results
(NTHURouter and NCTU-GR) to construct the supervisory signals x0 to enable the NN module
to predict more potential routes. While in the sampling phase, weights ω = {ωi} subdivide the
objective space into equal partitions. Each weight ωi ∈ ω maps to a sampled routing result xi

0.

to enable the model to predict a diverse set of routes. Then, during sampling, we introduce a one-step
Pareto sampling pipeline based on the Das–Dennis method to initialize multiple weight matrices,
thereby guiding the rapid generation of MOO-compliant routes under different weightings in a single
step. Fig. 2 depicts the pipeline of proposed ParetoRouter.

4.1 AVERAGE FLOW

Diffusion solvers for GR are not something new; both Hubrouter (Du et al., 2023) and DSBRouter (Shi
et al., 2025) try to fulfill the potential of diffusion models for GR. Hubrouter leverages GAN (Goodfel-
low et al., 2014), DDPM (Ho et al., 2020), and VAE (Kingma & Welling, 2013) to sample predicted
‘hubs’ from simulated Gaussian noise. Anchoring the generative process to stationary noise to enable
standard sampling paradigms is intuitive but exhibiting a disconnect between the diffusion trajectory
and the structured nature of solution spaces, i.e., the generative process operates in the Gaussian
noise space for pin prediction rather than the solution (routes), which causing the restriction on both
the controllability of the intermediate states within the generation and the exploitation of prior pin
knowledge and need of post-processing algorithms for connected routes. In contrast, DSBRouter (Shi
et al., 2025) designs a post-processing-free paradigm that better aligns with heuristic search dynamics,
but it is hard to train the backbone and takes a great time for generation due to the inherent constraints
of DSB (De Bortoli et al., 2021). Besides, all the ML-based solvers discussed above optimize
either WL or OF; none of them can generate routes according to the realistic needs. Consequently,
ParetoRouter introduces AF as:

Et,pdata(x1),q(x0) ∥ v̂(x, t;θ)− (ḟ(xNTHU
1 + xNCTU

1 )/2− x0) ∥2, (6)

where xNTHU
1 and xNCTU

1 represent the routing results of NTHURouter (Chang et al., 2008) and
NCTU-GR (Liu et al., 2013), respectively. ḟ is a scale function to scale the differential routes of
these two solvers. x0 is the noisy pins with congestion map. We introduce Gaussian noise n0 to
corrupt the initial pins pcurr, resulting in an initial sample x0 = fn(n0 + pcurr) drawn from q(x0),
where fn represents the normalization function. Reasons for noise corruption will be discussed
in Appendix A.2.1. Given two flows, starting with the same x0, ending in xNTHU

1 and xNCTU
1

respectively, the loss design is like predicting the flow in between. This is why we name it Average
Flow. This design is straightforward but has been proven to be very effective in the experiments,
which will be discussed in Sec. 5.
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4.2 ONE STEP DAS-DENNIS-BASED PARETO SAMPLING

This section first elucidates the concept of gradient guidance under multi-objective optimization
(MOO) constraints within the ParetoRouter sampling pipeline, along with the design. Then, the
detailed formulation of a weighted score distribution induced by the Das–Dennis method is introduced
to fulfill guided Pareto sampling.

Sampling with Gradient Guidance. Classifier guidance was initially introduced to steer sample
generation toward designated image categories (Dhariwal & Nichol, 2021). This concept has since
been extended to regression contexts, where it is employed to guide molecular generation (Lee et al.,
2023; Jian et al., 2024; Chen et al., 2025a). Building upon Lemma 1 from Zheng et al. (2023), we
derive the formulation of gradient guidance within the framework of flow matching as follows:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇xt log p(s | h(xt, t)), (7)

where p(s | xt, t) denotes the distribution of predicted routing score and s denotes the computed
properties through classifier function h whose implementation will be detailed in Sec. A.2.2. More
details of Eq.(7) can be found in Appendix A.3. In implementation, as we assume a one-step
sampling procedure, where the NN module within the ParetoRouter framework is designed to predict
the difference between x1 and x0. Consequently, we adopt the following formulation to better align
with this one-step sampling scheme:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇x log p(s | h(v̂(x, t;θ) + x0, t)). (8)

Weighted Score Distribution. Preceding ML-based works like DSBRouter primarily address the
generation of samples that satisfy a single score s. In contrast, our proposed ParetoRouter is designed
to optimize two properties, namely OF and WL simultaneously, represented as s = [f̂1(xt), f̂2(xt)].
To address the increased complexity inherent in this multi-objective setting, we decompose the overall
generation task into a series of weighted single-objective subproblems. Specifically, we introduce a
weight vector ω = [ω1, ω2], where each ωi > 0 and

∑m
i=1 γiωi = 1. The resulting weighted score is:

f̂ω(xt) = −h

(
n∑

i=1

γif̂i(xt)ωi

)
. (9)

Here, f̂i denotes the predicted score of the ith objective for xt. Given that the scales of OF and WL
differ, a scaling factor γ is introduced to ensure compatibility. The negative sign reflects that the
objective is minimization. Following the approach in Lee et al. (2023), we define the weighted score
distribution:

p(s | v̂(x, t;θ) + x0, t) = ef̂ω(v̂(x,t;θ)+x0)/Z, (10)

where Z is the normalization constant. By incorporating this formulation into Eq.8, we arrive at the
following predictor update:

