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Abstract

The proliferation of online toxic speech is a per-001
tinent problem posing threats to demographic002
groups. While explicit toxic speech contains of-003
fensive lexical signals, implicit one consists of004
coded or indirect language. Therefore, it is cru-005
cial for models not only to detect implicit toxic006
speech but also to explain its toxicity. This007
draws a unique need for unified frameworks008
that can effectively detect and explain implicit009
toxic speech. Prior works mainly formulated010
the task of toxic speech detection and expla-011
nation as a text generation problem. Nonethe-012
less, models trained using this strategy can be013
prone to suffer from the consequent error prop-014
agation problem. Moreover, our experiments015
reveal that the detection results of such mod-016
els are much lower than those that focus only017
on the detection task. To bridge these gaps,018
we introduce TOXCL, a unified framework019
for the detection and explanation of implicit020
toxic speech. Our model consists of three mod-021
ules: a (i) Target Group Generator to generate022
the targeted demographic group(s) of a given023
post; an (ii) Encoder-Decoder Model in which024
the encoder focuses on detecting implicit toxic025
speech and is boosted by a (iii) Teacher Classi-026
fier via knowledge distillation, and the decoder027
generates the necessary explanation. TOXCL028
achieves new state-of-the-art effectiveness, and029
outperforms baselines significantly.030

1 Introduction031

Warning: This paper discusses and contains con-032

tent that can be offensive or upsetting.033

While social media has dramatically expanded034

democratic participation in public discourse, they035

have also become a widely recognized platform for036

the dissemination of toxic speech (Mathew et al.,037

2021; ElSherief et al., 2021; Yu et al., 2022). On-038

line toxic speech, therefore, is prevalent and can039

lead the victims to serious consequences (Olteanu040

et al., 2018; Farrell et al., 2019). For this reason,041
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Figure 1: A sample input post and its ground truth explana-
tion from the test set of Implicit Hate Corpus (ElSherief
et al., 2021). The input post is fed into both models. The base-
line model, RoBERTa, fails to detect the implicit toxic speech
while our proposed TOXCL model successfully detects it and
generates a toxic explanation that closely matches the ground
truth explanation.

