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Abstract

Functional Distributional Semantics is a re-001
cently proposed framework for learning dis-002
tributional semantics that provides linguistic003
interpretability. It models the meaning of a004
word as a binary classifier rather than a numeri-005
cal vector. In this work, we propose a method006
to train a Functional Distributional Semantics007
model with grounded visual data. We train it008
on the Visual Genome dataset, which is closer009
to the kind of data encountered in human lan-010
guage acquisition than a large text corpus. On011
four external evaluation datasets, our model out-012
performs previous work on learning semantics013
from Visual Genome.014

1 Introduction015

The target of distributional semantics models is to016

understand and represent the meanings of words017

from their distributions in large corpus. Many018

approaches learn a numerical vector for each019

word, which encodes its distributional informa-020

tion. They can be roughly divided into two cat-021

egories: frequency-based methods such as co-022

occurrence matrix (Sahlgren, 2006), and prediction-023

based methods such as Word2vec (Mikolov et al.,024

2013). More recently, progress has been made in025

learning word representations in a specific context,026

which are also called contextualized embeddings.027

Examples include ELMo (Peters et al., 2018) and028

BERT (Devlin et al., 2019).029

Functional Distributional Semantics is a frame-030

work that not only provides contextualized seman-031

tic representations, but also provides more inter-032

pretability. It was first proposed by Emerson and033

Copestake (2016), and it explicitly separates the034

modeling of words and the modeling of objects and035

events. This is a fundamental distinction in predi-036

cate logic. While logic is not necessary for all NLP037

tasks, it is an essential tool for modeling many se-038

mantic phenomena (for example, see: Cann, 1993;039

Allan, 2001; Kamp and Reyle, 2013). For semantic040

research questions, having a logical interpretation 041

is a clear advantage over vector-based models. We 042

will explain the framework in Section 2.2. 043

Another issue with distributional semantic mod- 044

els, as discussed by Emerson (2020c), is the sym- 045

bol grounding problem – if meanings of words are 046

defined in terms of other words, the definitions 047

are circular. During human language acquisition, 048

words are learned while interacting with the phys- 049

ical world, rather than from text or speech alone. 050

An important goal for a semantic theory is to ex- 051

plain how language relates to the world, and how 052

this relationship is learned. We focus on the Visual 053

Genome dataset, not only because it provides rela- 054

tively fine-grained annotations, but also it is similar 055

to realistic circumstance encountered during lan- 056

guage acquisition, as we will explain in Section 2.3. 057

Our main theoretical contribution is to adapt the 058

Functional Distributional Semantics framework to 059

better suit visual data. This is a step approaching 060

the completion of long-term goal: leveraging pre- 061

vious work (Emerson, 2020a), we could joint train 062

the Functional Distributional Semantics model with 063

both textual and visual data. In order to make it 064

compatible with modern techniques for machine vi- 065

sion, while retaining its logical interpretability, we 066

replace the RBM of previous work with a Gaussian 067

MRF, as explained in Section 3. 068

Our main empirical contribution is to demon- 069

strate the effectiveness of the resulting model. In 070

Section 4.1, we intrinsically evaluate the major 071

components of our model, to see how well they fit 072

the training data. In Section 4.2, we evaluate our 073

model on four external evaluation datasets, compar- 074

ing against previous approaches to learning from 075

Visual Genome, as well as strong text-based base- 076

lines. Not only do we confirm Herbelot (2020)’s 077

finding that learning from grounded data is more 078

data-efficient than learning from text alone, but 079

our model outperforms the previous approaches, 080

demonstrating the value of our functional approach. 081

1



2 Background and Related Work082

2.1 Visually Grounded Semantic Learning083

There is extensive research on learning language084

semantics from grounded visual data. Visual-085

Semantic Embedding and Visual Concept Learning086

in Visual Question Answering are two representa-087

tive frameworks. Some works under these frame-088

works share the idea with our Functional Distri-089

butional Semantics model that textual labels are090

modeled as classifiers over the semantic space.091

Visual-Semantic Embedding (Frome et al., 2013)092

