
RMIX: Learning Risk-Sensitive Policies for
Cooperative Reinforcement Learning Agents

Wei Qiu∗1, Xinrun Wang1, Runsheng Yu2, Xu He1, Rundong Wang1,
Bo An1, Svetlana Obraztsova1, Zinovi Rabinovich1

1Nanyang Technological University, Singapore
2Hong Kong University of Science and Technology, Hong Kong

Abstract

Current value-based multi-agent reinforcement learning methods optimize indi-
vidual Q values to guide individuals’ behaviours via centralized training with
decentralized execution (CTDE). However, such expected, i.e., risk-neutral, Q
value is not sufficient even with CTDE due to the randomness of rewards and
the uncertainty in environments, which causes the failure of these methods to
train coordinating agents in complex environments. To address these issues, we
propose RMIX, a novel cooperative MARL method with the Conditional Value
at Risk (CVaR) measure over the learned distributions of individuals’ Q values.
Specifically, we first learn the return distributions of individuals to analytically
calculate CVaR for decentralized execution. Then, to handle the temporal nature
of the stochastic outcomes during executions, we propose a dynamic risk level
predictor for risk level tuning. Finally, we optimize the CVaR policies with CVaR
values used to estimate the target in TD error during centralized training and the
CVaR values are used as auxiliary local rewards to update the local distribution
via Quantile Regression loss. Empirically, we show that our method outperforms
many state-of-the-art methods on various multi-agent risk-sensitive navigation
scenarios and challenging StarCraft II cooperative tasks, demonstrating enhanced
coordination and revealing improved sample efficiency.

1 Introduction

Reinforcement learning (RL) has made remarkable advances in many domains, including arcade
video games [28], complex continuous robot control [21] and the game of Go [40]. Recently, many
researchers put their efforts to extend the RL methods into multi-agent systems (MASs), such as
urban systems [41], coordination of robot swarms [16] and real-time strategy (RTS) video games [50].
Centralized training with decentralized execution (CTDE) [30] has drawn enormous attention via
training policies of each agent with access to global trajectories in a centralized way and executing
actions given only the local observations of each agent in a decentralized way. Empowered by CTDE,
several multi-agent RL (MARL) methods, including value-based and policy gradient-based, are
proposed [10, 43, 35, 42]. These MARL methods propose decomposition techniques to factorize the
global Q value either by structural constraints or by estimating state-values or inter-agent weights to
conduct the global Q value estimation [10, 43, 35, 42, 53, 54].

Despite the merits, most of these works focus on decomposing the global Q value into individual Q
values with different constraints and network architectures, but ignore the fact that such expected, i.e.,
risk-neutral, Q value is not sufficient as optimistic actions executed by some agents can impede the
team coordination such as imprudent actions in hostage rescue operations, which causes the failure of

∗Correspondence to qiuw0008@e.ntu.edu.sg

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

these methods to train coordinating agents in complex environments. Specifically, these methods only
learn the expected values over returns [35] and do not handle the high variance caused by events with
extremely high/low rewards to agents but at small probabilities, which cause the inaccurate/insufficient
estimations of the future returns. Therefore, instead of expected values, learning distributions of
future returns, i.e., Q values, are more useful for agents to make decisions. Even further, given that
the environment is nonstationary from the perspective of each agent, decision-making over the agent’s
return distribution takes events of potential return into account, which makes agents able to address
uncertainties in the environment compared with simply taking the expected values for execution.
However, current MARL methods do not extensively investigate these aspects.

Motivated by the previous reasons, we intend to extend the risk-sensitive RL [5, 18, 56, 3] (“Risk”
refers to the uncertainty of future outcomes [8]) to MARL settings, where risk-sensitive RL optimizes
policies with a risk measure, such as variance, power formula measure value at risk (VaR) and
conditional value at risk (CVaR). Among these risk measures, CVaR has been gaining popularity due
to both theoretical and computational advantages [36, 38]. However, there are two main obstacles:
(i) most of the previous works focus on risk-neutral or static risk level in the single-agent settings,
ignoring the randomness of reward and the temporal structure of agents’ trajectories [8, 47, 24, 18];
(ii) many methods use risk measures over Q values for policy execution without getting the risk
measure values used in policy optimization in temporal difference (TD) learning, which causes the
global value factorization on expected individual values to have sub-optimal behaviours in MARL.

In this paper, we propose RMIX, a novel cooperative risk-sensitive MARL method. Specifically, our
contributions are in three folds: (i) We first learn the return distributions of individuals by using Dirac
Delta functions in order to analytically calculate CVaR for decentralized execution. The resulting
CVaR values at each time step are used as policies for each agent via arg max operation; (ii) We then
propose a dynamic risk level predictor for CVaR calculation to handle the temporal nature of stochastic
outcomes as well as tune the risk level during executions. The dynamic risk level predictor measures
the discrepancy between the embedding of current individual return distributions and the embedding
of historical return distributions. The dynamic risk levels are agent-specific and observation-wise;
(iii) As our method focuses on optimizing the CVaR policies via CTDE, we finally optimize CVaR
policies with CVaR values as target estimators in TD error via centralized training and CVaR values
are used as auxiliary local rewards to update local return distributions via Quantile Regression loss.
These also allow our method to achieve temporally extended exploration and enhanced temporal
coordination, which are keys to solving complex multi-agent tasks. Empirically, we show that RMIX
outperforms many state-of-the-art methods on various multi-agent risk-sensitive navigation scenarios
and challenging StarCraft II cooperative tasks, demonstrating enhanced coordination and revealing
improved sample efficiency.

2 Preliminaries and Related Works

Dec-POMDP. A fully cooperative MARL problem can be described as a decentralised partially
observable Markov decision process (Dec-POMDP) [29] which can be formulated as a tupleM =
〈S,U ,P, R,Υ, O,N , γ〉, where s ∈ S denotes the state of the environment. Each agent i ∈
N := {1, ..., N} chooses an action ui ∈ U at each time step, giving rise to a joint action vector,
u := [ui]

N
i=1 ∈ UN . P(s′|s,u) : S × UN × S 7→ P(S) is a Markovian transition function.

