

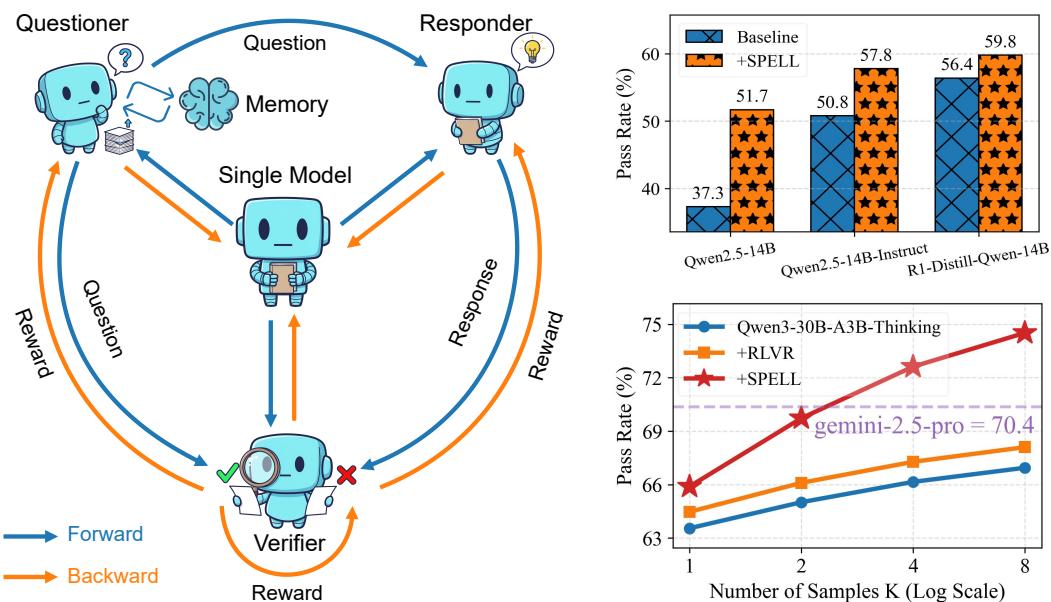
000 SPEL: SELF-PLAY REINFORCEMENT LEARNING FOR 001 EVOLVING LONG-CONTEXT LANGUAGE MODELS 002

003 **Anonymous authors**

004 Paper under double-blind review

009 ABSTRACT

010 Progress in long-context reasoning for large language models (LLMs) has lagged
011 behind other recent advances. This gap arises not only from the intrinsic difficulty
012 of processing long texts, but also from the scarcity of reliable human annotations
013 and programmatically verifiable reward signals. In this paper, we propose **SPEL**,
014 a multi-role self-play reinforcement learning framework that enables scalable,
015 label-free optimization for long-context reasoning. SPEL integrates three cyclical
016 roles—*questioner*, *responder*, and *verifier*—within a single model to enable con-
017 tinual self-improvement. The questioner generates questions from raw documents
018 paired with reference answers; the responder learns to solve these questions based
019 on the documents; and the verifier evaluates semantic equivalence between the
020 responder’s output and the questioner’s reference answer, producing reward signals
021 to guide continual training. To stabilize training, we introduce an automated cur-
022 riculum that gradually increases document length and a reward function that adapts
023 question difficulty to the model’s evolving capabilities. Extensive experiments
024 on six long-context benchmarks show that SPEL consistently improves perfor-
025 mance across diverse LLMs and outperforms equally sized models fine-tuned on
026 large-scale annotated data. Notably, SPEL achieves an average 7.6-point gain
027 in pass@8 on the strong reasoning model Qwen3-30B-A3B-Thinking, raising its
028 performance ceiling and showing promise for scaling to even more capable models.



051 Figure 1: **(Left)** An overview of the SPEL framework, where a single LLM self-evolves by dynamically
052 adopting the roles of *questioner*, *responder*, and *verifier*. **(Right)** SPEL consistently boosts performance across
053 various models (*top*) and exhibits superior test-time scaling over traditional RLVR (*bottom*).

054 **1 INTRODUCTION**

055

056 In recent years, reinforcement learning (RL) has emerged as a promising approach for enhancing
 057 the reasoning capabilities of large language models (LLMs) (Guo et al., 2025; Yang et al., 2025;
 058 Jaech et al., 2024; Team et al., 2025). Among these methods, reinforcement learning with verifiable
 059 rewards (RLVR) has shown particular promise in domains where correctness can be programmatically
 060 verified, such as mathematics, logical reasoning, and software engineering (Lambert et al., 2024; Hu
 061 et al., 2025; Liu et al., 2025c; Wei et al., 2025). RLVR methods employ rule-based or programmatic
 062 verifiers to generate reward signals, which then guide policy optimization through algorithms such as
 063 Proximal Policy Optimization (PPO) (Schulman et al., 2017b), Group Relative Policy Optimization
 064 (GRPO) (Shao et al., 2024), and related variants (Shao et al., 2024; Yue et al., 2025; Liu et al., 2025d).

065 Despite these advances, most RLVR research has been restricted to short-context settings (e.g., <1024
 066 tokens), where models primarily rely on their parametric knowledge for reasoning (Wan et al., 2025).
 067 In contrast, reasoning over long documents like long-context question answering requires not only
 068 locating relevant evidence scattered across extended contexts but also executing multi-step reasoning.
 069 Extending RLVR to long-context reasoning presents significant challenges, which stem from the
 070 inherent difficulty of processing long texts, as well as two critical bottlenecks: the prohibitive cost
 071 and unreliability of human annotations, and the absence of programmatically verifiable rewards.

072 Empirical evidence highlights the severity of these issues. On benchmarks such as LongBench-V2,
 073 human accuracy for extra-long multiple-choice reasoning tasks drops to 25.1% — effectively ap-
 074 proaching random chance (Bai et al., 2025). This not only limits the performance achievable under
 075 human supervision but also imposes a scalability ceiling, particularly as LLMs approach superhuman
 076 reasoning capabilities (Zhao et al., 2025). Specifically, as context length grows, producing reliable an-
 077 notations becomes increasingly costly and unstable, and supervision diversity diminishes. Moreover,
 078 the lack of verifiable reward mechanisms in long-context settings further constrains the applicability
 079 of RLVR, posing a fundamental challenge to advancing reasoning capabilities at scale.

080 To address these limitations, we turn to self-play RL, where a single model learns to self-evolve by
 081 generating and solving its own tasks without human labels (Zhou et al., 2025; Chen et al., 2025b;
 082 Huang et al., 2025). However, applying self-play to long-context reasoning poses a unique challenge:
 083 answers may be semantically correct yet differ substantially in expression, rendering string matching
 084 or naive majority voting unreliable reward signals. Thus, the model should not only generate questions
 085 and answers, but also verify its own solutions reliably. This observation motivates our framework, in
 086 which one LLM assumes three complementary roles: *questioning*, *responding*, and *verifying*.

087 In this paper, we introduce **SPELL** (Self-Play Reinforcement Learning for Evolving Long-Context
 088 Language Models), a self-play RL framework for long-context reasoning. In this setup, a unified
 089 policy alternates among three roles: the *questioner*, which formulates questions with reference
 090 answers from raw documents; the *responder*, which attempts to solve them; and the *verifier*, which
 091 compares the responder’s output with the reference answer to produce reward signals for joint
 092 optimization. To steer this process, SPELL incorporates three key design elements. First, a verifier
 093 trained for self-consistency on verifiable tasks produces stable rewards, even for outputs that cannot
 094 be verified by strict rules, thereby overcoming the brittleness of string matching. Second, an
 095 automated curriculum uses a history memory of question–answer pairs and documents to progressively
 096 increase task difficulty. A Gaussian-shaped reward further calibrates difficulty around the responder’s
 097 competence frontier, ensuring questions are neither too easy nor impossibly difficult. Third, a role-
 098 specific dynamic sampling strategy balances contributions across roles to stabilize training of the
 099 shared policy. Together, these components form a self-sufficient, closed-loop system that enables
 100 LLMs to autonomously evolve long-context reasoning without human-labeled data

101 We evaluate SPELL across 12 open-source LLMs ranging from 4B to 32B parameters, including both
 102 dense and Mixture-of-Experts (MoE) architectures. On six long-context QA benchmarks, SPELL de-
 103 liveries consistent performance gains. Remarkably, training a base model with SPELL enables it to
 104 surpass its instruction-tuned counterpart that relies on extensive human-annotated data, highlighting
 105 the data efficiency of our label-free self-play approach. Against a strong RLVR baseline trained on
 106 a static dataset synthesized by DeepSeek-R1-0528 (Guo et al., 2025), SPELL achieves larger and
 107 more reliable gains. For capable models such as Qwen3-30B-A3B-Thinking, SPELL’s dynamic
 108 curriculum continually elevates performance and enables it to outperform the leading gemini-2.5-
 109 pro (Comanici et al., 2025) in pass@4. These findings firmly establish our self-play approach as a
 110 scalable and effective path toward advanced long-context reasoning without human supervision.

108 **2 PRELIMINARIES**

110 **Long-Context Reinforcement Learning** We formulate the long-context generation task as a
 111 reinforcement learning (RL) problem. Given a set of n documents $\{c_i\}_{i=1}^n$ and a question q , the
 112 goal of long-context RL is to optimize a policy model π_θ to generate a response y that maximizes
 113 a reward function $r_\phi(c, q, y)$. The standard objective is to maximize the KL-regularized expected
 114 reward (Schulman et al., 2017a; Wan et al., 2025):

$$115 \max_{\pi_\theta} \mathbb{E}_{c, q \sim \mathcal{D}, y \sim \pi_\theta(\cdot | c, q)} [r_\phi(c, q, y)] - \beta \mathbb{D}_{\text{KL}} [\pi_\theta(y | c, q) || \pi_{\text{ref}}(y | c, q)], \quad (1)$$

117 where $c = \text{Concat}(c_1, c_2, \dots, c_n)$, \mathcal{D} is the training dataset, π_{ref} denotes a reference policy, and β
 118 controls the strength of the KL regularization to prevent large deviations from the reference policy.

119 **Group Relative Policy Optimization (GRPO)** For long-context inputs, the quadratic complexity
 120 of the attention mechanism renders PPO (Schulman et al., 2017b), which relies on generalized
 121 advantage estimation (GAE) (Schulman et al., 2015) via a value network, computationally prohibitive.
 122 Therefore, we employ GRPO (Shao et al., 2024) to optimize the objective in Eq. (1). For each input
 123 (c, q) , GRPO first samples a group of G candidate responses $\{y_i\}_{i=1}^G$ from the old policy $\pi_{\theta_{\text{old}}}$. It then
 124 estimates the advantage through group-wise reward z -score normalization, thereby obviating the need
 125 for a separate value network. Formally, the objective is:

$$126 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{c, q \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | c, q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(\min \left(\rho_{i,t}(\theta) A_i, \right. \right. \right. \\ 127 \left. \left. \left. \text{clip} \left(\rho_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta || \pi_{\text{ref}}) \right) \right], \quad (2)$$

132 where $\rho_{i,t}(\theta) = \frac{\pi_\theta(y_{i,t} | c, q, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | c, q, y_{i,<t})}$ is the importance sampling ratio for token t in sequence i . The
 133 group-relative advantage A_i is shared across tokens of the i -th sequence and computed by normalizing
 134 the sequence-level rewards $\{r_i\}_{i=1}^G$:

$$136 A_i = \frac{r_i - \text{mean}(\{r_k\}_{k=1}^G)}{\text{std}(\{r_k\}_{k=1}^G)}. \quad (3)$$

139 **3 THE SPELL FRAMEWORK**

141 In this section, we detail the core design of SPELL, a self-play reinforcement learning framework that
 142 enables LLMs to improve their long-context reasoning capabilities without external supervision. The
 143 key principle of SPELL is that a single policy model π_θ dynamically assumes three complementary
 144 roles: a *questioner* π_θ^{que} , a *responder* π_θ^{res} , and a *verifier* π_θ^{ver} . Through their interaction, the model
 145 autonomously generates and solves questions while producing reliable reward signals. This closed-
 146 loop interaction creates an evolving curriculum in which the model progressively adapts to longer
 147 contexts and more complex reasoning (Section 3.1). Role-specific reward designs (Section 3.2) and a
 148 unified optimization procedure (Section 3.3) jointly drive this co-evolution.

149 **3.1 THE SELF-PLAY EVOLUTIONARY LOOP**

151 As illustrated in Figure 2 and Algorithm 1, SPELL proceeds iteratively: given a cluster of n
 152 documents $C = \{c_i\}_{i=1}^n$ and a task type¹ τ , the policy π_θ first generates new questions,² then
 153 attempts to solve them, and finally verifies the solutions before performing a unified policy update.

154 **Questioning** The questioner π_θ^{que} generates new question–answer pairs in an iterative curriculum. In
 155 the very first iteration, it is conditioned only on a randomly sampled subset of m documents ($m < n$)
 156 and produces a pair (q, a) . After each solvable pair is created, we append it to a *history memory* \mathcal{H} that
 157 stores the L most recent solvable question–answer pairs and their associated source documents: $\mathcal{H}_C =$
 158 $\{(C_l, q_l, a_l)\}_{l=1}^L$. In subsequent iterations, the questioner is conditioned on both a newly sampled

160 ¹Details of dataset construction and task definition are provided in Appendix E.1.

161 ²To direct the policy in enacting three distinct roles, we adopt zero-shot prompting using tailored templates
 for each role and task type. Details of these templates are provided in Appendix G.

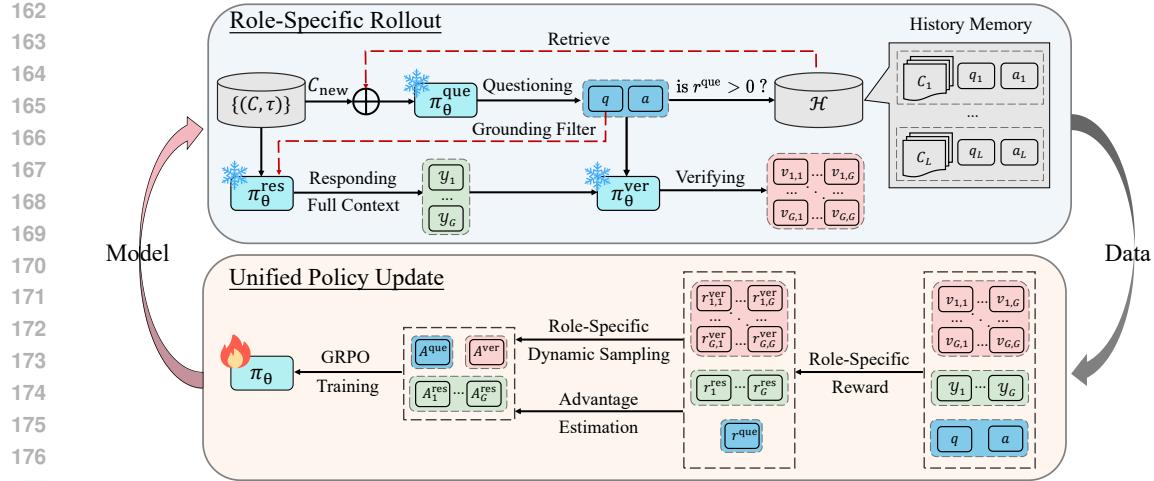


Figure 2: Overview of our proposed SPELL for self-evolution of long-context reasoning. The process operates in a continuous loop that alternates between two stages: (1) **Role-Specific Rollout**, where a single policy model enacts three distinct roles—a *questioner* (π_θ^{que}), a *responder* (π_θ^{res}), and a *verifier* (π_θ^{ver})—to generate training data. (2) **Unified Policy Update**, where the unified policy is refined using the collected data, and the enhanced model serves as the starting point for the next rollout cycle.

subset C_{new} and the stored memory. The resulting context is $X^{\text{que}} = (\bigcup_{l=1}^L C_l) \cup C_{\text{new}} \cup \{(q_l, a_l)\}_{l=1}^L$. As the memory fills, the context for the questioner expands to include both previously seen and newly sampled documents, which allows the questioner to generate questions that integrate information across more documents. The history memory also raises difficulty by including past $\{(q_l, a_l)\}$: these exemplars discourage redundancy and, via prompting, push π_θ^{que} to generate harder questions than those already solved. Consequently, the questioner’s difficulty increases for two complementary reasons: (1) the context X^{que} expands over iterations as more documents are brought into scope, and (2) explicit conditioning on historical $\{(q_l, a_l)\}$ encourages the model to escalate question complexity.

