
DAG-Math: Graph-Guided Mathematical Reasoning
in LLMs

Yuanhe Zhang1, Ilja Kuzborskij2,∗, Jason D. Lee3, Chenlei Leng4, Fanghui Liu1,†

1University of Warwick 2Google DeepMind, United Kingdom
3University of California, Berkeley 4Hong Kong Polytechnic University

yuanhe.zhang@warwick.ac.uk, ilja.kuzborskij@gmail.com,
jasondlee@berkeley.edu, chenlei.leng@polyu.edu.hk,

fanghui.liu@warwick.ac.uk

Code: https://github.com/YuanheZ/DAG-MATH

Abstract

Large Language Models (LLMs) achieve strong results on mathematical reasoning
tasks with Chain-of-Thought (CoT), yet it remains unclear whether this reflects
genuine rule-based reasoning or heuristic search. We propose a framework that
models CoT as a stochastic process over directed acyclic graphs (DAGs), where
nodes denote intermediate states and edges represent rule applications. Within
this setting, we introduce logical closeness, a metric that measures how closely an
LLM’s derivation trajectory adheres to the DAG structure, extending evaluation
beyond final-answer accuracy (PASS@k). To operationalize this, we design the
DAG-MATH CoT format and construct a benchmark that elicits trajectories in this
form, enabling structured evaluation of reasoning. Evaluation on mathematical
reasoning datasets reveal statistically significant differences in reasoning fidelity
across LLM families-even when final-answer accuracy is comparable-highlighting
gaps between final-answer accuracy and rule-consistent inference. Our approach
bridges free-form CoT with structured systems and provides actionable diagnos-
tics for evaluating the quality of LLM reasoning.

1 Introduction
Large Language Models (LLMs) have demonstrated promising mathematical reasoning abilities on
answer/proof-based problems by the Chain-of-Thought (CoT) (Nye et al., 2021; Wei et al., 2022;
Kojima et al., 2022; Zhang et al., 2022), e.g., Gemini-2.5 (Gemini Team, 2025) and GPT-5 (Ope-
nAI, 2025), DeepSeek-R1 (DeepSeek Team, 2025). The black-box nature of CoT in LLMs raises a
key challenge: how to rigorously model and evaluate LLMs’ mathematical reasoning abilities. Intu-
itively, LLM reasoning needs to identify all required premises (e.g., facts, constraints), and conduct
correct logical inference from premises to reach the conclusion.3 These operations must be exact, in
line with the exact learning requirements in György et al. (2025). To test whether LLMs achieve this
through CoT, two elements are crucial: (1) a rigorous framework to characterizes the mechanisms
by which CoT operates in mathematical problem solving; (2) an appropriate evaluation metric
to assess whether model outputs reflect authentic reasoning processes rather than the application of
heuristic or search-based strategies4.

∗Participated in an advisory capacity only.
†Corresponding author
3Accurate calculation and symbolic execution are also required, see the discussion in Section A.1.
4Search-based strategies may yield irrelevant information, undermining solution’s consistency. LLMs

should be able to summarize the searched/thinking results to ensure the final output logic coherence.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

https://github.com/YuanheZ/DAG-MATH

Existing approaches remain limited in both framework and evaluation. On the framework side,
prior work (Dziri et al., 2023; Kim et al., 2025; Shalev-Shwartz & Shashua, 2025; Wang et al.,
2023; Yin & Wang, 2025) casts CoT as Boolean-circuit analyses, k-parity models, or graph ab-
stractions, leaving them unable to capture long-range and cross-branch dependencies or the goal-
directed, absorbing-state nature of CoT. On the evaluation side, most studies (Dziri et al., 2023;
Joshi et al., 2025; Kim et al., 2025; Xu & Sato, 2025) prioritize final-answer metrics like PASS@k,
making it unclear whether success reflects logical inference or search. LEAN-based formal verifi-
cation (De Moura et al., 2015; Moura & Ullrich, 2021; Google DeepMind, 2024; Ren et al., 2025;
Wang et al., 2025; Lin et al., 2025) is promising but presupposes problems are already encoded in
proof-oriented form, which typically demands substantial expert effort.

We address these limitations by formalizing CoT as a rule-based stochastic process on directed
acyclic graphs (DAGs) in Section 2 and introducing the notion of logical closeness in Section 3,
which evaluates whether an LLM solves a problem by searching over possible choices or by applying
rigorous logical inference. This yields a new evaluation metric called the perfect reasoning rate
(PRR) for ranking. In Section 4, we propose the DAG-MATH format to make CoT’s structure explicit
via DAG then employ few-shot prompting to guide LLMs to produce formatted CoT to evaluate on
proposed metrics.

Notations: We denote a random variable by a capital letter (e.g., V) and its realization by the
corresponding lowercase letter (e.g., v). For shorthand, we write v1:t = (v1 , v2 , . . . , vt) for t ≥ 1.
We denote a DAG by G = (E ,V), where V is the node set and E is the edge set. For a node v, we
write pa(v) as its parent set. Finally, we denote the input prompt by Xin ∈ P , where P is the power
set of the vocabulary.

2 A DAG Framework for Step-Level CoT
Motivated by empirical observations in Bogdan et al. (2025), we study CoT at the step level, rather
than the token level. This step-level perspective has been widely considered in recent theoretical
analyses (Dziri et al., 2023; Hu et al., 2024; Kim et al., 2025; Shalev-Shwartz & Shashua, 2025).
We model step-level CoT in a two-phase workflow as below.

2.1 Phase 1: Task-specific DAG for Step-Level CoT
Edges and Nodes in Step-Level CoT: For math problems, a CoT step is a natural-language
derivation of a new conclusion from prior information. Each step has two components: Edge (Jus-
tification): This captures the inference that leads to the step’s conclusion. Node (Conclusion): The
node represents the step’s conclusion. Hence, a single CoT step can be viewed as node/edge de-
composition, see an example in Section A.2. Consequently, prior work (Dziri et al., 2023; Hu et al.,
2024; Kim et al., 2025; Shalev-Shwartz & Shashua, 2025; Bogdan et al., 2025) has typically defined
steps heuristically. As a first attempt, we present an abstract mathe formulation, with the technical
details deferred to Section A.3 (not essential for understanding the main text).

Task-Specific DAG: Empirical studies (Ye et al., 2025) demonstrate the existence of a latent di-
rected dependency graph within LLMs, present as soon as a question/prompt is posted, before any
output is generated. Formally, given a prompt xin, we define the directed graph as

G(xin) := (V(xin) , E(xin)) , where E(xin) ⊆ V(xin)× V(xin) ,

where E(xin) is the set of directed edges and V(xin) is the set of nodes divided into three classes:

• Vin(xin) denotes the set of source nodes, i.e., nodes formulated solely from the input prompt.
• Vout(xin) denotes the set of sink nodes, i.e., nodes with only incoming edges and no outgoing

edges, corresponding to the final answer(s). The correct sink node represents the terminal object
that matches the ground-truth answer.

• Vinter(xin) := V(xin) \
(
Vin(xin) ∪ Vout(xin)

)
denotes the set of intermediate nodes.

We make the following assumption on the acyclic structure of the graph for the absence of circular
dependencies, ensuring that no CoT step depends on its own output either directly or indirectly.
Assumption 1. For any input prompt xin, the task-specific directed graph G(xin) is acyclic.

This assumption covers the answer-based math problems which have tractable computation graphs
such as AIME (Art of Problem Solving, 2025a,b). Note that, if the correct sink node is included in
G(xin), the task-specific DAG can be always constructed by backtracking through its ancestors.

2

2.2 Phase 2: Stochastic Process on Logic Dependence
Based on the task-specific DAG, the LLM generates CoT trajectories over this DAG as the final
output via a certain sampling strategy. Given G(xin) from Phase 1, we denote the node-level au-
toregressive distribution of an LLM as P. A node-level CoT trajectory {Vi}Li=1 with length-L, given
the input prompt Xin, sequentially generates Vt ∈ V (1 ≤ t ≤ L), ultimately leading to the final
answer VL := Vout. Specifically, the trajectory {Vi}Li=1 follows the stochastic process:

V1∼P(· | Xin) , · · · , Vt ∼ P(· | Vt−1 , . . . , V1 ,Xin) , · · · , Vout ∼ P(· | VL−1 , · · · , V1 ,Xin) .