ṽ(x, t;θ) = v̂(x, t;θ) + ρ · ∇xf̂ω(v̂(x, t;θ) + x0). (11)

This vector field ṽ(x, t;θ) effectively guides the sampling process toward regions in the input space
that satisfy the desired multi-objective properties encoded by the weighted distribution. To achieve
comprehensive coverage of the Pareto objective space, we employ the Das-Dennis approach (Das
& Dennis, 1998), which partitions the objective space uniformly to generate a diverse set of weight
vectors ω. Each weight vector corresponds to a distinct sampled route, thereby facilitating exploration
across the entire trade-off front. The sampling step is performed using the Euler method (Van Kampen,
1976), formulated as:

x̂j = xt + ṽ(x, t;θ)∆t, (12)

where j = t+∆t represents the next time step. In the ParetoRouter framework, we set t = 0 and
∆t = 1. The complete procedure is summarized in Algorithm 1.

5 EXPERIMENTS

In this section, we empirically compare our proposed ParetoRouter with other ML-based and classical
solvers on ISPD benchmarks.
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Algorithm 1 One-Step Pareto Sampling
Input: Dataset D, epochs T ;
Output: Generated connected router set R;

1: Train the vector field v̂(x, t;θ) of FM using loss from Eq.(6) on D.
2: Generate weight vectors {ωi}Ni=1 using the Das-Dennis method.
3: Initialize x1 with scaled Gaussian noise n using two classical GR solvers.
4: for t = 1 to T do
5: Set ∆t = 1
6: Calculate the score distribution using Eq.(10).
7: Calculate the guided vector field ṽ(x, t;θ) using Eq.(11).
8: Derive sampled routes (Pareto Front) with Eq.(12).
9: end for

10: return R

Table 2: Crrt, WLR and generation time on ISPD07 benchmarks. Note GAN-HubRouter can
not directly produces a fully connected result, while DSBRouter consumes a great generation time.
Compared with them, our ParetoRouter achieves 100% correctness rate with a small generation time.

METRIC CASE
HUBROUTER (GAN)
(DU ET AL., 2023)

DSBROUTER
(SHI ET AL., 2025)

PARETOROUTER
(OURS)

Correctness
Rate

SMALL-4 0.48 ± 0.004 1.000 ± 0.000 1.000 ± 0.000
SMALL 0.12 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

LARGE-4 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LARGE 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Wirelength
Ratio

SMALL-4 1.012 ± 0.011 1.015 ± 0.000 1.016 ± 0.000
SMALL 1.002 ± 0.001 1.001 ± 0.000 1.002 ± 0.000

LARGE-4 1.004 ± 0.021 1.001 ± 0.000 1.002 ± 0.000
LARGE 1.001 ± 0.000 1.002 ± 0.000 1.003 ± 0.000

Generation Time
(GPU Sec)

SMALL-4 5.88 ± 0.11 2643 ± 3.11 7.66 ± 0.30
SMALL 7.15 ± 0.09 2671 ± 1.68 8.92 ± 0.06

LARGE-4 6.00 ± 0.07 2687 ± 3.30 8.27 ± 0.19
LARGE 7.82 ± 0.10 2571 ± 2.24 12.33 ± 0.11

5.1 SETTINGS

For evaluation, we conduct experiments on both ISPD07 (newblue04–newblue07 and
adaptec01–adaptec05) and ISPD98 (ibm01–ibm06) benchmarks (Alpert, 1998). For both benchmarks,
we use WL, OF, and generation time as the primary evaluation criteria. Our proposed ParetoRouter is
compared with three classical routing algorithms — GeoSteiner (Juhl et al., 2018), Labyrinth (Kastner
et al., 2002), FlUTE (Wong & Chu, 2008) and ES (Chu & Wong, 2005) — as well as three SOTA
ML-based methods: Hubrouter (Du et al., 2023), NeuralSteiner (Liu et al., 2024) and DSBRouter (Shi
et al., 2025). We also stduy the Correctness Rate (Crrt), Wirelength Ratio (WLR) (Cheng et al., 2022)
and Generation Time on newblue04–newblue07 as DSBRouter does.

It is worth noting that four SOTA solvers (Liu et al., 2024; Feng & Feng, 2025; Chen et al., 2025b; Li
et al., 2024) are either tailored to benchmarks with different standards (Liang et al., 2024; Dolgov
et al., 2019) or have not been publicly released (Liu et al., 2024; Chen et al., 2025b; Feng & Feng,
2025). Because NeuralSteiner evaluates on the same benchmarks as the two open-source solvers
(Hubrouter and DSBRouter), we report its results as provided in the original paper to enable a
fair comparison. Further details on the experimental benchmarks and additional supplementary
experiments are given in Appendix A.5.2; A.6.1.

5.2 CRRT AND WLR ON PARTIAL ISPD07 BENCHMARKS

Following prior ML-based studies Shi et al. (2025), we evaluate ParetoRouter against existing
ML-based solvers on the ISPD07 benchmarks (newblue04–newblue07), partitioned into four cate-
gories—small, small-4, large, and large-4—consistent with earlier works. For simplicity, we report
results only for GAN-Hubrouter, as other Hubrouter variants yield less competitive results. We
also cancel RL-based post-processing for GAN-Hubrouter to ensure a fair comparison (Shi et al.,
2025). As shown in Table 2, ParetoRouter and DSBRouter, as two end-to-end solvers, achieve
routing solutions with 100% connectivity, whereas Hubrouter without post-processing maintains
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Table 3: Wirelength (WL) & overflow (OF) on ISPD98: classical global routing (GeoSteiner,
Labyrinth, Flute+RES) and ML-based methods (Hubrouter, NeuralSteiner, DSBRouter).