Responding The responder π_θ^{res} attempts to solve the generated question based on documents. To mitigate the generation of non-grounded or hallucinated questions, we employ a grounding filter process to discard questions that can be answered without documents. For valid questions, the responder is presented with the complete set of n documents, where the remaining documents unseen by the questioner serve as distractors to increase grounding and reasoning difficulty. This design enforces reliance on the provided document context rather than parametric memory. To encourage exploration of diverse reasoning trajectories, the responder generates G independent rollouts $\{y_i\}_{i=1}^G$.

Verifying The verifier π_θ^{ver} evaluates the semantic equivalence between the responder’s output y_i and the questioner’s reference answer a . For each y_i , it produces G independent binary judgments $\{v_{i,j}\}_{j=1}^G, v_{i,j} \in \{0, 1\}$, which are then aggregated through majority voting:

$$v_i^{\text{ver}} = \mathbb{I} \left(\sum_{j=1}^G v_{i,j} > \frac{G}{2} \right), \quad (4)$$

where $\mathbb{I}(\cdot)$ is the indicator function. This ensemble-based verification reduces variance and produces a stable, semantically aware reward signal, which is essential for sustaining a self-play system.

3.2 ROLE-SPECIFIC REWARD DESIGN

The three roles co-evolve under specialized rewards that align their objectives while remaining compatible within a single shared policy. In what follows, we detail these rewards.

Verifier The verifier is trained to improve its judgment reliability through self-consistency (Wang et al., 2022; Zuo et al., 2025). For a candidate output y_i , the verifier produces G rollouts with judgments $v_{i,j}$. Each rollout is then assigned a reward:

$$r_{i,j}^{\text{ver}} = \mathbb{I}(v_{i,j} = v_i^{\text{ver}}), \quad (5)$$

where v_i^{ver} is the majority vote over G rollouts.

Responder The responder’s reward for the i -th solution is the maximum of a deterministic, rule-based check and the verifier’s consensus score, denoted as:

$$r_i^{\text{res}} = \max(\mathcal{R}_{\text{rule}}(y_i, a), v_i^{\text{ver}}). \quad (6)$$

The rule-based function, $\mathcal{R}_{\text{rule}}$, provides a binary reward based on cover exact match (CEM) criteria (Wan et al., 2025; Song et al., 2025)—it returns 1 if the ground-truth answer a appears in the generated response y_i and 0 otherwise. The maximum reward plays a crucial role: when y_i is a correct paraphrase that CEM fails to capture, a majority vote of $v_i^{\text{ver}} = 1$ prevents the policy from being misled by false-negative noise, which stabilizes learning and encourages continual improvement.

Questioner The questioner is incentivized to generate questions of intermediate difficulty, as learning is most efficient at the frontier of the LLM’s capabilities (Bae et al., 2025; Huang et al., 2025). For binary-reward tasks, this frontier corresponds to a success probability of 0.5, which maximizes reward variance and provides the richest learning signal. We therefore define the questioner’s reward as a Gaussian function centered at this optimal point. Given the responder’s average success rate, $\bar{r}^{\text{res}} = \frac{1}{G} \sum_{i=1}^G r_i^{\text{res}}$, the reward is:

$$r^{\text{que}} = \begin{cases} \exp\left(-\frac{(\bar{r}^{\text{res}} - \mu)^2}{2\sigma^2}\right) & \text{if } 0 < \bar{r}^{\text{res}} < 1 \\ 0 & \text{if } \bar{r}^{\text{res}} = 0 \text{ or } \bar{r}^{\text{res}} = 1 \\ -0.5 & \text{if the question is not grounded in documents} \\ -1 & \text{if the question-answer pair has formatting errors} \end{cases} \quad (7)$$

We set the mean $\mu = 0.5$ to target the point of maximum learning efficiency and the standard deviation $\sigma = 0.5/3$ to concentrate the reward around this level. Additionally, the questioner is penalized for producing ill-formatted (e.g., non-parsable) question–answer pairs or questions that can be solved without context, thereby enforcing both correct formatting and strong grounding in the provided text.

3.3 UNIFIED POLICY OPTIMIZATION

A central feature of SPELL is that samples generated under different roles supervise a single policy π_θ . The optimization must control both sample efficiency and gradient balance across roles.

Role-Specific Dynamic Sampling The raw samples collected for each document instance are highly imbalanced: one questioner sample, G responder samples, and G^2 verifier judgments. To prevent the verifier’s samples from dominating updates and to prioritize improvements in the responder’s document-grounded reasoning, we introduce a role-specific sampling strategy that leverages the statistical structure of each role’s signals. For the responder, we retain all groups with non-zero reward variance ($\text{std}(\{r_i^{\text{res}}\}_{i=1}^G) > 0$). The associated questions are labeled as positives for the questioner, and an equal number of negatives are drawn from questions with non-positive reward, as defined in Eq. (7). For the verifier, we preserve instances where the majority vote agrees with the rule-based check and subsample groups with conflicting verifications to match the number of questions. This role-specific sampling strategy reduces the training set to roughly $1/G$ of all samples, accelerates optimization, and prevents the responder’s gradients from being overwhelmed by verifier samples. Importantly, although most verifier samples are omitted, their collection cost is low, see Appendix F.1.

Advantage Estimation For the responder and verifier, which generate G outputs per prompt, we use group-level advantage estimation as defined in Eq. (3):

$$A_i^{\text{role}} = \frac{r_i^{\text{role}} - \text{mean}(\{r_k^{\text{role}}\}_{k=1}^G)}{\text{std}(\{r_k^{\text{role}}\}_{k=1}^G)}, \text{ role } \in \{\text{res, ver}\}. \quad (8)$$

The questioner generates only a single output per instance and thus lacks a group-level baseline. Therefore, we adapt the normalization method from REINFORCE++-baseline (Hu, 2025) and normalize its reward against other questioner rewards within the training batch \mathcal{B}^{que} :

$$A^{\text{que}} = \frac{r^{\text{que}} - \text{mean}(r^{\text{que}} \mid r^{\text{que}} \in \mathcal{B}^{\text{que}})}{\text{std}(r^{\text{que}} \mid r^{\text{que}} \in \mathcal{B}^{\text{que}})}. \quad (9)$$

Unified Policy Update After collecting and sampling a batch of samples, the policy parameters θ are updated by jointly optimizing the GRPO objective across all three roles:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathcal{J}_{\text{GRPO}}^{\text{que}}(\theta) + \mathcal{J}_{\text{GRPO}}^{\text{res}}(\theta) + \mathcal{J}_{\text{GRPO}}^{\text{ver}}(\theta) \quad (10)$$

The updated π_θ is reused to execute all roles in the next iteration. This closes the self-evolutionary cycle and keeps one unified policy for questioning, responding, and verifying.

270 4 EXPERIMENTS
271272 4.1 EXPERIMENTAL SETUP
273

274 **Training Details** Our SPELL RL framework is implemented using VeRL (Sheng et al., 2025).
 275 During generation, we employ a sampling temperature of 0.7 and a top- p value of 0.95. The
 276 maximum input length is 16K tokens, while the maximum output length is set to 4K for non-
 277 reasoning models and extended to 20K tokens for reasoning models. To balance rollout diversity and
 278 computational efficiency, we utilize a group size of $G = 8$. The maximum number of recent solvable
 279 question–answer pairs cached in history memory is set to $L = 3$, and the number of candidate
 280 documents drawn when proposing a new question is set to $m = 5$. We conduct a purely on-policy
 281 RL training with a batch size of 128 and a constant learning rate of 2×10^{-6} . At the beginning
 282 of each rollout, we randomly sample one of three predefined task formats—document general QA,
 283 financial math QA, or multiple-choice—along with a relevant document list from the corpus. Prompt
 284 templates for each task τ and each role are provided in Appendix G. For the RLVR baseline, we
 285 synthesize a dataset using DeepSeek-R1-0528 (Guo et al., 2025) over the same document corpus and
 286 maintain identical hyperparameters to ensure a fair comparison. For comprehensive details on data
 287 construction, RL algorithm, and baselines, please refer to Appendix E.1, E.3, and E.5.

287 **Evaluation Benchmarks** We evaluate our models on six long-context benchmarks, spanning
 288 multiple-choice QA on LongBench-V2 (Bai et al., 2025) and multi-hop QA across Frames (Krishna
 289 et al., 2025), HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi
 290 et al., 2022)³, and the DocMath (Zhao et al., 2024) for financial report reasoning task. We evaluate all
 291 models with maximum input lengths of 16K and 100K tokens, and report the average accuracy over
 292 eight runs. Further details on the benchmarks and evaluation protocol are available in Appendix E.2.

293 4.2 MAIN RESULTS
294

295 Table 1 summarizes the results of SPELL across 12 open-source LLMs on six long-context QA
 296 benchmarks under maximum input lengths of 16K and 100K tokens. These results offer valuable
 297 insights into SPELL’s effectiveness and generalization, as elaborated below.

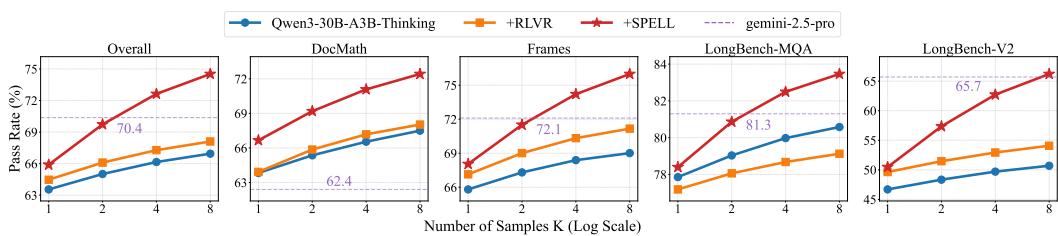
298 **SPELL consistently enhances performance across diverse models.** Our self-play framework
 299 exhibits strong universality, and it delivers substantial improvements across different architectures,
 300 sizes, and families. This versatility is evident across the following dimensions. (1) **Model types**
 301 and sizes: SPELL cultivates complex reasoning skills from scratch. For unaligned base models, the
 302 average improvement at 16K is large and robust, with Qwen2.5-7B, Qwen2.5-14B, and Qwen2.5-32B
 303 improving by 13.9, 14.4, and 9.1 points, respectively. Remarkably, these trained models consistently
 304 outperform their instruction-tuned counterparts of the same size, which are trained with extensive
 305 human-annotated data. This result highlights that SPELL is data-efficient and practically valuable
 306 in scenarios where labeled data is scarce. SPELL also benefits instruction-tuned models, e.g.,
 307 Qwen2.5-7B-Instruct improves by 9.0 points. For highly specialized reasoning models such as
 308 R1-Distill-Qwen-14B, the performance still increases by 3.4 points. (2) **Architecture:** Beyond dense
 309 models, the framework is also applicable to Mixture-of-Experts (MoE) models, where it improves
 310 Qwen3-30B-A3B-Instruct and Qwen3-30B-A3B-Thinking by 4.4 and 2.0 points, respectively. (3)
 311 **Model families:** Improvements extend across families. For example, Llama-3.1-8B-Instruct and
 312 R1-Distill-Llama-8B increase by 4.4 and 3.4 points, respectively. Collectively, these results establish
 313 SPELL as a broadly effective paradigm for advancing LLMs in long-context tasks.

314 **SPELL is superior to traditional RL with static data.** We compare SPELL against the RLVR
 315 baseline trained on a fixed dataset synthesized by DeepSeek-R1-0528. Although such static data
 316 offers high-quality supervision for RL training, it cannot adapt to the policy’s evolving capabilities.
 317 In contrast, SPELL constructs a self-play curriculum that tracks the model’s current ability: the
 318 questioner focuses on instances near the responder’s competence boundary, maintaining alignment
 319 between the training signal and the policy throughout optimization. The advantage becomes increas-
 320 ingly evident as the policy model’s capabilities grow. For Qwen2.5-7B, RLVR achieves performance
 321 comparable to SPELL, indicating that a static corpus appears sufficient for weaker policies. However,
 322 for Qwen3-30B-A3B-Thinking, SPELL improves average scores by 2.0, whereas RLVR yields
 323 no gain. On the more challenging benchmarks for the same model, RLVR decreases accuracy on

³We use the subsets of HotpotQA, 2WikiMultihopQA, and MuSiQue from LongBench (Bai et al., 2024b).

324
325 Table 1: Overall results of our proposed SPELL method with maximum input lengths of 16K and 100K on long-
326 context benchmarks. “LB-MQA” represents the average performance across 2WikiMultihopQA, HotpotQA, and
327 MuSiQue. “LB-V2” refers to LongBench-v2. For the average score (Avg.), **+** indicates the relative improvement
328 over the base model within each group. The best score in each model group is highlighted in **bold**.