Every agent shares the same joint reward function R(s,u) : S × UN 7→ R, and γ ∈ [0, 1) is the
discount factor. Due to partial observability, each agent has individual partial observation υ ∈ Υ,
according to the observation function O(s, i) : S × N 7→ Υ. Each agent learns its own policy
πi(ui|τi) : T × U 7→ [0, 1] given its action-observation history τi ∈ T := (Υ× U).

Returns

Pr
ob
ab
ilit
y

𝛼

𝛼
Risk level VaR

CVaR𝛼
Mean

Figure 1: CVaR

CVaR. CVaR is a coherent risk measure and enjoys computational prop-
erties [36] that are derived for loss distributions in discreet decision-
making in finance. It gains popularity in various engineering and finance
applications. As shown in Fig. 1, CVaR is the expectation of values
that are less equal than the α-quantile value of the distribution over re-
turns. Formally, let X ∈ X be a bounded random variable with cumu-
lative distribution function F (x) = P [X ≤ x] and the inverse CDF is
F−1(u) = inf{x : F (x) ≥ u}. CVaR at level α ∈ (0, 1] of a random vari-
ableX is then defined as CVaRα(X) := supν

{
ν − 1

αE[(ν −X)+]
}

[37]
when X is a discrete random variable. Correspondingly, CVaRα(X) = EX∼F

[
X|X ≤ F−1(α)

]
2

[1] when X is a continuous random variable. The α-percentile value is value at risk (VaR). For ease
of notation, we write CVaR as CVaRα(F).

Risk-sensitive RL. Risk-sensitive RL uses risk criteria over policy/value, which is a sub-field of
the Safety RL [11]. Von Neumann et al. [52] proposed the expected utility theory where a decision
policy behaves as though it is maximizing the expected value of some utility functions. The condition
is satisfied when the decision policy is consistent and has a particular set of four axioms. This is
the most pervasive notion of risk-sensitivity. A policy maximizing a linear utility function is called
risk-neutral, whereas concave or convex utility functions give rise to risk-averse or risk-seeking
policies, respectively. Many measures are used in RL such as CVaR [6, 8] and power formula [8].
However, few works have been done in MARL. Our work fills this gap.

Related Works. CTDE [30] has drawn enormous attention via training policies of each agent
with access to global trajectories in a centralized way and executing actions given only the local
observations of each agent in a decentralized way. However, current MARL methods [22, 10, 43,
35, 42] neglect the limited representation of agent values, thus failing to consider the problem of
random cost underlying the nonstationarity of the environment, a.k.a risk-sensitive learning. Recent
advances in distributional RL [2, 9] focus on learning distribution over returns. However, these works
still focus on either risk-neutral settings or with static risk level in single-agent settings. Chow et
al. [5] considered the mean-CVaR optimization problem in MDPs and proposed policy gradient with
CVaR. Garcia et al. [11] presented a survey on safe RL, which initiated the research on utilizing risk
measures in RL [45, 47, 15, 26, 18, 24]. Bodnar et al. [3] proposed a risk-aware RL algorithm based
on QR-DQN and CVaR for real vision-based robotic grasping tasks. However, these works focus on
single-agent settings. The merit of CVaR in optimization of MARL has yet to be investigated.

3 Methodology

In this section, we present our framework RMIX in Fig. 2. In the rest of this section, we first
introduce the CVaR operator to analytically calculate the CVaR value with the modeled individual
distribution of each agent in Sec. 3.1 and then propose the dynamic risk level predictor to alleviate
time-consistency issue in Sec. 3.2. Finally, we provide the details of centralized training of RMIX in
Sec. 3.3. All proofs are provided in Appendix.

Agent 𝑖

(𝑜!" , 𝑢!"#$)

Risk Operator 𝑖

𝑍!(𝜏! ,()

𝐶!

Mixer

𝜏!

𝐶!"! TD Loss

𝑠#

MLP

GRU

𝑍!(𝜏!,&)

ℎ!"#$ ℎ!"

MLP

GRU
ℎ!"#% ℎ!"#$
Predictor

𝐶!

(𝑜!", 𝑢!"#$)
𝜏%:"#$!

(a) (b) (c)

𝛼!
𝜓!

𝑍!(𝜏!,&)

per agent

QR Loss 𝐶!

𝜋!𝜖

[𝐶!]!&'(#$

Figure 2: Our framework (dotted arrow indicates
that gradients are blocked during training). (a)
Agent’s policy network. (b) The overall archi-
tecture (agent network and mixer). (c) Risk op-
erator. Each agent i applies an individual risk
operator Παi on its return distribution Zi(·, ·) to
calculate Ci(·, ·, ·) for execution given risk level
αi predicted by the dynamic risk level predictor
ψi. {Ci(·, ·, ·)}Ni=1 are fed into the mixer for cen-
tralized training. Further introduction of the de-
sign of the agent, the risk operator and the mixer
network can be found in the following sections.

3.1 CVaR of Return Distribution

In this section, we describe how we estimate the CVaR value. The value of CVaR can be either
estimated through sampling or computed from the parameterized return distribution [36]. However,
the sampling method is usually computationally expensive [47]. Therefore, we let each agent learn a
return distribution parameterized by a mixture of Dirac Delta (δ) functions 2, which is demonstrated to
be highly expressive and computationally efficient [2]. By following [2], we define the parameterized
return distribution of each agent i at time step t as:

Zti (τi, u
t−1
i) =

∑M

j=1
Pj(τi, u

t−1
i)δj(τi, u

t−1
i) (1)

2The Dirac Delta is a Generalized function in the theory of distributions and not a function given the properties
of it. We use the name Dirac Delta function by convention.

