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Abstract

Low-precision training is considered an effective
strategy for reducing both training and down-
stream inference costs. Previous scaling laws
for precision mainly focus on integer quantiza-
tion, which pay less attention to the constituents
in floating-point (FP) quantization, and thus can-
not well fit the LLM losses in this scenario. In
contrast, while FP quantization training is more
commonly implemented in production, it’s re-
search has been relatively superficial. In this
paper, we thoroughly explore the effects of FP
quantization targets, exponent bits, mantissa bits,
and the calculation granularity of the scaling fac-
tor in FP quantization training performance of
LLM models. In addition to an accurate FP quan-
tization unified scaling law, we also provide valu-
able suggestions for the community: (1) Exponent
bits contribute slightly more to the model perfor-
mance than mantissa bits. We provide the optimal
exponent-mantissa bit ratio for different bit num-
bers, which is available for future reference by
hardware manufacturers; (2) We discover the for-
mation of the critical data size in low-precision
LLM training. Too much training data exceeding
the critical data size will inversely bring in degra-
dation of LLM performance; (3) The optimal FP
quantization precision is directly proportional to
the computational power, but within a wide com-
putational power range. We estimate that the best
cost-performance precision should lie between
4-8 bits.
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1. Introduction

Scaling laws of large language models (LLMs) could help
developers effectively select superior parameter settings
before experiments and accurately predict the model perfor-
mance under different configurations. They are regarded as
excellent guidance in LLM training. The widely acknowl-
edged scaling law efforts such as Kaplan et al. (2020), Hoff-
mann et al. (2022), and Li et al. (2024) mainly concentrated
on the central factors, i.e., model size and trained token size,
which significantly impact the performance of LLMs. With
the rapid growth of both model and data sizes, there has
been increasing attention to the efficiency and cost of LLM
training. Training and serving with lower precision becomes
a popular solution. Currently, lots of representative LLMs
were trained in BF16 and even lower precision (Dubey et al.,
2024; Sun et al., 2024; Liu et al., 2024; Yang et al., 2024;
Ma et al., 2024; Wang et al., 2023; Peng et al., 2023), aiming
to balance effectiveness and efficiency. Compared to inte-
ger quantization, floating-point (FP) quantization can better
maintain LLMs’ accuracy at extremely lower bit rates and
thus is often equipped in low-precision LLMs. Therefore,
exploring the scaling laws of LLM performance under dif-
ferent low precision settings with FP quantization becomes
essential to shed light on future low-precision LLM training.

Recently, there was pioneer work that conducted in-depth
analyses and explorations on the LLM’s scaling laws for
precision in both training and inference (Kumar et al.,
2024), quantitatively measuring the degradation rules of
post-train quantization and quantized training. This scal-
ing law provides an appropriate conclusion explaining the
potential damage of excessively increasing training data to
low-precision LLMs’ performance. However, Kumar et al.
(2024) directly adopted the bit width as the precision in its
low-precision scaling laws, which might lose finer-grained
modeling of the relationship between various parameter set-
tings related to the FP quantization and the final loss of
LLMs. In practice, the key factors of FP quantization such
as the exponent, mantissa, and the block size of scaling
factors may have different impacts on the final loss. A more
comprehensive, precise, and practical scaling law for FP
quantized training related to the data size (D), model size
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(N), exponent (E), mantissa (M), and block size of scaling
factors (B) is urgently desired.

Our work concentrates on establishing, verifying, and ana-
lyzing the scaling law for FP quantized training in LLMs.
At the beginning, we first predict the model performance via
the precision-related scaling law from previous work under
different data/model sizes and precision settings. Surpris-
ingly, we discover that the predictive performance was not
perfectly satisfactory under different FP quantized training
settings. Subsequently, we carefully design a comprehensive
set of explorations with experiments of different precision
settings (training 366 models), exploring the basic scaling
law formation, as well as the potential impact of the quan-
tization targets, exponent and mantissa, and block sizes on
the loss. Finally, we aggregate these factors to get our final
scaling law for FP quantized training with valuable insights
to guide the LLM training under low precision.

Our FP quantization training scaling law, namely Capybara
(Appendix B), is formulated as follows:

L(N,D,E,M,B) =
n

Nα
+

d

Dβ
+ ϵ

+
Dβ

Nα

log2B

γ(E + 0.5)δ(M + 0.5)ν
.

(1)

The first two factors D and N indicate the data size and
model size respectively, which show the main impacts on
training loss given by the key factors of data and model size
similar to the Chinchilla scaling law (Hoffmann et al., 2022);
ϵ represents the bias; The last factor could be regarded as
the additional negative impact deriving from low precision
training, where Dβ

Nα implies a certain form of “knowledge
intensity” in LLM, and log2B, (E+0.5)δ , and (M +0.5)ν

jointly reflect the “low precision information loss” of FP
quantized training. We have conducted extensive fitting ex-
periments with various possible scaling law formulations to
ensure the accuracy and simplicity of our scaling laws. Note
that the exponential hyper-parameters α and β of model
and data sizes are exactly the same as those in the first two
factors. The product of the above “knowledge intensity” and
“low precision information loss” forms the last factor.

Figure 1 illustrates the fitting results of our Capybara scaling
law compared with other ones, demonstrating our advan-
tages on predicting LLM performances under different float
quantized training settings. Throughout our experiments
and analyses related to our Capybara scaling law, we also
discover the following observations and insights that could
facilitate future low-precision LLM training: (a) It has been
discovered that the impact of quantized weights on the per-
formance is relatively minor during both forward and back-
ward computations. Meanwhile, activations demonstrate a
higher degree of quantization tolerance specifically when
computing gradients pertaining to themselves. (b) The data
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(b) Ours.

Figure 1. Comparing Eq. (6) from Kumar et al. (2024) and Eq.
(13) from our work, our Capybara scaling law fits data better in
low - precision scenarios. Specifically, Kumar et al. (2024)’s fitting
results show considerable bias in the E1M1 case. In the subfigures,
data point magnitudes are roughly proportional to E.

size of LLM pre-training cannot be added indefinitely with-
out harming the performance under low precision, while
large model sizes, higher precision settings (measured by
exponent and mantissa), and smaller block sizes could in-
crease the extreme point of effective trained tokens for LLM
training. (c) Intuitively, the negative impact of low-precision
training in LLMs would be proportionally amplified with
the “knowledge intensity”. (d) The exponent and mantissa
have their optimal settings under different bit widths. Expo-
nent bits contribute slightly more to the model performance
than mantissa bits. (e) The optimal FP quantization pre-
cision exhibits a direct proportionality with computational
power. Nonetheless, across a broad spectrum of computa-
tional power, our estimated optimal cost-performance preci-
sion should reside within the 4-8 bits range.

2. Preliminary

Classical Scaling Laws. Scaling laws have become a fun-
damental framework for understanding the relationship be-
tween essential factors such as model size (N), data size (D),
and the resulting loss (L) in deep learning. Two classical
scaling laws have been widely recognized in the industry:
Chinchilla scaling law (Hoffmann et al., 2022) and OpenAI
scaling law (Kaplan et al., 2020). The Chinchilla scaling
law is expressed as:

L(N,D) =
n

Nα
+

d

Dβ
+ ϵ. (2)

The OpenAI scaling law is given by:

L(N,D) =

[( n
N

)α
β

+
d

D

]β
+ ϵ, (3)

where n, d, α, β, and ϵ are positive fitted constants. The
balance between N and D emerges as critical for compute-
optimal training.

Scaling Laws for Precision. Subsequent research extends
this framework by incorporating the role of precision in
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quantized training and inference, so as to provide insights
into how precision affects model performance. In Kumar
et al. (2024), precision-aware scaling laws were introduced
to capture the trade-offs between model size N , data size D,
and precision P . For integer quantized training, they pro-
posed the tradeoff between weight N and weight precision
P as:

Neff(N,P ) = N(1− e−P/γ), (4)

whereNeff indicates the “effective parameter count” of mod-
els, and γ is a constant representing the sensitivity of model
weights to precision. Incorporating Neff into the Chinchilla
scaling law yields:

L(N,D,P ) =
n

[N(1− e−P/γ)]α
+

d

Dβ
+ ϵ. (5)

This framework highlights that reducing weight precision
P can be compensated by increasing the parameter count
N to maintain performance, which is a critical insight for
low-precision model optimization.