learns joint representations of vision and language093

in a common visual-semantic space. Kiros et al.094

(2014) proposed to unify the textual and visual em-095

beddings via multimodal neural-based language096

models. Ren et al. (2016) models images as points097

in the Visual-Semantic space, while text are Gaus-098

sian distributions over them.099

Visual Concept Learning contributes to various100

visual linguistic applications, such as image cap-101

tioning (Karpathy and Fei-Fei, 2015) and Visual102

Question Answering (Antol et al., 2015). Some103

works in applying neural symbolic approach to104

VQA share similar ideas of learning visual con-105

cepts with our model. For example, Mao et al.106

(2018) learn neural operators to capture attributes107

(concepts) of objects and map them into attribute-108

specific space. Then questions are parsed into ex-109

ecutable programs.Han et al. (2019) further learn110

the relations between objects as metaconcepts.111

Our work differs from them in two main aspects.112

Firstly, our framework supports truth-conditional113

semantics, as explained in Section 2.2, and there-114

fore provides more logical interpretability. Unlike115

the above works which always assume images are116

given, we use a generative model which allows us117

to perform inference on textual labels alone, as il-118

lustrated in Fig. 3 and explained in Section 3.4. Sec-119

ondly, we learn semantics from the Visual Genome120

dataset, which is considered more similar to the121

data encountered during language acquisition, as122

explained in Section 2.3.123

2.2 Functional Distributional Semantics124

Functional Distributional Semantics was first pro-125

posed by Emerson and Copestake (2016). The126

framework takes model-theoretic semantics as a127

starting point, defining meaning in terms of truth.128

Given an individual (also called an entity), and129

given a predicate (the meaning of a content word),130

we can ask whether the predicate is true of that in-131

dividual. Note that an individual could be a person, 132

an object, or an event, following neo-Davidsonian 133

event semantics (Davidson, 1967; Parsons, 1990). 134

Functional Distributional Semantics therefore 135

separates the modeling of words and individuals. 136

An individual is represented in a high-dimensional 137

feature space. The term pixie refers to the repre- 138

sentation of an individual (Emerson and Copestake, 139

2017). A predicate is formalized as a binary clas- 140

sifier over pixies. It assigns the value true if an 141

individual with those features could be described 142

by the predicate, and it assigns false otherwise. 143

Such a classifier is called a semantic function. 144

The model is separated into a world model and 145

a lexicon model. The lexicon model consists of 146

semantic functions. Following situation semantics 147

(Barwise and Perry, 1983), the world model defines 148

a distribution over situations. Each situation con- 149

sists of a set of individuals, connected by semantic 150

roles. In our work, we only consider two types of 151

semantic roles: ARG1 and ARG2. For example, 152

the sentence ‘a computer is on a desk’ describes a 153

situation with three individuals: the computer, the 154

desk, and the event of the computer being on the 155

desk. The computer is the ARG1 of the event, and 156

the desk is the ARG2, as shown in Figs. 1 and 2. 157

Unlike other distributional models, Functional 158

Distributional Semantics is interpretable in for- 159

mal semantic terms, and supports first-order logic 160

(Emerson, 2020b). Emerson (2020a) proposed an 161

autoencoder-like structure which can be trained 162

efficiently from semantic dependency graphs. 163

Because individuals are explicitly modeled, 164

grounding the pixies is more theoretically sound 165

than grounding word vectors. The framework has 166

clear potential for learning grounded semantics, 167

which we explore in this paper. 168

2.3 Visual Genome 169

The Visual Genome dataset contains over 108,000 170

images and five different formats of annotations, 171

including regions, attributes, relations, object in- 172

stances and question answering. In this work, we 173

only consider the relations, which are formulated as 174

predicate triples. Each triple contains two objects 175

in the image and one relation between them. The 176

objects are identified with bounding boxes, as illus- 177

trated in Fig. 1. The object predicates are nouns or 178

noun phrases, and the relation predicates are verbs, 179

prepositions or prepositional phrases. 180

Many works use Visual Genome as a grounded 181
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Figure 1: An example image in Visual Genome, anno-
tated with the relation [‘Computer’, ‘ON’, ‘Desk’]