the development of toxic detection tools has re- 042

ceived growing attention in recent years (Hutto and 043

Gilbert, 2014; Ribeiro et al., 2018; Balkir et al., 044

2022; Jahan and Oussalah, 2023). 045

Toxic speech can generally be categorized as 046

either explicit or implicit. Explicit toxic speech 047

contains direct offensive language targeting indi- 048

viduals or groups (Nockleyby, 2000) and has been 049

extensively studied (Schmidt and Wiegand, 2017; 050

Jahan and Oussalah, 2021). On the other hand, 051

implicit toxic speech presents a more challenging 052

detection task as it relies on stereotypes and indi- 053

rect language (ElSherief et al., 2021) (see Fig. 1) 054

and has received limited attention. Moreover, given 055

the absence of explicit offensive words or cues, it 056

is crucial for AI models not only to detect implicit 057

toxic speech but also to provide explanations for 058

its toxic nature (Sridhar and Yang, 2022). The act 059

of explanation serves practical purposes in various 060

real-life applications, including improving human- 061

machine interactions and building trustworthy AI 062

systems (Ribeiro et al., 2016; Dosilovic et al., 2018; 063

Bai et al., 2022). 064

These applications, therefore, pose a need for 065

unified systems that can effectively detect implicit 066

toxic speech and explain its toxicity. However, 067

1



previous works have mainly focused on a hybrid068

approach that combines detection and explanation069

tasks into a single text generation problem. For070

example, Sap et al. (2020) proposed concatenating071

the toxic speech label and explanation as the tar-072

get output, AlKhamissi et al. (2022) and Huang073

et al. (2022) extended this approach by incorporat-074

ing additional data such as target group(s) or social075

norms. Unfortunately, these hybrid approaches can076

introduce error propagation problems (Wu et al.,077

2018), possibly due to differences in training ob-078

jectives (see Sec. 3.2.3). Consequently, models079

formulated in this manner tend to have much lower080

detection scores compared to models that focus081

solely on detection, as evidenced by our experimen-082

tation results (Sec. 4). Another simple approach083

is building a modular-based system separating the084

detection module and the explanation generation085

module. However, in reality, this kind of frame-086

work is computationally expensive to train, store087

and deploy as it has multiple components.088

To bridge these gaps in detecting and explaining089

implicit toxic speech, we propose a unified frame-090

work TOXCL consisting of three modules (Fig. 2).091

Our approach is motivated by the findings that mod-092

eling the minority target groups associated with093

toxic speech can potentially improve the perfor-094

mance of both implicit toxic detection and explana-095

tion tasks (ElSherief et al., 2018; AlKhamissi et al.,096

2022; Huang et al., 2022). To achieve this, we build097

a Target Group Generator as our first module to098

generate the target minority group(s) based on the099

input post. The generated target group(s) and the100

post are then input into an Encoder-Decoder Model101

whose encoder detects the speech, and the decoder102

outputs the necessary toxic explanation. To en-103

hance the detection performance of our encoder, we104

incorporate a strong Teacher Classifier that utilizes105

the teacher forcing technique during training to dis-106

till knowledge to our encoder classifier. Finally,107

we introduce a Conditional Decoding Constraint108

to enhance the explanation ability of the decoder109

during inference. Our model achieves state-of-the-110

art performance on the Implicit Hate Corpus111

(IHC) (ElSherief et al., 2021) and Social Bias112

Inference Corpus (SBIC) (Sap et al., 2020) in113

the task of implicit hate speech detection and expla-114

nation, outperforming baselines. Our contributions115

are as follows:116

(i) We present a unified framework for the detec-117

tion and explanation of implicit toxic speech. To118

the best of our knowledge, our work represents a119

pioneering effort in integrating both tasks into an 120

encoder-decoder model to avoid the error propa- 121

gation problem while maintaining the competitive 122

performance on both tasks parameter-efficiently. 123

(ii) We propose to generate target groups for 124

the toxic speech detection and explanation model 125

through the utilization of an encoder-decoder 126

model, thereby distinguishing our approach from 127

previous methods (see Sec. 3.2.1). We also in- 128

troduce several techniques to enhance the perfor- 129

mance of our model: (1) joint training among the 130

tasks to make the detection and explanation model 131

end-to-end; (2) using teacher forcing to train the 132

encoder; (3) a simple Conditional Decoding Con- 133

straint during the inference to avoid generating un- 134

necessary explanation. 135

(iii) We set up new strong state-of-the-art results 136

in the task of implicit toxic speech detection and 137

explanation tasks in two widely used benchmarks 138

Implicit Hate Corpus (IHC) and Social Bias 139

Inference Corpus (SBIC). 140

(iv) We conduct a thorough analysis to demon- 141

strate the effectiveness of our architectural design. 142

We will open-source our model to inspire and facil- 143

itate future research. 144

2 Related Work 145

2.1 Toxic Speech Detection & Explanation 146

Early studies on identifying toxic speech relied on 147

linguistic rule-based approaches (Chen et al., 2012; 148

Hutto and Gilbert, 2014; Gitari et al., 2015; Wie- 149

gand et al., 2018). However, these methods, which 150

use predetermined lexical and syntactic rules, strug- 151

gle to detect implicit toxic speech without explicit 152

vulgarities (Breitfeller et al., 2019; MacAvaney 153

et al., 2019). Recent frameworks based on trans- 154

former architecture (Vaswani et al., 2017) have 155

made progress in detecting toxic speech (Basile 156

et al., 2019; Tran et al., 2020; Kennedy et al., 2020). 157

However, detecting implicit toxic speech remains 158

challenging despite attempts to improve perfor- 159

mance on this task (Vidgen et al., 2019; Caselli 160

et al., 2020, 2021; Kim et al., 2022). The issue of 161

explaining why a text is toxic has received even 162

more limited attention, with some studies focusing 163

solely on explaining implicit toxic speech (ElSh- 164

erief et al., 2021; Sridhar and Yang, 2022). An- 165

other few studies have addressed both implicit toxic 166

speech detection and explanation (Sap et al., 2020; 167

AlKhamissi et al., 2022; Huang et al., 2022), often 168

formulating them as text generation tasks, possibly 169
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Figure 2: An overview of our proposed TOXCL. It consists of three modules: a (i) Target Group Generator generates the target
group(s) of the input post; an (ii) Encoder-Decoder Model whose encoder focuses on implicit toxic speech detection whilst its
decoder aims to generate necessary toxic explanation; a (iii) Teacher Classifier to distil the knowledge to the classifier encoder.