Next, we define a stochastic transition rule to generate the node-level trajectory over V(xin). We
begin with the initial step, where P(V1 = v | Xin = xin) is nonzero only for v ∈ Vin(xin) and
zero for all other nodes. Given G(xin) and the previous (t− 1) steps V1:t−1 = v1:t−1, the transition
probability for the next step is not based on all previous nodes but depends on certain nodes, i.e.

P(Vt = v | V1:t−1 = v1:t−1 ,Xin = xin) ,∀v ∈ V(v1:t−1 | xin),

with V(v1:t−1 | xin) :=
{
v ∈ V(xin) : pa(v) ⊆ {v1:t−1} , v /∈ {v1:t−1}

}
,

(1)

and zero probability for ∀v /∈ V(v1:t−1 | xin). The sampling process is absorbing upon reaching
any node v ∈ Vout(xin), indicating that a final answer has been obtained. For better illustration, we
provide a representative example to understand two phases in Section A.4.

Remark: For non-thinking LLMs, the model directly outputs such types of CoT for the given
problem. For thinking LLMs, e.g. DeepSeek-R1 (DeepSeek Team, 2025), the thinking process can
be viewed as an exploration of the task-specific DAG with self-correction or backtracking, but its
final output shown to the users (excluding thinking tokens) is still consistent with our transition rule.

3 Formal Definition of Mathematical Reasoning Ability
Based on our DAG framework, we now present a formal definition of mathematical reasoning ability.
Given an input prompt xin, we independently draw N CoT trajectories {v(i)}Ni=1 under the proposed
sampling mechanism in Eq. (1). For each trajectory v(i), we construct a trajectory-specific DAG:

G(i)
gen(xin) =

(
V(i)

gen(xin), E(i)
gen(xin)

)
, 1 ≤ i ≤ N ,

where the the object (DAG, node, or edge) with subscript gen indicates it is extracted from the
generated CoT trajectory. Each trajectory-specific DAG is a sub-DAG of G(xin), and the reasoning
ability of each trajectory can be evaluated using a new metric, termed logical closeness, and the
concept of perfect reasoning, introduced in our framework.
Definition 1 (Logical closeness and perfect reasoning). Under Assumption 1, consider an input
prompt xin and the DAG Ggen(xin). For each node v ∈ Ggen(xin), define its out-degree as

deg
(
v | Ggen(xin)

)
:=

∣∣∣{u ∈ Ggen(xin) | (v → u) ∈ Egen(xin)
}∣∣∣.

We say that Ggen(xin) is logically closed if

deg
(
v | Ggen(xin)

)
≥ 1, ∀ v ∈ Vgen(xin),

i.e., only the final nodes have no outgoing edges. Furthermore, if the sink node corresponds to the
correct answer, we call the associated CoT trajectory a case of perfect reasoning.

Now we can formally define the mathematical reasoning ability of LLMs as follows.
Definition 2 (Mathematical reasoning ability). Under Assumption 1, let an LLM be given a prompt
Xin ∈ P , sampled from an underlying distribution D over mathematical problem prompts. We
define two indicator functions for a trajectory-specific DAG Ggen(Xin):

δclose
(
Ggen(Xin)

)
:=

{
1, if Ggen(Xin) is logically closed,
0, otherwise,

δfinal
(
Ggen(Xin)

)
:=

{
1, if the sink node of Ggen(Xin) is correct,
0, otherwise.

3

0.0 0.2 0.4 0.6 0.8 1.0
Logical Closeness Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AIME 2025
Gemini-2.5-F (AUC=0.484)
Qwen3-30B (AUC=0.395)
Gemini-2.5-F-L (AUC=0.342)
GPT-4.1-M (AUC=0.296)
GPT-4.1 (AUC=0.255)

0.0 0.2 0.4 0.6 0.8 1.0
Logical Closeness Rate

BRUMO 2025
Gemini-2.5-F (AUC=0.579)
Qwen3-30B (AUC=0.437)
Gemini-2.5-F-L (AUC=0.389)
GPT-4.1-M (AUC=0.332)
GPT-4.1 (AUC=0.320)

0.0 0.2 0.4 0.6 0.8 1.0
Logical Closeness Rate

HMMT 2025
Gemini-2.5-F (AUC=0.335)
Qwen3-30B (AUC=0.239)
Gemini-2.5-F-L (AUC=0.232)
GPT-4.1-M (AUC=0.134)
GPT-4.1 (AUC=0.108)

Figure 1: The AUC curves of averaged accuracy under the logical closeness rate over three datasets
for five selected LLMs.

Then, the Perfect Reasoning Rate (PRR) of an LLM w.r.t. a given prompt Xin is defined as

PRR(Xin) := EP

[
δclose

(
Ggen(Xin)

)
× δfinal

(
Ggen(Xin)

)]
.

The overall mathematical reasoning ability of an LLM over the distribution D is then measured as

R := EXin∼D
[
PRR(Xin)

]
= EP,Xin∼D

[
δclose

(
Ggen(Xin)

)
× δfinal

(
Ggen(Xin)

)]
.

In practice, given a dataset with M problems and N independent CoT trajectories per problem, one
can approximate PRR (xin) and R by

P̂RR (xin) :=
1

N

N∑
i=1

δ
(i)
close (xin)× δ

(i)
final (xin) , R̂ :=

1

M

M∑
j=1

P̂RR
(
x
(j)
in

)
.

AUC socres: By relaxing δclose to permit a certain proportion of nodes that do not satisfy logical
closeness, we obtain the corresponding AUC scores (with proportion of logic closeness from 0% to
100%), which serves as a comprehensive measure of mathematical reasoning performance.

Furthermore, Section B presents an example from AIME 2025 (Art of Problem Solving, 2025a,b)
where the final answer is correct, but logic-closeness fails due to mixing two solution paths.

4 Evaluation of Mathematical Reasoning Ability
To make the DAG structure of standard CoT trajectories explicit, we introduce a structured CoT
format via prompting called the DAG-MATH format. For illustration, below is one step in the DAG-
MATH format (more example steps are presented in Section C).

Step 4 Edge: Since the left-hand side of the equation in Step 1 contains log(x − 1),
the domain restriction for a logarithm requires x− 1 > 0, i.e., x > 1.
Parents: Step 1. Node: log(x− 1) requires x > 1.

For evaluation, we first construct a benchmark which contains 2,894 gold-standard formatted CoTs
(see Section D), then we employ few-shot prompting (see Section E for details) to guide LLMs in
generating formatted CoTs/DAGs for test problems.

Models and datasets: We evaluate five LLMs: Gemini-2.5-Flash (Gemini-2.5-F),
Gemini-2.5-Flash-Lite (Gemini-2.5-F-L), GPT-4.1, GPT-4.1-mini (GPT-4.1-M), and
Qwen3-30B-A3B-Instruct-2507 (Qwen3-30B). These models demonstrate strong mathe-
matical performance even without long thinking (White et al., 2025), also are more efficient and
economical than other thinking-focused models due to lower token usage. We evaluate these models
on three recently adopted datasets for high-difficulty, answer-based problems: AIME 2025 (Art of
Problem Solving, 2025a,b), BRUMO 2025 (BRUMO, 2025), and HMMT 2025 (HMMT, 2025).