Models	16K					100K				
	DocMath	Frames	LB-MQA	LB-V2	Avg.	DocMath	Frames	LB-MQA	LB-V2	Avg.
Base Models										
Qwen2.5-7B	10.9	27.9	36.7	31.2	26.7	16.1	24.2	31.2	22.7	23.6
+ RLVR	41.8	41.0	50.0	30.2	40.8^{+1.1}	42.7	40.3	49.2	26.0	39.6 ^{+16.0}
+ SPELL	40.0	39.2	50.9	32.3	40.6 ^{+13.9}	39.9	40.1	50.8	28.2	39.8^{+16.2}
Qwen2.5-14B	38.0	37.2	41.9	32.1	37.3	36.2	37.5	43.3	27.5	36.1
+ RLVR	52.2	51.0	63.3	32.9	49.9 ^{+12.6}	53.2	52.1	64.2	30.5	50.1 ^{+13.9}
+ SPELL	57.6	52.6	63.0	33.5	51.7^{+14.4}	56.8	53.0	63.2	31.2	51.1^{+15.0}
Qwen2.5-32B	46.8	42.6	49.0	33.7	43.0	40.7	42.2	50.1	28.7	40.4
+ RLVR	58.3	50.0	59.5	32.8	50.2 ^{+7.2}	57.5	49.9	60.1	32.7	50.1 ^{+9.7}
+ SPELL	61.8	50.2	62.1	34.2	52.1^{+9.1}	60.6	52.2	62.3	34.3	52.4^{+12.0}
Instruct Models										
Qwen2.5-7B-Instruct	38.4	40.3	45.1	29.0	38.2	39.4	41.4	44.5	28.4	38.4
+ RLVR	45.0	48.7	59.6	30.1	45.9 ^{+7.7}	44.1	48.6	57.4	28.2	44.6 ^{+6.2}
+ SPELL	45.8	46.7	63.1	33.2	47.2^{+9.0}	44.5	48.2	60.7	32.4	46.5^{+8.1}
Qwen2.5-14B-Instruct	56.3	51.6	63.0	32.2	50.8	56.7	52.4	64.2	36.6	52.5
+ RLVR	56.1	59.6	71.0	36.4	55.8 ^{+5.0}	56.7	59.9	73.4	38.5	57.1 ^{+4.6}
+ SPELL	59.6	62.1	72.8	36.8	57.8^{+7.0}	60.1	63.9	74.8	40.1	59.7^{+7.2}
Qwen2.5-32B-Instruct	60.0	49.9	61.4	36.0	51.8	63.0	49.4	61.5	36.2	52.5
+ RLVR	59.9	60.5	70.4	36.3	56.8 ^{+5.0}	59.7	62.3	69.6	36.9	57.1 ^{+4.6}
+ SPELL	62.3	61.2	74.4	40.1	59.5^{+7.7}	63.3	62.0	74.1	40.8	60.1^{+7.6}
Qwen3-30B-A3B-Instruct	62.3	55.3	70.5	36.9	56.3	63.0	57.8	70.3	44.1	58.8
+ RLVR	62.5	59.9	71.8	39.8	58.5 ^{+2.2}	64.0	62.0	72.4	47.4	61.5 ^{+5.2}
+ SPELL	63.0	63.1	75.1	41.5	60.7^{+4.4}	64.9	63.7	74.8	48.7	63.0^{+4.2}
Llama3.1-8B-Instruct	33.2	45.6	52.5	29.1	40.1	34.9	47.3	53.5	27.1	40.7
+ RLVR	37.9	45.0	58.8	27.5	42.3 ^{+2.2}	36.9	47.6	57.2	26.1	42.0 ^{+1.3}
+ SPELL	39.2	48.9	61.6	28.4	44.5^{+4.4}	39.7	50.8	60.9	26.2	44.4^{+3.7}
Reasoning Models										
R1-Distill-Llama-8B	42.0	50.3	66.8	27.9	46.8	41.5	52.6	69.3	26.4	47.5
+ RLVR	43.4	51.4	67.8	30.0	48.2 ^{+1.4}	45.4	54.0	68.0	28.3	48.9 ^{+1.4}
+ SPELL	48.9	53.4	68.4	30.2	50.2^{+3.4}	49.2	54.3	70.0	29.3	50.7^{+3.2}
R1-Distill-Qwen-14B	57.7	59.2	72.4	36.2	56.4	59.5	60.6	73.3	33.3	56.7
+ RLVR	59.6	61.7	74.6	37.2	58.3 ^{+1.9}	61.0	63.8	76.0	35.9	59.2 ^{+2.5}
+ SPELL	61.6	62.3	76.2	39.0	59.8^{+3.4}	61.1	62.8	75.7	37.9	59.4 ^{+2.7}
Qwen3-4B-Thinking	58.6	56.7	69.9	32.9	54.5	61.4	59.2	70.9	40.7	58.1
+ RLVR	60.5	56.6	71.1	33.8	55.5 ^{+1.0}	63.3	58.6	71.1	43.4	59.1 ^{+1.0}
+ SPELL	61.9	56.6	71.6	36.8	56.7^{+2.2}	64.8	60.6	72.4	43.0	60.2^{+2.1}
Qwen3-30B-A3B-Thinking	62.9	64.5	75.7	39.7	60.7	63.8	65.8	77.9	46.7	63.6
+ RLVR	62.7	64.7	77.0	38.5	60.7 ^{+0.0}	63.9	67.1	77.2	49.6	64.5 ^{+0.9}
+ SPELL	64.1	66.5	78.0	42.3	62.7^{+2.0}	66.7	68.1	78.4	50.5	65.9^{+2.3}



366
367 Figure 3: Test-time scaling performance (pass@k) across all benchmarks. The Qwen3-30B-A3B-Thinking
368 model trained with SPELL shows a significantly steeper improvement as the number of samples (K) increases
369 compared to the base model and the RLVR baseline. Notably, its pass@4 performance surpasses gemini-2.5-pro.

370 DocMath (-0.2) and LongBench-V2 (-1.2), whereas SPELL delivers consistent gains of 1.2 and 2.6
371 points, respectively. These results validate that when models approach or surpass the quality of static
372 training data, a self-play curriculum proves more effective for sustaining performance gains.

373 **SPELL generalizes to longer contexts.** All models are trained with a 16K input limit and evaluated
374 at 100K without additional tuning. The results remain consistent under this out-of-distribution
375 input length, demonstrating that the benefits of SPELL extend beyond the training window. For
376 Qwen2.5-14B, the average improvement is 14.4 at 16K and increases to 15.0 at 100K. This consistency
377 suggests that the framework strengthens document-grounded reasoning in a way that remains effective
378 as input lengths grow substantially, rather than producing gains limited to a specific context length.

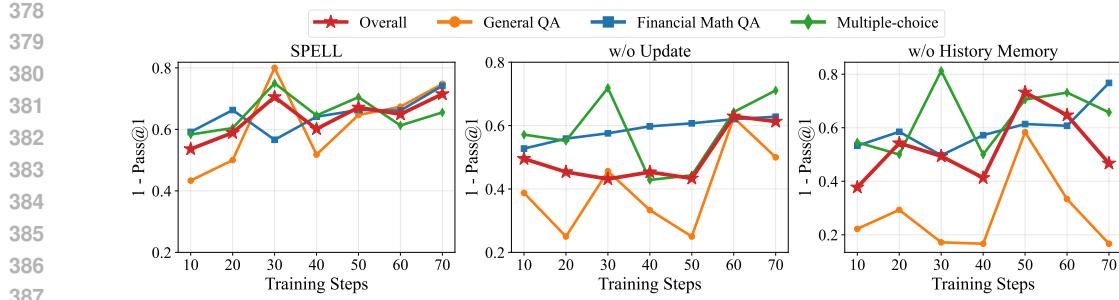


Figure 4: Analysis of question difficulty ($1 - \text{pass}@1$) on three tasks over training steps. **(Left):** The full SPELL framework shows a clear upward trend in difficulty. **(Middle):** Without questioner updates, difficulty stagnates. **(Right):** Without the history memory, difficulty becomes erratic and unstable.

SPELL boosts exploration and raises the performance ceiling. We assess test-time exploration with the $\text{pass}@k$ metric at a 100K input limit. As shown in Figure 3, Qwen3-30B-A3B-Thinking trained with SPELL exhibits a markedly steeper improvement curve as k increases compared to both the base model and the RLVR baseline. Its $\text{pass}@8$ score reaches 74.5, significantly outperforming the RLVR baseline (68.1) and the original base model (66.9). This enhanced exploratory ability further allows the SPELL-trained model to surpass the performance of the leading gemini-2.5-pro (Comanici et al., 2025) at a $\text{pass}@4$ rate. These results indicate that SPELL effectively broadens the model’s test-time search space and raises its attainable performance ceiling, highlighting a promising path toward elevating the capabilities of even more powerful foundation models.

4.3 ABLATION STUDIES

To validate the key design choices within the SPELL framework, we conduct ablation studies on Qwen2.5-7B-Instruct. We individually remove each core component of the *questioner* and *verifier* roles to quantify their individual contributions to the overall performance.

Questioner As shown in Table 2, the removal of the format penalty and the grounding filter degrades the average score by 1.1 and 1.0 points, respectively. The format penalty keeps the question well-formed, and the grounding filter **prevents the generation of hallucinated questions**. The largest drops come from disabling the update mechanism and the history memory: freezing the questioner lowers the average score by 4.6, and removing history memory lowers it by 2.9. The declines appear across DocMath, Frames, LB-MQA, and LB-V2, which indicates that these components have a broad impact rather than task-specific effects.

We further examine how these components affect generated question difficulty over Qwen2.5-7B-Instruct training steps, as measured by $1\text{-pass}@1$ with an external responder (Qwen3-30B-A3B-Instruct) and an external verifier (gpt-oss-120b). The full SPELL model (Figure 4, left) shows a clear upward trend in overall question difficulty, which ensures the questioner proposes questions that are challenging enough for the responder’s evolving capabilities. In contrast, freezing the questioner causes difficulty to stagnate (Figure 4, middle), while removing the history memory makes it erratic (Figure 4, right). The evidence supports the conclusion that continual updates and access to recent history are necessary to form a stable and progressively more challenging curriculum for the responder, which is essential for sustained improvement in a self-play system. This dynamic prevents one role from exploiting the static weaknesses of another, as observed in Liu et al. (2025a).

Verifier Removing the verifier and relying solely on rule-based rewards decreases average score by 3.2 points, with a 6.4-point drop on DocMath. The CEM-based reward function is brittle and can penalize semantically correct but lexically different answers; the verifier provides a complementary

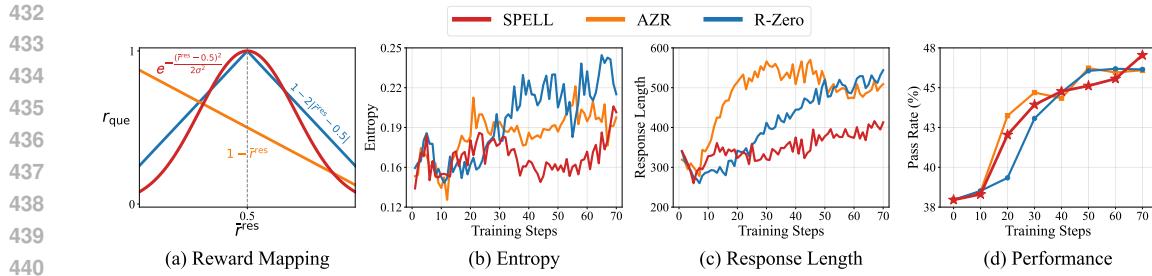


Figure 5: Comparison of different reward mapping strategies. **(a)** Visualization of the reward functions for SPELL, AZR, and R-Zero. **(b)** SPELL exhibits more stable entropy dynamics during training. **(c)** SPELL maintains a more moderate and controlled growth in response length. **(d)** These factors contribute to a consistent performance improvement, ultimately leading our method to achieve the highest final pass rate.

signal in such cases. Interestingly, disabling verifier updates or switching to single-pass decisions leads to moderate declines, which indicates that Qwen2.5-7B-Instruct is already competent at the simpler verification task. However, removing the consistency update mechanism still causes a 1.5-point performance drop. This result shows that the verifier’s updates are susceptible to noise from its own erroneous majority votes, which degrades its reliability. On rule-verifiable tasks, the verifier learns to filter this noise by aligning its majority vote with the ground-truth rule-based outcome. This process provides the verifier with reliable learning signals, which in turn enhance its ability to generate stable rewards for rule-unverifiable outputs. This illustrates how verifiable rewards can guide the calibration of non-verifiable rewards, a finding that aligns with the self-judging methodology in Kimi-K2 (Team et al., 2025).

4.4 ANALYSIS OF QUESTIONER REWARD MAPPING

We compare our Gaussian-mapped reward function for questioner in Eq. (7) with the reward mapping used in AZR (Zhao et al., 2025) and R-Zero (Huang et al., 2025). Figure 5(a) visualizes these distinct mapping functions. While the AZR reward function also penalizes high-accuracy questions, it is susceptible to noise from spurious correctness, which can destabilize the training process. In contrast, our Gaussian function, which peaks when the average responder accuracy \bar{r}^{res} is 0.5, selectively encourages questions at the frontier of the responder’s competence. **Additionally, this mechanism mitigates the impact of data noise. Questions with wrong reference answers typically result in success rates near zero or one, corresponding to scenarios of random guessing on unsolvable questions or consistent matching with the incorrect reference, respectively. Both extremes naturally fall into the low-reward tails of the Gaussian function, effectively suppressing incorrect questions during policy optimization.** While R-Zero also centers its peak reward at 0.5, our Gaussian mapping provides a more targeted reward by offering stronger incentives for questions of moderate difficulty and imposing a steeper penalty on those that are either too easy or too hard. This creates a focused and smooth reward distribution that guides the questioner away from generating both trivial and overly difficult questions. The training dynamics corroborate these design differences. As shown in Figures 5(b) and (c), our method maintains a more stable training entropy and exhibits more controlled growth in response length under the Gaussian mapping than under AZR or R-Zero. These advantages in training stability lead to superior overall performance. As Figure 5(d) demonstrates, our method not only achieves more consistent performance growth but also reaches the highest final pass rate among all compared approaches. This evidence supports the view that concentrating the questioner’s reward at the responder’s competence frontier stabilizes the optimization process while preserving headroom for their mutual co-evolution.

4.5 HYPERPARAMETERS ANALYSIS

Selection of standard deviation σ The choice of σ in Eq. (7) is derived from the statistical properties of the Gaussian distribution, where approximately 99.7% of data points fall within three standard deviations (3σ) of the mean. In SPELL, we aim to concentrate the questioner’s reward at the point of the responder’s maximal learning efficiency, where $\bar{r}^{\text{res}} = 0.5$. Accordingly, the mean is set to $\mu = 0.5$. Given this mean, the distance to either boundary of the valid average responder reward range $[0, 1]$ is 0.5. By setting $3\sigma = 0.5$, we ensure the effective range of the questioner reward

486 covers the responder reward space, yielding $\sigma = 0.5/3$. To further validate this theoretical choice, we conduct 487 an ablation study on σ using Qwen2.5- 488 7B-Instruct. As shown in Table 3, narrowing 489 the curve ($\sigma = 0.5/6$) has a minimal negative 490 impact, as the reward remains well-focused. 491 However, widening the curve ($\sigma = 0.5/2$) significantly 492 degrades performance, likely because it 493 assigns higher rewards to overly easy 494 or hard questions, providing a less targeted 495 training signal. This confirms that 496 $\sigma = 0.5/3$ is both theoretically sound and 497 empirically effective.

500 **Sensitivity of group size (G)** We examine the impact of the rollout group size G on model 501 performance using Qwen2.5-7B-Instruct. As shown in Table 3, while $G = 8$ yields the best overall 502 results, SPELL remains robust across different group sizes. We select $G = 8$ as the default setting to 503 strike a balance between performance gains and computational efficiency during training.