leading to error propagation and lower detection170

scores compared to detection-only models.171

2.2 Knowledge Distillation172

Knowledge distillation (Hinton et al., 2015) is a173

technique that enables a smaller student model174

to learn from a larger teacher model by transfer-175

ring knowledge. It has proven effective in im-176

proving performance, reducing computational re-177

quirements, and increasing efficiency in the field178

of Computer Vision (Gou et al., 2021). Recently,179

researchers have explored applying knowledge dis-180

tillation in Natural Language Processing. For exam-181

ple, Fu et al. (2020) used a contrastive approach to182

align the intermediate layer outputs of the teacher183

and student models. Turc et al. (2019) extensively184

studied the interaction between pre-training, dis-185

tillation, and fine-tuning, demonstrating the effec-186

tiveness of pre-trained distillation in tasks like sen-187

timent analysis. Additionally, Clark et al. (2019)188

trained a multitasking network by ensembling mul-189

tiple single-task teachers. In our work, we dis-190

till the knowledge from a teacher classifier to our191

model’s classifier (the student classifier), optimiz-192

ing the Kullback-Leibler distance (Csiszár, 1975)193

between soft labels.194

3 Methodology195

3.1 Problem Formulation196

The task of implicit toxic speech detection can197

be formulated as a binary classification problem198

while the explanation generation task can be re-199

garded as a text generation problem. Each data200

instance ⟨IP, Y,E⟩ consists of an input post IP , a201

binary class label Y (1 for toxic speech, 0 for non-202

toxic speech), and a corresponding explanation E203

([None] for non-toxic speech). The models then204

take IP as the input and learn to output Y and E.205

3.2 TOXCL Framework 206

Figure 2 shows an overview of our proposed 207

TOXCL, consisting of three modules: (i) Target 208

Group Generator; (ii) Encoder-Decoder Model; 209

(iii) Teacher Classifier. The details of each module 210

are presented below. 211

3.2.1 Target Group Generator (TG) 212

Current toxic speech detection systems often over- 213

look the nuances of toxic speech, which can be 214

better addressed by modeling the minority target 215

groups associated with it (ElSherief et al., 2018). 216

Incorporating target group information has the po- 217

tential to improve the accuracy of toxic speech 218

detection and enable the generation of high-quality 219

hate speech explanations (Huang et al., 2022). 220

Therefore, we propose using a transformer-based 221

encoder-decoder model (Raffel et al., 2020) to gen- 222

erate target minority groups for given posts, treat- 223

ing the task as a text generation problem rather than 224

a multi-label classification task. This approach pro- 225

vides two advantages over classification models. 226

Firstly, it leverages powerful pre-trained encoder- 227

decoder models, enhancing the model’s capabilities. 228

Secondly, text generation models are more general- 229

izable, as they are not restricted to a fixed number 230

of target groups, allowing for greater flexibility in 231

handling diverse scenarios. 232

After generating target groups G based on an 233

input post IP , G and IP are concatenated as 234

"Target:{G} Post:{IP}" and serve as the input 235

for our TOXCL. The experimental details of the 236

TG module are presented in Section 4.1. 237

3.2.2 Encoder-Decoder Model 238

Toxic speech detection and toxicity explanation 239

are two tasks that have received increasing atten- 240

tion, and while researchers have made significant 241

progress in separately solving each problem, ad- 242
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dressing them together has received limited atten-243