3

where M is the number of Dirac Delta functions. δj(τi, u
t−1
i) is the j-th Dirac Delta function

and indicates the estimated return which can be parameterized by neural networks in practice.
Pj(τi, u

t−1
i) is the corresponding probability of the estimated return given local observations and

actions. τi and ut−1
i are trajectories (up to that timestep) and actions of agent i, respectively. With

the individual return distribution Zti (τi, u
t−1
i) ∈ Z and cumulative distribution function (CDF)

FZi(τi,u
t−1
i), we define the CVaR operator Παi

, at a risk level αi (αi ∈ (0, 1] and i ∈ A), over

return as3 Cti (τi, u
t−1
i , αi) = Παt

i
Zti (τi, u

t−1
i) := CVaRαt

i
(FZt

i (τi,u
t−1
i)) where C ∈ C. As we use

CVaR on return distributions, it corresponds to risk-neutrality (expectation, αi = 1) and indicates
the improving degree of risk-aversion (αi → 0). CVaRαi

can be estimated in a nonparametric way
given ordering of Dirac Delta functions {δj}Mj=1 [19] by leveraging the individual distribution:

CVaRαi
=
∑M

j=1
Pjδj1 {δj ≤ v̂M,αi

} , (2)

where 1{·} is the indicator function and v̂M,αi is the αi-quantile of the individual distribution. This
is a closed-form formulation and can be easily implemented in practice. The optimal action of agent
i can be calculated via arg maxui

Ci(ui|τi, ut−1
i , αi). We will introduce it in detail in Sec. 3.2.

3.2 Risk Level Predictor

The values of risk levels, i.e., αi, i ∈ A, are important for the agents to make decisions. Most of the
previous works take a fixed value of risk level and do not take into account any temporal structure
of agents’ trajectories, which is hard to tune the best risk level and may impede centralized training
in the evolving multi-agent environments. Therefore, we propose the dynamic risk level predictor,
which determines the risk levels of agents by explicitly taking into account the temporal nature of the
stochastic outcomes, to alleviate time-consistency issue [38, 17] and stabilize the centralized training.
Specifically, we represent the risk operator Πα by a deep neural network, which calculates the CVaR
value with predicted dynamic risk level α over the return distribution. We illustrate how ψi works
with agent i for CVaR calculation in practice in Fig. 3 in the following.

𝑍!

"𝑍!

×

1
1
1
1
0
0

C! = Π"!𝑍!

0
𝑓"#$#(𝑍!)

𝛼!

𝐾 Dirac functions
The dimension is 𝐾

x𝑍!

distributions

distributions

Softmax

𝑓"#$#("𝑍!)

Figure 3: Risk level predictor ψi.

Calculating the Risk Level. We conduct the inner
product to measure the discrepancy between the em-
bedding of individual return distribution Zi and the
embedding of the historical return distribution Z̃i for
agent i. We discretize the risk level range into K
even ranges for the purpose of computing. The k-
th dynamic risk level αki is output from ψi and the
probability of αki is defined as:

P(αki) =
exp(〈femb(Zi)

k, femb(Z̃i)
k〉)∑K−1

k′=0 exp(〈femb(Zi)k
′ , femb(Z̃i)k

′〉)
.

(3)
where Z̃i is modeled by GRU [7] with agent i’s past
trajectory φi(τ0:t−1

i , ut−1
i) as input. Then we get the k ∈ [1, . . . ,K] with the maximal probability by

arg max and normalize it into (0, 1], thus αi = k/K. The prediction risk level αi is a scalar value
and it is converted into a K-dimensional mask vector where the first bαi ×Kc items are one and the
rest are zero. This mask vector is used to calculate the CVaR value (Eqn. 2) of each action-return
distribution that contains K Dirac functions. Finally, we obtain Ci and the policy πi as illustrated in
Fig. 2. During training, fembi updates its weights and the gradients of fembi are blocked (the dotted
arrow in Fig. 2) in order to prevent changing the weights of the network of agent i. The dynamic
risk level predictors allow agents to determine the risk level dynamically based on historical return
distributions and it is a hyperparameter (e.g., α) tuning strategy as well.

3.3 Centralized Training

We train RMIX via addressing the two challenging issues: credit assignment and local return
distribution updating. The pseudo code of RMIX is in Algorithm 1. Agents observe observations
and output actions in Line 6-8. In Line 10-13, agents’ trajectories and states are stored in the replay
buffer. Weights of the agent network and the mixing network are updated as shown in Line 15-22.

3We will omit t in the rest of the paper for notation brevity.

4

Algorithm 1: RMIX
1 Input: initialize parameters θ̄ and θ of the

network and the target network of agents, risk
operator, monotonic mixing network and
replay buffer D;

2 for e ∈ {1, . . . ,MAX_EPISODE} do
3 while EPISODE_NOT_DONE do
4 Observe the global state st;
5 for agent i ∈ {1, . . . , N} do
6 Observe oti and get action ut−1

i ;
7 Predict the risk level αi (Eqn. 3);
8 Calculate CVaR values (Eqn. 2);
9 Get the action uti;

10 Concatenate uti , i ∈ [1, .., N] into ut;
11 Execute uti into environment;
12 Receive rt and observe a new state s′;
13 Store (st, {oti}Ni=1,u

t, rt, s′) into D;
14 if UPDATE then
15 Sample a min-batch D′ from D;
16 For each sample in D′, calculate

CVaR value Ci (Eqn. 2);
17 Concatenate CVaR values

{[{C1
i }Ni=1]1, . . . , [{C|D

′|
i }Ni=1]|D′|};

18 For each [{Cji }
N
i=1]0,j∈[1,...,|D′|],

calculate Ctot
j via the mixing

network;
19 Update θ by minimizing the TD

loss (Eqn. 6);
20 if UPDATE then
21 Update Zti (Eqn. 7);
22 Update θ̄: θ̄ ← θ;
23 Output: A well-trained policy for each agent.