504 4.6 ROLE OF EXTERNAL JUDGES IN VERIFICATION

505 We investigate whether replacing the rule-based judge (CEM-based reward function) with a stronger 506 external model (gpt-oss-120b) benefits the self-play process. As shown in Table 4, introducing 507 a stronger external judge does not yield a significant overall improvement. This suggests that 508 Qwen2.5-7B-Instruct is already capable of learning semantic verification through self-play without 509 external supervision. Notably, when an external judge is introduced, the internal verifier becomes less 510 important; removing it results in only a minor 0.5-point drop, compared to the significant 3.2-point 511 drop observed when using the rule-based judge. This highlights the critical role of the internal verifier 512 in complementing the brittle CEM-based reward function when an external judge is not available.

513 Table 4: Comparison of SPELL trained with rule-based judge versus an external judge (gpt-oss-120b). The 514 verifier is crucial when using a rule-based judge, but becomes less critical when including an external judge.

515 Method	516 DocMath	517 Frames	LB-MQA	LB-V2	Average
518 Qwen2.5-7B-Instruct	38.4	40.3	45.1	29.0	38.2
519 + SPELL (Rule-based Judge)	45.8	46.7	63.1	33.2	47.2
520 + SPELL (Gpt-oss-120b Judge)	47.1	48.0	61.6	32.1	47.2
521 + SPELL (Rule-based Judge) w/o Verifier	39.4	46.6	60.4	29.4	44.0
522 + SPELL (Gpt-oss-120b Judge) w/o Verifier	47.0	47.2	61.1	31.3	46.7

523 5 CONCLUSION

524 This work introduces SPELL, a multi-role self-play reinforcement learning framework for evolving 525 the long-context reasoning capabilities of LLMs without human supervision. A single policy model 526 alternates among the roles of questioner, responder, and verifier to generate questions, solve them, 527 and assess the solutions, which reduces reliance on costly and unreliable human annotation while 528 enabling stable self-evolution. Extensive experiments across 12 models of diverse architectures and 529 sizes show that SPELL delivers consistent and substantial improvements in long-context reasoning.

530 This study concludes with three notable findings. First, signals from verifiable tasks can calibrate and 531 strengthen the verifier’s assessment on non-verifiable tasks, thereby ensuring a reliable self-rewarding 532 mechanism. Second, within a multi-role self-play framework, sustaining a dynamic equilibrium 533 among the capabilities of different roles is critical for the stable evolution of the shared policy. Finally, 534 our results demonstrate that for models approaching or surpassing human performance, where 535 external supervision emerges as a fundamental bottleneck, autonomous self-evolution transitions 536 from a promising alternative to an indispensable strategy for sustained advancement.

Settings	DocMath	Frames	LB-MQA	LB-V2	Average
SPELL	45.8	46.7	63.1	33.2	47.2
<i>Standard Deviation (σ)</i>					
$\sigma = 0.5/6$	45.3	47.0	62.3	32.8	46.9
$\sigma = 0.5/2$	45.5	46.0	59.4	31.8	45.7
<i>Group Size (G)</i>					
$G = 4$	44.3	47.1	62.5	31.8	46.4
$G = 16$	46.0	47.4	62.7	31.9	47.0

540
541 ETHICS STATEMENT

542 This research focuses on the development of long-context LLMs through self-play that requires
 543 no human supervision. While we believe our methodology does not inherently raise significant
 544 ethical issues, we acknowledge the potential for misuse of this technology. We also recognize that an
 545 unsupervised learning approach may perpetuate or amplify societal biases in the model. Our research
 546 is conducted using only publicly available datasets, in compliance with their licenses, and involves
 547 no personally identifiable information. We have adhered to all relevant ethical and legal standards
 548 and declare no conflicts of interest that could have influenced the outcomes of this study.

549
550 REPRODUCIBILITY STATEMENT

551 To ensure the reproducibility of our work, we provide full experimental details in Section 4.1 and
 552 Appendix E. These include our methods for dataset construction, training configurations, and the
 553 evaluation setup. The implemented code, the data used, and a comprehensive guide to reproduce our
 554 method are available in the supplementary materials.

555
556 REFERENCES

557 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
 558 Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. *arXiv preprint*
 559 *arXiv:2504.03380*, 2025.

560 Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi Li.
 561 LongAlign: A recipe for long context alignment of large language models. In *Findings of the*
 562 *Association for Computational Linguistics: EMNLP 2024*, 2024a.

563 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 564 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
 565 multitask benchmark for long context understanding. In *Proceedings of the 62nd Annual Meeting*
 566 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024b.

567 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
 568 Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench v2: Towards deeper understanding
 569 and reasoning on realistic long-context multitasks. In *Proceedings of the 63rd Annual Meeting*
 570 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2025.

571 Guanzheng Chen, Xin Li, Michael Shieh, and Lidong Bing. Longpo: Long context self-evolution of
 572 large language models through short-to-long preference optimization. In *International Conference*
 573 *on Learning Representations*, 2025a.

574 Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
 575 language models. *arXiv preprint arXiv:2508.03682*, 2025b.

576 Zhi Chen, Qiguang Chen, Libo Qin, Qipeng Guo, Haijun Lv, Yicheng Zou, Hang Yan, Kai Chen, and
 577 Dahua Lin. What are the essential factors in crafting effective long context multi-hop instruction
 578 datasets? insights and best practices. In *Proceedings of the 63rd Annual Meeting of the Association*
 579 *for Computational Linguistics (Volume 1: Long Papers)*, 2025c.

580 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 581 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 582 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 583 2021.

584 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 585 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 586 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 587 *arXiv preprint arXiv:2507.06261*, 2025.

588 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 589 Letman, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

- 594 Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu,
 595 Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial super
 596 intelligence. *arXiv preprint arXiv:2507.21046*, 2025.
- 597
- 598 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 599 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 600 ment learning. *Nature*, 645(8081):633–638, 2025.
- 601 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 602 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 603 *Learning Representations*, 2021a.
- 604
- 605 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 606 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 607 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
 608 (*Round 2*), 2021b.
- 609
- 610 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 611 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th International*
 612 *Conference on Computational Linguistics*, 2020.
- 613
- 614 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 615 *preprint arXiv:2501.03262*, 2025.
- 616
- 617 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 618 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 619 model. *arXiv preprint arXiv:2503.24290*, 2025.
- 620
- 621 Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
 622 Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. *arXiv*
 623 *preprint arXiv:2508.05004*, 2025.
- 624
- 625 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 626 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 627 *arXiv:2412.16720*, 2024.
- 628
- 629 Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
 630 Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
 631 augmented generation. In *Proceedings of the 2025 Conference of the Nations of the Americas*
 632 *Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume*
 633 *1: Long Papers)*, 2025.
- 634
- 635 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 636 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
 637 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.
- 638
- 639 Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
 640 is all you need: Few-shot rl fine-tuning of language models. *arXiv preprint arXiv:2506.06395*,
 641 2025.
- 642
- 643 Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston
 644 Tan, Weiyan Shi, Min Lin, et al. Spiral: Self-play on zero-sum games incentivizes reasoning via
 645 multi-agent multi-turn reinforcement learning. *arXiv preprint arXiv:2506.24119*, 2025a.
- 646
- 647 Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
 648 Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context
 649 language modeling. *arXiv preprint arXiv:2503.17407*, 2025b.
- 650
- 651 Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng,
 652 Aili Chen, Shiqi Chen, et al. Synlogic: Synthesizing verifiable reasoning data at scale for learning
 653 logical reasoning and beyond. *arXiv preprint arXiv:2505.19641*, 2025c.

- 648 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 649 Lin. Understanding r1-zero-like training: A critical perspective. In *Conference on Language
 650 Modeling (COLM)*, 2025d.
- 651
- 652 MAA. American invitational mathematics examination - AIME, 2025. URL <https://maa.org/maa-invitational-competitions/>.
- 653
- 654 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://cdn.openai.com/pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf.
- 655
- 656
- 657 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 658 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 659 in neural information processing systems*, 2023.
- 660
- 661 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 662 continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*,
 663 2015.
- 664
- 665 John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
 666 *arXiv preprint arXiv:1704.06440*, 2017a.
- 667
- 668 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 669 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017b.
- 670
- 671 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 672 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 673 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 674
- 675 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 676 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 677 of the Twentieth European Conference on Computer Systems*, 2025.
- 678
- 679 Tianyuan Shi, Canbin Huang, Fanqi Wan, Longguang Zhong, Ziyi Yang, Weizhou Shen, Xiaojun
 680 Quan, and Ming Yan. Mutual-taught for co-adapting policy and reward models. In *Proceedings
 681 of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 682 Papers)*, 2025.
- 683
- 684 Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In *Artificial intelligence
 685 and statistics*, pp. 886–894. PMLR, 2014.
- 686
- 687 Toby Simonds, Kevin Lopez, Akira Yoshiyama, and Dominique Garmier. Self rewarding self
 688 improving. *arXiv preprint arXiv:2505.08827*, 2025.
- 689
- 690 Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian
 691 Min, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher++: Incentivizing the dynamic
 692 knowledge acquisition of llms via reinforcement learning. *arXiv preprint arXiv:2505.17005*, 2025.
- 693
- 694 Huashan Sun, Shengyi Liao, Yansen Han, Yu Bai, Yang Gao, Cheng Fu, Weizhou Shen, Fanqi Wan,
 695 Ming Yan, Ji Zhang, et al. Solopo: Unlocking long-context capabilities in llms via short-to-long
 696 preference optimization. *arXiv preprint arXiv:2505.11166*, 2025.
- 697
- 698 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
 699 Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint
 700 arXiv:2507.20534*, 2025.
- 701
- Kiran Vodrahalli, Santiago Ontanon, Nilesh Tripuraneni, Kelvin Xu, Sanil Jain, Rakesh Shivanna,
 702 Jeffrey Hui, Nishanth Dikkala, Mehran Kazemi, Bahare Fatemi, et al. Michelangelo: Long context
 703 evaluations beyond haystacks via latent structure queries. *arXiv preprint arXiv:2409.12640*, 2024.

- 702 Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li, Ziyi Yang, Ji Zhang, Fei
 703 Huang, Jingren Zhou, and Ming Yan. Qwenlong-11: Towards long-context large reasoning models
 704 with reinforcement learning. *arXiv preprint arXiv:2505.17667*, 2025.
- 705
- 706 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 707 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 708 *arXiv preprint arXiv:2203.11171*, 2022.
- 709
- 710 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 711 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 712 Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-task language
 713 understanding benchmark. In *The Thirty-eight Conference on Neural Information Processing
 Systems Datasets and Benchmarks Track*, 2024.
- 714
- 715 Yudong Wang, Zixuan Fu, Jie Cai, Peijun Tang, Hongya Lyu, Yewei Fang, Zhi Zheng, Jie Zhou,
 716 Guoyang Zeng, Chaojun Xiao, et al. Ultra-fineweb: Efficient data filtering and verification for
 717 high-quality llm training data. *arXiv preprint arXiv:2505.05427*, 2025.
- 718
- 719 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 720 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
 721 reinforcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.
- 722
- 723 Tian-Shi Xu, Hsiao-Dong Chiang, Guang-Yi Liu, and Chin-Woo Tan. Hierarchical k-means method
 724 for clustering large-scale advanced metering infrastructure data. *IEEE Transactions on Power
 Delivery*, 32(2):609–616, 2015.
- 725
- 726 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, et al.
 727 Qwen2 technical report. *ArXiv*, abs/2407.10671, 2024a.
- 728
- 729 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 730 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 731 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.
- 732
- 733 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 734 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 2025.
- 735
- 736 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 737 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 738 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
 Processing*, 2018.
- 739
- 740 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 741 and Danqi Chen. HELMET: How to evaluate long-context models effectively and thoroughly. In
 742 *International Conference on Learning Representations*, 2025.
- 743
- 744 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 745 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 746 *arXiv preprint arXiv:2503.14476*, 2025.
- 747
- 748 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
 749 and Jason Weston. Self-rewarding language models. In *International Conference on Machine
 Learning*, 2024.
- 750
- 751 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
 752 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
 753 advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025.
- 754
- 755 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 756 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.

- 756 Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
757 Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
758 *arXiv preprint arXiv:2505.03335*, 2025.
- 759
- 760 Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi, Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru
761 Tang, Rui Zhang, and Arman Cohan. Docmath-eval: Evaluating math reasoning capabilities of
762 llms in understanding long and specialized documents. In *Proceedings of the 62nd Annual Meeting*
763 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024.
- 764
- 765 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
766 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
767 chatbot arena. *Advances in neural information processing systems*, 2023.
- 768
- 769 Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
770 language model agents. *arXiv preprint arXiv:2506.01716*, 2025.
- 771
- 772 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
773 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*
774 *arXiv:2504.16084*, 2025.
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809

810 A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS
811812 In preparing this manuscript, we employ large language models (LLMs) purely as an assistive writing
813 tool, without influencing the intellectual contributions of this work. Their use is limited to checking
814 grammar, correcting spelling, and improving the clarity and precision of the text. The proposal of the
815 research question, the development of the methodology, and the experimental design are the original
816 contributions of the authors. All model-generated outputs are subject to critical review, editing, and
817 final verification by the authors to ensure the authenticity of the content.818 B LIMITATIONS AND FUTURE WORK
819820 First, while our study provides strong empirical evidence, a theoretical framework explaining the
821 co-evolutionary dynamics of the three roles within a single model has yet to be explored. Second, due
822 to framework and efficiency constraints, our experiments are limited to a 16K input context. Although
823 the acquired skills generalize well to longer contexts, it is a critical next step to develop more efficient
824 frameworks for self-play RL on ultra-long contexts, such as 128K tokens and beyond. Finally,
825 our self-play framework still relies on a degree of human intervention, such as pre-processing the
826 document corpus and crafting prompt templates for each role. Future work could explore pathways
827 toward greater autonomy, such as a system where an LLM interacts with a real-world environment to
828 generate and evolve its own tasks, templates, and reward functions.829 C RELATED WORK
830831 C.1 LONG-CONTEXT ALIGNMENT
832833 Developing long-context language models (LCLMs) has become a central research area, as many
834 real-world applications require reasoning over extended inputs (Liu et al., 2025b). A dominant
835 paradigm in this field is to enhance models through various post-training alignment techniques on
836 well-curated, synthesized datasets. One prominent approach is supervised fine-tuning (SFT). For
837 instance, LongAlign (Bai et al., 2024a) utilizes a self-instruct pipeline to construct a large-scale,
838 long-instruction dataset for SFT, while MIMG (Chen et al., 2025c) employs a multi-agent system
839 to generate more complex, multi-hop reasoning data. Another line of work focuses on preference
840 optimization. LongPO (Chen et al., 2025a) and SoLoPO (Sun et al., 2025) generate preference
841 pairs by contrasting outputs from compressed versus full contexts and leverage direct preference
842 optimization (DPO) (Rafailov et al., 2023) to transfer short-context capabilities to longer inputs. More
843 recently, QwenLong-L1 (Wan et al., 2025) introduces the concept of long-context reasoning RL and
844 employs a two-stage progressive context scaling training to develop long-context reasoning models.
845 While proven effective, all these approaches exhibit some form of reliance on external supervision.846 C.2 SELF-PLAY LANGUAGE MODELS
847848 To mitigate the reliance on external supervision, such as human annotation or labeled datasets,
849 researchers are developing self-play language models (Gao et al., 2025). These models achieve
850 autonomous improvement by generating their own training data, reward signals, or both. These
851 approaches can be categorized into two paradigms: multi-model optimization, which co-evolves
852 several distinct models, and single-model optimization, where one model assumes multiple roles.853 **Multi-Model Optimization** This paradigm orchestrates the co-evolution of multiple specialized
854 models. In Mutual-Taught (Shi et al., 2025), a policy model and a reward model are reciprocally
855 and iteratively refined: the policy model generates data to enhance the reward model, which in turn
856 provides more accurate feedback to improve the policy model. Similarly, in R-Zero (Huang et al.,
857 2025), a challenger and a solver LLM are independently optimized and co-evolve: the challenger
858 generates new, challenging math problems for which it is rewarded based on the solver’s uncertainty,
859 and the solver is fine-tuned on these questions, rewarded for correctly solving them. While effective,
860 this paradigm substantially increases systemic complexity, and performance gains often plateau after
861 a finite number of iterations.862 **Single-Model Optimization** In contrast to the multi-model approach, single-model optimization
863 reduces systemic complexity by leveraging a single model to assume multiple roles for self-
improvement. For instance, Absolute Zero Reasoner (AZR) (Zhao et al., 2025) employs one model as