METRICS MODEL IBM01 IBM02 IBM03 IBM04 IBM05 IBM06

WL

GEOSTEINER 60142 165863 145678 162734 409709 275868
LABYRINTH 75909 201286 187345 195856 420581 341618
FLUTE+ES* 61492 169251 146287 167547 411936 280477

HR-VAE 64703 ± 1498 176492 ± 6830 159968 ± 3281 179895 ± 5274 434942 ± 2916 301144 ± 5832
HR-DPM 66464 ± 1586 190588 ± 2337 168454 ± 2486 183696 ± 1736 475820 ± 5516 320423 ± 2958
HR-GAN 61056 ± 151 167545 ± 236 147050 ± 208 164298 ± 326 411857 ± 472 277977 ± 514

NEURALSTEINER* 61735 170405 148036 166648 415684 283727
DSBROUTER 61435 174016 152862 163942 420464 342349

PARETOROUTER (OURS) 63386 174896 155993 171859 482016 307696

OF

GEOSTEINER 3342 7399 3944 7420 401 8033
LABYRINTH 292 384 122 1124 0 502
FLUTE+ES* 3100 7121 3699 6889 317 7821

HR-VAE 4721 ± 667 9919 ± 801 7311 ± 692 10433 ± 1299 909 ± 106 14103 ± 1684
HR-DPM 4933 ± 700 14117 ± 1309 9344 ± 818 11471 ± 871 2390 ± 126 17229 ± 1500
HR-GAN 3491 ± 64 7481 ± 31 4010 ± 42 7551 ± 22 419 ± 7 8039 ± 12

NEURALSTEINER 2200 3800 2100 2700 18 2833
DSBROUTER 1430 0 4 10 0 11858

PARETOROUTER (OURS) 1051 0 0 0 0 0

TIME

GEOSTEINER 3.08 6.91 6.80 9.07 7.72 7.66
LABYRINTH * 7.11 11.08 11.61 42.03 12.70 21.02
FLUTE+ES * 3.14 4.90 5.88 15.49 7.88 14.11

HR-VAE 9.66± 0.08 9.69± 0.04 10.19± 0.06 12.93± 0.07 14.58± 0.00 17.28± 0.16
HR-DPM 1796.09± 38.68 2772.29± 16.83 2936.52± 21.23 3865.21± 25.07 4369.47± 22.56 4965.08± 121.46
HR-GAN 41.02± 0.51 46.58± 0.56 52.04± 2.35 67.31± 3.51 72.28± 3.72 88.02± 4.45

NEURALSTEINER * 27.18 34.79 46.24 50.37 75.99 70.32
DSBROUTER 4991 5667 8418 10745 11313 11858

PARETOROUTER (OURS) 42.37 61.96 68.09 91.20 131.80 121.76
* EXPERIMENTAL RESULTS CITED FROM RAW MANUSCRIPTS.

only about 30% connectivity on average. ParetoRouter preserves WLR performance comparable
to both Hubrouter and DSBRouter, while delivering generation time on par with Hubrouter and
superior to DSBRouter. Unless otherwise noted, all reported ParetoRouter results were obtained with
ω1 = ω2 = 0.5.

5.3 OF AND WLR ON REAL-WORLD BENCHMARKS

Noting that, as ParetoRouter produces multiple results to satisfy the MOO constraints and OF is
relatively important than WL (Liu et al., 2024), we present the WL and OF of the sampled routes that
reduce OF the most.

Routing Results on ISPD98. Table 3 shows the WL, OF and generation time for all tested methods
on ISPD98 benchmarks. For OF, ParetoRouter achieves the most OF reduction. Compared with
the SOTA ML-based OF-oriented DSBRouter, ParetoRouter significantly reduces the total OF with
a reduction of 36.06% on ibm01 and 100% on ibm05 and only uses an average 1/10 generation
time of DSBRouter. In terms of wirelength, ParetoRouter does not incur too much loss, with the
least 5.24% on ibm01 and the most 15.00% on ibm05 compared with GeoSteiner. For generation
time, ParetoRouter remains at the same level as NeuralSteiner, but there is still a gap compared to
VAE-based Hubrouter and other classical methods.

Routing Results on ISPD07. Table 4 shows the WL, OF and generation time for selected tested
methods on ISPD07 benchmarks. We keep the GAN-based Hubrouter and skip other variants of
Hubrouter, as the GAN variant gets the best outcome. With the size of nets increasing, ParetoRouter
and DSBRouter get the most OF reduction compared to all other methods across all tested benchmarks.
But, compared to DSBRouter, ParetoRouter does not incur much increase in WL. For WL and
generation time, ParetoRouter shows a similar performance compared to ISPD98.

5.4 ABLATION STUDY

Table 5: OF & WL w/ varying ablated compo-
nents on ibm01.