Current Scaling Laws cannot Fit Well in FP Quanti-
zation. Note that most previous work focused on integer
quantized training. FP quantization is more prevalent in
real-world applications due to its hardware compatibility
and finer granularity. For instance, formats such as FP16 and
BF16 are standard in many large-scale training pipelines,
and emerging formats like FP8 and FP4 are gaining traction.
Despite this, scaling laws specifically tailored to FP quanti-
zation are still largely unexplored. The primary distinction
between FP and integer quantization lies in the allocation
and usage of bits. FP numbers allocate bits to represent both
the exponent and the mantissa, with each set of bits serving
distinct purposes: the exponent mainly captures dynamic
range, while the mantissa mainly encodes precision within
that range. In contrast, integer formats uniformly distribute
all bits to refine the quantization lattice, providing consistent
resolution across the representable range. This fundamental
difference highlights the need for dedicated scaling laws for
the unique characteristics of FP formats.

Kumar et al. (2024) hypothesized that the exponent and
mantissa bits should be scaled jointly (i.e., increase together
as total bit count does). Then, in FP formats, precision is
determined by the exponent E and mantissa M , with the
total precision: P = E +M +1. By substituting P in their
precision-aware scaling law, we have:

L(N,D,E,M) =
n[

N(1− e−
1+E+M

γ )
]α +

d

Dβ
+ ϵ, (6)

However, upon conducting experiments and applying this
scaling law to fit empirical results, particularly for low-
precision training regimes, we observed significant devia-
tions between the law’s predictions and actual performance,

as illustrated in Figure 1a. The unsatisfactory fit, especially
for training results using low-bit FP formats, suggests that
the previous relationship proposed in Kumar et al. (2024)
does not adequately capture the nuanced dynamic impacts
of FP quantization on LLM performance.

In this work, we address these shortcomings by re-deriving
the scaling law for FP quantized training. Our re-derivation
incorporates a more nuanced understanding of how the finer
factors of exponent, mantissa, and block size affect low-
precision training. By refining the theoretical framework
and aligning it more closely with observed behaviors, we
aim to establish a more accurate and predictive scaling law
so as to bridge the gap between theoretical insights and
real-world applications.

3. Setup and Scaling Laws

3.1. Method and Implementation

Quantization Method. We quantized a tensor into a low-
precision FP format, following the IEEE 754 standard (Ka-
han, 1996), which includes both normal and subnormal
representations. The format consists of a sign bit, E ex-
ponent bits and M mantissa bits. To expand the dynamic
range, the special bits are adopted for normal values instead
of representing Infinity and Not a Number (NaN). Since the
modern hardware does not support arbitrary FP format, we
simulate them using QPyTorch (Zhang et al., 2019) with
nearest rounding. Due to the narrow dynamic range and
low representation precision of the low-precision format, we
employ scaling techniques (Sun et al., 2019; Micikevicius
et al., 2022). The original tensor is multiplied by a higher-
precision scaler before being cast into the low-precision
format. The scaling factor is computed as follows:

Si = FPmax/max
(
|X[Bi:B(i+1)]|

)
, (7)

where FPmax represents the maximum normal value of the
low-precision FP format. A scaling factor can be shared ev-
ery B elements along the channel dimension. It is a unified
representation for tensor-wise scaling (B = bdin), channel-
wise scaling (B = din) and block-wise (1 ≤ B<din) scaling
for a tensor with the shape of b× din.

Implementation. The quantization is applied to the linear
layers in transformer (Vaswani et al., 2017), excluding the
dot-product attention and the classifier. In a linear layer’s
computation, there is one matrix multiplication during the
forward phase and two during the backward phase as:

Y = XWT

dX = dY1Wbwd

dW = (dY2)
T
Xbwd,

(8)

where X ∈ Rb×din , W ∈ Rdout×din and Y ∈ Rb×dout rep-

3



Scaling Laws for Floating–Point Quantization Training

resent the input tensor, the weight matrix and the output
tensor, respectively. b denotes the batch size, while din and
dout refer to the number of input and output channels. The
two inputs per matrix multiplication are converted into a
low-precision format with scaling factors. The inputs are
de-quantized into BF16 tensors (Abadi et al., 2016), and
BF16 multiplication is performed. The accumulators are
stored in FP32 format, and the result of the accumulators
are converted into a BF16 tensor as the output.

Modeling Object. As shown in Eq. (37) of (Kuzmin
et al., 2022) , using the Signal-to-Quantization-Noise Ratio
(SQNR) for GEMM operations could unify the effects of
exponent (E) and mantissa (M) precision while accounting
for input distribution modifications like random orthogonal
transformations. However, SQNR calculation inherently de-
pends on tensor distributions, which may limit its practical
applicability. Therefore, we directly select the raw exponent
and mantissa bits rather than the SNR as essential factors
in our Capybara scaling law for more precise prediction
ability.

3.2. Setup

We trained and evaluated a range of LLaMA (Dubey et al.,
2024) architecture models on a subset of the Dolma V1.7
dataset (Soldaini et al., 2024), using the same sampling pro-
portion as for the OLMo 7B-v1.7 model (Groeneveld et al.,
2024). Our experiments systematically explored language
model pretraining across N ∈ {41, 85, 154, 679} million
parameters and D ∈ {10, 20, 50, 100} billion tokens. Fur-
thermore, we conducted two additional pretraining sessions
with 1.2 billion-parameter models to validate our Capybara
scaling law equation. For every (N,D) combination, we
ran over 36 experiments, systematically varying exponents
and mantissas, adjusting the quantization target during train-
ing, and exploring different block sizes for quantization. In
total, we carried out 366 runs. Detailed hyperparameters
and ablation studies are provided in Table 1 and Table 3.

3.3. Basic Scaling Law Form

Our research, building on foundational scaling laws for train-
ing data and model size that are crucial for understanding
machine learning models’ efficiency and effectiveness, first
evaluates the classical Chinchilla (Hoffmann et al., 2022)
and OpenAI (Kaplan et al., 2020) scaling laws and then
presents our precision - aware design. To find which scaling
law better fits empirical data, we ran experiments with BF16
precision for model sizes from 41 million to 679 million
parameters and plotted scaling law curves to show the fit
between predicted and actual losses. Since the Chinchilla
scaling law had a better fit in our BF16 precision experi-
ments (as shown in Figure 8), we used it as the basis for
exploring our proposed float precision scaling law. Our aim

is to expand the understanding of scaling laws to include
the impact of numerical precision on model performance,
especially focusing on the trade - offs among precision,
computational efficiency, and model accuracy.

In the following, we will present our methodology for inves-
tigating float - precision scaling laws, experimental results,
and implications for model design and training at different
numerical precision levels. Experiments will be used to
discuss the marginal effects of exponent (E), mantissa (M),
and scaling factor size (B) on LLM performance.

3.4. Quantization Targets

In our pursuit of balancing practicality with academic rigor,
we have chosen to focus on the quantization of inputs to
the General Matrix Multiplication (GEMM) computations
within the Transformer architecture. Transformer consists of
three main GEMM operations: forward computation, input
gradient computation, and parameter gradient computation.
The inputs to these matrix multiplications in both forward
and backward passes include six distinct elements: X, W,
dY1, Wbwd, dY2, and Xbwd, which can be quantized to
(P1) through (P6) respectively (see Figure 2a).

Experimental Findings. Figure 2a illustrates the classical
quantization targets of P1 to P6 to be explored. Through our
experiments, we observed that the FP3 quantization of these
inputs has varying impacts on LLM results. As illustrated in
Figure 2b, our key observations related to quantization tar-
gets are as follows: (1) The quantization of P1, P3, and P5
has significant effects on the model’s performance, leading
to a substantial increase in loss. Notably, the quantization of
P5 results in a pronounced degradation of performance, with
losses increasing by up to 2%. This suggests that compress-
ing and losing information in the input embedding during
the backward pass could lead to considerable performance
penalties. (2) Quantizing only one target of P4 or P6 yields
the optimal performance. (3) Quantizing both P2 and P6
together results in similar overall performance to quantizing
P2 alone. Quantizing P2, P4, and P6 together also leads to
overall results comparable to quantizing P2 alone.

Optimized Quantization Target. To balance efficiency
and effectiveness, we’ve selected P2, P4, and P6 for quan-
tization. Future research will build on this setup, chosen
for its minimal impact on performance compared to other
options. This approach preserves model integrity while
gaining computational benefits.