Loss Function. As there is only a global reward
signal and agents have no access to individuals’
reward, we first utilize the monotonic mixing net-
work (fm) from QMIX to do credit assignment.
fm enforces a monotonicity constraint on the re-
lationship between Ctot and each Ci for RMIX:

∂Ctot

∂Ci
≥ 0, ∀i ∈ {1, 2, . . . , N}, (4)

where Ctot = fm(C1(·, ·, ·), · · · , CN (·, ·, ·))
and Ci(τi, ui, αi) is the individual CVaR value
of agent i. To ease the confusion, the Ctot is
not the global CVaR value as modeling global
return distribution as well as local distribution
are challenging with the credit assignment issue
in Dec-POMDP problems, and the risk level val-
ues are locally decided and used during training.
Then, to maximize the CVaR value of each agent,
we define the risk-sensitive Bellman operator T :

T Ctot(s,u) := E[R(s,u) + γmax
u′

Ctot(s′,u′)]

(5)
T operates on the Ctot and the reward, which
can be proved to be a contracting operation, as
shown in Proposition 1.
Proposition 1. T : C 7→ C is a γ-contraction.

Proof. It can be proved via contract mapping by
integrating Lemma 3 in [6] and Eqn. 5. We
provide the proof in Appendix.

Therefore, we can leverage the TD learning [44]
to train RMIX. Following the CTDE paradigm,
we define our TD loss:

LΠ(θ) := ED′∼D
[
(ytot
t − Ctot (st,ut))

2] (6)

where ytot
t =

(
rt + γmaxu′ C

tot
θ̄

(st+1,u
′)
)
. θ is the parameters of Ctot which can be modeled

by a deep neural network and θ̄ indicates the parameters of the target network which is periodically
copied from θ for stabilizing training [28].

Local Return Distribution Learning. The CVaR estimation relies on accurately updating the lo-
cal return distribution and the update is non-trivial. However, unlike many deep learning [12]
and distributional RL methods [2, 9] where the label and local reward signals are accessible,
in our problem, the exact rewards for each agent are unknown, which is very common in real
world problems. To address this issue, we first consider CVaR values as dummy rewards of each
agent due to its property of modeling the potential loss of return and then leverage the Quan-
tile Regression (QR) loss used in Distributional RL [9] to explicitly update the local distribution
decentrally. More concretely, QR aims to estimate the quantiles of the return distribution by min-
imizing the quantile regression loss between Zi(τi, ui) and its target distribution Ẑi(τi, ui) =
Ci(τi, ui, αi) + γZi(τi

′, ui
′). Formally, the quantile distribution is represented by a set of quantiles

τj = j
M where j ∈ [1, . . . ,M], and the quantile regression loss for Q network is defined in Eqn. 7,

LQR =
1

N

∑N

i=1

∑M

j=1
EẐi∼Zi

[ρτj (Ẑi−Zi)] (7) Lκ(ν) =

{
1
2
ν2, if|ν| ≥ κ,

κ(|ν| − 1
2
κ), otherwise.

(8)

where ρτ (ν) = ν(τ − 1{ν < 0}). To eliminate cuspid in ρτ which could limit performance when
using non-linear function approximation, quantile Huber loss is used as the loss function. The quantile
Huber loss is defined as ρτ (ν) = Lκ(ν)|τ − 1{ν < 0}| where Lκ(ν) is defined in Eqn. 8.

Training. Finally, we train RMIX in an end-to-end manner where each agent shares a single agent
network and a risk predictor network to solve the lazy-agent issue [43]. ψi is trained together with

5

the agent network via the loss defined in Eqn. 6. During training, fembi updates its weights while the
gradients of fembi are blocked in order to prevent changing the weights of the return distribution in
agent i. In fact, agents only use CVaR values for execution and the risk level predictor only predicts
the α; thus, the increased network capacity is mainly from the local return distribution and the CVaR
operator. Our framework is flexible and can be easily used in many cooperative MARL methods.

4 Theoretical Analysis

Insightfully, our proposed method can be categorized into an overestimation reduction perspective
which has been investigated in single-agent domain [48, 14, 20, 4]. Intuitively, during minimizing
LΠ(θ) and policy execution, we can consider CVaR implementation as calculating the mean over
k-minimum δ values of Zi. It motivates us to analyse our method’s overestimation reduction property.

In single-agent cases, the overestimation bias occurs since the target maxa′ Q (st+1, a
′) is used in

the Q-learning update. In multi-agent scenarios, for example StarCraft II, the primary goal for each
agent is to survive (maintain positive health values) and win the game. Overestimation on high return
values might lead to agents suffering defeat early-on in the game.

Formally, in MARL, we characterize the relation between the estimation error, the in-target mini-
mization parameter α and the number of Dirac functions, M , which consist of the return distribution.
We follow the theoretical framework introduced in [48] and extended in [4]. More concretely, let
Ctot(s,u)−Q(s,u) be the pre-update estimation bias for the output Ctot with the chosen individual
CVaR values, where Q(s,u) is the ground-truth Q-value. We are interested in how the bias changes
after an update, and how this change is affected by risk level α. The post-update estimation bias,
which is the difference between two different targets, can be defined as:

Ψα
∆
= r + γmax

u′
Ctot (s′,u′)− (r + γmax

u′
Qtot(s′,u′)) = γ(max

u′
Ctot(s′,u′)−max

u′
Qtot(s′,u′))

where α = {αi}Ni=1 and Q (s′,u′) is output of the centralized mixing network with individuals’
Qi as input. Note that due to the zero-mean assumption, the expected pre-update estimation bias
is E[Ctot(s,u)−Q(s,u)] = 0 by following [48] and [20]. Thus if E[Ψα] > 0, the expected post-
update bias is positive and there is a tendency for over-estimation accumulation; and if E[Ψα] < 0,
there is a tendency for under-estimation accumulation.