data source. For example, Fukui et al. (2016) use182

it to ground its visual question answering system.183

Furthermore, the fine-grained annotations make184

Visual Genome a compelling dataset for studying185

lexical semantics. As discussed by Herbelot (2020),186

Visual Genome is similar in size to what a young187

child is exposed to, and the annotations are similar188

to simple utterances encountered during early lan-189

guage acquisition. Kuzmenko and Herbelot (2019)190

and Herbelot (2020) learn semantics from the an-191

notations, while discarding the images themselves.192

They trained word embeddings with a count-based193

method and a Skip-gram-based method, respec-194

tively. This methodology, of extracting word re-195

lations from an annotated image dataset, was also196

analyzed and justified by Schlangen (2019).197

To our knowledge, there has been no previous198

attempt to use grounded visual data to train a Func-199

tional Distributional Semantics model, nor to uti-200

lize the visual information of Visual Genome to201

learn natural language semantics.202

3 Model and Methods203

We will explain the probabilistic structure of our204

model in Section 3.1, and how we train the compo-205

nents in Sections 3.2 and 3.3. In Section 3.4, we206

present an inference model to infer latent pixies207

from words and the context.208

3.1 Probabilistic Graphical Model209

We define a graphical model which jointly gener-210

ates pixies and predicates, as shown in Fig. 2. It211

has two parts. The world model is shown in the212

top blue box, which models the distribution of situ-213

ations, or in other words, the joint distribution of214

pixies. It is an undirected graphical model, with215

probabilistic dependence according to the ARG1216

X Y Z

P Q R

ARG1 ARG2

["computer": 0.95,
"monitor": 0.89,
"apple": 0.04,
"orange": 0.09,
"cat": 0.13, …]

"computer"

Figure 2: Our probabilistic graphical model. The top
blue box contains the world model, which learns the
joint distribution of the observed pixies X , Y and Z
from their corresponding images. The bottom red box
shows the lexicon model, where each semantic function
in the vocabulary V is applied to each pixie. For each
pixie, one predicate is generated, with probability pro-
portional to the probability of truth.

and ARG2 roles, as further explained in section 3.2. 217

The lexicon model is shown in the bottom red box, 218

which models each predicate as a semantic func- 219

tion. It is a directed graphical model. For each 220

pixie, it produces a probability of truth for each 221

predicate (which are not observed), as well as gen- 222

erating a single predicate (which is observed), as 223

further explained in Section 3.3. 224

Given a labeled image triple, the model can be 225

trained by maximizing the likelihood of generating 226

the data, including both observed predicates and 227

observed pixies. The likelihood can be split into 228

two parts, as shown in Eq. 1, where s is a situation 229

(a pixie for each individual), and g is a semantic 230

dependency graph (a predicate for each individual). 231

The first term is the likelihood of generating the 232

observed situation, modeled by the world model. 233

The second term is the likelihood of generating 234

the dependency graph given an observed situation, 235

modeled by the lexicon model. Therefore, we can 236

optimize parameters of the two parts separately. 237

logP (s, g) = logP (s) + logP (g|s) (1) 238

3.2 World Model 239

The world model learns the joint distribution of 240

pixies, as shown in the top half of Fig. 2. The 241

individuals are grounded by images, so we can ob- 242

tain the pixie vectors by extracting visual features 243
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for individuals from their corresponding images.244