both a proposer that generates complementary coding tasks (induction, abduction, and deduction) and a solver that addresses them, with code execution feedback serving as the reward signal. Similarly, the Self-Challenging Agent (SCA) (Zhou et al., 2025) employs a model to formulate novel “Code-as-Task” questions and subsequently solve them, using self-generated code functions to provide the verification signal. A significant limitation of such approaches, however, is their dependence on external code executors, which confines their applicability to domains with programmatically verifiable outcomes. To overcome this limitation and enhance autonomy, other approaches further incorporate self-rewarding mechanisms that leverage self-consistency (Zuo et al., 2025), internal confidence scores (Li et al., 2025), or self-generated evaluations (Yuan et al., 2024). For example, Self-Questioning Language Models (SQLM) (Chen et al., 2025b) utilize a model to propose and then answer questions, adapting its reward mechanism between self-consistency for arithmetic and proposer-generated unit tests for coding. Similarly, the Self-Rewarding Self-Improving framework (Simonds et al., 2025) also generates its own questions and solutions but uses a self-judging mechanism for reward computation.

Our work extends the single-policy self-play paradigm to long-context understanding and reasoning. Unlike existing methods that focus on short-context tasks like coding or math, SPELL is designed for reasoning over long documents. In our framework, a single LLM learns by playing three roles: a *questioner*, a *responder*, and a *verifier*. These roles interact to create a self-sufficient learning loop for long-context comprehension, thereby addressing a key gap in current self-play learning research.

D SPELL ALGORITHM

In this section, we outline the step-by-step algorithm for SPELL in Algorithm 1.

Algorithm 1 The SPELL Algorithm

```

1: Require: Initial policy model  $\pi_\theta$ ; Dataset  $\mathcal{D} = \{(C, \tau)\}$ ; Subset size  $m$ ; History memory size
2: for  $(C, \tau) \in \mathcal{D}$  do
3:    $\mathcal{H}_C \leftarrow \text{Queue}(\emptyset, L)$  ▷ Initialize a history memory for each document cluster
4:   for each training step  $t = 1, 2, \dots$  do
5:      $\mathcal{B}^{\text{que}}, \mathcal{B}^{\text{res}}, \mathcal{B}^{\text{ver}} \leftarrow \emptyset, \emptyset, \emptyset$  ▷ Initialize empty sample batches for three roles
6:     while  $|\mathcal{B}^{\text{res}}| < N$  do
7:        $(C, \tau) \sim \mathcal{D}$  ▷ Sample a document cluster and task type
8:        $C_{\text{new}} \leftarrow \text{SampleDocs}(C, m)$  ▷ Sample a subset of  $m$  documents for questioner
9:        $X^{\text{que}} \leftarrow \text{GetQuestionerContext}(C_{\text{new}}, \tau, \mathcal{H}_C)$  ▷ Prepare questioner input; see §3.1
10:       $(q, a) \sim \pi_\theta^{\text{que}}(\cdot | X^{\text{que}})$  ▷ Questioning: Generate a question with reference answer
11:       $y_{\text{no\_context}} \sim \pi_\theta^{\text{res}}(\cdot | q)$  ▷ Attempt to answer the question without document context
12:      if  $\mathcal{R}_{\text{rule}}(y_{\text{no\_context}}, a) = 1$  then ▷ Grounding filter
13:         $\mathcal{B}^{\text{que}} \leftarrow \mathcal{B}^{\text{que}} \cup \{(X^{\text{que}}, q, a, r^{\text{que}} = -0.5)\}$  ▷ Penalize and store ungrounded question
14:        continue ▷ Discard question and proceed to the next iteration
15:       $\{y_i\}_{i=1}^G \sim \pi_\theta^{\text{res}}(\cdot | C, q)$  ▷ Responding: Generate a group of  $G$  responses
16:      for  $i \leftarrow 1$  to  $G$  do
17:         $\{v_{i,j}^{\text{ver}}\}_{j=1}^G \sim \pi_\theta^{\text{ver}}(\cdot | q, y_i, a)$  ▷ Verifying: Generate  $G$  verifications for each response
18:         $r^{\text{que}}, \{r_i^{\text{res}}\}_i, \{\{r_{i,j}^{\text{ver}}\}\}_{i,j} = \text{ComputeReward}(q, a, \{y_i\}_i^{\text{res}}, \{\{v_{i,j}^{\text{ver}}\}\}_{i,j})$  ▷ Compute role-specific rewards; see Eq. (4)-Eq. (7)
19:        if  $r^{\text{que}} > 0$  then ▷ Append solvable questions to the history memory
20:           $\text{PushToHistoryMemory}(\mathcal{H}_C, (C_{\text{new}}, q, a))$ 
21:           $\mathcal{B}^{\text{que}} \leftarrow \mathcal{B}^{\text{que}} \cup \{(X^{\text{que}}, q, a, r^{\text{que}})\}$ 
22:           $\mathcal{B}^{\text{res}} \leftarrow \mathcal{B}^{\text{res}} \cup \{(C, q, \{y_i\}_i, \{r_i^{\text{res}}\}_i)\}$ 
23:           $\mathcal{B}^{\text{ver}} \leftarrow \mathcal{B}^{\text{ver}} \cup \{(q, a, \{y_i\}_i, \{v_{i,j}^{\text{ver}}\}_{i,j}, \{r_{i,j}^{\text{ver}}\}_{i,j})\}$ 
24:        25:  $\mathcal{B} \leftarrow \text{SampleBatch}(\mathcal{B}^{\text{que}}, \mathcal{B}^{\text{res}}, \mathcal{B}^{\text{ver}})$  ▷ Apply role-specific dynamic sampling; see §3.3
25:         $\pi_\theta \leftarrow \text{UpdatePolicy}(\pi_\theta, \mathcal{B})$  ▷ Unified Policy Update; see §3.3
26:      27: Ensure: Updated policy model  $\pi_\theta$ 

```

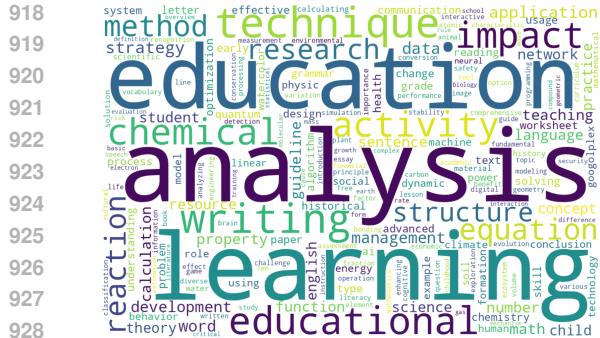
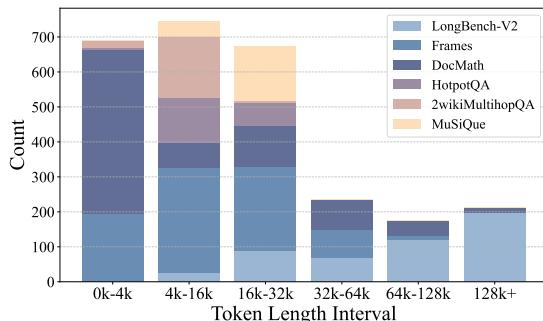


Figure 6: **(Left)** The word cloud of training document labels, with font size indicating frequency. The prominence of terms like *education*, *analysis*, and *learning* underscores the dataset’s focus on knowledge-intensive content. **(Right)** The token length distribution, calculated by the Qwen2 tokenizer, shows that our evaluation benchmarks cover a wide spectrum of context lengths.

E IMPLEMENTATION DETAILS

E.1 TRAINING DATA CONSTRUCTION

Our training data supports three distinct tasks: document general QA, financial math QA, and multiple-choice QA. We construct the dataset from two complementary sources. The first is the DocMath dataset (Zhao et al., 2024), which provides specialized data comprising long, complex financial reports that necessitate numerical reasoning. We used only the raw documents, discarding the original unlabeled questions. From this dataset, we select 2,150 instances with a total token length below 16K, which are designated for the financial math QA task.

The second component is a general-domain corpus designed to enhance the model’s fundamental document understanding. This dataset originates from the 1.16 billion English documents in the Ultra-Fineweb corpus (Wang et al., 2025) and is curated through the following multi-stage pipeline. First, an initial filtering stage retains high-quality texts of appropriate length by selecting documents with a perfect quality score of 1.0 and character lengths between 100 and 32,768. This step downsamples the corpus to a high-quality subset of 4 million documents. Second, a cleaning procedure ensures data diversity and prevents test set contamination. We employ the MinHashLSH algorithm (Shrivastava & Li, 2014) with a threshold of 0.8 and 128 permutation functions for deduplication and to decontaminate the data against all documents in our evaluation benchmarks. This cleaning phase refines the corpus to 1.1 million unique and decontaminated texts. Third, a hierarchical clustering approach structures the dataset into different topics. We generate 4096-dimensional embeddings for each text using the Qwen3-Embedding-8B model (Zhang et al., 2025), which are then grouped into 50,000 distinct clusters via a hierarchical k-means algorithm (Xu et al., 2015). Each cluster contains an average of 20 semantically related documents, and the resulting domain distribution, visualized in Figure 6 (left), confirms the dataset’s broad topical diversity. This curated corpus from Ultra-Fineweb is used to generate training instances for the document general QA and multiple-choice tasks. To ensure a comparable scale across tasks, the number of clusters selected for these two tasks matches the data size of the DocMath portion. Ultimately, our combined training data consists of 6,450 unique document sets, with 2,150 designated for each of the three tasks.

E.2 EVALUATION DETAILS

Evaluation Benchmarks We evaluate our models using a suite of well-established benchmarks designed to assess long-context comprehension and reasoning. These benchmarks fall into two primary categories: multiple-choice and multi-hop question answering (QA). For the multiple-choice task, we use LongBench-V2 (Bai et al., 2025), a benchmark of 503 questions that assesses deep comprehension across six areas: single-document QA, multi-document QA, long in-context learning, long-dialogue history understanding, code repository understanding, and long structured data understanding. For multi-hop QA, our evaluation incorporates several benchmarks: Frames (Krishna et al., 2025), containing 824 questions on diverse Wikipedia topics such as history, sports, science, animals, and health; three subsets from LongBench (Bai et al., 2024b), each with 200 questions, namely HotpotQA (Yang et al., 2018) (2-hop), 2WikiMultihopQA (Ho et al., 2020) (requiring up

972 to five hops), and MuSiQue (Trivedi et al., 2022) (requiring up to four hops); and DocMath (Zhao
 973 et al., 2024), which focuses on numerical reasoning within financial reports. For DocMath, we use
 974 the testmini subset of 800 queries, which is orthogonal to our training data. As shown in Figure 6
 975 (right), the test instances across these benchmarks cover a wide range of context lengths.

976 **Evaluation Configurations** We evaluate all models at two maximum input lengths: 16K tokens,
 977 which aligns with our training configuration, and 100K tokens to test for generalization to longer
 978 contexts. The maximum generation length is 4K tokens for non-reasoning models and is extended to
 979 20K tokens for reasoning models. For prompts exceeding the maximum context window, we employ
 980 the middle truncation strategy from Bai et al. (2024b) to preserve the front and tail portions of the
 981 context. All experiments are conducted using a sampling temperature of 0.7 and a top- p value of 0.95.
 982 For each query, we generate $n = 8$ candidate responses, reporting the average score (pass@1) for our
 983 main experiments and the pass@ k metric for the test-time scaling analysis. The pass@ k metric is an
 984 unbiased estimator for the probability that at least one of k candidate solutions is correct, given n
 985 candidates per problem, of which c are correct. It is calculated as:

$$\text{pass@k} = 1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \quad (11)$$

986 Our scoring is tailored to each benchmark’s format. For multiple-choice tasks, we report standard
 987 accuracy. For multi-hop QA tasks, simple string matching is often insufficient to assess the semantic
 988 correctness of free-form text answers. Thus, we supplement the cover exact match (CEM) score
 989 with LLM-as-a-judge (Zheng et al., 2023), which uses gpt-oss-120b (OpenAI, 2025) to evaluate
 990 semantic equivalence between a model’s prediction and the ground-truth answer. The prompt for this
 991 evaluation is detailed in Table 5. The final score for these tasks is the maximum of the two, providing
 992 a more comprehensive and robust assessment of model performance.

993
 994
 995
 996 Table 5: Prompt template for LLM-as-a-judge to compare the predicted answer and the ground truth given the
 997 question. Modified from Frames (Krishna et al., 2025).

999 LLM Judge Prompt for Multi-Hop QA Tasks.

1000
 1001 **## TASK**
 1002 I need your help in evaluating an answer provided by an LLM against a ground truth answer.
 1003 Your task is to determine if the ground truth answer is present in the LLM’s response. Please
 1004 analyze the provided data and make a decision.
 1005 **## Instruction**
 1006 1. Carefully compare the “Predicted Answer” with the “Ground Truth Answer”.
 1007 2. Consider the substance of the answers - look for equivalent information or correct answers.
 1008 Do not focus on exact wording unless the exact wording is crucial to the meaning.
 1009 3. Your final decision should be based on whether the meaning and the vital facts of the
 1010 “Ground Truth Answer” are present in the “Predicted Answer”.
 1011 4. Your decision **must be** one of the “[YES]” or “[NO]”.
 1012 **## Input Data**
 1013 - Question: {question}
 1014 - Predicted Answer: {predicted answer}
 1015 - Ground Truth Answer: {ground truth}
 1016 **## Output Format**
 1017 Provide your final evaluation in the following format:
 1018 “Explanation:” “How you made the decision”
 1019 “Decision:” “[YES]” or “[NO]”
 1020 Please proceed with the evaluation.