4

Table 1: Averaged graph-level statistics of sampled DAGs across selected LLMs on AIME 2025.
Model Class #nodes #edges density dmax

in dmax
out

Gemini-2.5-F
All 32.8 48.9 11.2% 4.3 7.0

Incorrect 35.6 53.3 10.6% 4.6 8.6
Correct 30.2 45.1 11.6% 4.1 5.5
Perfect 23.3 30.8 13.0% 3.3 3.6

Gemini-2.5-F-L
All 33.0 54.0 13.4% 3.6 9.7

Incorrect 40.5 68.6 11.9% 3.9 12.8
Correct 21.5 31.6 15.7% 3.2 4.8
Perfect 16.1 21.4 18.4% 3.0 3.2

GPT-4.1
All 17.8 21.4 16.2% 2.6 3.0

Incorrect 18.4 22.2 15.6% 2.6 3.1
Correct 15.9 19.3 17.5% 2.7 2.9
Perfect 14.1 16.8 19.0% 2.5 2.4

GPT-4.1-M
All 22.8 31.3 14.2% 3.2 4.0

Incorrect 25.0 34.7 13.3% 3.3 4.3
Correct 17.9 23.6 16.6% 3.0 3.4
Perfect 16.5 21.5 17.4% 3.0 3.1

Qwen3-30B
All 21.4 31.1 16.0% 3.3 4.9

Incorrect 23.4 34.3 14.9% 3.4 5.5
Correct 18.9 27.2 17.2% 3.1 4.1
Perfect 14.7 19.6 20.2% 2.9 3.0

We extract the generated DAGs and evaluate five graph-level statistics introduced in Section D, as
well as model performance metrics (PASS@1 and R̂). The sampled DAGs are then partitioned
into four classes: All (no filtering), Incorrect (ending at an incorrect sink), Correct (ending at the
correct sink), and Perfect (logically closed and ending at the correct sink).

Fig. 1 reports AUC scores across three datasets, with PASS@1 as the starting point and R̂ as the
end point (see more details in Table 2 in Section F), as the logic closeness rate increases. Besides,
we also report averaged graph-level statistics for AIME 2025 in Table 1, with additional results for
BRUMO 2025 and HMMT 2025 in Section F. We have the following observations:

• Search improves raw accuracy while perfect reasoning ability remains similar. Search can
inflate raw accuracy, while the models’ inherent perfect reasoning ability is broadly comparable.
The AUC scores suggests that outputs, while correct, are superficially consistent at some point,
which aligns with users’ impressions when using these LLMs.

• Graph structure reflects problem difficulty and reasoning quality. Harder problems induce
larger, sparser, and more branchy DAGs (see Section D). Gemini’s Correct cohort exhibits
larger but sparser graphs with slightly higher branching when compared to the GPT family,
indicating that effective exploration and task planning can increase the likelihood of reaching
correct answers without fully closed, deeper reasoning.

• Identifying the “difficulty boundary”. Each model’s effective difficulty ceiling corresponds
to the regime where it can maintain compact, low-branching DAGs; beyond this point—when
branching explodes and density drops-accuracy sharply declines.

5 Conclusion
This paper proposes a novel DAG-MATH framework for modeling and evaluating mathematical rea-
soning, introducing the concepts of logical closeness and perfect reasoning over DAGs. We demon-
strate how DAG graph statistics vary with problem difficulty and how models’ perfect-reasoning
ability and AUC curve behaves across these tasks. The framework provides an accessible mathe-
matical formalization of reasoning and memorization in LLMs, paving the way for future work on
reasoning guarantees, analogous to generalization guarantees in supervised learning.

5

Acknowledgment

Y. Z. was supported by Warwick Chancellor’s International Scholarship. JDL acknowledges support
of Open Philanthropy, NSF IIS 2107304, NSF CCF 2212262, ONR Young Investigator Award, NSF
CAREER Award 2144994, and NSF CCF 2019844. F. L. was supported by Royal Society KTP R1
241011 Kan Tong Po Visiting Fellowships and Warwick-SJTU seed fund. We thank Zulip5 for the
project organization tool and Sulis6 for GPU computation resources.

References
Art of Problem Solving. 2025 AIME I. https://artofproblemsolving.com/wiki/
index.php/2025_AIME_I, 2025a. Accessed: 2025.

Art of Problem Solving. 2025 AIME II. https://artofproblemsolving.com/wiki/
index.php/2025_AIME_II, 2025b. Accessed: 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

BRUMO. Brown University Math Olympiad 2025. https://www.brumo.org/, 2025. Ac-
cessed: 2025.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

DeepSeek DeepSeek Team. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of trans-
formers on compositionality. Advances in Neural Information Processing Systems, 36:70293–
70332, 2023.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
https://arxiv.org/abs/2410.07985.

Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities, 2025. URL https://arxiv.org/
abs/2507.06261.

Google DeepMind. Ai achieves silver-medal standard solving international mathe-
matical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024. Accessed: 2025-09-
03.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

András György, Tor Lattimore, Nevena Lazić, and Csaba Szepesvári. Beyond statistical learning:
Exact learning is essential for general intelligence, 2025. URL https://arxiv.org/abs/
2506.23908.

HMMT. HMMT 2025. https://www.hmmt.org/, 2025. Accessed: 2025.

5https://zulip.com/
6https://warwick.ac.uk/research/rtp/sc/sulis/

6

https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_II
https://www.brumo.org/
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2506.23908
https://arxiv.org/abs/2506.23908
https://www.hmmt.org/
https://zulip.com/
https://warwick.ac.uk/research/rtp/sc/sulis/

Xinyang Hu, Fengzhuo Zhang, Siyu Chen, and Zhuoran Yang. Unveiling the statistical foundations
of chain-of-thought prompting methods. arXiv preprint arXiv:2408.14511, 2024.

Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, and
Nathan Srebro. A theory of learning with autoregressive chain of thought. arXiv preprint
arXiv:2503.07932, 2025.

Koray Kavukcuoglu. Gemini 2.5: Our most intelligent ai model.
https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/, March 2025. Blog post on
The Keyword.

Juno Kim, Denny Wu, Jason Lee, and Taiji Suzuki. Metastable dynamics of chain-of-thought rea-
soning: Provable benefits of search, rl and distillation. arXiv preprint arXiv:2502.01694, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-Prover-V2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025.

LMArena. Leaderboard. https://lmarena.ai/leaderboard, 2025. Accessed: 2025.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

OpenAI. GPT-5 System Card. https://openai.com/index/gpt-5-system-card/,
August 2025. System Card published by OpenAI.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-Prover-V2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801, 2025.

Shai Shalev-Shwartz and Amnon Shashua. From reasoning to super-intelligence: A search-theoretic
perspective, 2025. URL https://arxiv.org/abs/2507.15865.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-Prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances
in neural information processing systems, 35:24824–24837, 2022.

7

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://lmarena.ai/leaderboard
https://arxiv.org/abs/2112.00114
https://openai.com/index/gpt-5-system-card/
https://arxiv.org/abs/2507.15865

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-limited LLM
benchmark. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=sKYHBTAxVa.

Kevin Xu and Issei Sato. To cot or to loop? a formal comparison between chain-of-thought and
looped transformers. arXiv preprint arXiv:2505.19245, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Tn5B6Udq3E.

Yutong Yin and Zhaoran Wang. Are transformers able to reason by connecting separated knowledge
in training data? arXiv preprint arXiv:2501.15857, 2025.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

8

https://openreview.net/forum?id=sKYHBTAxVa
https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E

A Illustration and Definition of CoT Step

In this section, we first discuss execution correctness as a measure of LLM reasoning performance
and emphasize that our framework addresses the key challenge of tracking logical dependencies. To
facilitate understanding, we first provide an intuitive illustration of a CoT step using the logarithmic
count problem, i.e.

Logarithmic Count Problem (LCP)

For how many integers k ∈ [−300, 300] does the equation 2 log(x−1) = log k have exactly
one real solution x?

We illustrate a single step in the LCP below.

One CoT Step in the Logarithmic Count Problem (LCP)

If two logarithmic expressions are equal, then their arguments must also be equal.

Hence, from 2 log(x− 1) = log k , we can conclude (x− 1)2 = k .

followed by a formal mathematical definition of a CoT step.

A.1 Remark on Execution Correctness

We note that accurate calculation and symbolic execution remain essential for evaluating an LLM’s
mathematical reasoning. In practice, LLMs may make stepwise errors, such as computational slips
or misreading problem statements. Our framework, however, assumes that each step is correct.
This simplification is justified because step-level errors can be automatically detected using Process
Reward Models (Lightman et al., 2023; Wang et al., 2024; Zhang et al., 2025) or SymPy validation.