Theorem 1. We summarize the following properties:
(1) Given α1 and α2 where α values in each set are identical, E[Ψα1] ≤ E[Ψα2] for 0 < α1 ≤
α2 ≤ 1, α1 ∈ α1 and α2 ∈ α2.
(2) ∃αi ∈ (0, 1] and α = {αi}Ni=1, E[Ψα] < 0.

Theorem 1 implies that we can control the E[Ψα], bringing it from above zero (overestimation) to
under zero (underestimation) by decreasing α. Thus, we can control the post-update bias with the
risk level α and boost the RMIX training on scenarios where overestimation can lead to failure of
cooperation. In the next section, we will present the empirical results.

5 Experiments

We empirically evaluate our method on multi-agent risk-sensitive navigation scenarios and StarCraft
II (SCII) cooperative scenarios. Especially, we are interested in the robust cooperation between agents
and agents’ learned risk-sensitive policies in complex cooperative scenarios.

5.1 Experiment Setup

Figure 4: Multi-Agent Cliff Navigation.

MACN. We customize the cliff walking environ-
ment [44] in single-agent domain and develop Multi-
Agent Cliff Navigation (MACN) for multi-agent risk-
sensitive navigation. In MACN, there are two agents
whose task is to complete the navigation from the start-
ing position to the goal. At each time step, each agent ob-
serves an observation with a dimension of 3× 3. Agents
can take an action at each time step and the action set

6

is: {UP,DOWN,LEFT,RIGHT}. The two agents share the team reward. As depicted in Fig. 4,
there are some regions that are dangerous and agents will be rewarded with a −100 reward when any
agent steps into these regions, and consequently the episode ends. Agents will receive a −1 reward at
each time step when they are at the safe region. When one agent reaches the goal, the agent will be
rewarded with a −0.5 reward. If the two agents arrive at the goal at the same time, agents will be
rewarded with a 0 reward and the episode ends.

(a) 5m_vs_6m (b) MMM2

Figure 5: SMAC scenarios.

SC II. SMAC [39] is a challenging set of cooperative SCII
maps for micromanagement MARL research. The enemy
units are controlled by SCII built-in AI and each of the
ally units is controlled by a learning agent. We present
the results of our method and baselines on 6 scenarios:
1c3s5z, MMM2, 5m_vs_6m, 8m_vs_9m, 10m_vs_11m
and corridor. The version of SCII we use in our experi-
ments is 4.10. More information about MACN and SMAC
can be found in Appendix B.

Baselines and training. We compare three categories of MARL methods: (i) Value-based methods:
IQL [46], VDN [43] , QMIX [35], QTRAN [42], WQMIX [33], QPLEX [53]; (ii) Policy gradient
methods: COMA [10] and DOP [54]; (iii) Distributional RL-based method [23]. Among these
methods, QPLEX (we use num_circle=1 to train QPLEX for fair training at the sample level
for each update) and WQMIX are state-of-the-art value-based MARL methods and DOP is state-
of-the-art policy gradient MARL method. Additional introduction can be found in Appendix D.
We implement our method on PyMARL [39] and use 5 random seeds to train each method. We
carry out experiments on NVIDIA Tesla V100 GPU 16G and NVIDIA GeForce RTX 3090 24G.
More training details can be found in Appendix C. Our code can be found at this link: https:
//github.com/yetanotherpolicy/rmix.

5.2 Experimental Results

In this subsection, we first showcase the learned risk-sensitive policies of RMIX in grid-world MACN
scenarios and then present the improved complex coordination of RMIX in SCII scenarios.

5.2.1 Multi-Agent Cliff Navigation

0 100K 200K 300K 400K 500K
Steps

60

40

20

0

Te
st

 R
et

ur
n

M
ea

n

MACN scenario 1

0 200K 400K 600K 800K 1M
Steps

80

60

40

20

0
MACN scenario 2

RMIX (ours) QMIX QPLEX DOP

Figure 6: Test return on two MACN scenarios.

We conduct experiments on two
multi-agent cliff navigation scenar-
ios to showcase the gained perfor-
mances of RMIX and the learned
risk-sensitive policy. MACN sce-
nario 1 has a width of 7 and a height
of 4 while MACN scenario 2 has a
width of 12 and a height of 4. The
baselines are QMIX, QPLEX and
DOP, which are well received risk-
neutral MARL methods. As shown
in Fig. 6, trained with risk-sensitive policies, RMIX demonstrates better sample efficiency compared
with other risk-neutral, i.e., expected-Q, baseline methods in two MACN scenarios with high risk.
QPLEX outperforms QMIX and DOP and shows converged performance due to the dueling net-
work [55] and attention architecture [49]. In Sec.5.3, we illustrate experimental results on less risky
MACN scenarios.

5.2.2 StarCraft II

Comparison with value-based MARL baselines. As depicted in Fig. 7, RMIX outperforms
QMIX, QPLEX, WQMIX, IQL, QTRAN and VDN in all asymmetric (5m_vs_6m, 8m_vs_9m,
10m_vs_11m and corridor)/symmetric (MMM2 and 1c3s5z) and homogeneous (5m_vs_6m,
8m_vs_9m, 10m_vs_11m and corridor)/heterogeneous (1c3s5z and MMM2) scenarios, demon-
strating its superiority on improving multi-gent coordination in complex scenarios. We can find that
RMIX improves coordination in a sample efficient way via risk-sensitive policies. Intuitively, for

7

https://github.com/yetanotherpolicy/rmix
https://github.com/yetanotherpolicy/rmix

asymmetric scenarios, agents can be easily defeated by the opponents. As a consequence, coordi-
nation between agents is cautious in order to win the game, and the cooperative strategies in these
scenarios should avoid massive casualties in the starting stage of the game.