3.5. Exponent and Mantissa

Exponents and mantissas are key elements in FP represen-
tations. Proper bit-width assignments for them can signif-
icantly mitigate information loss during FP quantization.
Here, we aim to explore the hidden associations between
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Figure 2. For the subsequent exploration of scaling laws, we choose P2, P4, and P6 as our quantization targets.

exponents/mantissas and LLM performance.

Exponent. Firstly, we investigate the scaling law when
Exponent serves as an independent variable. Experiments
of different Exponents with various other parameter settings
have been conducted, followed by our attempt of parameter
fitting. It is assumed that the Exponent-related scaling law
conforms more to a power-law relationship form as:

L(E) =
γ

(E + 0.5)δ
+ ι. (9)

We discussed other forms of relationships (e.g., Kumar et al.
(2024)) and conducted relevant comparative experiments,
ultimately finding that the power-law relationship is more
consistent with the experimental results. The 0.5 in Eq. (9)
functions as a good bias to fit extreme values. According
to the IEEE 754 standard (Kahan, 1996), when either E
(exponent) or M (mantissa) is set to 0, a default information
is still retained. This can also account for the existence of a
half-bit bias here.

Next, we attempt to fuse the relationship of E with those of
data size D and model size N. Parameter fitting is carried out
under various E, D, and N configurations, and the results are
shown in Figure 10, where γ is negatively correlated with
D
N , and ι is negatively correlated with both N and D. With
regard to γ, we re-parameterize it as a function of Dϕ

γNη . As
for ι, simply multiplying the original form of the chinchilla
scaling law by a coefficient precisely satisfies the pattern we
discovered. Subsequently, we fit L(N,D,E), which is the

jointly scaling law of N, D, E, as follows:

L(N,D,E) =
Dϕ

Nη

1

γ(E + 0.5)δ
+ ιLBF16. (10)

LBF16 represents the BF16 loss L(N,D) given in the chin-
chilla scaling law of Eq. (2), i.e, LBF16 = n

Nα + d
Dβ + ϵ.

Elegantly, we find that ϕ ≈ β, η ≈ α, and ι ≈ 1 in the
fitting. Therefore, the Exponent scaling law is as:

L(N,D,E) =
Dβ

Nα

1

γ(E + 0.5)δ
+

n

Nα
+

d

Dβ
+ ϵ. (11)

Finally, we re-fit the data using Eq 11, obtaining the results
shown in Figure 9a.

Mantissa. Similar to Exponent, we assume the Mantissa-
related scaling law conforms a power-law form as L(M) =

γ′

(M+0.5)ν + ι′. Surprisingly, jointly considering the effects
of D and N in representing γ′ and ι′, we also find that
ϕ′ ≈ β, η′ ≈ α, and ι′ ≈ 1. Ultimately, we adopt the form
of Eq. (12) to fit the joint scaling law of Mantissa with N
and D.

L(N,D,M) =
Dβ

Nα

1

γ(M + 0.5)ν
+

n

Nα
+

d

Dβ
+ϵ. (12)

The fitting result is shown in Figure 9b.

Joint Exponent & Mantissa. Integrating the scaling law
results of Exponent and Mantissa when each serves as an
independent variable, we can naturally organize their joint
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Figure 3. Our scaling law of Eq. (15) precisely forecasts validation
loss for diverse block sizes. Data point sizes are directly propor-
tional to D and B in the respective left and right sub-figures.

scaling law with N, D, E, M into the form of Eq. (13). The
final fitting effect is presented in Figure 1b.

L(N,D,E,M) =
Dβ

Nα

1

γ(E + 0.5)δ(M + 0.5)ν
+LBF16.

(13)

3.6. Block Size of Scaling Factor

In this subsection, we discuss the correlations of the block
sizes and LLM losses, and extend the block-related scaling
law to channel-wise and tensor-wise strategies.

Block-wise Strategy. In the quantization process, we de-
fine the statistical range of the scaling factor as the block
size (B). Since the scaling factor employs high-precision
caching, when B = 1, it is equivalent to retaining a high-
precision copy of the tensor to be quantized. At this point,
the model’s expressiveness should be approximately the
same as that of the high-precision model: L(N,D,B =
1) ≈ LBF16(N,D). After comparing the power, linear, and
logarithmic law forms, we ultimately select the following
logarithmic form as the scaling law when block size serves
as an independent variable:

L(B) = κ log2B + ψ. (14)

In Figure 11, we demonstrate the changes in fitted κ and
ψ under different N and D conditions. It can be observed
that, similar to the exploration of Exponent and Mantissa
in Section 3.5, κ is positively correlated with D

N , while ψ is
negatively correlated with N and D, respectively. Further-
more, after re-parameterizing them, we similarly found that
the fitted exponents of N and D are approximately α and β,
and the correction coefficient of ψ based on the chinchilla
scaling law is approximately equal to 1. Therefore, we ulti-
mately build the scaling law for block size in conjunction
with N and D as follows:

L(N,D,B) =
Dβ

Nα

log2B

κ
+

n

Nα
+

d

Dβ
+ ϵ. (15)

The fitting effect on experimental data is shown in Figure 3.

Channel-wise Strategy. To investigate the scaling law un-
der the channel-wise strategy, we first utilize Eq. (15) to
inversely derive the equivalent block size for different N
and D cases that achieve the same validation loss as when
employing the channel-wise strategy. It is found that this
equivalent block size of the channel-wise strategy is ap-
proximately a constant: log2Bchannel ≈ 13.1567, which
is natural since the batch size of gradient is (mostly) much
larger than the hidden size (din in Section 3.1). After incor-
porating this equivalent block size into Eq. (15), the fitted
scenario of the channel-wise strategy is in Figure 13a.

Tensor-wise Strategy. Using the tensor-wise strategy, we
apply Eq. (15) to predict the equivalent block size. As
shown in Figure 12, this size follows a power-law relation-
ship: log2Btensor ≈ Nω

ξDη . Substituting this prediction into
Eq. (15) produces the fitted results in Figure 13b.

4. A Unified Scaling Law for Floating–Point
Quantization Training

In this section, we provide the unified scaling law for FP
quantization training, with its fitting and predictive perfor-
mance as well as the insightful findings deriving from our
Capybara scaling law.

4.1. The Unified Scaling Law Formation

The unified scaling law for FP quantization training should
be able to jointly consider all factors of the data size (D),
model size (N), exponent (E), mantissa (M), and block size
of scaling factors (B) for precise low-precision LLM per-
formance prediction. Based on the conclusions drawn in
Eq. (2), Eq. (13) and Eq. (15), we could intuitively design
the unified scaling law as follows:

L(N,D,E,M,B) =
n

Nα
+

d

Dβ
+ ϵ+ρ(E,M,B). (16)

Here, n
Nα + d

Dβ + ϵ represents the classical BF16 loss of
the Chinchilla scaling law, and ρ(E,M,B) indicates the
additional negative impacts brought by low-precision float
quantized training. Deriving from Eq. (13) and (15), we can
formulate as follows:

ρ(E,M,B) =
Dβ

Nα

log2B

γ(E + 0.5)δ(M + 0.5)ν
, (17)

where the exponent E, mantissa M, and block size B jointly
represent the possible information loss of FP quantized train-
ing, and Dβ

Nα reflects, in a sense, the knowledge intensity of
an LLM of size N trained on D data. Note that we could
smoothly fuse the factors of E, M, and B with a unified set
of hyper-parameters of α, β, and γ.

We adopted all above 358 experiments in Section 3 contain-
ing various N, D, E, M, B settings to obtain the specific
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Figure 4. The fitting results of our Capybara scaling law for FP
quantization training. Data point size is proportional to D. The
star points (1.2B, 7B and 70B models) are our validation.

hyper-parameters in Eq. (16) and Eq. (17).

To ensure the simplicity and universality of our Capybara
scaling law, we selected Occam’s Razor to fuse or expurgate
unnecessary hyper-parameters. Ultimately, the final scaling
law for FP quantization training is articulated as follows:

L(N,D,E,M,B) =
n

Nα
+

d

Dβ
+ ϵ

+
Dβ

Nα

log2B

γ(E + 0.5)δ(M + 0.5)ν
,

(18)

where the corresponding hyper-parameters are given in Ta-
ble 2. The fitting performances of Eq. (26) are given in
Figure 4, which show superior capability compared to pre-
vious scaling laws in low-precision training.