tion (Sap et al., 2020; AlKhamissi et al., 2022;244

Huang et al., 2022). However, these two tasks245

are strongly correlated, and the explanation of the246

post can potentially help the systems to detect247

toxic speech (AlKhamissi et al., 2022). Conversely,248

the toxicity explanation is sometimes only neces-249

sary when the post is detected as toxic. Typically,250

AlKhamissi et al. (2022); Huang et al. (2022) for-251

mulate both tasks as a single text generation task,252

which has some critical shortcomings as discussed253

in Section 1. Therefore, in this work, we propose a254

novel architectural design on top of a pre-trained255

encoder-decoder model. The encoder addresses256

the toxic speech detection task, while the decoder257

generates a toxicity explanation if the post is de-258

tected as toxic. The details of both the encoder and259

decoder components are introduced below.260

• Encoder Classifier (CL) To enable the implicit261

toxicity detection capability, we build a binary clas-262

sifier head on top of the encoder of a pre-trained263

encoder-decoder model. This head includes a linear264

layer that takes the average of token embeddings265

from the encoder’s last hidden state as input, fol-266

lowed by a softmax layer (Goodfellow et al., 2016).267

To optimize the performance, both the encoder and268

the newly added classifier head are trained together269

using a binary cross-entropy loss:270

Lcls = − 1

N

∑
i

∑
j∈{0,1}

yij log(pij) (1)271

in which yi0, yi1 ∈ {0, 1}, pi0, pi1 ∈ [0, 1] and272

pi0 + pi1 = 1.273

• Explanation Decoder (ToX) Recognizing the274

importance of generating explanations for implicit275

toxic speech and its potential impact on various ap-276

plications, we utilize the decoder of our pre-trained277

encoder-decoder model to generate the explanation.278

To optimize its performance, the decoder is fine-279

tuned using a Causal Language Modeling (CLM)280

loss:281

Lclm =
∑
i

log(P (ei|ei−k, ..., ei−1; θ)) (2)282

in which E = {e1, e2, ..., en} is the set of tokens283

of the explanation, and k is the size of the window.284

Finally, we train the encoder-decoder model for285

the task of toxic speech detection and explanation286

by joining the two losses:287

Lxcl = αLcls + βLclm (3) 288

in which α, β are the contribution weights. 289

3.2.3 Teacher Classifier (TC) 290

Since the open-sourced encoder-decoder models 291

are commonly pre-trained on a diverse range of 292

tasks and these tasks might not solely focus on 293

learning strong representations from their encoders, 294

these encoders may not exhibit the same strength 295

as pre-trained encoder-based models such as BERT 296

(Devlin et al., 2019) or RoBERTa (Liu et al., 2019) 297

for classification tasks. Motivated by Hinton et al. 298

(2015), we propose to use knowledge distillation 299

to transfer knowledge from a strong encoder-based 300

model (Teacher Classifier) to the Flan-T5 encoder 301

(Student Classifier). Specifically, we leverage the 302

outputs ŷtc and ŷsc from the Teacher Classifier 303

and Student Classifier, respectively, and employ the 304

Kullback-Leibler divergence loss (Csiszár, 1975) 305

as the teacher forcing loss to minimize the discrep- 306

ancy between ŷtc and ŷsc: 307

Ltf = DKL(ŷsc)||ŷtc)) (4) 308

Our final loss L is the weighted sum of Lxcl,Ltf : 309

L = λLxcl + γLtf (5) 310

in which λ, γ are the contribution weights. 311

3.2.4 Conditional Decoding Constraint (CD) 312

One of the main challenges with unified frame- 313

works for toxic speech detection and explanation 314

is the lack of synchronization between the classi- 315

fier’s output label and the generated explanation. 316

For instance, when the classifier outputs a label 317

of 0, indicating non-toxic speech, the explanation 318

generation module still generates an explanation, 319

even though it is unnecessary in this case. To ad- 320

dress this, we propose the Conditional Decoding 321

Constraint, a simple yet effective algorithm. This 322

constraint controls the decoder’s generation process 323

by generating a [None] token for non-toxic speech 324

and a toxic explanation for toxic speech. By in- 325

corporating this constraint, our framework ensures 326

coherence and alignment between the generated 327

explanations and classifier outputs, enhancing its 328

overall performance. 329

4 Experimentation 330

4.1 Target Group Generator Experiment 331
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Model F1 ROUGE-L

BERT 68.35 70.44
GPT-2 53.98 56.86
BART 63.41 70.48

T5 69.79 70.95

Table 1: Target Group Generator experiments.

• Dataset To address the problem of free-text332

target group labelling in IHC and SBIC datasets,333

we utilized the HateXplain dataset (Mathew et al.,334

2021), which provides 19 fine-grained categories335

for toxic speech. We fine-tune a T5 model (Raf-336

fel et al., 2020) as our TG model, and treat it as337

a text generation problem. To ensure our frame-338

work can predict specific target group(s) associated339

with posts from IHC and SBIC datasets, we con-340

ducted an analysis to identify any overlapping data341

between the HateXplain and IHC, SBIC datasets.342

We found only one instance of overlap, which we343

removed before training our TG model.344

• Baselines We compare the performance of our345

TG model with three baseline models: (1) BERT346

(Devlin et al., 2019), an encoder-based model;347

(2) GPT-2 (Radford et al., 2019), a decoder-only348

model, (3) and BART (Lewis et al., 2020), an349

encoder-decoder model. BERT is widely used for350

multi-label classification tasks while both GPT-2351

and BART have demonstrated remarkable perfor-352

mance in text353

• Implementation Details We concatenate the354

annotated target group(s) in alphabetical order to355

construct the target label for each input post. All356

baselines and our TG model are initialized with pre-357

trained checkpoints from Huggingface (Wolf et al.,358

2020) and fine-tuned on a single Google CoLab359

P40 GPU with a window size of 256, a learning360

rate of 1e−5, and AdamW (Loshchilov and Hutter,361

2019) as the optimizer. The BERT model is fine-362

tuned for 10 epochs, while the GPT-2 and BART363

models are fine-tuned for 20k iterations. We use a364

beam search strategy with a beam size of 4 for our365

generation decoding strategy.366

• Automatic Evaluation Our TG model is evalu-367

ated using F1 (%) for multi-label classification and368

ROUGE-L (%) (Lin, 2004). The results in Table369

1 indicate that our model achieved an F1 score of370

69.79 and a ROUGE-L score of 70.95, outperform-371

ing the competing baselines in identifying target372

groups in toxic posts.373

IHC SBIC

Model Size Acc. (%) F1 (%) Acc. (%) F1 (%)

RoBERTa-Large 354M 80.68 77.33 90.12 90.11

Teacher Classifier 354M 82.52 79.49 91.19 91.19

Table 2: Performance of Teacher Classifier, which is the
RoBERTa-Large + TG.