0 100K 200K 300K 400K 0.5M
0

25

50

75

100

Te
st

 W
in

 %

1c3s5z

0 0.5M 1M 1.5M 2M 2.5M 3M
0

25

50

75

100
MMM2

0 0.5M 1M 1.5M 2M
0

25

50

75

100
5m_vs_6m

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 W
in

 %

8m_vs_9m

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
10m_vs_11m

0 0.5M 1M 1.5M 2M 2.5M 3M
Steps

0

25

50

75

100
corridor

RMIX (ours) WQMIX QMIX QPLEX DOP IQL QTRAN VDN COMA LH-IQN

Figure 7: Test win rates for six scenarios.

Comparison with policy gradient MARL baseline. Our method also outperforms COMA and DOP
as illustrated in Fig. 7. COMA aims to address multi-agent credit assignment issue by utilizing coun-
terfactual values. DOP learns the centralized Q value for policy learning with a linear combination of
individual Q values. The two methods are on-policy methods and are sample inefficient.

Comparison with distributional/risk-sensitive MARL baseline. Although there are few practical
methods on risk-sensitive multi-agent reinforcement learning, we also conduct experiments to
compare our method with LH-IQN [23], which is a risk-sensitive method built on a distributional RL
method called implicit Quantile network (IQN). We can find that our method outperforms LH-IQN in
many scenarios. The performance of LH-IQN is not good on StarCraft II scenarios because it is an
independent MARL method and the IQN was used to guide the update of the Lenient Q-Network.

5.3 Ablations

RMIX consists of two components: the CVaR policies and the risk level predictor. The CVaR policies
are different from vanilla Q values and the risk level predictor is proposed to model the temporal
structure and as an α-finding strategy for hyperparameter tuning. Our ablation studies serve to answer
the following questions: Q1: Can RMIX with static α also work? Q2: Can the risk level predictor
learn α values and fast learn a good policy compared with RMIX with static α? Q3: Can our
framework be applied to other methods? Q4: Is our method robust to the randomness of rewards?
Q5: How does our method perform in less risky scenarios?

0 100K 200K 300K 400K 0.5M
Steps

0

20

40

60

80

100

Te
st

 W
in

 %

1c3s5z

0 200K 400K 600K 800K 1M
Steps

0

20

40

60

80

100
8m_vs_9m

0 200K 400K 600K 800K 1M
Steps

0

20

40

60

80

100
10m_vs_11m

RMIX QMIX RDN VDN

Figure 8: Test win rate of RMIX, RDN, VDN, QMIX.

Table 1: Test Win Rate.
1c3s5z 5m_vs_6m

RMIX 97.10± 2.56% 80.01± 5.57%
RMIX_0.1 93.48± 1.67% 60.65± 6.07%
RMIX_0.3 95.47± 2.84% 69.16± 4.74%
RMIX_0.5 95.15± 1.63% 70.75± 4.73%
RMIX_0.7 95.89± 2.15% 74.88± 8.48%
RMIX_1.0 89.70± 8.22% 77.56± 4.11%
QMIX 88.34± 2.64% 64.75± 8.69%

To answer Q1 and Q2, we conduct an ablation
study by fixing the risk level in RMIX with the
value of {0.1, 0.3, 0.5, 0.7, 1.0} and compare with
RMIX and QMIX on 1c3s5z (500K time steps) and
5m_vs_6m (2M time steps). As illustrated in Table
1, with static α values, RMIX is capable of learning
good performance over QMIX, which demonstrates
the benefits of learning risk-sensitive MARL poli-
cies in complex scenarios where the potential of
loss should be taken into consideration in coordina-
tion. With risk level predictor, RMIX outperforms RMIX with static α values, illustrating that agents
have captured the temporal features of scenarios and possessed the α value tuning merit.

8

We answer Q3 to show that our proposed method is applicable in other value-based MARL meth-
ods. We then apply additivity of individual CVaR values to represent the global CVaR value as
Ctot(τ ,u) = C1(τ1, u1, α1) + · · ·+ CN (τN , uN , αN). Following the training of RMIX, we name
this method Risk Decomposition Network (RDN). We use experiment setup of VDN and train RDN
on 3 SMAC scenarios. With CVaR policies, RDN outperforms VDN on 10m_vs_11m and converges
faster than VDN on 1c3s5z and 8m_vs_9m, as depicted in Fig. 8, demonstrating that our framework
can be applied to VDN and outperforms VDN.

We answer Q4 by directly injecting Gaussian noise (N (0, δ), δ ∈ {0.1, 0.3, 0.5, 0.7, 1.0}) to the
reward function. The reward function in SMAC is deterministic, however, each agent owns stochastic
policy which makes the nonstationarity of the environment and leads to the randomness of reward,
especially at the early training stage where agents explore. It has also been claimed by distributional
RL [2, 8] in single-agent setting. Results in Fig. 9 show that RMIX is robust to random noise in the
reward function.

0 100K 200K 300K 400K 0.5M
Steps

0

25

50

75

100

Te
st

 W
in

 %

1c3s5z

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
8m_vs_9m

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
10m_vs_11m

RMIX
RMIX_ 0.1

RMIX_ 0.3
RMIX_ 0.5

RMIX_ 0.7
RMIX_ 1.0

QMIX
QMIX_ 0.1

QMIX_ 0.3
QMIX_ 0.5

QMIX_ 0.7
QMIX_ 1.0

Figure 9: RMIX vs QMIX with reward noise.

0 100K 200K 300K 400K 500K

Steps
100

80

60

40

20

0

Te
st

 R
et

ur
n

M
ea

n

MACN scenario 1 (Low Risk)

RMIX (ours)
QPLEX

QMIX
DOP

Figure 10: Test averaged return
in MACN scenario 1.