Furthermore, we evaluate our Capybara scaling law to pre-
dict the losses of 1.2B, 7B and 70B LLMs with different
low-precision settings and trained tokens (which are viewed
as our validation models that are not used in calculating
hyper-parameters of our Capybara scaling law). The consis-
tently accurate fitting results demonstrate that our Capybara
scaling law performs well in larger model sizes.

4.2. Implication-1: Optimal Float Layout Analysis

The optimal float layout for a given precision P = E+M+
1 is derived to minimize the impact of precision-related
information loss on model performance. Based on Eq. (26),
the optimal mantissa is expressed as:

Mopt =
νP

δ + ν
− 0.5. (19)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Mantissa

10 2

10 1

100

101

102

103

104

105

(E
+

0.
5)

(M
+

0.
5)

Optimal FP-layout

fp1  E0M0
fp2  E1M0
fp3  E1M1
fp4  E2M1
fp5  E2M2
fp6  E3M2
fp7  E3M3
fp8  E4M3
fp9  E4M4
fp10  E5M4
fp11  E5M5
fp12  E6M5
fp13  E6M6
fp14  E7M6
fp15  E7M7
fp16  E8M7

Figure 5. The optimal float layouts of different bit widths.
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Figure 6. Variation of loss with data size under different FP quanti-
zation settings.

More details are in Appendix C. The corresponding loss
scaling equation incorporates this optimal layout as:

L(N,D,P,B) =
n

Nα
+

d

Dβ
+ ϵ+

Dβ

Nα
· log2B

γρP δ+ν
, (20)

where γρ = γδδνν

(δ+ν)δ+ν . Figure 5 visualizes the predictive per-
formance for different P , demonstrating the effectiveness of
the derived layout in preserving performance under varying
precisions. The optimal float layouts of FP4, FP8, and FP16
are E2M1, E4M3, and E8M7 (BF16), respectively.

4.3. Implication-2: Critical Data Size for Optimal
Performance

From Eq. (26) and Figure 6, we can observe that there are
two factors that contain D and they have opposite impacts
on LLM loss. Intuitively, it implies that there is an optimal
data size under a certain FP quantization setting. The de-
termination of critical data size (Dcrit) stands as a critical
juncture within the quantized training regimen. Upon ex-
ceeding the threshold of Dcrit with the training dataset, any
additional data introduction negatively impacts the model
efficacy, manifesting in a rise in validation loss instead of a
decline. A comprehensive derivation for the estimation of
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Dcrit is delineated in Appendix D:

Dcrit =

[
dγNα(E + 0.5)δ(M + 0.5)ν

log2B

] 1
2β

. (21)

Notably, a positive correlation emerges between model size
(N ) or training precision (P ) and the occurrence of this
pivotal point, indicating its delayed emergence under such
conditions. Utilizing our parameter estimation framework, a
1 billion-parameter model trained utilizing BF16 exhibits a
Dcrit value of 1730T, which is much larger than our current
data size, elucidating the previous lack of observation of
this phenomenon. Conversely, when the same model is
trained with FP8-E4M3, the Dcrit value swiftly diminishes
to 27T, and with FP4-E2M1, it further plummets to 0.4T.
This phenomenon implies the potential harmness of larger
data size on low-precision LLM training.

4.4. Implication-3: Compute-Optimality with Fixed
Configurations

We control the total computation cost C = kNPD and
analysis the optimal configuration under Eq. (26).

Fixed Data Size D. For a fixed D, the optimal precision
Pcrit minimizes the loss while accounting for computational
constraints. From Appendix E.1, Pcrit is expressed as:

Popt(D) =
(
γDD

β log2B
) 1

δ+ν , (22)

where γD = δ+ν−α
nαγρ

, which consolidates the relationships
between model precision and compute efficiency. Eq. (22)
suggests that we can adopt such a quantization strategy: in
the early stage of training, employ aggressive quantization
strategies such as FP8-E4M3, or even FP4-E2M1 which may
be available in the future hardware, so as to quickly converge
the model to a better level. Subsequently, as the data vol-
ume as well as the “knowledge intensity” further increase,
gradually enhance the training precision to BF16, or even
FP32, in order to maintain the optimal cost-effectiveness of
training.

Fixed Model Size N . For a fixed N , the optimal preci-
sion depends on balancing the compute resources and main-
taining the required training data size. The corresponding
scaling law and derivations are in Appendix E.2. We have:

Popt(N) =

[
γN

(
C

k

)2β

N−(α+2β) log2B

] 1
δ+ν+2β

.

(23)
A finding analogous to that presented in Kumar et al. (2024)
is observed herein, specifically, under the limitation of com-
putational resources, an equilibrium exists between preci-
sion and model size from Eq. (23) is as:

P δ+ν+2β
opt Nα+2β = Constant. (24)
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Figure 7. The optimal cost-performance ratio precision as a func-
tion of the total compute budget, illustrating the relationship be-
tween precision (P ) and computational budget (C) when the block
size (B) is set to 128 and k = 6/16.

Minimization over N , D, P with Fixed Compute.
Through a joint analysis of the impacts of N , D, and P
on the final validation loss, the relationship between cost-
effective precision and expected compute budget is as:

P
(δ+ν)α+β

β +α

opt = λ (γD log2B)
α+β
β

(
C

k

)α

, (25)

where λ = dβ
nα · δ+ν−α

δ+ν+β . In Appendix E.3, we present more
detailed derivation processes. Based on the parameters fitted
from our experimental data presented in Table 2, with the
block size (B) set to 128 and k = 6/16, as illustrated in
Figure 7, when the total compute budget is in the range of
(1021, 1031) FP operations, the optimal cost-performance
ratio precision is found to lie between 4 and 8 bits. This
finding implies that training larger models with lower preci-
sion and utilizing less data yields a more cost-effective ap-
proach. Developers could rely on our implications from our
Capybara scaling law to decide their optimal float-pointing
quantization settings.

5. Related Work

Scaling Law of LLMs. Due to the extremely large cost of
resource and time for LLM training, discovering appropriate
scaling laws to accurately predict LLM capabilities under
different parameters is essential for product-level training.
Kaplan et al. (2020) gave the classic form of the scaling
law and concludes that the performance penalty depends
predictably on the ratio N0.74/D. Hoffmann et al. (2022)
modeled the final loss as a parametric function of the count
of model parameters and the number of trained tokens, i.e.
E+A/Nα+B/Dβ . Bahri et al. (2024) and Lin et al. (2024)
theoretical analysis of how loss scales with the size of the
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training dataset and the number of parameters in a power-
law manner. Previous work (Dettmers & Zettlemoyer, 2023)
explored the scaling laws of LLMs with different bit preci-
sions. Recently, Kumar et al. (2024) focused on the impact
of model parameters and data volume with low precision,
highlighting the possible negative impacts of more trained
tokens in low-precision LLM training and serving. Other
recent work (Ouyang et al., 2024) also investigated the corre-
lations of integer quantization and LLM performance. Nev-
ertheless, it is still not that particularly clear to conclude the
scaling law for FP quantization training with respect to the
specific selection of the exponent, mantissa, and block size
of scaling factors.

Quantization of LLMs. The quantization technique of
large language models (Lang et al., 2024; Shen et al., 2024)
has received widespread attention. Xiao et al. (2023) re-
duced the accuracy loss during quantization by smooth-
ing the distribution of activations and weights. Dettmers
et al. (2024) combined Quantization-Aware Training and
LoRA methods to implement an efficient fine-tuning method.
Egiazarian et al. (2024) explored techniques for compress-
ing large language models at very low bit rates, and Behdin
et al. (2023) proposed a framework that allows each layer
to be quantized independently. Although previous work
(Zhang et al., 2023; Yoshida, 2023) studied the impact of
exponent, mantissa and blocksize on the quantification of
LLMs, the comprehensive impact of these indicators has
not been systematically studied and summarized.

6. Conclusion, Limitation, and Future Work

In this work, we propose our Capybara scaling law, which
functions satisfactorily as a precise guidance of future low-
precision LLM training. The key factors of the data size
(D), model size (N), exponent (E), mantissa (M), and block
size of scaling factors (B) are carefully considered in our
Capybara scaling law throughout several hundred of experi-
ments with various precision and model settings. Besides
the scaling law, we also discover some insightful implica-
tions that could instruct and enhance future FP quantization
training in LLMs. We hope our findings could shed light
on better low-prediction LLM training to facilitate the LLM
community.