1021 E.3 RL ALGORITHM DETAILS

1022 To enhance stability and practical performance, we integrate two key techniques inspired by Decou-
 1023 pled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025) for the baselines
 1024 and our method. First, we adopt a **token-level policy gradient loss**, which normalizes each token’s
 1025 contribution by the total number of tokens in the group. This approach ensures every token in the

same group contributes equally to the final objective, which prevents the learning signal from valuable tokens in high-quality, long responses from being diluted while ensuring that undesirable patterns in low-quality, lengthy outputs are effectively penalized. Second, we employ a **dynamic sampling** strategy: any group of generations where the rewards $\{r_i\}_{i=1}^G$ exhibit zero variance is discarded from the training batch. This ensures the advantage in Eq. (3) is always well-defined.

Consistent with recent findings suggesting that removing KL regularization can improve exploration and accelerate convergence (Hu et al., 2025; Yu et al., 2025; Wan et al., 2025), we set $\beta = 0$. Besides, we operate in a strictly on-policy setting, performing only a single gradient update per batch of samples. This design choice implies that the policy being updated, π_θ , remains identical to the policy that generated the data, $\pi_{\theta_{\text{old}}}$. Since the importance sampling ratio $\rho_{i,t}(\theta)$ is strictly equal to 1, the clipping function becomes inactive, and we can remove it from the objective. Note that the advantage A_i is independent of t , the training objective in Eq. (2) simplifies to:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{c, q \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{\sum_{j=1}^G |y_j|} \sum_{i=1}^G A_i \sum_{t=1}^{|y_i|} \rho_{i,t}(\theta) \right]. \quad (12)$$

E.4 DETAILS OF OPEN-SOURCE MODELS AND THE DATASET

In Table 6, we provide the Huggingface repository names of all policy models, the embedding model, the judge model, and datasets used in our experiments.

Table 6: Details of open-source models and datasets in our experiments.

Model/Dataset	Huggingface ID
Qwen2.5-7B	Qwen/Qwen2.5-7B
Qwen2.5-14B	Qwen/Qwen2.5-14B
Qwen2.5-32B	Qwen/Qwen2.5-32B
Qwen2.5-7B-Instruct	Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct	Qwen/Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct	Qwen/Qwen2.5-32B-Instruct
Qwen3-30B-A3B-Instruct	Qwen/Qwen3-30B-A3B-Instruct-2507
Llama-3.1-8B-Instruct	meta-llama/Meta-Llama-3.1-8B-Instruct
R1-Distill-Llama-8B	deepseek-ai/DeepSeek-R1-Distill-Llama-8B
R1-Distill-Qwen-14B	deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
Qwen3-4B-Thinking	Qwen/Qwen3-4B-Thinking-2507
Qwen3-30B-A3B-Thinking	Qwen/Qwen3-30B-A3B-Thinking-2507
Qwen3-Embedding-8B	Qwen/Qwen3-Embedding-8B
gpt-oss-120b	openai/gpt-oss-120b
DocMath	yale-nlp/DocMath-Eval
Ultra-Fineweb	openbmb/Ultra-FineWeb

E.5 DETAILS OF BASELINES

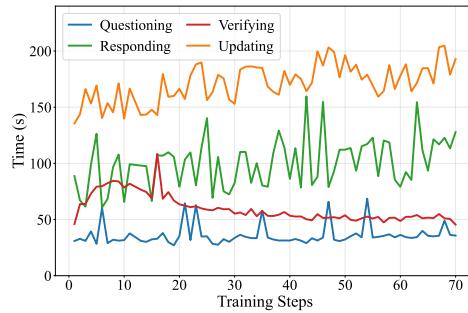
We compare SPELL with two categories of baselines. The first category comprises the base models on which SPELL is built, organized into three groups: (1) **base models**, including Qwen-2.5-7B, Qwen-2.5-14B, and Qwen-2.5-32B; (2) **instruction-tuned models**, including Qwen-2.5-7B-Instruct, Qwen-2.5-14B-Instruct, Qwen-2.5-32B-Instruct, Qwen3-30B-A3B-Instruct, and Llama-3.1-8B-Instruct; and (3) **reasoning models**, including R1-Distill-Llama-8B, R1-Distill-Qwen-14B, Qwen3-4B-Thinking, and Qwen3-30B-A3B-Thinking (Yang et al., 2025; 2024a; Guo et al., 2025; Dubey et al., 2024). The second baseline is traditional RLVR. For data construction, we use DeepSeek-R1-0528 (Guo et al., 2025) as both the questioner and responder to synthesize a dataset from the same document clusters used for SPELL. The synthesized dataset is then filtered by a verifier model (gpt-oss-120b), and retains only the instances where the answers from the questioner and responder are identical. This process yields a dataset of approximately 3,000 verifiable samples that covers multiple-choice, document general QA, and financial math QA tasks. For RLVR training, we employ the cover exact match (CEM) as the rule-based reward function. We generate eight trajectories per question and maintain all other hyperparameters identical to those of SPELL to ensure a fair comparison.

1080 F ADDITIONAL ANALYSIS 1081

1082 This section provides further insights into the properties of SPELL. We begin by analyzing the
1083 training cost in Section F.1 and exploring generalization to short-context tasks in Section F.2. We
1084 then extend our evaluation to additional long-context benchmarks in Section F.3 and compare our
1085 approach with state-of-the-art long-context alignment baselines in Section F.4. The section concludes
1086 with an analysis of the training dynamics of role evolution in Section F.5 and a discussion on reward
1087 hacking risks and mitigations in Section F.6.

1088 F.1 TRAINING COST ANALYSIS 1089

1090 We analyze the computational cost of SPELL using
1091 the Qwen2.5-7B-Instruct model on a single node with
1092 $8 \times 80\text{GB}$ NVIDIA A100 GPUs. Figure 7 illustrates
1093 the time breakdown for the two primary stages of
1094 our framework: role-specific rollout (questioning, re-
1095 sponding, and verifying) and unified updating. The
1096 total time per training step averages approximately
1097 seven minutes, and the total training cost is about
1098 eight hours. Although the number of verifier rollouts
1099 is G times greater than that of the responder, as out-
1100 lined in Section 3.3, its computational cost is lower.
1101 This efficiency stems from two factors: the verifier
1102 processes shorter inputs, as it does not require the
1103 long documents provided to the responder, and its
1104 task of generating brief verifications is less demand-
1105 ing than the responder’s task of reasoning over long
1106 contexts. During the later stages of training,
1107 the time for verifying constitutes only about half of the time required for responding. Consequently,
1108 generating G verification judgments for each response to create a reliable reward signal does not
1109 introduce a significant computational bottleneck. **As shown in Section 4.3 and Table 2, the verifier**
1110 **provides a significant 3.2-point performance gain** (from 44.0 to 47.2). **The significant performance**
1111 **gain by introducing the verifier** far outweighs the minor increase in training cost.



1112 Figure 7: Time breakdown per training step for the
1113 four main stages of SPELL. **Verifying constitutes**
1114 **a small amount of the total cost.**

1115 F.2 SHORT-CONTEXT REASONING RESULTS

1116 We further investigate the generalization of our proposed SPELL method from long-context reasoning
1117 to short-context reasoning tasks. Our evaluation suite includes five mathematical benchmarks and the
1118 MMLU Pro general knowledge benchmark as follows:

1119 **AIME 24/25** (MAA, 2025) is the American Invitational Mathematics Examination, a prestigious
1120 high-school mathematics competition administered by the Mathematical Association of America
1121 (MAA). The AIME consists of two exams (I and II) annually, each containing 15 problems, for
1122 a total of 30 problems per year. The answer to each question is an integer from 0 to 999. These
1123 problems demand deep mathematical knowledge and creative problem-solving strategies, making
1124 them a challenging benchmark for advanced mathematical reasoning.

1125 **AMC 23**⁴ (Yang et al., 2024b) refers to the 2023 American Mathematics Competition. This competi-
1126 tion features 25 questions designed to test advanced high school mathematics, covering topics such
1127 as trigonometry, advanced algebra, and advanced geometry.

1128 **MATH** (Hendrycks et al., 2021b) is a dataset of math problems ranging in difficulty from middle
1129 school to high school competition level. It is designed to test a wide range of mathematical skills,
1130 including algebra, geometry, number theory, and counting & probability. For our evaluation, we
1131 utilize a subset of 500 problems, referred to as MATH-500.

1132 **GSM8K** (Cobbe et al., 2021) is a dataset of 1,319 grade school math word problems. These problems
1133 are designed to be solvable by a capable middle school student and require two to eight steps of
1134 reasoning using basic arithmetic operations.

1135 ⁴<https://huggingface.co/datasets/AI-MO/aimo-validation-amc>

1134
 1135 **MMLU-Pro** (Wang et al., 2024) is an enhanced version of the MMLU (Hendrycks et al., 2021a)
 1136 dataset, designed to address issues such as noisy data and reduced difficulty resulting from advances
 1137 in model capabilities and increased data contamination. MMLU-Pro raises the difficulty by expanding
 1138 the multiple-choice options from four to as many as ten and incorporating expert-reviewed annotations
 1139 for improved quality and reduced noise.

1140 Table 7: Evaluation results for base models on short-context reasoning tasks.

Model	AIME24	AIME25	AMC23	MATH500	GSM8K	MMLU Pro	Average
Qwen2.5-7B	5.42	3.33	33.44	53.60	76.57	40.24	35.43
+ SPELL	9.17 ^{+3.75}	5.00 ^{+1.67}	40.31 ^{+6.8}	63.60 ^{+10.00}	86.28 ^{+9.71}	49.78 ^{+9.54}	42.36 ^{+6.93}
Qwen2.5-14B	6.67	5.83	37.81	61.68	84.31	46.67	40.50
+ SPELL	12.08 ^{+5.41}	10.42 ^{+4.59}	50.31 ^{+12.2}	72.40 ^{+10.72}	91.36 ^{+7.05}	58.86 ^{+12.19}	49.24 ^{+8.74}
Qwen2.5-32B	9.17	5.83	45.31	66.25	87.34	48.89	43.80
+ SPELL	15.83 ^{+6.66}	8.33 ^{+2.50}	55.62 ^{+10.2}	76.00 ^{+9.75}	90.25 ^{+2.91}	60.22 ^{+11.33}	51.04 ^{+7.24}

1141
 1142 Consistent with our main experiments, all models are evaluated with a maximum output of 4K tokens,
 1143 a sampling temperature of 0.7, and a top- p value of 0.95. We report the accuracy averaged over 8
 1144 independent runs for each task. As shown in Table 7, SPELL, trained solely on the long-context
 1145 data, improves performance on short-context reasoning benchmarks across all base models. The
 1146 average scores of Qwen2.5-7B, Qwen2.5-14B, and Qwen2.5-32B increase by 6.93, 8.74, and 7.24
 1147 points, respectively. The consistent gains indicate that reasoning competencies acquired through
 1148 long-context self-play transfer effectively to short-context settings.

1149
 1150

F.3 ADDITIONAL LONG-CONTEXT BENCHMARKS

1151 We further evaluate SPELL on two challenging long-context benchmarks: MRCR (Vodrahalli et al.,
 1152 2024)⁵, a multi-needle “Needle in a Haystack” benchmark, and three subsets of HELMET (Yen
 1153 et al., 2025), which covers Retrieval-Augmented Generation (RAG), In-Context Learning (ICL),
 1154 and Summarization (Summ). We evaluate the Qwen2.5 base models against the RLVR baseline
 1155 and SPELL with a maximum input length of 16K and maximum output length of 4K. The results
 1156 in Table 8 show that SPELL consistently and significantly outperforms both the base models and
 1157 the RLVR baseline across these diverse long-context tasks, demonstrating strong generalization
 1158 capabilities beyond the standard QA tasks.

1159 Table 8: Evaluation results for base models on MRCR and HELMET subsets. The best score in each model
 1160 group is highlighted in **bold**.

Model	MRCR-2needle	MRCR-4needle	MRCR-8needle	Helmet-RAG	Helmet-ICL	Helmet-Summ	Average
Qwen2.5-7B	6.9	2.0	2.2	50.0	3.5	4.1	11.5
+ RLVR	22.0	12.5	10.5	49.3	2.6	14.3	18.5
+ SPELL	34.5	16.5	16.0	54.2	10.4	13.7	24.2
Qwen2.5-14B	23.1	10.5	10.0	42.4	1.5	3.7	15.2
+ RLVR	20.9	9.5	9.1	46.7	42.0	24.7	25.5
+ SPELL	35.0	22.1	17.8	52.3	39.2	23.0	31.6
Qwen2.5-32B	27.0	11.5	12.0	59.0	42.8	16.2	28.1
+ RLVR	36.7	14.6	13.0	52.7	16.7	21.0	25.8
+ SPELL	38.0	18.5	14.7	61.4	56.4	21.2	35.0

1178
 1179

F.4 COMPARISON WITH LONG-CONTEXT ALIGNMENT BASELINES

1180 We compare SPELL against three recent long-context alignment baselines—SoLoPO (Sun et al.,
 1181 2025), LongPO (Chen et al., 2025a), and QwenLong-L1 (Wan et al., 2025)—using Qwen2.5-7B-
 1182 Instruct as the base model. To ensure a fair comparison, we reimplement these methods using the
 1183 same document corpus employed in SPELL. For SoLoPO and LongPO, the core step is to con-
 1184 struct preference pairs from short contexts containing key information and long contexts containing
 1185 distractors given the same question. Specifically, for each data instance comprising n documents,
 1186 we first randomly sample $m = 5$ documents as the short text and employ DeepSeek-R1-0528 as
 1187

⁵<https://huggingface.co/datasets/openai/mrcr>

the questioner to generate QA pairs. Then, we use DeepSeek-R1-0528 as the responder to answer the proposed questions using the full set of n documents. We retain only those QA pairs where the answers from the questioner and responder are consistent. Next, we take the 5 documents from the questioning stage as short texts, corresponding to x_{short} in SoLoPO and x_S in LongPO, and take all n documents as long texts, corresponding to x_{long} in SoLoPO and x_L in LongPO. Finally, we apply their respective preference pair construction strategies and training configurations on Qwen2.5-7B-Instruct to reproduce these methods. For QwenLong-L1, we use the same synthesized data as our RLVR baseline and follow their official GRPO training setup. We evaluate both our reimplemented models and the official LongPO checkpoint using a maximum input length of 16K and a maximum output length of 4K. The results in Table 9 demonstrate that SPELL consistently outperforms these long-context alignment baselines.

F.5 EVOLUTIONARY DYNAMICS OF QUESTIONER AND VERIFIER

To understand the self-evolutionary process and identify potential failure modes, we analyze the behavior of the questioner and verifier roles across different training steps.

Questioner dynamics We track the distribution of valid questions generated by the questioner throughout the training process. As shown in Figure 8(a), the task distribution is notably imbalanced during the first 10 steps, with Financial Math QA accounting for over 70% of solvable tasks. This imbalance likely occurs because the model transfers its strong mathematical reasoning capabilities to the Financial Math QA task, which necessitates substantial numerical calculation. As training progresses and the policy evolves, the distribution becomes increasingly balanced. This indicates that SPELL effectively drives the questioner to explore a diverse range of task types.