Focusing on correct steps allows us to capture the trajectory of model capabilities: with recent
advances (Kavukcuoglu, 2025; OpenAI, 2025; Yang et al., 2025; DeepSeek Team, 2025), the main
bottleneck in complex mathematical reasoning lies less in local step fidelity and more in the higher-
level logical structure. Our framework addresses this challenge by: (1) perceiving the full logical
structure of a problem, and (2) navigating it to construct a coherent solution path. By abstracting
away from local step errors, we can isolate and analyze the structural core of CoT reasoning.

A.2 Intuitive Understanding of Steps in CoT

In this illustration, the blue part corresponds to the previous conclusion (parent node), the green
part represents the new conclusion for the current node, and the orange part highlights the logical
reasoning (Edge) that connects the parent to the current node. Note that the edge may be latent when
the model only outputs the conclusion without explicitly stating the reasoning.

A.3 Mathematical Definition of Steps in CoT

We now formalize the definition of a single CoT step. Let V denote the semantic domain of math-
ematical objects in semantic normal form (SNF). A raw CoT step is a sequence of tokens, i.e., a
string c ∈ P . We introduce a canonicalization map

κ : P → V

that maps any textual span to its SNF representation:

c
κ−−→ κ(c) ∈ V .

The canonicalization map satisfies the following properties:

• Idempotent: κ(κ(c)) = κ(c).

9

• Presentation-invariant: It does not perform substantive algebraic manipulations (e.g., ex-
panding or factoring), which are treated as separate reasoning steps.

Canonicalization removes superficial variations such as synonyms, spacing differences, commuta-
tivity, and α-equivalent variable names, ensuring semantic consistency.

Intuitively, a CoT step can be mapped to a normalized SymPy object that captures its underlying
mathematical semantics. A concrete example of this canonicalization is provided below.

• Input: Raw CoT step as text tokens (e.g., “The value of our target is x+ y.” or “The target
value is (y + x).”).

• Canonicalization (κ): Maps the input to a normalized form by removing superficial varia-
tions such as synonyms, spacing, commutativity, and α-equivalent variable names.

• Output: A semantic object (e.g., SymPy object Add(x,y)) that consistently encodes the
meaning.

Accordingly, let F denote a signature of primitive inference rules/operations. Each f ∈ F is
associated with an arity ar(f) ∈ N (i.e., the number of inputs the rule or operation takes) and a
(partial) semantic operator JfK : Var(f) ⇀ V . Intuitively, F represents the atomic reasoning steps
allowed at the CoT level, such as a single algebraic operation, one application of a named lemma,
or a single substitution. We now formally define a CoT step.

Definition 3 (Atomic Step of CoT). Given an input prompt xin ∈ P , a CoT trajectory of length ℓ is
a sequence of steps C = (c1, . . . , cℓ). Suppose κ : P → V is a canonicalization map. Then, a step

ci can be formulated as a triple (Γi, fi, vi) denoted by Γi
fi−→ vi, where:

1. Canonicalization: Each string ci ∈ P produced in the CoT trajectory is mapped by κ to
the corresponding SNF object vi = κ(ci) ∈ V .

2. Premises: Γi ⊆ {v1, v2, . . . , vi−1} is the finite set of previously established SNF objects
(from the prompt or earlier steps) directly used to infer the current step.

3. Primitive operation: fi ∈ F and vi = JfiK(Γi), i.e., vi is obtained by exactly one applica-
tion of a primitive operator to the premises.

Accordingly, each step in a CoT can be viewed as the reasoning pattern:

(Premises used) + (inference rule applied) −→ (new result).

Next, we provide a concrete algebra example on expanding (x+ y)2 for better intuition.

Step ci: Expand the square

Γi = {(x+ y)2}, fi = “expand square”, vi = JfiK(Γi) = (x+ y)(x+ y).

So we have:
{(x+ y)2} expand square−−−−−−−→ (x+ y)(x+ y).

Step ci+1: Distribute the product

Γi+1 = {(x+y)(x+y)}, fi+1 = “distributive law”, vi+1 = Jfi+1K(Γi+1) = x2+xy+yx+y2.

So we have:
{(x+ y)(x+ y)} distribute−−−−−→ x2 + xy + yx+ y2.

Step ci+2: Simplify like terms

Γi+2 = {x2 + xy + yx+ y2 ,

fi+2 = “commutativity + combine like terms” ,

vi+2 = Jfi+2K(Γi+2) = x2 + 2xy + y2 .

10

So we have:

{x2 + xy + yx+ y2} simplify−−−−→ x2 + 2xy + y2.

Combining the above steps, the CoT trajectory is

(x+ y)2
expand square−−−−−−−−→ (x+ y)(x+ y)

distribute−−−−−→ x2 + xy + yx+ y2
simplify−−−−−→ x2 + 2xy + y2.

This example follows Definition 3 and precisely characterizes a CoT trajectory at the step level. Note
that this step-level formalization is not essential for understanding the main text, which primarily fo-
cuses on DAG-level reasoning rather than the specifics of individual nodes and edges. Nonetheless,
for readers interested in how nodes and edges are defined or how they influence a CoT trajectory,
this definition and the accompanying example provide a useful reference.

A.4 Intuitive Example of Step-Level CoT under Framework in Section 2

Phase 1: Applied to our logarithmic count problem, we use LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024) to generate four CoT trajectories, where each trajectory consists of its own
steps leading to correct/incorrect answers. The task-specific DAG shown in Fig. 2 are performed by
the authors, but can also be carried out by LLMs through appropriate prompting (see Section 4).

v2 v1 v3

v4 v5 v6

v7

v8 v9

v10 v11

Figure 2: Task-specific DAG via
LLaMA-3.1-8B-Instruct.

Task− specific DAG for the logarithmic count problem

• v1 : “2 log(x− 1) = log k" (target equation);
• v2 : “k ∈ [−300 , 300]" (range constraint);
• v3 : “exactly one solution" (task requirement);
• v4 : “log(x − 1) requires x > 1" (constraint inferred from

the equation);
• v5 : “log k requires k > 0" (constraint inferred from the

equation);
• v6 : “2 log(x − 1) = log k ⇒ (x − 1)2 = k" (re-arranged

equation);

• v7 : “x = 1±
√
k" (solve the quadratic equation);

• v8 : “1 +
√
k is the only solution" (correct check);

• v9 : “For any k, there are two solutions" (incorrect check);
• v10 : “There are 300 valid values for k" (the correct answer);
• v11 : “There are 0 valid value for k" (the incorrect answer).

Phase 2: The transition rule defined in Eq. (1) enforces valid transitions over the nodes. For instance,
after collecting {v1, v2, v3, v4, v5}, the next admissible node should be v6; while nodes v7 through
v11 remain inaccessible until v6 has been visited. Accordingly, the LLM’s final CoT output can be
split into three classes (only representative examples are presented):

• Perfect reasoning (v1, v2, v3, v4, v5, v6, v7, v8, v10): The trajectory only includes the cor-
rect sink node and its ancestors. We formally define this in the next section.

• Imperfect reasoning7, e.g., (v1, v2, v3, v4, v5, v6, v7, v9 , v8, v10): The trajectory still
reaches the correct answer but also includes the irrelevant node v9, which is not an ancestor
of the correct node. Such case may occur when the LLM explores multiple directions and
eventually arrives at the correct answer either by chance or through subsequent derivation.
We give an example from AIME 2025 (Art of Problem Solving, 2025a,b) for this case in
Section B where two solution paths are mixed.

• Wrong reasoning, e.g., (v1, v2, v3, v6, v7, v9, v11): The final answer is incorrect.

7The LLM may reason imperfectly during its thinking process, e.g., dead-ends, self-correction, but is ex-
pected to output only the finalized, perfect, correct reasoning results to the user. The reasoning evaluation in
this paper is based on the entire final output (while PASS@k just considers the final answer).