In the future, we will verify our scaling laws for FP quan-
tization training under larger model sizes and data sizes.
Currently, our explorations are conducted based on the clas-
sical Transformer architecture. Whether our scaling laws
could also be smoothly applied to LLMs of other archi-
tectures (e.g., Mamba series (Dao & Gu, 2024)) is worth
confirming. Moreover, our experiments focus on the clas-
sical FP quantization strategies, while other new-proposed
low-bit LLM quantization methods and hardware should
also be covered in the future.
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A. Hyperparameter Details
The detailed hyper-parameters of our LLMs are given as follows:

Table 1. Model hyper-parameters for each size.

Hyper-parameters 41M 85M 154M 679M 1.2B 7B 70B

Layers 12 12 12 24 24 35 88
Hidden Size 512 768 1024 1536 2048 4096 8192
FFN Hidden Size 1536 2048 2816 4096 5632 10752 22016
Attention Heads 8 12 16 24 32 32 64
Attention Head size 64 64 64 64 64 64 64

Optimizer AdamW
Adam (β1, β2) (0.9, 0.95)
Adam ϵ 1× 10−8

Weight Decay 0.1
Clip Grad Norm 1.0
Max LR 3.0× 10−4

Min LR 0
LR Decay Cosine
Decay Rate 10%
Seqence Length 2048
Batch Size (# Tokens) 2M
Warmup Steps 500

B. Fitting Details of Our Scaling Laws
We name our scaling law for Floating-point quantization training as the Capybara scaling law. Under constrained resources
and space, increasing the number of capybaras can significantly reduce their survival rate and quantity once a certain density
threshold is surpassed. We observe a similar phenomenon in our scaling law: with a fixed model size, expanding the data
size does not consistently yield improvements when the “knowledge density” becomes too high under the pressure of
low-precision training. More fitting details of our Capybara scaling laws as introduced as follows.

B.1. Numberical Fits

Our Capybara scaling law is formalized as:

L(N,D,E,M,B) =
n

Nα
+

d

Dβ
+ ϵ+

Dβ

Nα

log2B

γ(E + 0.5)δ(M + 0.5)ν
, (26)

where the detailed fitted constants and values are shown as follows:

Table 2. Fitted constants and their values in Eq. (26).

Constant Value

n 69.2343
α 0.2368
d 68973.0621
β 0.5162
ϵ 1.9061
γ 11334.5197
δ 3.1926
ν 2.9543
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B.2. Fitting Results of Classical Scaling Laws

We give the fitting results of two classical scaling laws, i.e., the Chinchilla scaling law and the OpenAI scaling law, in Figure
8. We select the Chinchilla scaling law for reference considering its better fitting performance.
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Figure 8. Fitting performance of classical scaling laws, with data point size proportional to D. Left: Curve based on Chinchilla scaling
law shows excellent empirical training loss alignment with predicted losses. Right: Curve based on OpenAI scaling law also demonstrates
a good match, though less precise than Chinchilla.

B.3. Fitting Results of the Scaling Laws for Exponent and Mantissa

Figure 9 shows the fitting performance of our scaling law related to the exponent or mantissa, and Figure 10 shows the
correlations between essential parameters in Eq. (9).
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Figure 9. The fitting outcomes of our scaling law related to the exponent (left)/mantissa (right). Data point size is proportional to D.
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Figure 10. The correlations between γ,ι in Eq. (9) and N ,D. γ,ι can be viewed as functions of N ,D. Data point size is proportional to D.

B.4. Fitting Results of the Scaling Laws for Scaling Factor

These figures show different correlations and fitting results related to the scaling factor B in our scaling law.
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Figure 11. The correlations between κ,ψ in Eq. (14) and N ,D. κ,ψ could be viewed as functions of N ,D. The data points are scaled
proportionally to the value of D.
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Figure 12. The correlations between log2B and N
D

. The size of the data point is proportional to D.
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Figure 13. Fitting results of the scaling law under different sharing strategies of the scaling factor. The size of the data point is proportional
to D.

C. Optimal Float Layout
Given a specified total precision (P), the process of determining the optimal allocation of exponent bits (E) and mantissa bits
(M) involves substituting the equation:

E = P −M − 1. (27)

into the proposed scaling law delineated in Eq. (17):

ρ(M) =
Dβ

Nα
· log2B

γ(P − 1−M + 0.5)δ(M + 0.5)ν

=
Dβ

Nα
· log2B

γ(P − 0.5−M)δ(M + 0.5)ν
.

(28)

Subsequently, the loss function L, with respect to the mantissa bits M , is expressed as:

L(M) =
n

Nα
+

d

Dβ
+ ϵ+

Dβ

Nα
· log2B

γ(P − 0.5−M)δ(M + 0.5)ν
. (29)

To optimize this function, we compute the partial derivative of L with respect to M :

∂L

∂M
= −Dβ

Nα
· log2B

γ

ν(P − 0.5−M)δ(M + 0.5)ν−1 − δ(P − 0.5−M)δ−1(M + 0.5)ν

(P − 0.5−M)2δ(M + 0.5)2ν

= −Dβ

Nα
· log2B

γ
· 1

(P − 0.5−M)δ(M − 0.5)ν

(
ν

M + 0.5
− δ

P − 0.5−M

)
.

(30)

By setting this partial derivative equal to zero, we obtain the optimal value for M which is given by Eq. (31):
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∂L

∂M
= 0

ν

M + 0.5
− δ

P − 0.5−M
= 0

M =
νP

δ + ν
− 0.5,

(31)

and the corresponding value for E is:

Eopt = P − 1−Mopt

=
δP

δ + ν
− 0.5.

(32)

Next, we introduce the optimal values Mopt and Eopt into the proposed scaling law, as formulated in Eq. (17):

ρopt(P ) =
Dβ

Nα
· log2B

γ
(

δP
δ+ν

)δ (
νP
δ+ν

)ν
=
Dβ

Nα
· log2B

γ
· (δ + ν)δ+ν

δδνν
· 1

P δ+ν
.

(33)

For the sake of simplification, we introduce the parameter γρ, defined as follows:

γρ =
γδδνν

(δ + ν)δ+ν
. (34)

As a result,

ρopt(P ) =
Dβ

Nα
· log2B

γρP δ+ν
. (35)

By substituting Eq. (35) into the unified scaling equation, namely Eq. (16), we arrive at Eq. (20), which is further simplified
to:

Lopt(P ) =
n

Nα
+

d

Dβ
+ ϵ+

Dβ

Nα
· log2B

γρP δ+ν

=
n

Nα

(
1 +

Dβ

n
· log2B

γρP δ+ν

)
+

d

Dβ
+ ϵ

=
n

Nα

( 1

1+
Dβ log2 B

nγρPδ+ν

) 1
α

α +
d

Dβ
+ ϵ.

(36)

Furthermore, let γn denote a constant value:

γn = γρn. (37)

In accordance with the Chinchilla scaling law (Hoffmann et al., 2022), we define Neff as the count of effective parameters,
which aligns with the model size specified in Eq. (2):
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Neff = N

 1

1 + Dβ log2 B
γnP δ+ν

 1
α

. (38)

When the condition Dβ log2B ≫ γnP
δ+ν is satisfied, the effective number of parameters, Neff , can be simplified as

follows:

Neff ≈
(

γn
Dβ log2B

) 1
α

·NP
δ+ν
α . (39)

Hence, we discern a power-law relationship between the number of effective parameters, Neff , and the precision, P . It is
important to emphasize that Neff is influenced not solely by the quantization technique employed but also by the volume of
data. When both the model size and the quantization method are held constant, an increase in data size leads to a decrease in
the number of effective parameters.

D. Critical Data Size
For FP quantization training, overtraining may occur, that is, when the amount of training data exceeds the critical value, the
loss will increase instead. Given exponent bits (E), mantissa bits (M), block size (B), and number of model parameters (N),
we aim to find the critical data size before over-training. Based on Eq. (16), we derive the expression for D when the partial
derivative with respect to D is zero.

Preliminarily, we compute the partial derivative of the loss function L with respect to the data size D:

∂L

∂D
=

∂

∂D

n

Nα
+

∂

∂D

d

Dβ
+

∂

∂D
ϵ+

∂

∂D
ρ(E,M,B)

= −β d

Dβ+1
+ β

Dβ−1

Nα
· log2B

γ(E + 0.5)δ(M + 0.5)ν
.