4.2 Teacher Classifier Experiment 374

For our Teacher Classifier, a RoBERTa-Large 375

model (Liu et al., 2019) is fine-tuned using the 376

generated target group(s) (TG in Section 3). The 377

model achieved an F1 score of 79.49 on IHC and 378

91.19 on SBIC, indicating the effectiveness of gen- 379

erated target group(s) in classifying toxic speech. 380

Detailed results can be found in Table 2. 381

4.3 TOXCL Experiment 382

• Dataset We conduct our experiments on two 383

datasets: IHC (ElSherief et al., 2021) and SBIC 384

(Sap et al., 2020). These datasets are collected from 385

popular social media platforms such as Twitter 386

and Gab, providing comprehensive coverage of the 387

most prevalent toxic groups. Prior to training, we 388

pre-process the data as detailed in sec:preprocess- 389

data. 390

• Baselines We compare TOXCL with three 391

groups of baselines: (G1) implicit toxic speech 392

detection, (G2) implicit toxic speech explanation, 393

and (G3) implicit toxic speech detection and expla- 394

nation. 395

For baselines in group G1, we use BERT (De- 396

vlin et al., 2019), HateBERT (Caselli et al., 2021), 397

RoBERTa (Liu et al., 2019) and ELECTRA (Clark 398

et al., 2020) as our baselines. They are widely 399

employed in prior toxic speech detection works. 400

We select GPT-2 (Radford et al., 2019), BART 401

(Lewis et al., 2020), T5 (Raffel et al., 2020), and 402

Flan-T5 (Chung et al., 2022) as our baselines G2 403

and G3. GPT-2 represents the group of decoder- 404

only models, while BART, T5, and Flan-T5 have 405

the encoder-decoder architecture. Specifically for 406

the models in group G2, we fine-tune them to gen- 407

erate [None] token or the explanations’ tokens. 408

For group G3, we concatenate the classification 409

label [Toxic]/[Non-toxic] and the explanation 410

of each sample as the output, and fine-tune the 411

models with the post as input. 412

• Implementation Details We initialize all the 413

models with the pre-trained checkpoints from Hug- 414
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gingface (Wolf et al., 2020). We then fine-tune415