We answer Q5 by conducting experiments on MACN scenario
with low risk. We select MACN scenario 1 as the evaluation sce-
nario where the width is 7 and height is 4. In order to make the
scenario less risky, we change the punishment of stepping into the
dangerous region, a.k.a cliff, from the value of -100 to -50. We
present the averaged test return value of RMIX, QMIX, QPLEX
and DOP in Fig.10. We can find that in scenario with low risk,
unlike results in Fig. 6, RMIX shows comparable converged per-
formance with QPLEX. The variance of the averaged test return of
RMIX is larger than that of QPLEX. We can also find the improved
performance of QMIX in this low risk scenario. We can conclude
that in low risk scenarios, RMIX can also show comparable per-
formance compared with risk-neutral MARL methods.

5.4 Results Analysis

We are interested in finding if the risk level predictor can predict temporal risk levels. We use the
trained model of RMIX on corridor and run the model to collect one episode data including game
replay, states, actions, rewards and α values. In Fig. 11, the first row shows the reward of each
time step and the second row shows the α value each agent predicts per time step. We can find that
α values vary in different phases within the episode. Agent 3 dies at the time step 20 and its risk
level is decreasing as illustrated in Fig. 11, demonstrating risk-averse behaviours. The cuspid (time
step 45-53) of agent 0’s α curve indicates that agent 0 is confronting opponents alone and later its
teammates come over and help him to survive. Consequently, the α value increases to 1 (risk neutral).

Agents are passing through
the corridor. Reward is zero

Figure 11: Reward and risk level on corridor.

We showcase how agents apply the risk level to select actions. We collect the executed actions, the
predicted risk levels and the local distributions of agent 1 (Zealot) of time step 28 and 74. Rewards

9

and the risk levels have already been shown in Fig. 11. As depicted in Fig. 12, there are 35 Dirac
delta atoms (for better visualization) of the local distributions as shown in the heat map. The x-axes
denote each Dirac function. The y-axes stand for available actions at current time step for agent 1
while the size of the action space is 30. At time step 28, as shown in Fig. 12 (a), the predicted risk
level is 0.3. We sort values in the heat map of each action in ascending order and then apply Eqn. 2
to get CVaR values of each action. Values in white cells in the heat map (Fig. 12 (a)) are excluded
while calculating the CVaR value. At time step 28, because many opponents are attacking agent 1,
risk level is 0.3 (means agent 1 is going to encounter potential reward loss) and agent 1’s action is
Attack. In Fig. 12 (b), at time step 74, as agents are going to win the game, agent 1 does not need
to get involved in the combat, agent 1’s risk level is 1.0 and it takes a3, i.e., MoveSouth, to get out
of the battlefield to avoid being killed by the opponent. The heat map illustrates that all the return
values are used for CVaR calculation. Readers can refer to Appendix E.2 and click the link in the
supplemental file to watch the video for more details.

Agent 1: Zealot
𝒂𝟑:MoveSouth

Agent 1: Zealot
𝒂𝟏𝟖: Attack

(a) CVaR values, risk level (0.3) and action at 𝑡 = 28.

(b) CVaR values, risk level (1.0) and action at 𝑡 = 74.

CVaR value of each action: [1.85, 1.88, 1.92, 1.86, 1.876, 1.86, 1.94, 1.87, 1.95, 1.76, 1.88]

CVaR value of each action: [1.35, 1.35, 1.36, 1.35, 1.34, 1.34, 1.32, 1.34, 1.35]

Figure 12: Two examples on CVaR calculation and action selection.

6 Conclusion and Future Work

In this paper, we propose RMIX, a novel and practical MARL method with CVaR over the learned
distributions of individuals’ Q values as risk-sensitive policies for cooperative agents. Empirically, we
show that our method outperforms baseline methods on many challenging StarCraft II tasks, reaching
convincing performance and enhanced coordination as well as improved sample efficiency.

Risk-sensitive policy learning is vital for many real-world multi-agent applications especially in risky
tasks, for example autopilot vehicles and finance portfolio management. For the future work, better
risk measurement together with accurate spatial-temporal trajectory representation can be investigated.
Also, learning to model other agents’ risk levels and reach consensus with communication can be
another direction for enhancing multi-agent coordination. Our method is built on value-based MARL
method and devising risk-sensitive policy gradient MARL methods is our future direction too.

7 Social Impact and Limitations

Our work provides a practical framework for future risk-sensitive MARL research. In addition to the
algorithmic contribution, our method could help the development of various real-world applications
where risk-sensitive decision-making is desperately needed. For example, the driving policy should
be risk-sensitive to any potential accidents and uncertainties in automatic driving scenarios. Besides
training risk-sensitive policies for automatic driving, the proposed method is applicable for multi-robot
rescue where imprudent decision can lead to the failure of the mission.

The proposed method trains MARL policies in a risk-sensitive manner with CVaR. However, the
learned policy does not guarantee the exact safety bound. We adopt the Quantile-Regression [9]
method to estimate the local return distribution accurately and efficiently train the CVaR values,
which is not scalable for scenarios that have many agents and large action space. The aforementioned
limitations motivate us to develop novel risk-sensitive MARL methods in the future.

10

Acknowledgments and Disclosure of Funding

We thank Yanchen Deng and Tabish Rashid for helpful comments and suggestions on the draft.
This work was supported by the National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG-RP-2019-0013), National Satellite of Excellence in Trustworthy
Software Systems (Award No: NSOE-TSS2019- 01). We gratefully acknowledge the GPU tech
support from Jianxiong (Terry) Yin, NVAITC (NVIDIA AI Tech Center) for our research.

References
[1] C. Acerbi and D. Tasche. On the coherence of expected shortfall. Journal of Banking & Finance,

26(7):1487–1503, 2002.

[2] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449–458, 2017.

[3] C. Bodnar, A. Li, K. Hausman, P. Pastor, and M. Kalakrishnan. Quantile qt-opt for risk-aware
vision-based robotic grasping. In Proceedings of Robotics: Science and Systems, Corvalis,
Oregon, USA, July 2020.

[4] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.

[5] Y. Chow and M. Ghavamzadeh. Algorithms for cvar optimization in MDPs. In Advances in
Neural Information Processing Systems, pages 3509–3517, 2014.