(40)

By setting this partial derivative to zero and then solving for Dβ , we obtain:

∂L

∂D
= 0

−β d

Dβ+1
+ β

Dβ−1

Nα
· log2B

γ(E + 0.5)δ(M + 0.5)ν
= 0

Dβ =

√
dγNα(E + 0.5)δ(M + 0.5)ν

log2B
.

(41)

Consequently, the critical value of D is given by Eq. (21).

E. Compute-optimality
In order to investigate the optimal precision P under constrained computational budget, we define the computational
expenditure associated with FP quantization training as follows:

C = k(P + b)ND. (42)

Here, k signifies a proportionality constant, P denotes the computational cost per model parameter, and b accounts for the
additional expense incurred during the multiplication of scaling factors.
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E.1. Fixed data size D

For the critical precision P in relation to the data size D, Eq. (42) can be incorporated into the proposed scaling law, as
expressed in Eq. (20):

L(D,P ) =
n(
C

k(P+b)D

)α +
d

Dβ
+ ϵ+

Dβ(
C

k(P+b)D

)α · log2B

γρP δ+ν

= n

(
kD

C

)α

(P + b)α +
Dβ log2B

γρ
·
(
kD

C

)α

· (P + b)α

P δ+ν
+

d

Dβ
+ ϵ.

(43)

We then compute the partial derivative of the loss function L(D,P ) with respect to P :

∂L(D,P )

∂P
= nα

(
kD

C

)α

(P + b)α−1 +
Dβ log2B

γρ
·
(
kD

C

)α
α(P + b)α−1P δ+ν − (δ + ν)(P + b)αP δ+ν−1

P 2(δ+ν)

= nα

(
kD

C

)α

(P + b)α−1 +
Dβ log2B

γρ
·
(
kD

C

)α
(P + b)α

P δ+ν

(
α

P + b
− δ + ν

P

)
.

(44)

Upon setting the partial derivative of the loss function with respect to precision P equal to zero, and solving for P , we
obtain:

∂L(D,P )

∂P
= 0.

P + b

P δ+ν

(
δ + ν

P
− α

P + b

)
=

nγρα

Dβ log2B
.

(45)

Assuming

γD =
δ + ν − α

nαγρ
, (46)

and considering that b = 0, the critical precision P is determined as:

P δ+ν = γDD
β log2B. (47)

As illustrated in Figure 14, Eq. (47) suggests that as the amount of training data increases, the most economical precision
also correspondingly rises under the constraint of limited computational power.

E.2. Fixed model size N

With respect to the critical precision P in relation to the model size N , we can streamline Eq. (20) to:

L(N,P ) =
n

Nα
+

d(
C

k(P+b)N

)β + ϵ+

(
C

k(P+b)N

)β
Nα

· log2B

γρP δ+ν

= d

(
kN

C

)β

(P + b)β +
log2B

γρNα
·
(
C

kN

)β

· 1

(P + b)βP δ+ν
+

n

Nα
+ ϵ.

(48)

Subsequently, we evaluate the partial derivative of the loss function L(N,P ) with respect to P :
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Figure 14. Under the constraint of computing the budget with block size (B) set to 128, and based on the results of our experimental data
fitting, the optimal precision (P ) values for different data sizes (D) can be deduced. As depicted, across a substantially broad range of
data sizes from 0.1T to 100T, the optimal precision value consistently falls within the range of 4 to 8 bits.

∂L(N,P )

∂P
= dβ

(
kN

C

)β

(P + b)β−1 − log2B

γρNα
·
(
C

kN

)β

· β(P + b)β−1P δ+ν + (δ + ν)(P + b)βP δ+ν−1

(P + b)2βP 2(δ+ν)

= dβ

(
kN

C

)β

(P + b)β−1 − log2B

γρNα
·
(
C

kN

)β

· 1

(P + b)βP δ+ν

(
β

P + b
+
δ + ν

P

)
.

(49)

Upon setting this partial derivative to zero, and solving for P , we arrive at:

∂L(N,P )

∂P
= 0.

log2B

γρNα
·
(
C

kN

)β

· 1

(P + b)βP δ+ν

(
β

P + b
+
δ + ν

P

)
= dβ

(
kN

C

)β

(P + b)β−1.

1

(P + b)2β−1P δ+ν

(
β

P + b
+
δ + ν

P

)
=
dβγρN

α

log2B
·
(
kN

C

)2β

.

(50)

By introducing

γN =
β + δ + ν

dβγρ
, (51)

and under the assumption that b = 0, the critical P is deduced to be:

1

P 2β−1P δ+ν

(
β

P
+
δ + ν

P

)
=
dβγρN

α

log2B
·
(
kN

C

)2β

.

P δ+ν+2β =
(β + δ + ν) log2B

dβγρNα
·
(
C

kN

)2β

.

P δ+ν+2β = γN

(
C

k

)2β

N−(α+2β) log2B.

(52)

E.3. Minimization over N , D, P with Fixed Compute

Based on the results from Section E.1, E.2 and specifically Eq. (42) with b=0, we proceed to address the system of equations:
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∂L(D,P )
∂D = 0.

∂L(D,P )
∂P = 0.

C = kPND.

(53)

This subsequently leads to the expression of P in relation to the computational budget C:

P (δ+ν)α+β
β +α = (γD log2B)

α+β
β · dβ

nα
· δ + ν − α

δ + ν + β
·
(
C

k

)α

. (54)

F. Detailed Settings of Experiments
We show the detailed configurations of our experiments as follows:

Table 3: All configurations for the ablation experiments.

N D E M B Fitting support

0 40894464 10485760000 0 7 channel ✓
1 40894464 10485760000 1 1 32 ✓
2 40894464 10485760000 1 1 64 ✓
3 40894464 10485760000 1 1 128 ✓
4 40894464 10485760000 1 1 256 ✓
5 40894464 10485760000 1 1 512 ✓
6 40894464 10485760000 1 1 channel ✓
7 40894464 10485760000 1 1 tensor ✓
8 40894464 10485760000 1 2 channel ✓
9 40894464 10485760000 1 3 channel ✓