them on a single Google CoLab P40 GPU with a416

window size of 256, and a learning rate of 1e− 5417

and use AdamW (Loshchilov and Hutter, 2019) as418

our optimizer. The classification baselines in group419

G1 are fine-tuned on 10 epochs while the gener-420

ation ones in G2 and G3 are fine-tuned on 20k421

iterations. Beam search strategy with a beam size422

of 4 is utilized as our generation decoding strategy.423

• Automatic Evaluation We adopt Accuracy and424

Macro F1 as our classification metrics, following425

prior works (Mathew et al., 2021; ElSherief et al.,426

2021). For the generation of explanations, we uti-427

lize BLEU-4 (Papineni et al., 2002), ROUGE-L428

(Lin, 2004) and METEOR (Banerjee and Lavie,429

2005) as our n-gram metrics. We further utilize430

BERTScore (Zhang et al., 2020) to measure the431

similarity between the generated toxic explanation432

and the ground truth one based on deep-contextual433

embeddings. To ensure that unnecessary explana-434

tions are not generated for non-toxic posts and pe-435

nalize unnecessary explanations, we develop a new436

evaluation algorithm for the explanation generation437

task. Its pseudo-code is presented in alg:geeration-438

scores. In this algorithm, we assign a score of 100439

if both the generated explanation and the ground440

truth explanation are [None] indicating that no ex-441

planation is needed. If both the generated expla-442

nation and the ground truth explanation are not443

[None] we compute a score based on the quality444

of the generated explanation. For any other mis-445

matched pairs, we assign a score of 0 to penalize446

the unnecessary explanations for non-toxic speech.447

It is worth noting that our evaluation algorithm448

is different from Sridhar and Yang (2022) which449

only evaluates the quality of the generation within450

implicit toxic cases.451

• Human Evaluation To gain deeper insights452

into the generation performance and challenges453

that our TOXCL faces compared to the compet-454

ing baseline, we conduct human evaluations using455

a randomly selected set of 150 samples that re-456

quire explanations from each examined benchmark.457

Specifically, we collect the generated explanations458

from both the TOXCL and Flan-T5 models in459

two different settings, G2 and G3. To ensure high-460

quality evaluations, five native English speakers461

are hired to rate the generated explanations on a462

1-3 scale (with 3 being the highest) based on three463

criteria: (i) Correctness, evaluating the accuracy464

of the explanation in correctly explaining the mean-465

ing of toxic speech; (ii) Fluency, assessing the 466

fluency and coherence of the generated explana- 467

tion in terms of language use; and (iii) Toxicity, 468

gauging the level of harmfulness and judgmental 469

tone exhibited in the generated explanation. The 470

annotator agreement is measured using Krippen- 471

dorff’s alpha (Krippendorff, 2011), which provides 472

a measure of inter-annotator reliability. 473

4.4 TOXCL Performance 474

• Automatic Evaluation Our experimental re- 475

sults in Table 3 reveal three main observations. 476

Firstly, TOXCL outperforms all baselines on both 477

benchmarks, demonstrating the effectiveness of our 478

encoder-decoder model in addressing both implicit 479

toxic detection and explanation tasks simultane- 480

ously without conflicts. Secondly, our model sur- 481

passes detection models in group G1, indicating 482

the strong capability of our encoder in detecting 483

implicit toxic speech. It is worth noting that despite 484

having fewer parameters than the RoBERTa-Base 485

model (124M), our encoder (Flan-T5’s) classifier 486

(109M) achieves better performance while main- 487

taining computational efficiency. Lastly, our model 488

significantly outperforms its backbone, Flan-T5, 489

highlighting the effectiveness of our architectural 490

designs in jointly training the tasks in an end-to- 491

end manner for implicit toxic speech detection and 492

explanation problems. 493

• Human Evaluation Our human evaluation re- 494

sults in Table 4 indicate that TOXCL outperforms 495

its backbone model, Flan-T5, from groups G2 and 496

G3, in terms of both explanation accuracy and tex- 497

tual fluency. This improved performance is also 498

reflected in the detection task, resulting in more 499

reliable explanations with fewer harmful outputs 500

compared to the baselines. Our human annotators 501

exhibit strong agreement with Krippendorff’s alpha 502

scores consistently measuring at least 0.78 among 503

the three scores. It is worth noting that the average 504

toxicity score of around 2 for both our TOXCL 505

and baseline models aligns with expectations, given 506

that the training datasets contain offensive words 507

in the ground truth explanations (see Tab. 5). 508

5 Discussion 509

5.1 Case Study: Effectiveness of TOXCL 510

We compare the performance of TOXCL with the 511

two best-performing baselines in group G3, namely 512

GPT-2 on IHC and Flan-T5 on SBIC (Sec. 4). We 513

6



IHC Detection IHC Explanation SBIC Detection SBIC Explanation

Model Group Acc. Macro F1 BLEU-4 ROUGE-L METEOR BERTScore Acc. Macro F1 BLEU-4 ROUGE-L METEOR BERTScore

HateBERT 78.67 75.93 89.32 89.31
BERT G1 78.98 76.16 89.83 89.83
ELECTRA 79.90 76.87 89.06 89.04
RoBERTa 80.06 77.23 89.98 89.97

GPT-2 67.60 70.19 69.69 73.15 47.62 65.50 63.74 74.74
BART G2 53.67 59.18 57.40 68.14 45.22 67.73 67.25 83.98
T5 50.19 56.01 54.36 66.60 45.37 68.03 67.59 84.68
Flan-T5 47.33 53.78 51.95 65.14 45.83 68.37 67.98 85.04

GPT-2 77.57 76.36 67.81 70.19 69.88 73.47 73.62 57.09 48.29 65.24 63.53 74.61
BART G3 70.40 64.11 55.92 60.48 58.87 68.74 88.25 88.20 45.65 68.08 67.81 84.35
T5 70.71 62.95 58.24 62.42 61.18 69.30 87.55 87.48 45.92 68.37 67.82 84.78
Flan-T5 71.52 65.56 56.58 61.75 60.20 69.84 88.40 88.37 45.98 68.81 67.99 85.07

GPT-2 + TG 74.00 58.12 67.86 70.38 69.71 73.11 78.87 77.93 48.56 65.48 63.65 75.80
BART + TG 74.28 58.88 67.75 68.17 69.68 73.67 88.55 88.52 45.70 68.41 67.81 85.03
T5 + TG 76.48 64.86 67.07 70.98 70.24 73.68 87.78 87.71 46.52 68.67 67.98 85.08
Flan-T5 + TG 78.47 70.13 65.77 70.03 69.98 75.18 88.73 88.72 47.05 68.75 68.05 85.25

Flan-T5 + CLH 77.16 73.67 62.15 64.36 62.21 63.94 89.19 89.19 45.88 67.24 67.63 84.96
Flan-T5 + CLH + TG 78.68 75.77 64.99 67.87 66.24 72.11 89.6 89.6 47.24 67.94 67.80 85.34
Flan-T5 + CLH + TG + TF 81.53† 78.19† 66.49 69.11 67.52 72.14 90.09† 90.08† 47.85 68.93 68.16 85.58
TOXCL 81.53† 78.19† 68.11† 71.21† 70.27† 77.38† 90.09† 90.08† 49.03† 69.93† 68.85† 86.09†

Table 3: Main experimental results. CLH stands for joint training with a classification head on top of the Flan-T5 Encoder. Our
model, TOXCL is equivalent to Flan-T5 + CL Head + TG + TF + CD (all are described in Section 3.2). † denotes our model
significantly outperforms implicit toxic speech detection & explanation baselines with p-value < 0.05 under t-test.

Model Cor.↑ Flu.↑ Tox.↓

Flan-T5 (G2) 2.21 2.02 2.03
Flan-T5 (G3) 2.35 2.46 2.07

TOXCL 2.56 2.63 1.97

Kripp.’s alpha 0.81 0.84 0.78

Table 4: Human evaluation results.