[6] Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-sensitive and robust decision-making:
a cvar optimization approach. In Advances in Neural Information Processing Systems, pages
1522–1530, 2015.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. In Advances in Neural Information Processing Systems 2014
Workshop on Deep Learning, 2014.

[8] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional
reinforcement learning. In International Conference on Machine Learning, pages 1096–1105,
2018.

[9] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 2892–2901, 2018.

[10] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients. arXiv preprint arXiv:1705.08926, 2017.

[11] J. García et al. A comprehensive survey on safe reinforcement learning. Journal of Machine
Learning Research, 16(42):1437–1480, 2015.

[12] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2672–2680, 2014.

[13] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. In International Conference on Learning
Representations. OpenReview.net, 2017.

[14] H. V. Hasselt. Double q-learning. In Advances in Neural Information Processing Systems, pages
2613–2621, 2010.

[15] T. Hiraoka, T. Imagawa, T. Mori, T. Onishi, and Y. Tsuruoka. Learning robust options by
conditional value at risk optimization. In Advances in Neural Information Processing Systems,
pages 2619–2629, 2019.

11

[16] M. Hüttenrauch, A. Šošić, and G. Neumann. Guided deep reinforcement learning for swarm
systems. In AAMAS 2017 Autonomous Robots and Multirobot Systems (ARMS) Workshop,
2017.

[17] D. A. Iancu, M. Petrik, and D. Subramanian. Tight approximations of dynamic risk measures.
Mathematics of Operations Research, 40(3):655–682, 2015.

[18] R. Keramati, C. Dann, A. Tamkin, and E. Brunskill. Being optimistic to be conservative:
Quickly learning a cvar policy. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 4436–4443, 2020.

[19] R. K. Kolla, L. Prashanth, S. P. Bhat, and K. Jagannathan. Concentration bounds for empirical
conditional value-at-risk: The unbounded case. Operations Research Letters, 47(1):16–20,
2019.

[20] Q. Lan, Y. Pan, A. Fyshe, and M. White. Maxmin q-learning: Controlling the estimation bias of
q-learning. In International Conference on Learning Representations, 2019.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations, 2016.

[22] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems, pages 6379–6390, 2017.

[23] X. Lyu and C. Amato. Likelihood quantile networks for coordinating multi-agent reinforcement
learning. In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, pages 798–806, 2020.

[24] X. Ma, Q. Zhang, L. Xia, Z. Zhou, J. Yang, and Q. Zhao. Distributional soft actor critic for risk
sensitive learning. arXiv preprint arXiv:2004.14547, 2020.

[25] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. MAVEN: Multi-agent variational
exploration. In Advances in Neural Information Processing Systems, pages 7613–7624, 2019.

[26] A. Majumdar and M. Pavone. How should a robot assess risk? Towards an axiomatic theory of
risk in robotics. In Robotics Research, pages 75–84. Springer, 2020.

[27] L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Hysteretic q-learning: an algorithm for
decentralized reinforcement learning in cooperative multi-agent teams. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 64–69. IEEE, 2007.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[29] F. A. Oliehoek, C. Amato, et al. A Concise Introduction to Decentralized POMDPs, volume 1.
Springer, 2016.

[30] F. A. Oliehoek, M. T. Spaan, and N. Vlassis. Optimal and approximate q-value functions for
decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

[31] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani. Lenient multi-agent deep reinforcement
learning. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, pages 443–451, 2018.

[32] N. Privault. Notes on Financial Risk and Analytics. Course notes, 268 pages, 2020. Accessed:
2020-09-27.

[33] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson. Weighted QMIX: Expanding monotonic
value function factorisation for deep multi-agent reinforcement learning. In NeurIPS, 2020.

12

[34] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Monotonic
value function factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research, 21(178):1–51, 2020.

[35] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. QMIX:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 4295–4304, 2018.

[36] R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.
Journal of Banking & Finance, 26(7):1443–1471, 2002.

[37] R. T. Rockafellar, S. Uryasev, et al. Optimization of conditional value-at-risk. Journal of Risk,
2:21–42, 2000.

[38] A. Ruszczyński. Risk-averse dynamic programming for markov decision processes. Mathemat-
ical Programming, 125(2):235–261, 2010.

[39] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR,
abs/1902.04043, 2019.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of Go without human knowledge. Nature,
550(7676):354–359, 2017.

[41] A. J. Singh, A. Kumar, and H. C. Lau. Hierarchical multiagent reinforcement learning for mar-
itime traffic management. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1278–1286, 2020.

[42] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. QTRAN: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International Conference
on Machine Learning, pages 5887–5896, 2019.

[43] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for cooperative
multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

[44] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

[45] A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor. Policy gradient for coherent risk
measures. In Advances in Neural Information Processing Systems, pages 1468–1476, 2015.

[46] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente.
Multiagent cooperation and competition with deep reinforcement learning. PLoS ONE, 12(4),
2017.

[47] Y. C. Tang, J. Zhang, and R. Salakhutdinov. Worst cases policy gradients. In Conference on
Robot Learning, pages 1078–1093, 2020.

[48] S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning.
In Proceedings of the Fourth Connectionist Models Summer School, pages 255–263, 1993.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[50] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[51] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Küttler, J. Agapiou, J. Schrittwieser, et al. StarCraft II: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017.

13

[52] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior, 2nd rev.
Princeton university press, 1947.

[53] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. {QPLEX}: Duplex dueling multi-agent q-learning.
In International Conference on Learning Representations, 2021.

[54] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang. DOP: Off-policy multi-agent decomposed
policy gradients. In International Conference on Learning Representations, 2021.

[55] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

[56] J. Zhang, A. S. Bedi, M. Wang, and A. Koppel. Cautious reinforcement learning via distribu-
tional risk in the dual domain. arXiv preprint arXiv:2002.12475, 2020.

14