10 40894464 10485760000 1 4 channel ✓
11 40894464 10485760000 1 5 channel ✓
12 40894464 10485760000 1 6 channel ✓
13 40894464 10485760000 2 1 channel ✓
14 40894464 10485760000 2 3 channel ✓
15 40894464 10485760000 3 1 channel ✓
16 40894464 10485760000 3 2 channel ✓
17 40894464 10485760000 4 1 channel ✓
18 40894464 10485760000 4 3 channel ✓
19 40894464 10485760000 4 5 channel ✓
20 40894464 10485760000 5 1 channel ✓
21 40894464 10485760000 5 2 channel ✓
22 40894464 10485760000 6 1 channel ✓
23 40894464 20971520000 0 7 channel ✓
24 40894464 20971520000 1 1 32 ✓
25 40894464 20971520000 1 1 64 ✓
26 40894464 20971520000 1 1 128 ✓
27 40894464 20971520000 1 1 256 ✓
28 40894464 20971520000 1 1 512 ✓
29 40894464 20971520000 1 1 channel ✓
30 40894464 20971520000 1 1 tensor ✓
31 40894464 20971520000 1 2 channel ✓
32 40894464 20971520000 1 3 channel ✓
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33 40894464 20971520000 1 4 channel ✓
34 40894464 20971520000 1 5 channel ✓
35 40894464 20971520000 1 6 channel ✓
36 40894464 20971520000 2 1 channel ✓
37 40894464 20971520000 2 3 channel ✓
38 40894464 20971520000 3 1 channel ✓
39 40894464 20971520000 3 2 channel ✓
40 40894464 20971520000 4 1 channel ✓
41 40894464 20971520000 4 3 channel ✓
42 40894464 20971520000 4 5 channel ✓
43 40894464 20971520000 5 1 channel ✓
44 40894464 20971520000 5 2 channel ✓
45 40894464 20971520000 6 1 channel ✓
46 40894464 52428800000 0 7 channel ✓
47 40894464 52428800000 1 1 32 ✓
48 40894464 52428800000 1 1 64 ✓
49 40894464 52428800000 1 1 128 ✓
50 40894464 52428800000 1 1 256 ✓
51 40894464 52428800000 1 1 512 ✓
52 40894464 52428800000 1 1 channel ✓
53 40894464 52428800000 1 1 tensor ✓
54 40894464 52428800000 1 2 channel ✓
55 40894464 52428800000 1 3 channel ✓
56 40894464 52428800000 1 4 channel ✓
57 40894464 52428800000 1 5 channel ✓
58 40894464 52428800000 1 6 channel ✓
59 40894464 52428800000 2 1 channel ✓
60 40894464 52428800000 2 3 channel ✓
61 40894464 52428800000 3 1 channel ✓
62 40894464 52428800000 3 2 channel ✓
63 40894464 52428800000 4 1 channel ✓
64 40894464 52428800000 4 3 channel ✓
65 40894464 52428800000 4 5 channel ✓
66 40894464 52428800000 5 1 channel ✓
67 40894464 52428800000 5 2 channel ✓
68 40894464 52428800000 6 1 channel ✓
69 40894464 104857600000 0 7 channel ✓
70 40894464 104857600000 1 1 32 ✓
71 40894464 104857600000 1 1 64 ✓
72 40894464 104857600000 1 1 128 ✓
73 40894464 104857600000 1 1 256 ✓
74 40894464 104857600000 1 1 512 ✓
75 40894464 104857600000 1 1 channel ✓
76 40894464 104857600000 1 1 tensor ✓
77 40894464 104857600000 1 2 channel ✓
78 40894464 104857600000 1 3 channel ✓
79 40894464 104857600000 1 4 channel ✓
80 40894464 104857600000 1 5 channel ✓
81 40894464 104857600000 1 6 channel ✓
82 40894464 104857600000 2 1 channel ✓
83 40894464 104857600000 2 3 channel ✓
84 40894464 104857600000 3 1 channel ✓
85 40894464 104857600000 3 2 channel ✓
86 40894464 104857600000 4 1 channel ✓
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87 40894464 104857600000 4 3 channel ✓
88 40894464 104857600000 4 5 channel ✓
89 40894464 104857600000 5 1 channel ✓
90 40894464 104857600000 5 2 channel ✓
91 40894464 104857600000 6 1 channel ✓
92 84934656 10485760000 0 7 channel ✓
93 84934656 10485760000 1 1 32 ✓
94 84934656 10485760000 1 1 64 ✓
95 84934656 10485760000 1 1 128 ✓
96 84934656 10485760000 1 1 256 ✓
97 84934656 10485760000 1 1 channel ✓
98 84934656 10485760000 1 1 tensor ✓
99 84934656 10485760000 1 2 channel ✓