present the cases discussed in Table 5. In cases (1),514

(3), (4), (7), (9), and (10) we observe that both GPT-515

2 and Flan-T5 fail to capture the intended meaning516

of the input posts, resulting in wrong detection or517

harmful explanations. In contrast, our TOXCL ef-518

fectively captures the meaning of the posts, leading519

to accurate explanations that align closely with the520

ground truth ones. Notably, when comparing to521

the ground truth explanation, the explanation gen-522

erated by TOXCL exhibits a more polite attitude523

(cases 2, 4, 8, 9) or even more accurate (case 3).524

5.2 Ablation Studies525

• Target Group Generator (TG) When adding526

the this module (i.e., + TG in Table 3), we observe527

that all baselines considered in our experiments528

achieve significant improvements compared to529

training them without the generated target groups.530

In addition, our Teacher Classifier also outperforms531

its variant trained on solely the input posts. These532

improvements emphasize the crucial role of the533

target group(s) in enhancing their ability to detect534

and explain implicit toxic speech. These results535

also consolidate our motivation for using generated536

target groups in guiding the models for solving the 537

two tasks. 538

• Teacher Forcing (TF) By comparing the per- 539

formance of Flan-T5 + CLH + TG before and after 540

using teacher forcing (+ TF in Table 3), we ob- 541

serve that incorporating this technique improves the 542

performance of the encoder of TOXCL. This im- 543

provement demonstrates that providing additional 544

guidance to the encoder of TOXCL results in more 545

accurate predictions and achieves a performance 546

close to that of the Teacher Classifier. 547

• Conditional Decoding Constraint (CD) Fi- 548

nally, the impact of integrating the Conditional 549

Decoding Constraint designed to avoid necessary 550

explanation, is evaluated in Table 3. Compared 551

with Flan-T5 + CLH + TG + TF, our TOXCL 552

is improved significantly on the toxic explanation 553

generation task. This confirms the effectiveness 554

of Conditional Decoding Constraint in helping the 555

outputs of our model to synchronize implicit toxic 556

speech detection labels and toxic explanations. 557

5.3 Error Analysis 558

We present additional qualitative samples from 559

both benchmarks in Table 5 to highlight key chal- 560

lenges faced by existing models in detecting im- 561

plicit toxic speech and generating explanations. 562

While our model performs well overall, there are 563

still areas for improvement, as discussed below. 564

• Coded Toxic Symbols Our model, along with 565

the baselines, struggles with detecting implicit 566

toxic speech that contains abbreviated or coded to- 567
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Index Input Post Ground Truth Explanation(s) GPT-2 (IHC) Flan-T5 (SBIC) TOXCL
(1) approx half muslms today result of inbreeding,

perhaps this why they are ""hell bent"" on de-
stroying christian based west? inbreed = low iq.

Muslims are result of inbreed-
ing

Muslims are de-
structive

Muslims are in-
bred.

(2) you hate like a jew. you are fixatd on hating
white christians like a jew.

Jewish people have hate toward
other groups

Jews hate white
people

Jews don’t like
white poeple

(3) funny how you never hear about white men rap-
ing women in black" neighborhoods. i know 2
white women who ’

Blacks rape whites. Blacks are infe-
rior

White men are
rapists.

(4) she’s another low iq hollywood liberal . islam
is submission and btw if they ran america

Liberals are stupid. None Liberals are low
IQ people.

(5) rt. : " voters on obamas immigration plans :
drop dead " " #noamnesty "

Immigrants ruin society None None

(6) bruh i love white people too how do i join Minorities are lesser races. None None

(7) An Asian woman just gave me a handjob while
fingering my ass Which isnt what i meant when
i asked her to give me a ’Hand Roll and Pork
Intestines. That’s the problem with having the
Chinese Massage place right next to the Chinese
takeout place

[’chinese women are sex work-
ers.’, "chinese women don’t un-
derstand english."]

asians eat pork asian women
only care about
sex

(8) you see, i am a doctor. today i had to save a
black guy’s life i told his family: i did every-
thing i could, but unfortunately he survived.

[’black people are useless’,
’black people need to be killed’]

black people are
worthless

black people
aren’t as good
as whites

(9) @BlakkHoodie_562 yeah that niggah played
good, lowkey i wanted brazil to win

[’black people are the n word’] None niggah is a slang
term

(10) A bf and gf; are suppose to laugh; at these hoes;
together;. A guy should never have these hoes;
laughing; at his girl;

[’degrades women by calling
them names’, ’women are
called hoes’, ’women are hoes’]

None women are hoes

Table 5: The qualitative explanation performance of GPT-2, Flan-T5, and TOXCL was evaluated on samples from the valid set
of IHC and SBIC datasets.