Loss OF WL Time

w/o xNCTU
1 1211 63771 41.11

w/o xNTHU
1 1379 63529 42.56

w/o NN 1565 63450 27.07
w/o Guidance - - -
ParetoRouter 1051 63386 42.37

Series of ablation studies are conducted to study
the effectiveness of classifier gradient guidance, pro-
posed loss function, NN module, as well as classifier
guidance module.

Role of Loss Function, NN Module, and Classi-
fier Guidance Module. To assess the roles of these
three components within the ParetoRouter frame-
work, we perform ablations separately. For the loss
function, we remove the xNTHU

1 term. For the NN
module and the classifier-gradient guidance module,
we remove the corresponding components from the model architecture. We report results for OF and
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Table 4: Wirelength (WL) & overflow (OF) on ISPD07. Comparison of 2 selected classical global
routing (GeoSteiner, Flute+RES) and 3 ML-based methods (Hubrouter, NeuralSteiner, DSBRouter).

METRICS MODEL ADAPTEC01 ADAPTEC02 ADAPTEC03 ADAPTEC04 ADAPTEC05

WL

GEOSTEINER 3389601 3209172 9330748 8865643 9784471
NCTU-GR 3623718 3331725 9598156 9087206 10560933

NTHUROUTER* 5344000 5229000 13101000 12169000 15538000
FLUTE+ES* 3418461 3235803 9417934 8896007 9886249

HR-GAN 3407033 3229110 9355980 8888775 9832110
NEURALSTEINER* 3438717 3247429 9459117 9003952 9915795

DSBROUTER 12299050 10072054 29478326 24276147 -
PARETOROUTER(OURS) 3522091 3386722 9502199 9021491 10288329

OF

GEOSTEINER 35945 53848 142254 45050 102300
NCTU-GR 0 0 0 0 0

NTHUROUTER* 0 0 0 0 0
FLUTE+ES* 32518 50947 137104 42306 957704

HR-GAN 35441 53652 142131 45230 102108
NEURALSTEINER* 82 255 728 97 431

DSBROUTER 0 0 0 0 -
PARETOROUTER(OURS) 0 0 0 0 0

TIME

GEOSTEINER 92.70 123.00 371.02 311.19 320.07
NCTU-GR 8.96 8.31 26.67 21.00 27.45

NTHUROUTER* 10.0 2.10 10.90 2.60 23.00
FLUTE+ES * 118.48 187.03 396.51 376.72 360.68

HR-GAN 593.02 780.44 1324.81 1387.01 1384.96
NEURALSTEINER* 347.20 461.35 1351.91 1138.66 1106.54

DSBROUTER 65624 119353 115438 125589 -
PARETOROUTER(OURS) 422.20 469.51 1561.30 1418.09 1500.11

* EXPERIMENTAL RESULTS CITED FROM RAW MANUSCRIPTS.

WL on ibm01. As ParetoRouter cannot guarantee connectivity of the generated routes without the
guidance module, we thus don’t report results of the NN-ablated ParetoRouter. Table 5 shows that
both WL and OF are affected by all three components. When xNTHU

1 is ablated, both OF and WL
increase compared to the complete ParetoRouter. When the guidance module is ablated, OF increases
markedly, whereas WL decreases, which is reasonable since Geostiner emphasizes WL optimization.
Taken together, these results demonstrate the effectiveness of the proposed components within the
ParetoRouter framework.

Table 6: OF & WL w/ varying γi · ωi on
ibm01.

γ1 · ω1 γ2 · ω1 OF WL

0 1 1505 63317
0.2 0.8 1051 63386
0.5 0.5 1493 63563
0.8 0.2 1671 63847
1 0 1682 63956

Influence of ω. To evaluate whether the proposed
Das–Dennis–based sampling can effectively manage the
Pareto Front, we examine the generated weightings γi ·
ωi. The performance variation observed across different
weightings underscores the effectiveness of the proposed
sampling scheme in controlling the Pareto front. Specif-
ically, we generate 10 uniformly spaced weightings to
approximate the Pareto front in GR. For illustration, we
select four distinct ω for ParetoRouter and conduct exper-
iments on ibm01, as ibm01 exhibits greater variability
in OF.As shown in Table 6, as the ratio γ1 · ω1 increases from 0 to 0.2, OF reaches its minimum
at γ1 · ω1 = 0.2 and then increases as γ1 · ω1 continues to grow, whereas WL increases monotoni-
cally. This pattern suggests that generating more routes (i.e., larger WL) can exacerbate congestion
along existing routes. These observations also provide indirect evidence for the effectiveness of the
proposed guided sampling in managing the Pareto Front.

6 CONCLUSION AND OUTLOOK

In this paper, we introduce ParetoRouter, an end-to-end ML-based global router. Equipped with a
simple AF loss and a classifier-gradient guidance module subject to multi-objective optimization
(MOO) constraints, ParetoRouter can generate either OF-oriented or WL-oriented routes with 100%
connectivity for previously unseen large-scale nets in a single step. Experimental results show that
ParetoRouter reduces overflow by an average of 68% while incurring only a modest wirelength
penalty—particularly on large-scale nets, thereby narrowing the gap between ML-based solvers and
practical chip-design applications.