11

B Example of Logical Closeness

There are several reasons why LLMs may generate unclosed nodes even though the final answer is
correct:

• Assertions stemming from an alternative strategy that is not the one leading to the final
answer in the trajectory.

• Qualitative axioms that are implicitly used. When forming edges, the model tends to link
parents that provide numerical values from earlier calculations, since quantitative conclu-
sions are easier to cite than qualitative ones.

• Irrelevant information drawn from the problem statement.
• Additional commentary based on previous conclusions but not required for the solution.

We aim to analyze specific DAG-MATH formatted CoT trajectory which has the correct final answer
but unclosed DAG. To justify the rationale, we take the following geometry problem from AIME
2025 I (Art of Problem Solving, 2025a) as an example.

Area of Heptagon Problem

On △ABC, points A,D,E, and B lie in that order on side AB with AD = 4, DE = 16,
EB = 8. Points A,F,G and C lie in that order on side AC with AF = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F , and let N be the reflection of G through
E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .

We have 4 correct CoT trajectories over 32 total trajectories generated by Gemini-2.5-Flash.
We provide a detailed analysis of one trajectory that contains multiple unclosed patterns and has a
moderate graph size. There are two trajectories that exhibit similar characteristics, while the last
trajectory consists of 121 nodes.

A

B C

D

E

F

G

M

N

Figure 3: Visualization of the heptagon problem.

We plot Fig. 3 for better illustration and present the first trajectory-specific DAG shown in Fig. 4.
We summarize each node’s conclusion below.

1. States the ordering/collinearity A ,D ,E ,B on AB.
2. States AD = 4.
3. States DE = 16.
4. States EB = 8.
5. Computes AE = AD +DE = 20.
6. Computes DB = DE + EB = 24.
7. Computes AB = AD +DE + EB = 28.

8. States the ordering/collinearity A− F −G− C on AC (global setup).
9. States AF = 13.

12

1 2 3 4 8 9 10 11 15 17 19

5 6 7 12 13 14 16 18 25 29

20 21

22

23

24 27 31

26 28 32

30 33

Figure 4: A trajectory-specific DAG for the Area of Heptagon problem, whose DAG-
MATH–formatted CoT trajectory is generated by Gemini-2.5-Flash and has the correct final
node. Nodes without any children are highlighted in orange.

10. States FG = 52.
11. States GC = 26.
12. Computes AG = AF + FG = 65.
13. Computes FC = FG+GC = 78.
14. Computes AC = AF + FG+GC = 91.
15. Defines M as the reflection of D across F (so F is midpoint of DM).
16. Elaborates reflection at F ; observes F midpoint of DM ⇒ Area(AFM) = Area(ADF).
17. Defines N as the reflection of G across E (so E is midpoint of GN).
18. Notes explicitly that E is the midpoint of GN .
19. States Area(DEGF) = 288.

20. Sets Area(ADF) = AD
AB · AF

AC · Area(ABC) = S
49 .

21. Sets Area(AEG) = AE
AB · AG

AC · S = 25S
49 .

22. Relates Area(DEGF) = Area(AEG)− Area(ADF) = 24S
49 .

23. Solves 24S
49 = 288 ⇒ S = Area(ABC) = 588.

24. Computes Area(ADF) = S/49 = 12.
25. Uses reflection at F ⇒ Area(AFM) = Area(ADF).
26. Concludes Area(AFM) = 12.

27. Computes Area(ABG) = AG
AC · S = 420.

28. Computes Area(BEG) = Area(ABG)− Area(AEG) = 420− 300 = 120.
29. Uses reflection at E ⇒ Area(BEN) = Area(BEG).
30. Concludes Area(BEN) = 120.
31. Chooses coordinates A = (0, 0), B = (28, 0), C = (0, 42); derives D,E, F,G,M,N

coordinates.

13

32. Applies the shoelace formula to the heptagon AFNBCEM and gets area 588.

33. States the final result: 588 .

We can observe that the DAG has 8 non-closed nodes. We diagnose the reasons of uncloseness for
each node:

• Nodes 1 & 8: These two nodes state the global setup on collinearity/ordering, which are
directly provided by the problem statement. The later steps implicitly use collinearity to
add segment lengths on AB and AC, but the LLM does not recognize that it has used these
two nodes in its subsequent reasoning.

• Nodes 6 & 13 & 16 & 18: These nodes derive or state extra commentary of their previous
step, which are not needed in the subsequent steps.

Then, the message conveyed by Nodes 26 & 30 is crucial. In this problem, the area of the heptagon
AFNBCEM can be computed via two distinct strategies:

• Reflection-swap strategy: The core idea is to replace two interior triangles (△ADF ,
△BEG) of △ABC with their exterior reflected counterparts (△AFM , △BEN), show-
ing that the net area change is zero. Consequently, the heptagon’s area is obtained by a
straightforward “remove + add" bookkeeping.

• Shoelace strategy: This coordinate-based, algebraic method requires only listing the ver-
tices A,F,N,B,C,E,M in order and then applying the determinant sums to compute the
area.

Nodes 20 through 30 derive the areas required for the final “remove + add” computation in the
reflection-swap strategy, namely

Area(AFNBCEM) = Area(ABC)︸ ︷︷ ︸
Node 23

− Area(ADF)︸ ︷︷ ︸
Node 24

− Area(BEG)︸ ︷︷ ︸
Node 28

+ Area(AFM)︸ ︷︷ ︸
Node 26

+ Area(BEN)︸ ︷︷ ︸
Node 30

.

If the model had continued with this strategy, Node 31 would correspond to the above equation, with
Nodes 26 & 30 as its parents. However, the model instead switches to the shoelace strategy at Node
31 and successfully obtains the correct answer, leaving Nodes 26 & 30 unclosed.

This provides evidence that the model generates elements of an alternative strategy that remain
unused in the current trajectory and switches strategies during the generation process.

Next, the second and third trajectories exhibit node structures similar to the first. They also contain
nodes such as Nodes 1 & 8 in the first trajectory, which are not recognized as being used. However,
unlike the first trajectory, they rely solely on the reflection-swap strategy to obtain the final answer
without switching strategy.

The final trajectory consists of 121 nodes in total. We provide a comprehensive review of its
reasoning process: it begins by copying the givens, constructing segment sums, and recording
the reflection, analogous to Nodes 1–19 in the first trajectory. It then attempts a parametric area
strategy via trigonometric parametrization but halts after approximately 20 steps. Subsequently, it
searches over many polygon decompositions of heptagon AFNBCEM , repeatedly proposing and
discarding formulas—clear evidence of exploratory search—until it identifies the structural invariant
AD : DE : EB = AF : FG : GC = 1 : 4 : 2, from which it correctly infers DF ∥ EG ∥ BC. At
this stage, the strategy shifts to a similarity/area-ratio approach for triangles sharing angle A and suc-
cessfully derives the area of △ABC. Finally, the strategy switches once more to the reflection-swap
method, yielding the correct answer.

14

C Example DAG-MATH Formatted CoT

Example DAG-MATH Formatted CoT for the logarithmic count problem

Step 1
Edge: Restate the target equation from the problem statement, 2 log(x− 1) = log k, which
is the central equation to solve for x in terms of k.
Parents: Null
Node: 2 log(x− 1) = log k.
...
Step 4
Edge: Since the left-hand side of the equation in Step 1 contains log(x − 1), the domain
restriction for a logarithm requires x− 1 > 0, i.e., x > 1.
Parents: Step 1
Node: log(x− 1) requires x > 1.
...
Step 8

Edge: Using Step 7, the candidate solutions are 1 ±
√
k; Step 4 requires x > 1, and Step

5 ensures k > 0, so
√
k > 0, making 1 −

√
k < 1 invalid. Therefore, 1 +

√
k is the only

admissible solution.
Parents: Step 4,5,7
Node: 1 +

√
k is the only admissible solution.

Step 9

Edge: From Step 8, each positive integer k yields exactly one solution x = 1+
√
k. Step 5

requires k > 0, and Step 2 restricts k to integers in [1, 300]. Therefore, there are 300 valid k
values, satisfying Step 3’s requirement of exactly one solution.
Parents: Step 2,3,5,8
Sink Node: There are 300 valid values for k.