For object pixies, they are grounded by their corre-245

sponding bounding boxes. For event pixies, Visual246

Genome does not have labeled bounding boxes for247

them and their meaning tends to be more abstract,248

so we use the whole image to ground them. As a249

feature extractor, we use ResNet101, a Convolu-250

tional Neural Network (CNN) pre-trained on Ima-251

geNet. To further reduce redundant dimensions, we252

perform PCA on the last layer of the CNN. We take253

the output of PCA as the pixie space X . A situation254

s is a collection of pixies within a semantic graph.255

In this work, we only consider graphs with three256

nodes, connected by the roles ARG1 and ARG2, to257

match the structure of Visual Genome relations.258

In previous work, the world model was im-259

plemented as a Restricted Boltzmann Machine260

(RBM). However, an RBM uses binary-valued261

vectors, which is not compatible with the real-262

valued vectors produced by a CNN. Furthermore,263

an RBM does not give normalized probabilities,264

which means that computationally expensive tech-265

niques are required, such as MCMC, used by266

(Emerson and Copestake, 2016), or Belief Prop-267

agation, used by (Emerson, 2020a).268

We model situations with a Gaussian Markov269

Random Field (MRF). For an n-dimensional pixie270

space, this gives a 3n-dimensional Gaussian distri-271

bution, with parameters µ and Σ for the mean and272

covariance. As shown in the first term of Eq. 1, we273

would like to maximize P (s).274

P (s) = N (s;µ,Σ) (2)275

For a Gaussian distribution, the maximum likeli-276

hood estimate (MLE) has a closed-form solution,277

which is simply the sample mean and sample co-278

variance. However, because we assume the left and279

right pixies in Fig. 2 are conditionally independent280

given the event pixie, we force the top right and281

bottom left pixie blocks of the precision matrix282

Σ−1 to be zero. We raise this assumption for the283

consideration of applying the Functional Distribu-284

tional Semantics model to larger graphs with more285

individuals in the future. The assumption does not286

affect performance on word similarity datasets, but287

it slightly damages performance on contextual in-288

ference datasets. Detailed results and discussion289

are given in Appendix A.4.290

3.3 Lexicon Model291

The lexicon model learns a list of semantic func-292

tions, each corresponds to a word in predicate vo-293

cabulary V . The semantic function tr(x) for a 294

given predicate r is a logistic regression classifier 295

over the pixie space, with a weight vector vr. From 296

the perspective of deep learning, this is a single 297

neural net layer with a sigmoid activation function. 298

As shown in Eq. 3, the output is a probabilistic 299

truth value ranging between (0, 1). 300

tr(x) = σ(vr · x) (3) 301

As shown in the second row of Fig. 2, all se- 302

mantic functions are applied to each pixie. Based 303

on the probabilities of truth, a single predicate is 304

generated. The probability of generating a spe- 305

cific predicate r for a given pixie x is computed as 306

shown in Eq. 4. The more likely a predicate is to 307

be true, the more likely it is to be generated. 308

P (r|x) = tr(x)∑
i ti(x)

(4) 309

The lexicon model is optimized to maximize 310

logP (g|s), the log-likelihood of generating the 311

predicates given the pixies. This can be done by 312

gradient descent. 313

3.4 Variational Inference 314

When learning from Visual Genome, pixies are 315

grounded by images. However, when applying the 316

model to text, the pixies are latent. We provide an 317

inference model to infer latent pixie distributions 318

given observed predicates. This inference model is 319

used in Section 4.2 on textual evaluation datasets. 320

Exact inference of the posterior P (s|g) is in- 321

tractable, because this requires integrating over 322

the high-dimensional latent space of s. This is a 323

common problem when working with probabilistic 324

models. Therefore we use a variational inference 325

algorithm to approximate the posterior distribution 326

P (s|g) with a Gaussian distribution Q(s). For sim- 327

plicity,we assume that each dimension of Q(s) is 328

independent, so its covariance matrix is diagonal. 329

In Fig. 3, the graphical model illustrates this as- 330

sumption, as there is no connection among the pixie 331

nodes in the middle row. Following the procedure 332

of variational inference, the approximate distribu- 333

tion Q(s) is optimized to maximize the Evidence 334

Lower Bound (ELBO), given in Eq. 5. This can be 335

done by gradient descent. 336

L = EQ

[
logP (g|s)

]
− βDKL

(
Q(s)||P (s)

)
(5) 337

The first term measures how well Q(s) matches 338

the observed predicates, according to the lexicon 339
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model P (g|s). The second term measures how well340