Limitations and Future Work. However, the NN module can still predict superfluous routes that
are incorporated into the final routing solution, increasing WL. Moreover, compared with some
ML-based solvers (e.g., GAN-Hubrouter and NeuralSteiner), ParetoRouter exhibits slightly longer
generation times, which we attribute to the additional gradient computations. In future work, we will
focus on optimizing generation time and further reducing WL.
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Gaillardon. Slap: A supervised learning approach for priority cuts technology mapping. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 859–864. IEEE, 2021.
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Algorithm 2 Training of FM within ParetoRouter
Input: Dataset D, epochs epos, Time scheduler T , NthuRouter (Chang et al., 2008) NTHU ,

NCTU-GR (Liu et al., 2013) NCTU ;
Output: Vector field v̂(x, t;θ);

1: Initialize model parameters θ.
2: Construct q(x0) and pdata(x1) utilizing D.
3: for epo = 1 to epos do
4: Sample a batch of pcurr from q(x0).
5: Sample a Gaussian noise n0 like pcurr.
6: Construct x0 utilizing n0 and pcurr under x0 = fn(n0 + pcurr).
7: Derive xNTHU

1 and xNCTU
1 from NTHU(pcurr) and NCTU(pcurr), respectively.

8: Sample t from T .
9: Derive xt using Eq. 4.

10: Derive output of the vector field v̂(x, t;θ).
11: Compute loss L = Et,pdata(x0),q(x1) using Eq. 6.
12: Loss.backward().
13: end for
14: return v̂(x, t;θ).

A APPENDIX

A.1 SUPPLEMENTAL RELATED WORKS

The section reviews works on offline multi-objective optimization and guided generative modeling.

Offline Multi-Objective Optimization (MOO). Most MOO research has focused on the online
setting, where a black-box function is queried interactively to optimize multiple objectives simultane-
ously (Jiang et al., 2023; Park et al., 2023; Gruver et al., 2023). By contrast, offline MOO is often
more realistic because online queries may be costly or risky (Xue et al., 2024). In the offline regime,
a learned predictor serves as the oracle and enables two classical families of methods. Evolutionary
algorithms conduct population-based search via iterative parent selection, reproduction, and survivor
selection (Zhang et al., 2021; Li, 2024; Yuan et al., 2025). Bayesian optimization instead leverages
the predictor within an acquisition function to select promising candidates, iteratively refining the
search through sampled evaluations (Daulton et al., 2023; Golovin & Zhang, 2020; Qing et al., 2023).
Training the predictor can be further improved by techniques such as COMs (Trabucco et al., 2021),
ROMA (Yu et al., 2021), NEMO (Fu & Levine, 2021), ICT (Yuan et al., 2023), Tri-mentoring (Chen
et al., 2023), GradNorm (Chen et al., 2018), and PcGrad (Yu et al., 2020), which enhance training
efficiency and stability. Guided Generative Modeling. A parallel line of work develops generative
models that produce samples meeting multiple desired properties. For example, Wang et al. (2021)
incorporates structure–property relations into a conditional Transformer to bias generation, and Wang
et al. (2022) employs a VAE to recover semantics and property correlations by modeling weights
in the latent space. Tagasovska et al. (2022) apply multiple-gradient descent to trained EBMs to
synthesize new samples, though training an EBM per property is complex. Han et al. (2023) explores
a distinct setting aimed at generating modules that satisfy specified conditions. Zhu et al. (2023)
use GFlowNets as acquisition functions, and Jain et al. (2023) integrate multiple objectives into
GFlowNets. Yao et al. (2024) induce diversity via hand-crafted penalties rather than uniform weight
vectors in a white-box setting. Gruver et al. (2023) investigate online multi-objective optimization
within a diffusion framework, using an acquisition function to guide sampling, while Kong et al.
(2024) apply multi-objective guidance under diffusion but assume equal weights across properties,
which cannot recover the Pareto front. Related work on guided diffusion also targets single-objective
optimization (Chen et al., 2024; Yuan et al., 2024). Overall, many of these approaches rely on
generators that are either less expressive or difficult to train De Bortoli et al. (2021). In contrast,
ParetoRouter pairs a SOTA flow-matching model with classifier-gradient guidance for sampling.
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Algorithm 3 Classifier Function h

Input: Vector field v̂(x, t;θ), x0, scaling factors γ;
Output: Weighted score f̂ω(xt);

1: Derive weightings ω leveraging Das-Dennis approach (Das & Dennis, 1998).
2: Derive sampled x

′

1 using the vector field v̂(x, 0;θ) and x0.
3: Extract predicted routing map r from x

′

1.
4: Compute complete routing map r

′
under minimal

∑n
i=1 γif̂i(x

′

1)ωi.
5: Require x

′

1.gradient.
6: Initialize mask map m = 0.
7: for r ∈ R′ ∪ R do
8: if r ∈ R ∧ r ∈ R′

then
9: pass

10: else if r ∈ R ∧ r /∈ R′
then

11: mask map m(r) = 1.
12: else r /∈ R ∧ r ∈ R′

13: mask map m(r) = −1.
14: end if
15: end for
16: h(v̂(x, t;θ) + x0) = r ·m
17: Compute f̂ω(xt) utilizing Eq. 9.
18: return f̂ω(xt).

A.2 SUPPLEMENTAL ALGORITHMS

This section introduces the training algorithms in Algorithm. 1 (Line 1) and classifier function h in
Eq. 7.