D Benchmark Construction

We prompt LLMs to generate CoT trajectories in the DAG-MATH format for existing mathematical
datasets, such as Omni-MATH (Gao et al., 2024), and construct the corresponding DAGs. By ver-
ifying both logical closeness (Definition 1) and the correctness of the final answers, we compile a
benchmark consisting of 2,894 gold-standard DAGs. The primary purpose of this benchmark is to
characterize the statistical properties of these gold-standard DAGs across different problem difficulty
levels, providing valuable insights for evaluating and enhancing LLM mathematical reasoning.

The benchmark comprises problems from Omni-MATH (Gao et al., 2024), which are categorized
into difficulty levels ranging from 1 (easiest) to 10 (hardest). To ensure high solvability by LLMs,
we only consider problems with difficulty levels below 6. For generating DAG-MATH format-
ted CoTs, we employ GPT-o4-mini and Qwen3-235B-A22B-Thinking-2507, both recog-
nized as leading models in mathematical problem solving (LMArena, 2025). Gold-standard CoTs
are constructed using a three-stage prompting strategy in reverse order (Node → Parents → Edge):

Stage 1: We prompt GPT-o4-mini to generate only the Node set, one step at a time, using the
instructions in Section D.1. To enhance correctness, we adopt a supervised setup that provides both
the problem and its correct solution. Because standard CoT can skip arithmetic or combine multiple
results in a single step, we require that each Node consist of exactly one sentence containing a single
mathematical or logical assertion (i.e., one primitive action per step) to normalize granularity. The

15

complete Node set is then validated using SymPy and LLM-as-Judge; if the final answer or any
intermediate assertion is incorrect, the Nodes are resampled and re-validated.

Stage 2: Given the verified Node set from Stage 1, we prompt GPT-o4-mini (per Section D.2) to
assign, for each Node, a minimal set of direct Parents sufficient to derive it via a primitive operation.
We enforce acyclicity and well-typed arity constraints, then assemble the full DAG. The resulting
DAG is checked for logical closeness relative to the sink node; if checks fail, dependencies are
resampled. Simultaneously, irrelevant Nodes flagged in Stage 1 are pruned so that non-contributing
leaves do not persist in the gold graph.

Stage 3: Conditioned on the generated [Parent(s), Node] pairs, we prompt
Qwen3-235B-A22B-Thinking-25078 (per Section D.3) to generate the Edge content
that justifies how each Node is inferred from its Parents. The justification must introduce no new
facts beyond the problem statement and the cited Parents. After this step, the triplets are merged
into a gold-standard DAG-MATH formatted CoT in forward order.

This approach fixes the node set first, making verification easier with SymPy or LLM-as-Judge and
minimizing error propagation, thereby ensuring high-quality trajectories.

We consider five representative graph-level statistics: (1) the total number of nodes (#Nodes); (2)
the total number of edges (#Edges); (3) graph density, defined as the ratio of #Edges to the maximum
possible number of edges in an acyclic graph, i.e., 2#Edges

#Nodes(#Nodes−1) ; (4) the maximum in-degree,
denoted dmax

in ; and (5) the maximum out-degree, denoted dmax
out . Fig. 5 shows the distributions of

these five statistics across problem difficulty levels. Our key observations as problem difficulty
increases from 0 to 6 are as follows:

• More nodes and edges with heavier tails: The distributions of #Nodes and #Edges shift no-
ticeably to the right and develop heavier tails, indicating that harder problems produce larger
graphs, while simpler problems yield much smaller ones.

• Sparser structure: The graph becomes sparse when problem difficulty increases. Harder rea-
soning produces broader, less connected structures, reflecting modular sub-reasoning where
semi-independent chains (e.g., sub-tasks or lemmas) are later combined.

• Logic complexity reflected in maximum out-degree: As difficulty increases, the distributions
of maximum in-degree and out-degree shift rightward with heavier tails. Maximum in-degree
grows slowly, suggesting most steps rely on few inputs, whereas maximum out-degree rises
more sharply, indicating that certain key steps support multiple inferences. This implies that
logical complexity scales primarily through branching rather than aggregation. The average in-
and out-degree remains around 1.3 across difficulty levels, as most nodes have small degrees
while a few pivotal steps exhibit large connectivity.

Accordingly, as problems become harder, their DAGs grow larger and sparser, with complexity
arising primarily from branching into modular sub-reasoning chains. This underscores the impor-
tance of LLMs being able to decompose problems into sub-tasks, track longer dependencies, and
recombine intermediate results to solve challenging problems effectively.

D.1 Prompt for Stage 1

Stage 1 - Instructions for Refined Step-by-Step Answer

Task:
You are an expert in mathematical logic and reasoning. Your job is to take rough multi-step
math solutions and rewrite them in a detailed, structured, and logical step-by-step format.
Follow these guidelines:

• Each step must be exactly one sentence, and that sentence may contain only one
mathematical or logical assertion.

• Do not combine multiple assertions in one step.

8We choose Qwen3 as it provides a clearer description of the inference from Parents to Nodes than GPT-o4.

16

0 10 20 30 40 50 60
#Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

#Nodes Distribution by Difficulty Group
Group

1
2
3
4
5
6

0 10 20 30 40 50 60 70
#Edges

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y
De

ns
ity

#Edges Distribution by Difficulty Group

0.0 0.1 0.2 0.3 0.4 0.5
Graph Density

0

2

4

6

8

10

Pr
ob

ab
ilit

y
De

ns
ity

Graph Density Distribution by Difficulty Group

0 2 4 6 8 10
Maximum In-Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
De

ns
ity

Maximum In-Degree Distribution by Difficulty Group

0 2 4 6 8 10
Maximum Out-Degree

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
De

ns
ity

Maximum Out-Degree Distribution by Difficulty Group

Figure 5: Empirical distributions of DAG statistics across problem difficulty groups, where group k
corresponds to problems with difficulty in (k−1, k]. Shown are the distributions of #Nodes, #Edges,
graph density

(
i.e., 2#Edges

#Nodes(#Nodes−1)

)
, maximum in-degree, and maximum out-degree.

• Show every tiny inference—setting up equations, solving for variables, converting
units, etc.—each in its own step.

• Any fact, formula, problem detail, or intermediate result must itself be stated in its
own individual step.

• Avoid including irrelevant steps that do not contribute to the solution.
• The final step should be the answer statement in the form: The final answer
is \boxed{xxx}.

• Use LaTeX format enclosed in dollar signs for all mathematical expressions.

Problem: {problem statement}
Solution: {original step-by-step solution}
Refined Step-by-Step Answer:

D.2 Prompt for Stage 2

Stage 2 - Instructions for Step Dependency Analysis

Role and Objective
You are an expert in mathematical logic and stepwise reasoning. Your primary role is to
analyze the detailed solution steps for a mathematical problem and annotate each step with
its minimal set of direct dependencies.
Instructions
1. Input Structure:

– Each problem appears as a JSON object with fields:
problem_text (string): Problem description.
final_answer (string): The solution.
steps (array): Each is an object containing:
step_id (integer): Unique step identifier.
text (string): Reasoning or mathematical operation.

2. Dependency Annotation:
– Add a direct_dependent_steps field for every step.
– For each step:

If stated directly from the problem statement, assign null.

17

Otherwise, list the minimal, directly required prior step_id values in ascending
order, e.g., [2, 3].

– Dependency Rules:
1. Every dependency ID in direct_dependent_steps MUST exist in the orig-
inal set of step_id values of the input.
2. Every listed dependency must be a prior step—its step_id must be strictly less
than the current step (i.e., no self- or future-dependency is allowed).

3. Self-Validation for Step Closure:
– After assigning dependencies, check for unclosed intermediate steps:

– An unclosed step is any non-final step not referenced in
direct_dependent_steps by any subsequent step.

– If any exist, refine dependencies until all intermediate steps are "closed" (each is
used at least once by a later step).