kens, such as "#noamnesty" in case (5). This error568

has also been observed and discussed by previous569

work (ElSherief et al., 2021).570

• Misunderstood Sarcasm and Irony Our571

model may face challenges in accurately detect-572

ing toxic sentences that contain indirect words. For573

example, case (6) involves the phrase "bruh i love574

white people too how do i join", which uses indi-575

rect words such as "bruh" and "love" to express576

irony. The speaker sarcastically expresses a desire577

to join a racial group while implying that joining578

such a group is based on a belief in the superiority579

of white people or that minorities are lesser races.580

• Variant Explanations In all cases except cases581

(5), (6), and (10), our TOXCL accurately identifies582

implicit toxic speech but generates linguistically583

different explanations from the ground truth(s).584

However, these generated explanations convey the585

same semantic meaning as the ground truth, indi-586

cating the model’s ability to comprehend correctly587

the implicit meanings. This, along with discus-588

sions by Huang et al. (2022), demonstrates that589

instances of implicit toxic speech can have mul-590

tiple correct explanations, highlighting the limita-591

tions of commonly-used n-gram evaluation metrics 592

like BLEU-4 (Papineni et al., 2002) and ROUGE-L 593

(Lin, 2004) scores. 594

6 Conclusion 595

We present TOXCL, a unified framework for 596

implicit toxic speech detection and explanation 597

(Sec. 3.2). It consists of three components: a Target 598

Group Generator, an Encoder-Decoder model, and 599

a Teacher Classifier. Our findings show that the 600

Target Group Generator effectively identifies target 601

groups, improving both accuracy and F1 scores for 602

detecting implicit toxic speech. The novel encoder- 603

decoder architecture successfully performs both 604

tasks of detection and explanation without harming 605

each other. The integration of the Teacher Classifier 606

and the Conditional Decoding Constraint further 607

enhances the performance of TOXCL, achieving 608

state-of-the-art results in the task of toxic speech de- 609

tection and explanation on two widely-used bench- 610

marks. In the future, we will focus on addressing 611

several limitations faced by our framework and 612

baselines as specified in Section 5.3 to further en- 613

hance the performance of our model. 614
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Limitations615

Although our model has demonstrated strong per-616

formance, our error analysis (Sec. 5.3) has iden-617

tified several challenges that still need to be ad-618

dressed. One such challenge is the presence of619

coded toxic symbols, abbreviated words, or im-620

plicit phrases in the input posts, which may require621

external sources of knowledge for accurate inter-622

pretation. To address this, future work can focus623

on enhancing the models by incorporating addi-624

tional reasoning capabilities and leveraging exter-625

nal knowledge. Additionally, existing evaluation626

metrics for the implicit toxic speech explanation627

task is also another limitation since this can be a628

one-to-many relationship problem in which there629

may have multiple non-overlapping but correct ex-630

planations for an implicit hate speech.631

Ethical Considerations632

While our method for implicit toxic speech has633

shown promise in identifying target groups, detect-634

ing implicit toxic speech, and generating explana-635

tions, it is crucial to consider the potential risks636

involved.637

Firstly, there is a concern that the generated ex-638

planations may contain toxic words, depending on639

the training data (Sec. 5). This raises the possibility640

of the model spreading machine-generated toxic641

speech if it is misused. It is essential to address this642

toxicity to protect marginalized groups and shift643

power dynamics to the targets of oppression.644

Secondly, there is a risk of reinforcing biases or645

amplifying harmful messages by providing expla-646

nations only for detected implicit toxic speech. If647

the model fails to detect implicit toxic speech, the648

absence of an explanation may imply acceptability649

or harmlessness. Considering explanations for all650

posts, regardless of detection, could be an approach651

to mitigate this risk, although our datasets do not652

provide explanations for non-toxic speech.653

In conclusion, while having complete control654

over the TOXCL’s usage in real-world scenarios655

may not be feasible, it is essential to recognize656

and address potential risks. By doing so, our work657

offers an opportunity to combat harm directed at658

minority groups and empower targets of oppression.659

Therefore, addressing the quality of explanations in660

the training data is a critical step toward achieving661

our ultimate goal.662
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A Data Pre-process971

To facilitate our problem, we exclude instances of972

implicit toxic speech that lack an explanation, re-973

sulting in the removal of 844 samples from IHC974

and 8,220 samples from SBIC. Since the original975

IHC dataset does not include a designated test set,976

we create our own by randomly selecting 20% of977

the implicit toxic speech and non-toxic speech in-978

stances. The final statistics of both datasets are979

shown in Table 6.980

Split # toxic # non-toxic # samples

IHC Train 5,002 10,633 15,635
IHC Valid 1,254 2,658 3,912

SBIC Train 12,098 16,698 28,796
SBIC Dev 1,806 2,054 3,860
SBIC Test 1,924 1,981 3,905

Table 6: Statistics of Implicit Hate Corpus and
Social Bias Inference Corpus after pre-processing.

B Evaluation Algorithm981

We present our evaluation metrics to evaluate the982

explanation generation capability of the models.983

To penalize unnecessary explanations for non-toxic984

speech, we add 100 to every score when the label is985

"None" and the model generation output is "None".986

Algorithm 1: Computations of Explanation
Generation Metrics

1 Input: b_gen_labels, b_gen_expls
2 Initialize:
3 N = len(b_gen_labels)
4 s_bleu = s_rouge = s_meteor =

s_bertscore = 0
5 for idx in range(N ) do
6 label = b_gen_labels[idx]
7 expl = b_gen_expls[idx]
8 if label == "None" and expl ==

"None" then
9 add 100 to s_bleu, s_rouge,

s_meteor, s_bertscore
10 end
11 else if label ̸= "None" and expl ̸=

"None" then
12 s_bleu += bleu(label, expl)
13 s_rouge += rouge(label, expl)
14 s_meteor += meteor(label, expl)
15 s_bertscore += bertscore(label,

expl)
16 end
17 end
18 return s_bleu/N , s_rouge/N ,

s_meteor/N , s_bertscore/N
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