A.2.1 TRAINING OF FM

Training of the FM within ParetoRouter is summarized in Algorithm 2. We inject scaled noise n0

into the clean data for the following reasons: Through experiments, we find that the intensity of
the injected noise has a negligible effect on both FM training and Das–Dennis sampling. However,
without this perturbation the backbone converges poorly (i.e., the trained FM module cannot reliably
compute, under supervision, the flow that bridges the initial pins x0 and the final connected routes
x1.) We therefore conclude that adding appropriately scaled noise to clean data facilitates the model
training. In practice, we sample Gaussian noise, add it to the clean pcurr, and then normalize the
corrupted x0 using the normalization function fn.

A.2.2 CLASSIFIER FUNCTION

ParetoRouter employs a guidance module, first introduced in DSBRouter (Shi et al., 2025), to steer
route generation, as shown in Algorithm 3. Nevertheless, there are essential differences between the
guidance used by ParetoRouter and that in DSBRouter.

Firstly, DSBRouter applies an SDE-based gradient guidance (Li et al., 2023) to drive DSB generation,
whereas ParetoRouter operates within the FM framework. DSBRouter adopts SDSB (Tang et al.,
2024) as its backbone and leverages the series proposed theories in Tang et al. (2024) together with
the energy-function formalism (LeCun et al., 2006) to justify an SDE-based guidance of the form:

pθ(xt | xt+1, g
∗) = Zpθ(xt | xt+1)p(g

∗ | xt) (13)

where g∗ denotes the optimal objective score. Since ParetoRouter uses Eq. 7 within the FM framework
to guide the generation process, the underlying working principles are different, and the DSBRouter
guidance cannot be directly applied to ParetoRouter.

Secondly, ParetoRouter integrates multi-objective optimization (MOO) constraints into the design
of its classifier-guidance module, whereas DSBRouter considers only the reduction of the objective
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function (OF). In DSBRouter, the following formula:

▽xt+1
log p(g∗|xt+1) = ▽xt+1

(Eo
xt+1∼pr(xt+1|xt+2)

(η(xt+1))−O(η(xt+1))) (14)

is used to approximate p(g∗ | xt) ∝ exp([▽xt+1
(Eo

xt+1∼pr(xt+1|xt+2)
(η(xt+1)) −

O(η(xt+1)))]
⊺xt). Because the gradient of O(η(xt+1)) is zero, Eq. 14 effectively uses the gra-

dient of Eo
xt+1∼pr(xt+1|xt+2)

(η(xt+1)) to compute ▽xt+1 log p(g
∗|xt+1). Here, Eo in DSBRouter

is the expected routing given xt+2, and E is computed under the constraint:

argmin
x̄t

|Eo
x̄t∼pr(x̄t|xt+1)

(η(x̄t))−O(η(x̄t)) + c(x̄t)| (15)

which indicates that DSBRouter aims solely to minimize the OF. In contrast, ParetoRouter employs a
neural-network–free classifier that explicitly accounts for MOO constraints:

argmin
x

′
t

|
n∑

i=1

γif̂i(x
′

t)ωi| (16)

This design aligns with the objective of ParetoRouter’s generation process and enables more diverse
routing results compared with DSBRouter (Shi et al., 2025).

A.3 DERIVATION OF EQ. 7

This section derives Eq. 7. By Lemma 1 in Zheng et al. (2023), the guided vector field takes the form:

ṽ(x, t;θ) = atxt + bt∇x log p(xt | s) (17)

where at =
ȧt

at
and bt = (ȧtσt − atσ̇t)

σt

at
. Setting at = t and σt = 1− t, Eq. 17 simplifies to:

ṽ(x, t;θ) =
1

t
xt +

1− t

t
∇x log p(xt | s) (18)

The conditional log-probability function is written as

log p(xt | y) = log pθ(xt) + log p(s | h(xt, t))− log p(s) (19)

where pθ(xt) denotes the data distribution learned by the flow matching model and p(s | h(xt, t)) is
the classified property distribution.

Substituting these expressions yields

ṽ(x, t, y;θ) =
1

t
xt +

1− t

t
∇x log pθ(xt) +

1− t

t
∇xt log p(s | h(xt, t)) (20)

= ṽ(x, t;θ) +
1− t

t
∇xt

log p(s | h(xt, t)) (21)

A.4 PARETOROUTER NETWORK ARCHITECTURE

A.4.1 BACKBONE

We adopt a symmetric U-Net with time-conditioned residual blocks and attention. Starting from
64×64 RGB inputs, a 7×7 stem (3→64) feeds four encoder stages with channel widths [64, 64,
128, 256] and a 512-channel bottleneck. Each encoder stage contains two ResNet blocks with
adaptive instance normalization (AdaIN) modulated by a learned time embedding, a self-attention
module (linear attention in the first three stages and full attention at the deepest stage), and a 2×
downsampling operation, producing the resolution sequence 64→32→16→8→4. Attention uses
four heads with 32-dimensional subspaces and four learnable memory key–value pairs. At 4×4,
the bottleneck expands into two hyperconnected residual streams, applies two 512-channel ResNet
blocks interleaved with full attention, and then reduces back to a single stream. The decoder mirrors
the encoder: at each resolution it concatenates the corresponding skip features (doubling the channel
dimensionality), applies two ResNet blocks with 1×1 residual projections, inserts attention (full at
the first decoder stage, linear thereafter), and upsamples via nearest-neighbor interpolation followed
by a convolution. RMSNorm is used throughout, linear attention is employed at higher resolutions to
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Table 7: Summary of the test dataset. We respectively show the scale size, verticalhorizontal
capacity, number of nets, and average/maximum number of pins for each net.