4. Post-action Validation:
– After annotating dependencies and closing all steps, validate that each intermediate

step is referenced at least once by a subsequent step before finalizing the output. If any
issues are found, self-correct and repeat the closure process.

5. Structured Output and Consistency:
– The number of steps in the structured output MUST match exactly the number of steps

in the original input.
Application Process
– When presented with a new problem in valid JSON:

1. Iterate through steps in order of step_id.
2. For each step, determine if it relies on previous steps or the problem statement and
annotate direct_dependent_steps as specified.
3. Validate dependencies (all dependency IDs exist; all point to a prior step).
4. Check for unclosed steps and adjust as necessary.
5. Validate closure and present the final modified problem.

Error Handling
– If the input is malformed (e.g., required fields missing, step_id missing, or step_id

values not strictly ascending):
– Return only a JSON object with an error field and a concise message. For ex-

ample: "error": "Input data malformed: missing step_id in
step 3."

Output Format
– Output the structured response with all steps mirroring the original order and count, each

annotated with direct_dependent_steps. If there is an error, output only the error
object as described.

{JSON text of refined step-by-step answer with problem
statement from Stage 1}

D.3 Prompt for Stage 3

Stage 3 - Instructions for Constructing Edge Inference

Role and Objective
• You serve as a mathematics solution explainer. For each step in a solved mathematics

problem (provided as structured JSON), generate a detailed and explanatory justification
paragraph (edge string) clarifying the correctness and logical progression.

18

Instructions
• For each step in the provided "steps" array within the problem JSON, write a edge

string that satisfies the rules below.
• If direct_dependent_steps is not null, explicitly justify how
direct_dependent_steps support the current one, citing their IDs. If null, note
that the step is given by the problem statement or background knowledge (definition, the-
orem, lemma, fact, or general knowledge not originally in the problem statement).

• Clearly explain the mathematical or logical principle, operation, or procedure used (e.g.,
counting rule, algebraic manipulation, definition, theorem, arithmetic operation) applied
in the step.

• Strict Rule: Do not omit any referenced dependency, the edge MUST include every step
in direct_dependent_steps.

• Clearly illustrate why we need to do this step and how we arrive at this step (acts like
planning).

• For numeric calculations, perform the arithmetic clearly and include a brief sanity check
as appropriate.

• Use neutral, present-tense, explanatory sentences with active voice.
• Ensure each justification is self-contained, needing only the current step and referenced

prior steps to be understandable.
Context
• Input: JSON object representing a solved math problem with an array of steps, each with
step_id, text, and direct_dependent_steps.

• Output: Return only the edge for each step, ordered to match the original steps array.
• Do NOT include internal model reasoning or any execution commentary in the output.
Demonstration Example
Here is a demonstration of the style and format of the edge field. You need to follow this
style and format.
• “We plan to exclude numbers divisible by 2, 3, or 5. To do that systematically we first

express the count of multiples of each relevant divisor in the domain. The number of
multiples of k up to n is

⌊
n
k

⌋
. Applying that with n = 999 (from Step 1) and k = 2 gives

⌊999/2⌋. Writing it as a floor expression is precise and handles the non-divisible endpoint
gracefully."

• “Since numbers divisible by 2, 3, and 5 are overlapping, we need to subtract the count
of numbers divisible by pairwise combinations of 2, 3, and 5 then add back the count of
numbers divisible by all three, i.e., inclusion-exclusion. The least common multiple of 2
and 3 is 6, so count multiples of 6. Recall we have 999 integers in the domain from Step
1, count multiples of 6 up to 999 via ⌊999/6⌋. This uses the same floor-division approach
but applied to the least common multiple of the pair."

• “We convert the expression in Step 8 into a concrete number to use in later arithmetic.
Compute 999/6 = 166.5; taking the floor yields 166. Quick cross-check: 166× 6 = 996,
so the last multiple is exactly 996."

• “We now have all the building blocks: counts of singles, pairwise intersections, and the
triple intersection. The immediate plan is to apply the inclusion-exclusion formula for
three sets to compute the size of the union A ∪ B ∪ C where A = multiples of 2, B =
multiples of 3, C = multiples of 5. Inclusion-exclusion avoids overcounting and is the rig-
orous combinatorial tool for unions of overlapping sets. The three-set inclusion-exclusion
identity is |A∪B∪C| = |A|+ |B|+ |C|− (|A∩B|+ |A∩C|+ |B∩C|)+ |A∩B∩C|.
Substitute the numerical values computed from Steps 3, 5, 7, 9, 11, 13, 15,: 499 + 333 +
199− (166+99+66)+33. Writing it explicitly as 499+333+199−166−99−66+33
lays out the arithmetic to be performed next."

19

• “Cite the standard definition: 1 has exactly one positive divisor (1 itself), so it is neither
prime (requires two distinct divisors) nor composite (requires more than two). In parti-
tioning the 266 numbers not divisible by 2,3,5 into primes and composites, we must also
handle the special case 1, which is counted among the 266 but is neither prime nor com-
posite; failing to account for 1 would misclassify one element."

• “We now simplify the complex expression from Step 12, which is (48 × 15) − (320 ÷
8) + 27. The order of operations dictates multiplication and division before addition or
subtraction. First compute 48 × 15 = 720. Next compute 320 ÷ 8 = 40. Substituting
these back into the expression gives 720− 40 + 27. This reduction preserves equivalence
while making the next step—performing the remaining subtraction and addition—more
straightforward."

Core Language Style Requirements
• Match the tone, sentence flow, and level of detail in the demonstration examples provided

below.
• Write in a way that reads naturally to a human reasoner, not like a formal audit log.
Self-Validation
• IMPORTANT: After each edge is generated, validate that whether it includes every step

in direct_dependent_steps. If not, you need to re-generate the edge for the step.
Notice that you need to check for all steps, not just a subset of steps.

• For each step, internally determine the applicable mathematical principle, identify depen-
dencies, clarify evaluation or logic, and succinctly state both justification and role in the
broader problem.

• Clearly state mathematical justifications, and follow the required language style. If a
numeric evaluation is performed, confirm a brief sanity check is present.

Verbosity
• edge should be detailed, allowing for expansion if the step is complex or multi-part.
Stop Conditions
• Complete when every step has a well-justified edge field, following all style and content

rules. Escalate for ambiguous or incomplete input only.
Output Format
• Return only a edge field for each step populated as described. Do not include extra fields,

wrappers, or commentary.
EXAMPLE JSON OUTPUT:
{

"edges": [
{

"step_id": 1,
"edge": "We define ..."

},
{

"step_id": 2,
"edge": "Building on the definition of ..."

},
{

"step_id": 3,
"edge": "Using the expression for ..."

}
}

{JSON text of refined step-by-step answer with problem
statement from Stage 1 and dependencies from Stage 2}

20

E Few-Shot Prompt for DAG-MATH Formatted CoT

Instructions for DAG-MATH Formatted CoT Generation

Role and Objective
You are an expert mathematical reasoner and logician. For the given problem, you
must produce a single, valid JSON object containing a list of solution steps. Each
step in the list must be an object with the following four fields: step_id, edge,
direct_dependent_steps, and node.
Requirements
Each step has exactly:

• step_id (int; unique; strictly increasing)
• edge (sentences; describe why/how this step follows; reference prior steps with

Step’s step_id tags, e.g., Step 1, Step 3)
– State the goal of the current step.
– Cite the minimal direct dependent previous steps used, with how these steps

are used for the current step. IMPORTANT: every direct dependent step must
be cited in the form Step’s step_id.

– State clearly the mathematical principle being applied (e.g., inclusion–
exclusion, algebraic manipulation, definition), which turns those inputs into
the asserted output.

• direct_dependent_steps (array of ints or null)
– This field must contain a list of step_ids representing the minimal set of

prior steps directly used to derive the current step in edge.
– The list must be in ascending order (e.g., [2, 5]).
– If a step is a fact taken directly from the problem statement, this field should

be null.
– Topological order: every dependency ID < current step_id.
– Closure: every nonfinal step’s step_id must appear in some later step’s
direct_dependent_steps.