Verifier calibration We analyze the disagreement rate between the verifier’s majority vote and the rule-based judge (CEM). Figure 8(b) plots this metric for General QA and Financial Math QA, both of which contain questions that are partially non-verifiable by strict rules. Initially, the verifier struggles with General QA, which often involves open-ended semantic equivalence that rule-based checks fail to capture. In contrast, Financial Math QA exhibits a lower initial disagreement rate, attributed to the model’s relatively strong numeric reasoning ability. The disagreement rate consistently decreases for both tasks, indicating that the verifier progressively aligns with the rule-based judge. This trend further suggests that the verifier’s updates guide the questioner toward generating questions that are more verifiable by the rule-based judge.

F.6 ANALYSIS OF REWARD HACKING

Reward hacking is a significant concern in self-play systems. Throughout our exploratory experiments, we identified several potential failure modes and implemented specific mitigations.

Questioner stagnation Without the automated curriculum and history memory, the questioner tends to repeatedly propose similar, trivial questions about the same document to maximize the responder’s success rate. The history memory module conditions the questioner on recently solvable QA pairs and newly introduced documents. The prompt in Appendix G explicitly instructs the questioner to produce novel and more difficult questions.

Table 9: Comparison of SPELL against different long-context alignment baselines. The best score is highlighted in **bold**

Model	DocMath	Frames	LB-MQA	LB-V2	Average
Qwen2.5-7B-Instruct	38.4	40.3	45.1	29.0	38.2
+ RLVR	45.0	48.7	59.6	30.1	45.9
+ LongPO (Reimpl.)	41.4	44.2	53.7	32.0	42.8
+ LongPO (Official)	42.3	41.4	45.7	30.9	40.1
+ SoLoPO (Reimpl.)	45.3	43.9	56.0	31.6	44.2
+ QwenLong-L1 (Reimpl.)	45.6	46.7	60.0	32.0	46.1
+ SPELL (Ours)	45.8	46.7	63.1	33.2	47.2

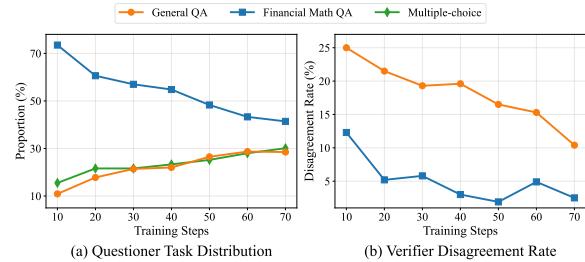


Figure 8: (a) Evolution of the task distribution generated by the questioner. (b) The disagreement rate between the learned verifier and the rule-based judge.

1242 **Responder mode collapse** When the responder receives rewards for outputs that are merely
 1243 substrings of the ground-truth answer, it can hack the metric by generating short phrases like “The
 1244 answer is”. We address this by enforcing a stricter cover exact match (CEM) criteria, which requires
 1245 the responder to include the complete ground-truth answer to receive a positive reward.

1246 **Verifier self-delusion** Updating the verifier solely based on its own majority vote as a pseudo-label
 1247 can lead to verifier hacking. Without external supervision, verification errors accumulate, eventually
 1248 causing the verifier to label all responders’ outputs as correct. To mitigate this, we introduce the
 1249 consistency check mechanism, which aligns the verifier’s judgments with rule-based rewards on
 1250 verifiable questions, thereby preventing this self-delusion.

1251 These observations confirm that the architectural components of SPELL—specifically the history
 1252 memory, prompt templates, consistency checks, and CEM-based reward function—are essential to
 1253 mitigate reward hacking and ensure stable self-evolving.

1255 G PROMPT TEMPLATE

1257 In this section, we detail the prompt templates for the *questioner*, *responder*, and *Verifier* across
 1258 all tasks. For the questioner, we apply different prompting strategies for document clusters with
 1259 and without history memory; these prompts are modified from the guidelines for human annotators
 1260 in LongBench-V2 (Bai et al., 2025). The responder prompt for financial math QA is modified
 1261 from DocMath (Zhao et al., 2024), and the prompts for document general QA and multiple-choice
 1262 are modified from LongBench-V2. The verifier prompt for document QA tasks is modified from
 1263 Frames (Krishna et al., 2025) and requires the model to evaluate the semantic equivalence of a
 1264 generated answer against a ground-truth reference.

1265 Questioner Prompt for Document General QA Task without History Memory

1267 You are an expert in document analysis. We are building a benchmark to evaluate the
 1268 capabilities of large language models (LLMs) on fact retrieval, reasoning across multiple
 1269 constraints, and accurate synthesis of information into coherent responses. Your primary
 1270 task is to propose a challenging question based on the provided document context enclosed
 1271 between <text> and </text>. The question must require both **document comprehension** and
 1272 **multi-hop reasoning**. You must also provide the correct answer and a **detailed step-by-step**
 1273 **derivation** showing how the answer is obtained from the document.

1274 ## Principles for Question Design

1275 Adhere strictly to the following principles when crafting your question, answer, and derivation

1. **Language Requirement:** Questions, answers, and derivations must be in English.

2. **Standalone & Context-Independent:** Questions should not contain any references to
 “Article 1”, “Article 2”, etc. They should be understandable without any additional context.

3. **Unambiguous Answer:** Each question should have a single, clear, and factual answer.

4. **Multi-hop Reasoning:** Answering each question should require combining information
 from ALL provided documents. The final answer cannot be found in any single document.

5. **Guideline for Question Phrasing:** Strive for a natural and seamless integration of
 information from each document. A good question often:

- Starts with a clear question word (What/How/Where/When).
- Links constraints from different documents using logical connectors.
- Example connectors: ‘in relation to’, ‘given the condition of’, ‘as a result of’, ‘which also
 affects’, ‘in addition to’.

6. **Answer & Step-by-Step Derivation:**

- The answer must be a concise phrase or sentence. An answer with more than 20 tokens is
 forbidden.

- The derivation must be a clear, step-by-step logical chain. Each step must explicitly cite
 the specific data point or phrase and its source from the context (e.g., “From Table 3, Row
 ‘Revenue’, Year 2023...” or “As stated in paragraph 2...”).

Output Format

Your response must conclude with a JSON object containing the following keys: “question”
 and “answer”, placed after your reasoning.

{

```

1296
1297     "question": "<A well-structured English question that adheres to all design principles>",
1298     "answer": "<A concise answer, under 20 tokens>",
1299     }
1300     ## Document Context
1301     <text>
1302     {context}
1303     </text>
1304
1305
1306 Questioner Prompt for Financial Math QA Task without History Memory
1307
1308 You are an expert in document analysis and numeric reasoning. We are building a benchmark
1309 to evaluate the numerical reasoning capabilities of large language model's (LLMs) when
1310 analyzing specialized documents containing both text and tables. Your primary task is to
1311 propose a challenging question based on the provided document context enclosed between
1312 <text> and </text>. The question must require both document comprehension and multi-step
1313 mathematical reasoning to arrive at a single, non-zero numerical answer. You must also
1314 provide the correct numerical answer and a detailed step-by-step derivation showing how
1315 the answer is obtained from the document.
1316 ## Principles for Question Design
1317 Adhere strictly to the following principles when crafting your question, answer, and derivation:
1318 1. Language Requirement: Questions, answers, and derivations must be in English.
1319 2. Complexity and Reasoning Depth:
1320 - The question must be challenging, requiring the LLM to go beyond simple retrieval. It
1321 should not be solvable trivially or in a few inference steps.
1322 - It must involve multi-step mathematical reasoning (e.g., requiring two or more distinct
1323 calculation steps).
1324 - It should necessitate integration of information from different parts of the document
1325 (e.g., combining data from a table with information from a text paragraph, or using multiple
1326 rows/columns from a table).
1327 - Aspects like summarization or complex information extraction can be part of the process.
1328 3. Avoided Question Types:
1329 - Simple Counting: Avoid questions like "How many X are there?" if X is easily countable or
1330 directly stated. If counting is involved as an intermediate step for a larger calculation and the
1331 count is small (<=10), it's acceptable.
1332 - Direct Retrieval: Avoid questions answerable by looking up a single, isolated piece of
1333 information.
1334 - Excessive External Knowledge: Questions should primarily rely on the provided document.
1335 Only common sense or minimal domain-specific knowledge (e.g., basic financial concepts
1336 like 'profit = revenue - cost' if contextually appropriate and derivable) inferable from the
1337 document is allowed.
1338 4. Information Obscurity:
1339 - Start with a clear question word (What/How/Where/When).
1340 - Do not explicitly mention or paraphrase key numerical values from the document within the
1341 question itself. The LLM should identify and extract these values.
1342 - Phrase questions to require inference and understanding of relationships between data points
1343 rather than just locating them.
1344 5. Factual Grounding:
1345 - All information required to answer the question must be present in or directly derivable from
1346 the provided document.
1347 - Do not introduce hypothetical scenarios, fictional data, or assumptions not supported by the
1348 document.
1349 - Questions should not contain any references to "Article 1", "Article 2", etc. They should be
understandable without any additional context.
6. Numerical Answer:
- The final answer must be a single non-zero numerical value.
- An answer with more than two numerical values is unacceptable.

```

1350
 1351 - If the document implies units (e.g., millions of dollars, percentages), the question should be
 1352 phrased such that the numerical answer alone is sufficient (e.g., “What is the value in millions
 1353 of dollars?” rather than expecting the answer to include “million dollars”).
 1354 **7. Step-by-Step Derivation:**
 1355 - Provide a clear, step-by-step derivation for your answer.
 1356 - This derivation must explicitly reference specific data points or phrases from the document
 1357 (e.g., “From Table 3, Row ‘Revenue’, Year 2023...” or “As stated in paragraph 2...”).
 1358 - Detail all mathematical operations performed in each step. This helps verify the question’s
 1359 solvability and reasoning path.
 1360 **## Output Format**
 1361 Your response must conclude with a JSON object containing the following keys: “question”
 1362 and “answer”, placed after your reasoning.
 1363 {
 1364 “question”: “<A well-structured English question that adheres to all design principles>”,
 1365 “answer”: “<A single, non-zero numerical answer>”
 1366 }
 1367 **## Document Context**
 1368 <text>
 1369 {context}
 1370 </text>

1371 Questioner Prompt for Document Multiple-Choice Task without History Memory

1372 You are an expert in document analysis. We are building a benchmark to evaluate the
 1373 capabilities of large language models (LLMs) on fact retrieval, reasoning across multiple
 1374 constraints, and accurate synthesis of information into coherent responses. Your task is
 1375 to generate a **multiple choice question** based on the provided document context enclosed
 1376 between <text> and </text>. The question must require **document comprehension** and
 1377 **multi-hop reasoning**. You must provide one correct answer and three plausible, distinct
 1378 distractors. Crucially, you must also provide a **detailed explanation** for why the correct
 1379 answer is correct (including derivation steps) and why each distractor is incorrect.
 1380 **## Principles for Question and Option Design**
 1381 Adhere strictly to the following principles when crafting your question, answer, options, and
 1382 derivation:
 1383

1384 1. General Requirements:

- 1385 - All questions, options, and explanations must be in English.
 1386 - Questions should be challenging, requiring more than simple retrieval or a few inference
 1387 steps.

1388 2. Cognitive Complexity Requirements for the Question:

- 1389 - Must necessitate multi-step reasoning (e.g., involving three or more distinct logical or
 1390 calculation steps).
 1391 - Should require the integration of at least three distinct data points from different parts of the
 1392 document (e.g., combining data from a table with text, or using multiple rows/columns/cells).
 1393 - Should demand the synthesis of quantitative data with qualitative information found in the
 1394 text.
 1395 - The problem setup should have the potential for common misinterpretations, which will
 1396 inform distractor design.

1397 3. Content Validity Criteria:

- 1398 - The question and all options must be exclusively answerable using information from the
 1399 provided document. No external knowledge beyond common sense or very basic, universally
 1400 understood concepts (e.g., profit = revenue - cost, if directly applicable and data is provided)
 1401 should be required.
 1402 - If applicable to the document type (e.g., financial reports), prioritize questions with regula-
 1403 tory/compliance implications or those highlighting significant financial outcomes.
 1404 - Ensure numerical values involved in the question or options require contextual interpretation
 1405 within the document, not just direct look-up.

1404
 1405 - Avoid trivia; focus on questions that address material information or key insights derivable
 1406 from the document.
 1407 **4. Distractor Development Guidelines:**
 1408 - Each of the **three distractors** must be plausible yet clearly incorrect upon careful analysis.
 1409 - Distractors should represent distinct error paths or common misinterpretations.
 1410 - At least one distractor should represent a common conceptual misunderstanding related to
 1411 the document's content or how information is presented.
 1412 **5. Forbidden Question/Option Patterns:**
 1413 - **Simple Counting:** Avoid questions like “How many X are there?” if X is easily countable or
 1414 directly stated. Small counts (≤ 5) as part of a larger calculation are acceptable.
 1415 - **Direct Retrieval:** Avoid questions where the answer (or its direct components) can be found
 1416 in a single, obvious location without further processing.
 1417 - **Excessive External Knowledge:** Questions must not require significant domain-specific
 1418 knowledge not provided or clearly inferable from the document.
 1419 - **No Fabricated Information:** Strictly adhere to document content. Do not introduce
 1420 hypothetical scenarios, data, or assumptions not explicitly stated or directly inferable.
 1421 - **Ambiguous Scenarios:** The question must have one unambiguously correct answer based
 1422 solely on the provided document.
 1423 - **Vague Options:** All options, including distractors, must be precise and unambiguous.
 1424 **6. Answer and Explanation Requirements:**
 1425 - The correct answer must be `<correct_answer>`.
 1426 - A detailed derivation for the correct answer must be provided, showing step-by-step calcu-
 1427 lations and referencing specific parts of the document (e.g., “From Table X, Row Y...”, “As
 1428 stated in paragraph Z...”).
 1429 - For each distractor, provide a brief explanation of why it is incorrect, ideally linking it to
 1430 the type of error it represents (e.g., “Option A is incorrect because it omits the X deduction
 1431 mentioned in...”, “Option B results from incorrectly summing X and Y instead of finding their
 1432 difference...”).
 1433 **## Output Format**
 1434 Your response must conclude with a JSON object containing the following keys: “question”,
 1435 “options”, and “answer”, placed after your reasoning.
 1436 {
 1437 “question”: “<A well-structured multiple choice English question, exclude choices and an-
 1438 swer>”,
 1439 “options”: {
 1440 “A”: “<Text for choice A>”,
 1441 “B”: “<Text for choice B>”,
 1442 “C”: “<Text for choice C>”,
 1443 “D”: “<Text for choice D>”
 1444 },
 1445 “answer”: “<correct_answer>”
 1446 }
 1447 **## Document Context**
 1448 <text>
 1449 {context}
 1450 </text>

Questioner Prompt for Document General QA Task with History Memory

1451 You are an expert in document analysis. We are building a benchmark to evaluate the capabili-
 1452 ties of large language models (LLMs) on fact retrieval, reasoning across multiple constraints,
 1453 and accurate synthesis of information into coherent responses. Your primary task is to propose
 1454 ONE new, significantly more difficult question based on the provided document context and
 1455 a set of existing, simpler questions. The new question must be fundamentally different and
 1456 more complex than the provided examples, requiring both **document comprehension** and
 1457 **multi-hop reasoning**. You must also provide the correct answer and a **detailed step-by-step**
 1458 **derivation** showing how the answer is obtained from the document.