CASE IBM01 IBM02 IBM03 IBM04 IBM05 IBM06 ADA01 ADA02 ADA03 ADA04 ADA05

SIZE 64 × 64 80 × 64 80 × 64 96 × 64 128 × 64 128 × 64 324 × 324 424 × 424 774 × 779 774 × 779 465 × 468
CAP.(V/H) 24/28 44/68 40/60 40/46 84/126 40/66 70/70 80/80 62/62 62/62 110/110

NETS 11507 18429 21621 26163 27777 33354 219794 260159 466295 515304 867441
AVG.PINS 4.31 4.88 4.10 3.86 5.25 4.21 4.29 4.09 4.02 3.71 4.03

MAX.PINS 42 134 55 46 17 35 2271 1935 3713 3974 9863

reduce complexity from O(n²) to O(n), while full attention is retained at the lowest resolution. The
overall downsampling factor is 16, so input height and width must be divisible by 16.

Temporal conditioning is provided by a 64-D sinusoidal positional encoding passed through a
two-layer GELU MLP to produce a 256-D time embedding, in each ResNet block, AdaIN applies
feature-wise scaling and shifting derived from this embedding, i.e., norm(x)·(scale+1)+shift. Under
a conventional instantiation with two 3×3 convolutions per residual block, 1×1 projections where
required, 128-D attention projections (4×32 heads), and the above time-conditioning MLP, the
model comprises approximately 21.5 million trainable parameters: 20.9M in convolutional/residual
pathways, 0.79M in attention projections, and 0.08M in the time-embedding MLP, with normalization
parameters being negligible.

A.4.2 MOEL PARAMETERS

For training, learning rate lr is fixed to 0.0003 and batch size is set to 256. Training of FM is under
fp16 precision. For sampling, the sampling steps is set to 1, aligned with the description in 4.2.

A.4.3 REASONS FOR CHOOSING NCTU-GR AND NTHUROUTER

Previously, single-objective ML-based solvers typically used the solutions produced by a traditional
solver as supervisory signals. For example, HubRouter Du et al. (2023) is supervised using NCTU-
GR (Liu et al., 2013), whereas DSBRouter Shi et al. (2025) is supervised using NTHURouter (Chang
et al., 2008). In our initial experiments, we also used only the outputs of NTHURouter as the
supervisory signal and observed performance comparable to DSBRouter. This naturally raises the
question of whether combining the outputs of multiple solvers as a weighted supervisory signal can
enlarge the effective search space explored by the CFG-guided reverse (denoising) diffusion process,
thereby improving the results of multi-objective optimization. Motivated by this hypothesis, we
incorporate supervision from two empirically strong solvers, NTHURouter and NCTU-GR. Our
ablation study confirms the effectiveness of the proposed loss design. However, although we do not
include additional solver outputs, we argue that the benefit of such supervision is unlikely to grow
linearly with the number of solvers. A larger effective search space implies a longer guided generation
trajectory, and as the search space grows without bound, the additional exploration becomes almost
indistinguishable from the noise injected at time t0, ultimately degrading the model’s performance.

A.5 EXPERIMENTAL PROTOCOLS

A.5.1 DATASETS AND HARDWARE FOR EXPERIMENTS

We evaluate our approach on the real-world datasets ISPD07 (Nam et al., 2007) and ISPD98 (Alpert,
1998). Following Du et al. (2023); Shi et al. (2025); Liu et al. (2024), we build low-overflow expert
training datasets by using Nthurouter (Chang et al., 2008) and low-wirelength expert training datasets
by using NCTU-GR (Liu et al., 2013) to route a subset of the ISPD07 benchmarks—bigblue1,
bigblue2, bigblue3, bigblue4, newblue4, newblue5, newblue6, and newblue7. The dataset pre-
processing follows the pipeline outlined in Hubrouter (Du et al., 2023). Interaction of the two solvers’
routing results are selected, resulting in nearly 220k samples in total. We initialize the capacities as
specified by the benchmarks and route the nets sequentially using the results of Chang et al. (2008).
After each capacity update, we generate a condition image comprising the current capacity and the pin
locations for the next net, and we simultaneously produce and store the corresponding ground-truth
route image. Both images are randomly clipped, when feasible, to a common resolution of 64 × 64.
For the evaluation reported in Table. 2, we select newblue1, newblue2 from ISPD07—outside the
training set—with a total of 10k samples. A summary of the ISPD98 test cases is provided in Table. 7.
We prepare the ISPD98 test cases using the same processing pipeline as in Du et al. (2023).
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Table 8: Relative error on ISPD98. The routing results of Juhl et al. (2018) are treated as the
theoretical lower bound. Optimal results are in bold.