100 84934656 10485760000 1 3 channel ✓
101 84934656 10485760000 1 4 channel ✓
102 84934656 10485760000 1 5 channel ✓
103 84934656 10485760000 1 6 channel ✓
104 84934656 10485760000 2 1 channel ✓
105 84934656 10485760000 2 3 channel ✓
106 84934656 10485760000 3 1 channel ✓
107 84934656 10485760000 3 2 channel ✓
108 84934656 10485760000 4 1 channel ✓
109 84934656 10485760000 4 3 channel ✓
110 84934656 10485760000 4 5 channel ✓
111 84934656 10485760000 5 1 channel ✓
112 84934656 10485760000 5 2 channel ✓
113 84934656 10485760000 6 1 channel ✓
114 84934656 20971520000 0 7 channel ✓
115 84934656 20971520000 1 1 32 ✓
116 84934656 20971520000 1 1 64 ✓
117 84934656 20971520000 1 1 128 ✓
118 84934656 20971520000 1 1 256 ✓
119 84934656 20971520000 1 1 channel ✓
120 84934656 20971520000 1 1 tensor ✓
121 84934656 20971520000 1 2 channel ✓
122 84934656 20971520000 1 3 channel ✓
123 84934656 20971520000 1 4 channel ✓
124 84934656 20971520000 1 5 channel ✓
125 84934656 20971520000 1 6 channel ✓
126 84934656 20971520000 2 1 channel ✓
127 84934656 20971520000 2 3 channel ✓
128 84934656 20971520000 3 1 channel ✓
129 84934656 20971520000 3 2 channel ✓
130 84934656 20971520000 4 1 channel ✓
131 84934656 20971520000 4 3 channel ✓
132 84934656 20971520000 4 5 channel ✓
133 84934656 20971520000 5 1 channel ✓
134 84934656 20971520000 5 2 channel ✓
135 84934656 20971520000 6 1 channel ✓
136 84934656 52428800000 0 7 channel ✓
137 84934656 52428800000 1 1 32 ✓
138 84934656 52428800000 1 1 64 ✓
139 84934656 52428800000 1 1 128 ✓
140 84934656 52428800000 1 1 256 ✓
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141 84934656 52428800000 1 1 channel ✓
142 84934656 52428800000 1 1 tensor ✓
143 84934656 52428800000 1 2 channel ✓
144 84934656 52428800000 1 3 channel ✓
145 84934656 52428800000 1 4 channel ✓
146 84934656 52428800000 1 5 channel ✓
147 84934656 52428800000 1 6 channel ✓
148 84934656 52428800000 2 1 channel ✓
149 84934656 52428800000 2 3 channel ✓
150 84934656 52428800000 3 1 channel ✓
151 84934656 52428800000 3 2 channel ✓
152 84934656 52428800000 4 1 channel ✓
153 84934656 52428800000 4 3 channel ✓
154 84934656 52428800000 4 5 channel ✓
155 84934656 52428800000 5 1 channel ✓
156 84934656 52428800000 5 2 channel ✓
157 84934656 52428800000 6 1 channel ✓
158 84934656 104857600000 0 7 channel ✓
159 84934656 104857600000 1 1 32 ✓
160 84934656 104857600000 1 1 64 ✓
161 84934656 104857600000 1 1 128 ✓
162 84934656 104857600000 1 1 256 ✓
163 84934656 104857600000 1 1 channel ✓
164 84934656 104857600000 1 1 tensor ✓
165 84934656 104857600000 1 2 channel ✓
166 84934656 104857600000 1 3 channel ✓
167 84934656 104857600000 1 4 channel ✓
168 84934656 104857600000 1 5 channel ✓
169 84934656 104857600000 1 6 channel ✓
170 84934656 104857600000 2 1 channel ✓
171 84934656 104857600000 2 3 channel ✓
172 84934656 104857600000 3 1 channel ✓
173 84934656 104857600000 3 2 channel ✓
174 84934656 104857600000 4 1 channel ✓
175 84934656 104857600000 4 3 channel ✓
176 84934656 104857600000 4 5 channel ✓
177 84934656 104857600000 5 1 channel ✓
178 84934656 104857600000 5 2 channel ✓
179 84934656 104857600000 6 1 channel ✓
180 154140672 10485760000 0 7 channel ✓
181 154140672 10485760000 1 1 32 ✓
182 154140672 10485760000 1 1 64 ✓
183 154140672 10485760000 1 1 128 ✓
184 154140672 10485760000 1 1 256 ✓
185 154140672 10485760000 1 1 channel ✓
186 154140672 10485760000 1 1 tensor ✓
187 154140672 10485760000 1 2 channel ✓
188 154140672 10485760000 1 3 channel ✓
189 154140672 10485760000 1 4 channel ✓
190 154140672 10485760000 1 5 channel ✓
191 154140672 10485760000 1 6 channel ✓
192 154140672 10485760000 2 1 channel ✓
193 154140672 10485760000 2 3 channel ✓
194 154140672 10485760000 3 1 channel ✓
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195 154140672 10485760000 3 2 channel ✓
196 154140672 10485760000 4 1 channel ✓
197 154140672 10485760000 4 3 channel ✓
198 154140672 10485760000 4 5 channel ✓
199 154140672 10485760000 5 1 channel ✓
200 154140672 10485760000 5 2 channel ✓
201 154140672 10485760000 6 1 channel ✓
202 154140672 20971520000 0 7 channel ✓
203 154140672 20971520000 1 1 32 ✓
204 154140672 20971520000 1 1 64 ✓
205 154140672 20971520000 1 1 128 ✓
206 154140672 20971520000 1 1 256 ✓
207 154140672 20971520000 1 1 channel ✓
208 154140672 20971520000 1 1 tensor ✓
209 154140672 20971520000 1 2 channel ✓
210 154140672 20971520000 1 3 channel ✓
211 154140672 20971520000 1 4 channel ✓
212 154140672 20971520000 1 5 channel ✓
213 154140672 20971520000 1 6 channel ✓
214 154140672 20971520000 2 1 channel ✓
215 154140672 20971520000 2 3 channel ✓
216 154140672 20971520000 3 1 channel ✓
217 154140672 20971520000 3 2 channel ✓
218 154140672 20971520000 4 1 channel ✓
219 154140672 20971520000 4 3 channel ✓
220 154140672 20971520000 4 5 channel ✓
221 154140672 20971520000 5 1 channel ✓
222 154140672 20971520000 5 2 channel ✓
223 154140672 20971520000 6 1 channel ✓
224 154140672 52428800000 0 7 channel ✓
225 154140672 52428800000 1 1 32 ✓
226 154140672 52428800000 1 1 64 ✓
227 154140672 52428800000 1 1 128 ✓
228 154140672 52428800000 1 1 256 ✓
229 154140672 52428800000 1 1 channel ✓
230 154140672 52428800000 1 1 tensor ✓
231 154140672 52428800000 1 2 channel ✓
232 154140672 52428800000 1 3 channel ✓
233 154140672 52428800000 1 4 channel ✓
234 154140672 52428800000 1 5 channel ✓
235 154140672 52428800000 1 6 channel ✓
236 154140672 52428800000 2 1 channel ✓
237 154140672 52428800000 2 3 channel ✓
238 154140672 52428800000 3 1 channel ✓
239 154140672 52428800000 3 2 channel ✓
240 154140672 52428800000 4 1 channel ✓
241 154140672 52428800000 4 3 channel ✓
242 154140672 52428800000 4 5 channel ✓
243 154140672 52428800000 5 1 channel ✓
244 154140672 52428800000 5 2 channel ✓
245 154140672 52428800000 6 1 channel ✓
246 154140672 104857600000 0 7 channel ✓
247 154140672 104857600000 1 1 32 ✓
248 154140672 104857600000 1 1 64 ✓
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249 154140672 104857600000 1 1 128 ✓
250 154140672 104857600000 1 1 256 ✓
251 154140672 104857600000 1 1 channel ✓
252 154140672 104857600000 1 1 tensor ✓
253 154140672 104857600000 1 2 channel ✓
254 154140672 104857600000 1 3 channel ✓
255 154140672 104857600000 1 4 channel ✓
256 154140672 104857600000 1 5 channel ✓
257 154140672 104857600000 1 6 channel ✓
258 154140672 104857600000 2 1 channel ✓
259 154140672 104857600000 2 3 channel ✓
260 154140672 104857600000 3 1 channel ✓
261 154140672 104857600000 3 2 channel ✓
262 154140672 104857600000 4 1 channel ✓
263 154140672 104857600000 4 3 channel ✓
264 154140672 104857600000 4 5 channel ✓
265 154140672 104857600000 5 1 channel ✓
266 154140672 104857600000 5 2 channel ✓
267 154140672 104857600000 6 1 channel ✓
268 679477248 10485760000 0 7 channel ✓
269 679477248 10485760000 1 1 32 ✓
270 679477248 10485760000 1 1 64 ✓
271 679477248 10485760000 1 1 128 ✓
272 679477248 10485760000 1 1 256 ✓
273 679477248 10485760000 1 1 512 ✓
274 679477248 10485760000 1 1 channel ✓
275 679477248 10485760000 1 1 tensor ✓
276 679477248 10485760000 1 2 channel ✓
277 679477248 10485760000 1 3 channel ✓
278 679477248 10485760000 1 4 channel ✓
279 679477248 10485760000 1 5 channel ✓
280 679477248 10485760000 1 6 channel ✓
281 679477248 10485760000 2 1 channel ✓
282 679477248 10485760000 2 3 channel ✓
283 679477248 10485760000 3 1 channel ✓
284 679477248 10485760000 3 2 channel ✓
285 679477248 10485760000 4 1 channel ✓
286 679477248 10485760000 4 3 channel ✓
287 679477248 10485760000 4 5 channel ✓
288 679477248 10485760000 5 1 channel ✓
289 679477248 10485760000 5 2 channel ✓
290 679477248 10485760000 6 1 channel ✓
291 679477248 20971520000 0 7 channel ✓
292 679477248 20971520000 1 1 32 ✓
293 679477248 20971520000 1 1 64 ✓
294 679477248 20971520000 1 1 128 ✓
295 679477248 20971520000 1 1 256 ✓
296 679477248 20971520000 1 1 512 ✓
297 679477248 20971520000 1 1 channel ✓
298 679477248 20971520000 1 1 tensor ✓
299 679477248 20971520000 1 2 channel ✓
300 679477248 20971520000 1 3 channel ✓
301 679477248 20971520000 1 4 channel ✓
302 679477248 20971520000 1 5 channel ✓
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303 679477248 20971520000 1 6 channel ✓
304 679477248 20971520000 2 1 channel ✓
305 679477248 20971520000 2 3 channel ✓
306 679477248 20971520000 3 1 channel ✓
307 679477248 20971520000 3 2 channel ✓
308 679477248 20971520000 4 1 channel ✓
309 679477248 20971520000 4 3 channel ✓
310 679477248 20971520000 4 5 channel ✓
311 679477248 20971520000 5 1 channel ✓
312 679477248 20971520000 5 2 channel ✓
313 679477248 20971520000 6 1 channel ✓
314 679477248 52428800000 0 7 channel ✓
315 679477248 52428800000 1 1 32 ✓
316 679477248 52428800000 1 1 64 ✓
317 679477248 52428800000 1 1 128 ✓
318 679477248 52428800000 1 1 256 ✓
319 679477248 52428800000 1 1 512 ✓
320 679477248 52428800000 1 1 channel ✓
321 679477248 52428800000 1 1 tensor ✓
322 679477248 52428800000 1 2 channel ✓
323 679477248 52428800000 1 3 channel ✓
324 679477248 52428800000 1 4 channel ✓
325 679477248 52428800000 1 5 channel ✓
326 679477248 52428800000 1 6 channel ✓
327 679477248 52428800000 2 1 channel ✓
328 679477248 52428800000 2 3 channel ✓
329 679477248 52428800000 3 1 channel ✓
330 679477248 52428800000 3 2 channel ✓
331 679477248 52428800000 4 1 channel ✓
332 679477248 52428800000 4 3 channel ✓
333 679477248 52428800000 4 5 channel ✓
334 679477248 52428800000 5 1 channel ✓
335 679477248 52428800000 5 2 channel ✓
336 679477248 52428800000 6 1 channel ✓
337 679477248 104857600000 0 7 channel ✓
338 679477248 104857600000 1 1 32 ✓
339 679477248 104857600000 1 1 64 ✓
340 679477248 104857600000 1 1 128 ✓
341 679477248 104857600000 1 1 256 ✓
342 679477248 104857600000 1 1 512 ✓
343 679477248 104857600000 1 1 channel ✓
344 679477248 104857600000 1 1 tensor ✓
345 679477248 104857600000 1 2 channel ✓
346 679477248 104857600000 1 3 channel ✓
347 679477248 104857600000 1 4 channel ✓
348 679477248 104857600000 1 5 channel ✓
349 679477248 104857600000 1 6 channel ✓
350 679477248 104857600000 2 1 channel ✓
351 679477248 104857600000 2 3 channel ✓
352 679477248 104857600000 3 1 channel ✓
353 679477248 104857600000 3 2 channel ✓
354 679477248 104857600000 4 1 channel ✓
355 679477248 104857600000 4 3 channel ✓
356 679477248 104857600000 4 5 channel ✓
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357 679477248 104857600000 5 2 channel ✓
358 679477248 104857600000 6 1 channel ✓
359 1233125376 10485760000 1 2 512 ✗
360 1233125376 10485760000 4 3 512 ✗
361 1233125376 20971520000 1 2 512 ✗
362 1233125376 20971520000 4 3 512 ✗
363 1233125376 52428800000 1 2 512 ✗
364 1233125376 52428800000 4 3 512 ✗
365 1233125376 104857600000 1 2 512 ✗
366 1233125376 104857600000 4 3 512 ✗
367 7083130880 10485760000 4 3 64 ✗
368 7083130880 104857600000 4 3 64 ✗
369 71236059136 10485760000 4 3 64 ✗
370 71236059136 20971520000 4 3 64 ✗
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