Q(s) matches the world model P (s). We would341

like to emphasize the likelihood of generating the342

observed predicates, so we down-weight the second343

term with a hyper-parameter β, similarly to a β-344

VAE (Higgins et al., 2017). Detailed analysis on345

the effects of β is discussed in Appendix A.8.346

Exactly computing the first term is intractable.347

Emerson (2020a) used a probit approximation, but348

we instead follow Daunizeau (2017), who derived349

the more accurate approximations given in Eqs. 6350

and 7, where x has mean µ and variance Σ. The351

second approximation is particularly important, as352

we aim to maximize the log-likelihood.353

E[σ(x)] ≈ σ

(
µ√

1 + 0.368Σ

)
(6)354

E[log σ(x)] ≈ log σ

(
µ− 0.319Σ0.781

√
1 + 0.205Σ0.870

)
(7)355

The second term of Eq. 5 is the Kullback-Leibler356

(KL) divergence between two Gaussians, which has357

the closed-form formula given in Eq. 8, where k is358

the total dimensionality.359

DKL(Q||P ) =
1

2

[
log

|ΣP |
|ΣQ|

− k + tr(Σ−1
P ΣQ)

+(µQ−µP )
TΣ−1

P (µQ−µP )
] (8)360

As illustrated in Fig. 3, variational inference al-361

lows us to calculate quantities such as the probabil-362

ity that an animal which has a tail is a horse. To ob-363

tain the inferred distribution for a single pixie, we364

need to marginalize the situation distribution Q(s).365

From the independence assumption, this simply366

means taking the parameters for the desired pixie.367

Then we can apply the semantic function for r on368

the inferred pixie x, as shown in Eq. 9, which can369

be approximated using Eq. 6.370

tr(x) ≈ EQ

[
σ(vr · x)

]
(9)371

Although Q(s) assumes independence, its pa-372

rameters are jointly inferred based on all predicates.373

This is because the KL-divergence in Eq. 8 depends374

on ΣP , which is nonzero between each pair of pix-375

ies linked by a semantic role.376

For example, in Fig. 3, the truth of ‘horse’ for X377

depends on the observed predicate ‘tail’ or ‘paw’.378

This is not a direct dependence between words, but379

rather relies on three intermediate representations380

(the three pixies), all of which are expressed in381

P Q R

Y ZX

"animal" "has" "tail"

["animal": 0.58,
“horse": 0.43,
"bear": 0.35,
"dog": 0.29,
"cat": 0.22, …]

"animal" "has" "paw"

["animal": 0.56,
“bear": 0.42,
"horse": 0.36,
"cat": 0.35,
"dog": 0.31, …]

Figure 3: Graphical inference model: The pixies X ,
Y and Z in the middle row are jointly inferred from
the observed predicates P , Q and R in the bottom row,
using variational inference. Semantic functions are ap-
plied to X , to give probabilities of truth. As well as
the observed predicate, the model predicts that other
predicates may also be true. Two examples are given,
in green and yellow, showing how the predicted truth
values for X depend on all observed predicates.

terms of visual features. The first term of the ELBO 382

connects the semantic function for ‘tail’ or ‘paw’ to 383

the variational parameters for Z. The second term 384

of the ELBO connects the variational parameters 385

for Z and Y (based on the world model covariance 386

for ARG2) as well as Y and X (based on the world 387

model covariance for ARG1). Finally the semantic 388

function for ‘horse’ is applied to the variational 389

distribution for X . 390

In this example, the model correctly infers that 391

an animal with a tail is more likely to be a horse 392

and an animal with paws is more likely to be a bear. 393

We notice that the truth values are generally low 394

for all semantic functions. Even the highest truth is 395

only around 0.58. This illustrates that the model is 396

not very certain, which might be expected since the 397

model is performing inference on visual features, 398

but the training image data is noisy. 399

For some evaluation datasets, we need to per- 400

form inference given a single predicate. This can be 401

done by marginalizing the joint distribution. Which 402

pixie variable to choose, out of the three, should 403

depend on the Part-Of-Speech (POS) of the word. 404

For nouns, the pixie node X or Z should be used, 405

as a noun should play the role of ARG1 or ARG2. 406

For verbs and prepositions, the node Y should be 407
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used, as they usually describe the relation.408