MODEL IBM01 IBM02 IBM03 IBM04 IBM05 IBM06

LOWER BOUND 60142 165863 145678 162734 409709 275868

LABYRINTH 0.262 0.213 0.286 0.203 0.026 0.238
FLUTE+ES 0.023 0.017 0.007 0.027 0.007 0.016

HR-VAE 0.075 ± 0.024 0.064 ± 0.04 0.098 ± 0.022 0.105 ± 0.032 0.061 ± 0.007 0.091 ± 0.021
HR-DPM 0.105 ± 0.026 0.149 ± 0.014 0.156 ± 0.017 0.128 ± 0.010 0.161 ± 0.013 0.161 ± 0.010
HR-GAN 0.022 ± 0.002 0.010 ± 0.001 0.009 ± 0.001 0.009 ± 0.002 0.005 ± 0.001 0.007 ± 0.001

NEURALSTEINER 0.026 0.027 0.016 0.024 0.014 0.028
DSBROUTER 0.021 0.049 0.049 0.007 0.026 0.240

PARETOROUTER 0.053 0.054 0.070 0.056 0.179 0.115

Table 9: Relative error on ISPD07. The routing results of Juhl et al. (2018) are treated as the
theoretical lower bound. Optimal results are in bold.

MODEL ADAPTEC01 ADAPTEC02 ADAPTEC03 ADAPTEC04 ADAPTEC05

LOWER BOUND 3389601 3209172 9330748 8865643 9784471

FLUTE+ES 0.008 0.008 0.009 0.003 0.010
HR-GAN 0.005 0.006 0.002 0.002 0.004

NEURALSTEINER 0.014 0.011 0.013 0.015 0.013
DSBROUTER 2.628 2.138 - 2.159 1.738

PARETOROUTER 0.039 0.055 0.018 0.017 0.051

Training of FM and all subsequent experiments are conducted on a machine equipped with an Intel
Xeon Platinum 8558 CPU, 8 NVIDIA H200 GPUs (143 GB memory each), and 1600 GB of RAM.

A.5.2 BASELINES

The baselines referred in Table. 3 are introduced as follows:

1) GeoSteiner (Juhl et al., 2018): An optimal RSMT construction solver which get results with SOTA
WL.

2) Labyrinth (Kastner et al., 2002): A classical routing algorithm that explores how the concept of
pattern routing can be utilized to guide the router toward a solution that minimizes interconnect delay
while preserving the routability of the circuit.

3) FLUTE (Wong & Chu, 2008): A fast and accurate RSMT construction method using a look-up
table. It is important to note that this approach can achieve the optimal solution for nets with up to 9
degrees.

4) Edge Shifting (Chu & Wong, 2005): A fast, practical RSMT-based algorithm that leverages a
specialized lookup table for small nets and a refined recursive splitting approach for larger nets.

5) Hubrouter (Du et al., 2023): A global router for RST construction based on reinforcement
learning. The hub is generated using a diffusion model, followed by reinforcement learning for RST
construction.

6) NeuralSteiner (Liu et al., 2024): A two-stage global router. The candidate points are predicted by
an RCCA-enhanced CNN, and routing is performed by an RST construction algorithm based on a
greedy strategy.

7) DSBRouter (Shi et al., 2025): An end-to-end global router based on Diffusion Schrödinger Bridge
(DSB) which reach SOTA OF reduction, but is behind in generation time.

A.6 MORE DISCUSSIONS ABOUT TESTED BASELINES.

In this section, we discuss the related error (Du et al., 2023) of selected tested methods and conver-
gence of proposed training of FM within ParetoRouter.

A.6.1 RELATED ERROR ON ISPD98 AND ISPD07 CASES

To assess improvements relative to the optimal wirelength rather than absolute values, we compare
the relative error on ISPD98 and ISPD07 across all tested methods (Table 8 and Table 9). The relative
error is defined as (WL−LB)/LB, where LB denotes the theoretical lower bound. On the ISPD98
benchmarks, ParetoRouter produces slightly more superfluous routes than other SOTA ML-based
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Figure 3: Convergence of Backbones within different solvers. Blue line, orange line and green line
denote training of FM within ParetoRouter, GAN-based Hubrouter and DSB in DSBRouter.

methods (i.e., DSBRouter (Shi et al., 2025), Hubrouter (Du et al., 2023), NeuralSteiner (Liu et al.,
2024)). On the ISPD07 benchmarks, GAN-Hubrouter leads, and ParetoRouter eliminates many
superfluous routes compared with DSBRouter, but it still lags behind NeuralSteiner, indicating
remaining room for improvement.

A.6.2 CONVERGENCE OF TRAINING OF FM

To study the convergence of the proposed AF and evaluate the training cost of ParetoRouter, we
compare the loss variation during training process across Hubrouter (Du et al., 2023), DSBRouter (Shi
et al., 2025) and our proposed ParetoRouter. It needs to be declare that NeuralSteiner (Liu et al.,
2024) still disclose the implementation details, so NeuralSteiner is not considered. As shown in
Fig. 3, Hubrouter and ParetoRouter can reach convergence in nearly 10 epochs, however, DSBRouter
needs 20 epochs to get similar convergence due to alternating training of forward and backward
models. This reveals that ParetoRouter can reduce training cost significantly compared to the SOTA
ML-based DSBRouter.

A.7 ADDITIONAL RESULTS

Generated routing results of ParetoRouter across different net scales, along with initial pins, real
routing results (ground truth) are shown in Fig. 4.
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Figure 4: Examples. Initial pins pcurr (first line), real routing results (second line), generated routing
results of ParetoRouter with varying γ1 · ω1 = 0, 0.2, 0.5, 1 (third line - sixth line), respectively.
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