• node (one execution sentence)
– Each step’s node field must contain a single, atomic sentence making exactly

one logical assertion (e.g., stating an equation, defining a variable, presenting
a calculation result) which acts as the results inferred from edge.

– All information, including facts from the problem statement and intermediate
results, must be broken down into these atomic steps.

– Avoid including irrelevant steps that do not contribute to the solution.
– The final step must be the answer statement in the form: “The final answer is

. . . ”.
Global Constraints

• Use LaTeX format enclosed in dollar signs for all mathematical expressions.
• Your entire output must be a single, valid JSON object. Do not include any text or

commentary outside of the JSON structure. You will be provided with high-quality
examples to demonstrate the required format and reasoning style.

Demonstration Examples
{Gold-standard demonstration examples}
Bad Examples

1. The example below is bad since Step’s step_id are missing in edge.

{
"steps": [

...
{

21

"step_id": 36,
"edge": "Using the confirmed digit values--

K=0, L=5, M=3, and N=9, the sum K + L + M + N
is expressed as 0 + 5 + 3 + 9. This step
prepares the expression for final evaluation.",

"direct_dependent_steps": [
8,
15,
26,
32,
35

],
"node": "The sum of the digits $K + L + M + N$

is $0 + 5 + 3 + 9$."
},
...

]
}

2. The example below is bad since plural “Steps 8, 9, and 10” is used in edge instead
of singular “Step 8, Step 9, and Step 10”.

{
"steps": [

...
{

"step_id": 11,
"edge": "From Steps 8, 9, and 10, we have

c(b - a) = 1 + 2k, b(c - a) = -3 + 6k,
a(c - b) = -4 + 4k. To find relationships,
assume a, b, c are such that differences are
proportional. Let d = b - a, e = c - a,
then c = a + e, b = a + d. Substitute into
the equations.",

"direct_dependent_steps": [
8,
9,
10

],
"node": "Define d = b - a and e = c - a. Then
the equations become: (a + e) * d = 1 + 2k,
(a + d) * e = -3 + 6k, a * (e - d) = -4 + 4k."

},
...

]
}

Problem: {Test problem statement}
Solution:

F Additional Details and Results for Evaluation

The results for final-answer accuracy (PASS@1) and empirical mathematical reasoning ability (R̂)
on three benchmarks across five LLMs are reported in Table 2. The averaged graph-level statistics
for BRUMO 2025 and HMMT 2025 are reported in Tables 3 and 4, respectively. The overall trend
is similar to the analysis in Section 4. Additionally, we can obtain the following findings:

• The change in graph-level statistics is monotonic in ∆. The variations in the #nodes,
#edges, density, and maximum out-degree from Correct to Perfect increase monotonically

22

Table 2: Final-answer accuracy (PASS@1) and empirical mathematical reasoning ability (R̂) across
three math benchmarks. Parentheses show the gap (∆ := PASS@1 − R̂).

Model AIME 2025 BRUMO 2025 HMMT 2025

PASS@1 R̂ (∆ ↓) PASS@1 R̂ (∆ ↓) PASS@1 R̂ (∆ ↓)

Gemini-2.5-F 52.4 17.0 (35.4↓) 63.4 20.7 (42.7↓) 38.5 5.7 (32.8↓)
Gemini-2.5-F-L 37.4 15.9 (21.5↓) 43.2 17.8 (25.4↓) 28.8 7.5 (21.3↓)
GPT-4.1 26.5 16.8 (9.7↓) 33.3 22.8 (10.5↓) 11.8 6.5 (5.3↓)
GPT-4.1-M 30.5 20.9 (9.6↓) 34.4 24.6 (9.8↓) 14.3 7.4 (6.9↓)
Qwen3-30B 43.1 15.8 (27.3↓) 46.8 21.8 (25.0↓) 27.3 5.6 (21.7↓)

Std 10.3 2.1 12.2 2.5 11.0 0.9

Table 3: Averaged graph-level statistics of sampled DAGs across selected LLMs on BRUMO 2025.
Model Class #nodes #edges density dmax

in dmax
out

Gemini-2.5-F
All 26.6 39.8 13.0% 4.1 5.3

Incorrect 29.2 47.4 13.0% 4.8 6.2
Correct 25.1 35.9 13.1% 3.8 4.8
Perfect 20.5 26.1 14.1% 3.0 3.2

Gemini-2.5-F-L
All 27.9 47.7 15.5% 3.8 8.3

Incorrect 33.2 61.5 14.5% 4.0 11.1
Correct 21.2 30.4 16.7% 3.4 4.8
Perfect 14.1 17.4 20.1% 2.6 2.9

GPT-4.1
All 14.9 18.1 19.4% 2.4 2.9

Incorrect 15.9 19.6 18.4% 2.5 3.0
Correct 13.0 15.1 21.4% 2.3 2.5
Perfect 12.0 13.8 23.0% 2.3 2.3

GPT-4.1-M
All 17.1 24.1 18.7% 3.0 3.7

Incorrect 18.6 27.2 17.7% 3.1 4.1
Correct 14.3 18.3 20.6& 2.7 3.1
Perfect 13.1 16.6 22.1% 2.7 2.9

Qwen3-30B
All 18.4 27.7 19.8% 3.4 4.7

Incorrect 21.7 34.4 17.8% 3.7 5.7
Correct 14.7 20.1 22.1% 3.1 3.6
Perfect 12.1 15.4 25.3% 2.8 3.0

with the gap ∆ between PASS@1 and R̂. When ∆ is small, the statistics of these two
classes are nearly identical.

• Graph-level statistics remain similar across the four classes when raw accuracy is low.
In particular, when PASS@1 is low, their variations across classes are minimal.

23

Table 4: Averaged graph-level statistics of sampled DAGs across selected LLMs on HMMT 2025.
Model Class #nodes #edges density dmax

in dmax
out

Gemini-2.5-F
All 36.8 60.4 10.9% 4.7 7.9

Incorrect 36.6 61.4 11.4% 4.7 8.4
Correct 37.4 59.8 10.1% 4.9 7.1
Perfect 30.1 48.4 12.0% 5.9 6.1

Gemini-2.5-F-L
All 35.8 63.0 14.0% 4.1 11.2

Incorrect 40.4 73.3 13.4% 4.1 13.1
Correct 26.5 42.7 15.2% 4.0 7.1
Perfect 16.8 25.9 20.6% 3.9 4.2

GPT-4.1
All 17.0 20.7 17.8% 2.5 3.2

Incorrect 16.9 20.8 17.8% 2.5 3.1
Correct 17.5 20.6 17.4% 2.6 3.5
Perfect 14.7 17.3 19.8% 2.5 2.7

GPT-4.1-M
All 21.1 30.2 16.0% 3.0 4.2

Incorrect 21.1 30.2 15.9% 3.0 4.1
Correct 21.1 30.5 16.6% 3.0 4.4
Perfect 17.2 24.3 19.4% 2.9 3.6

Qwen3-30B
All 22.8 34.6 16.1% 3.6 5.6

Incorrect 22.8 34.5 16.4% 3.6 5.7
Correct 22.8 35.0 15.2% 3.7 5.5
Perfect 18.7 28.5 18.8% 4.6 5.0

24

	Introduction
	A DAG Framework for Step-Level CoT
	Phase 1: Task-specific DAG for Step-Level CoT
	Phase 2: Stochastic Process on Logic Dependence

	Formal Definition of Mathematical Reasoning Ability
	Evaluation of Mathematical Reasoning Ability
	Conclusion
	Illustration and Definition of CoT Step
	Remark on Execution Correctness
	Intuitive Understanding of Steps in CoT
	Mathematical Definition of Steps in CoT
	Intuitive Example of Step-Level CoT under Framework in sec:mechan

	Example of Logical Closeness
	Example DAG-MATH Formatted CoT
	Benchmark Construction
	Prompt for Stage 1
	Prompt for Stage 2
	Prompt for Stage 3

	Few-Shot Prompt for DAG-MATH Formatted CoT
	Additional Details and Results for Evaluation