1458
 1459 **## Principles for Question Design**
 1460 Adhere strictly to the following principles when crafting your question, answer, and derivation
 1461 1. **Language Requirement:** Questions, answers, and derivations must be in English.
 1462 2. **Standalone & Context-Independent:** Questions should not contain any references to
 1463 “Article 1”, “Article 2”, etc. They should be understandable without any additional context.
 1464 3. **Unambiguous Answer:** Each question should have a single, clear, and factual answer.
 1465 4. **Multi-hop Reasoning:** Answering each question should require combining information
 1466 from ALL provided documents. The final answer cannot be found in any single document.
 1467 5. **Guideline for Question Phrasing:** Strive for a natural and seamless integration of
 1468 information from each document. A good question often:
 1469 - Starts with a clear question word (What/How/Where/When).
 1470 - Links constraints from different documents using logical connectors.
 1471 - Example connectors: ‘in relation to’, ‘given the condition of’, ‘as a result of’, ‘which also
 1472 affects’, ‘in addition to’.
 1473 6. **Escalate Question Difficulty:** The new question must demonstrate a higher order of
 1474 reasoning than the Previous Examples. First, analyze the examples to identify their simple
 1475 reasoning patterns (e.g., fact retrieval, single-step comparison). Then, create a new question
 1476 that incorporates one or more of the following advanced reasoning types:
 1477 - Quantitative Reasoning & Calculation: Requires performing mathematical operations (e.g.,
 1478 addition, subtraction, percentage change, averaging) on data from multiple sources.
 1479 - Comparative & Superlative Analysis: Requires comparing multiple entities based on synthe-
 1480 sized criteria to find the one that is highest, lowest, best, etc.
 1481 - Conditional or Causal Reasoning: Structured as an “if-then” scenario or asks for the
 1482 cause/effect of a situation by linking different documents (e.g., “What would be the total cost
 1483 if the discount from Document A were applied to the price listed in Document B?”).
 1484 - Synthesis Across Data Types: Forces connection between qualitative information (e.g., a
 1485 policy description) and quantitative data (e.g., a number in a table) to reach a conclusion.
 1486 7. **Answer & Step-by-Step Derivation:**
 1487 - The answer must be a concise phrase or sentence. An answer with more than 20 tokens is
 1488 forbidden.
 1489 - The derivation must be a clear, step-by-step logical chain. Each step must explicitly cite
 1490 the specific data point or phrase and its source from the context (e.g., “From Table 3, Row
 1491 ‘Revenue’, Year 2023...” or “As stated in paragraph 2...”).
 1492 **## Output Format**
 1493 Your response must conclude with a JSON object containing the following keys: “question”
 1494 and “answer”, placed after your reasoning.
 1495 {
 1496 “question”: “<A well-structured English question that adheres to all design principles>”,
 1497 “answer”: “<A concise answer, under 20 tokens>”,
 1498 }
 1499 **## Document Context**
 1500 <text>
 1501 {context}
 1502 </text>
 1503 **## Previous Examples**
 1504 #### Example 1:
 1505 Question: {question 1}
 1506 Answer: {answer 1}
 1507 ...
 1508 #### Example K:
 1509 Question: {question k}
 1510 Answer: {answer k}

Questioner Prompt for Financial Math QA Task with History Memory

1511 You are an expert in document analysis and numeric reasoning. We are building a benchmark
 1512 to evaluate the numerical reasoning capabilities of large language models (LLMs) when

1512

1513

1514

1515

1516

1517

1518

1519

analyzing specialized documents containing both text and tables. Your primary task is to propose ONE new, significantly more difficult question based on the provided document context and a set of existing, simpler questions. The new question must be fundamentally different and more complex than the provided examples, requiring both **document comprehension** and **multi-step mathematical reasoning** to arrive at a **single, non-zero numerical answer**. You must also provide the correct numerical answer and a **detailed step-by-step derivation** showing how the answer is obtained from the document.

Principles for Question Design

Adhere strictly to the following principles when crafting your question, answer, and derivation:

1. **Language Requirement:** Questions, answers, and derivations must be in English.

2. **Complexity and Reasoning Depth:**

- The question must be challenging, requiring the LLM to go beyond simple retrieval. It should not be solvable trivially or in a few inference steps.
- It must involve **multi-step mathematical reasoning** (e.g., requiring two or more distinct calculation steps).
- It should necessitate **integration of information** from different parts of the document (e.g., combining data from a table with information from a text paragraph, or using multiple rows/columns from a table).
- Aspects like summarization or complex information extraction can be part of the process.

3. **Avoided Question Types:**

- **Simple Counting:** Avoid questions like “How many X are there?” if X is easily countable or directly stated. If counting is involved as an intermediate step for a larger calculation and the count is small (<=10), it’s acceptable.

- **Direct Retrieval:** Avoid questions answerable by looking up a single, isolated piece of information.

- **Excessive External Knowledge:** Questions should primarily rely on the provided document. Only common sense or minimal domain-specific knowledge (e.g., basic financial concepts like ‘profit = revenue - cost’ if contextually appropriate and derivable) inferable from the document is allowed.

4. **Escalate Question Difficulty:** The new question must demonstrate a higher order of reasoning than the Previous Examples. First, analyze the examples to identify their simple reasoning patterns (e.g., direct lookups, single calculations). Then, create a new question that incorporates one or more of the following advanced reasoning types:

- **Period-over-Period Calculation:** Requires calculating growth, decline, or change between different time periods.

- **Ratio or Metric Derivation:** Requires calculating a financial metric or ratio not explicitly stated in the document.

- **Aggregation and Filtering:** Requires aggregating data across multiple rows/columns/sections after filtering based on a text-based condition.

- **Projection or Implication:** Requires using data from the document to answer a “what if” or forward-looking question based only on the provided numbers.

5. **Information Obscurity:**

- Start with a clear question word (What/How/Where/When).

- Do not explicitly mention or paraphrase key numerical values from the document within the question itself. The LLM should identify and extract these values.

- Phrase questions to require inference and understanding of relationships between data points rather than just locating them.

6. **Factual Grounding:**

- All information required to answer the question must be present in or directly derivable from the provided document.

- Do not introduce hypothetical scenarios, fictional data, or assumptions not supported by the document.

- Questions should not contain any references to “Article 1”, “Article 2”, etc. They should be understandable without any additional context.

7. **Numerical Answer:**

- The final answer **must be a single non-zero numerical value**.

- An answer with more than two numerical values is unacceptable.

1566
 1567 - If the document implies units (e.g., millions of dollars, percentages), the question should be
 1568 phrased such that the numerical answer alone is sufficient (e.g., “What is the value in millions
 1569 of dollars?” rather than expecting the answer to include “million dollars”).
 1570 **8. Step-by-Step Derivation:**
 1571 - Provide a clear, step-by-step derivation for your answer.
 1572 - This derivation must explicitly reference specific data points or phrases from the document
 1573 (e.g., “From Table 3, Row Revenue; Year 2023...” or “As stated in paragraph 2...”).
 1574 - Detail all mathematical operations performed in each step. This helps verify the question’s
 1575 solvability and reasoning path.
 1576 **## Output Format**
 1577 Your response must conclude with a JSON object containing the following keys: “question”
 1578 and “answer”, placed after your reasoning.
 1579 {
 1580 “question”: “<A well-structured English question that adheres to all design principles>”,
 1581 “answer”: “<A single, non-zero numerical answer>”
 1582 }
 1583 **## Document Context**
 1584 <text>
 1585 {context}
 1586 </text>
 1587 **## Previous Examples**
 1588 **### Example 1:**
 1589 Question: {question 1}
 1590 Answer: {answer 1}
 1591 ...
 1592 **### Example K:**
 1593 Question: {question k}
 1594 Answer: {answer k}

Questioner Prompt for Document Multiple-Choice Task with History Memory

1595 You are an expert in document analysis. We are building a benchmark to evaluate the
 1596 capabilities of large language models (LLMs) on fact retrieval, reasoning across multiple
 1597 constraints, and accurate synthesis of information into coherent responses. You will be
 1598 provided with a document context and a set of simpler, existing questions. Your primary task
 1599 is to generate ONE new, highly challenging multiple-choice question with one correct answer
 1600 and three plausible, distinct distractors. The new question must be fundamentally different
 1601 and more complex than the provided examples, requiring both **document comprehension**
 1602 and **multi-hop reasoning**. You must provide one correct answer and three plausible, distinct
 1603 distractors. Crucially, you must also provide a **detailed explanation** for why the correct
 1604 answer is correct (including derivation steps) and why each distractor is incorrect.

Principles for Question and Option Design

1605 Adhere strictly to the following principles when crafting your question, answer, options, and
 1606 derivation:

1. General Requirements:

- All questions, options, and explanations must be in English.
- Questions should be challenging, requiring more than simple retrieval or a few inference steps.

2. Cognitive Complexity Requirements for the Question:

- Must necessitate multi-step reasoning (e.g., involving three or more distinct logical or calculation steps).
- Should require the integration of at least three distinct data points from different parts of the document (e.g., combining data from a table with text, or using multiple rows/columns/cells).
- Should demand the synthesis of quantitative data with qualitative information found in the text.
- The problem setup should have the potential for common misinterpretations, which will inform distractor design.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

3. Content Validity Criteria:

- The question and all options must be exclusively answerable using information from the provided document. No external knowledge beyond common sense or very basic, universally understood concepts (e.g., profit = revenue - cost, if directly applicable and data is provided) should be required.
- If applicable to the document type (e.g., financial reports), prioritize questions with regulatory/compliance implications or those highlighting significant financial outcomes.
- Ensure numerical values involved in the question or options require contextual interpretation within the document, not just direct look-up.
- Avoid trivia; focus on questions that address material information or key insights derivable from the document.

4. Distractor Development Guidelines:

- Each of the **three distractors** must be plausible yet clearly incorrect upon careful analysis.
- Distractors should represent distinct error paths or common misinterpretations.
- At least one distractor should represent a common conceptual misunderstanding related to the document's content or how information is presented.

5. Forbidden Question/Option Patterns:

- **Simple Counting:** Avoid questions like “How many X are there?” if X is easily countable or directly stated. Small counts (≤ 5) as part of a larger calculation are acceptable.
- **Direct Retrieval:** Avoid questions where the answer (or its direct components) can be found in a single, obvious location without further processing.
- **Excessive External Knowledge:** Questions must not require significant domain-specific knowledge not provided or clearly inferable from the document.
- **No Fabricated Information:** Strictly adhere to document content. Do not introduce hypothetical scenarios, data, or assumptions not explicitly stated or directly inferable.
- **Ambiguous Scenarios:** The question must have one unambiguously correct answer based solely on the provided document.
- **Vague Options:** All options, including distractors, must be precise and unambiguous.

6. Escalate Question Difficulty:

The new question must demonstrate a higher order of reasoning than the Previous Examples. First, analyze the examples to identify their simple reasoning patterns (e.g., fact retrieval, single-step comparison). Then, create a new question that incorporates one or more of the following advanced reasoning types:

- Quantitative Reasoning & Calculation: Requires performing mathematical operations (e.g., addition, subtraction, percentage change, averaging) on data from multiple sources.
- Comparative & Superlative Analysis: Requires comparing multiple entities based on synthesized criteria to find the one that is highest, lowest, best, etc.
- Conditional or Causal Reasoning: Structured as an “if-then” scenario or asks for the cause/effect of a situation by linking different documents (e.g., “What would be the total cost if the discount from Document A were applied to the price listed in Document B?”).
- Synthesis Across Data Types: Forces connection between qualitative information (e.g., a policy description) and quantitative data (e.g., a number in a table) to reach a conclusion.

7. Answer and Explanation Requirements:

- The correct answer must be `<correct_answer>`.
- A detailed derivation for the correct answer must be provided, showing step-by-step calculations and referencing specific parts of the document (e.g., “From Table X, Row Y...”, “As stated in paragraph Z...”).
- For each distractor, provide a brief explanation of why it is incorrect, ideally linking it to the type of error it represents (e.g., “Option A is incorrect because it omits the X deduction mentioned in...”, “Option B results from incorrectly summing X and Y instead of finding their difference...”).

Output Format

Your response must conclude with a JSON object containing the following keys: “question”, “options”, and “answer”, placed after your reasoning.

{

“question”: “<A well-structured multiple choice English question, exclude choices and answer>”,

“options”: {

```
1674
1675 "A": "<Text for choice A>",
1676 "B": "<Text for choice B>",
1677 "C": "<Text for choice C>",
1678 "D": "<Text for choice D>"
1679 },
1680 "answer": "<correct_answer>"
1681 }
1682 ## Document Context
1683 <text>
1684 {context}
1685 </text>
1686 ## Previous Examples
1687 ### Example 1:
1688 Question: {question 1}
1689 Answer: {answer 1}
1690 ...
1691 ### Example K:
1692 Question: {question k}
1693 Answer: {answer k}
```

Responder Prompt for Document General QA Task

Please read the following text and answer the question below.

<text>

content

</text>

Question: {question}

Format your answer as follows: "The correct answer is (insert answer here)."

Responder Prompt for Financial Math QA Task

You are an expert in document analysis and numeric reasoning, you are supposed to answer the given question based on the provided context. You need to first think through the problem step by step, documenting each necessary step. Then you are required to conclude your response with the final answer in your last sentence as “Therefore, the answer is (insert answer here)”. The final answer should be a numeric value.

<text>

{content}

</text>

Question: {question}

Please reason step by step, and format your answer as follows: "Therefore, the answer is (insert answer here)."

Responder Prompt for Document Multiple-Choice Task

Please read the following text and answer the question below.

<text>

{content}

</text>

Question: What

Choices:

(A) {choice_A}

(B) {choice_B}

(C) {choice_C}

(D) {choice_D}

1728
1729**Verifier Prompt for Document QA Task**

1730

TASK

1731

You are an expert in verifying if two answers are the same. Your input is a problem and two answers, Answer 1 and Answer 2. You need to check if they are equivalent. Your task is to determine two answers are equivalent, without attempting to solve the original problem.

1733

Instruction

1734

1. Carefully compare the Answer 1 and Answer 2.

1735

2. Compare the answers to verify they represent identical values or meaning, even when written in different forms or notations.

1736

3. For numerical answers, you should allow a **±0.15% tolerance**.

1737

4. Your decision **must be** one of the “[YES]” or “[NO]”.

1738

Input Data

1739

- Problem: {problem}

1740

- Answer 1: {answer_1}

1741

- Answer 2: {answer_2}

Output Format

1742

Provide your final evaluation in the following format:

1743

“Explanation:” Provide an explanation for why the answers are equivalent or not.

1744

“Decision:” “[YES]” or “[NO]”

1745

Please proceed with the evaluation.

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781