4 Evaluation409

To train our model, we follow the same pre-410

processing and filtering of Visual Genome as Her-411

belot (2020). Details of pre-processing and hyper-412

parameters are given in the appendix.413

4.1 Intrinsic Evaluation414

In this section, we examine whether a Gaussian415

MRF is a suitable choice for the world model, and416

whether the pixies in the pixie space are linearly417

separable such that the logistic semantic functions418

can successfully classify them.419

4.1.1 World Model Evaluation420

The world model learns a Gaussian distribution for421

the observed situations. In this section, we justify422

this choice by evaluating the fitting errors.423

Fig. 4 shows density histograms for two example424

pixie dimensions and their corresponding best-fit425

(MLE) Gaussian curves. The left histogram is an426

example for a majority of the pixie dimensions,427

which is tightly matched by the best-fit Gaussian.428

In other cases, as shown on the right, there are im-429

balanced tails and asymmetry. Despite their skew-430

ness and kurtosis, which make them look more431

like a Gamma distribution, they are still generally432

bell-shaped and the departure is not so heavy.433

To quantify the errors, we measure the Wasser-434

stein distance, the area of the histogram missing435

from the best-fit Gaussian. Across all 100 pixie di-436

mensions, the mean percentage missing is 7% with437

a variance of 1%. A more flexible model might438

give better modeling performance, which could be439

a future improvement direction. Nonetheless, we440

consider this level of error to be acceptably low.441

4.1.2 Lexicon Model Evaluation442

In this experiment, we investigate if our approach443

to model the semantic functions as logistic regres-444

sion classifiers is suitable. In particular, a logistic445

regression classifier is a linear classifier, which446

means if the data is not linearly separable, it would447

have inferior performance.448

We computed the Area Under Curve for the Re-449

ceiver Operating Characteristic (AUC-ROC), for450

all predicates in the vocabulary. For each predicate451

we randomly select equal amount of negative exam-452

ple pixies with its positive examples. The average453

score is 0.79 for object predicates, and 0.58 for454
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Figure 4: Density histograms for two selected pixie
dimensions, across the 2.8M training instances. Best-fit
Gaussian curves of the histograms are shown in red.
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Figure 5: ROC curves of the semantic functions for
selected predicates. Higher left is better performance.

event predicates. We also present the ROC for a 455

few example predicates in Fig. 5. 456

We can see that object classifiers have gener- 457

ally better performance. The classifier for ‘racket’ 458

shows slightly worse performance than the oth- 459

ers, whose reason might be its lower frequency. 460

Compared to object predicates, the semantic func- 461

tions for event predicates generally perform worse. 462

There are two potential reasons which could be 463

improved in future work. Firstly, we used visual 464

features generated from the whole image to rep- 465

resent the event pixie, which is often not specific 466

enough to identify the event. Secondly, a logis- 467

tic regression classifier might not be sophisticated 468

enough for this classification problem. 469

4.2 Extrinsic Evaluation 470

In this section, we use external semantic evalua- 471

tion datasets, to give a direct comparison against 472

previous work, and to test whether our model can 473

generalize beyond the training data. We evaluate 474
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on two lexical similarity datasets in Section 4.2.2,475

and two contextual datasets in Section 4.2.3. We476

compare against two types of baseline: models477

trained on a large corpus and models trained on478

Visual Genome.479

For these datasets, our model must assign simi-480

larity scores for predicate or triple pairs, which we481

compute as follows. The pixie values are inferred482

from the first predicate or triple in the pair. Then483

all semantic functions from the predicate vocabu-484

lary are applied to that pixie. Then the ranking of485

the second predicate in the pair over all potential486

predicates in the evaluation dataset is taken as the487

similarity score. Therefore, smaller ranking means488

higher similarity between predicates.489

Finally, because there are discrepancies between490

vocabularies used in Visual Genome and the evalu-491

ation datasets, we follow Herbelot (2020) in filter-492

ing the evaluation datasets according to the Visual493

Genome vocabulary, and use the filtered datasets494

to evaluate all models. For the two lexical datasets,495

we exactly follow Herbelot’s filtering conditions to496

give a direct comparison.497

For the contextual datasets, this filtering is too498

strict, resulting in zero vocabulary coverage. For499

these datasets, we apply looser filtering, with de-500

tails given in the appendix. This also requires re-501

training our model and the Visual Genome base-502

lines on a more loosely filtered training set.503

4.2.1 Baselines504

Visual Genome Baselines: We re-implement two505

previously proposed models learning distributional506

semantics from Visual Genome, described in Sec-507

tion 2.3. A simple count-based model was pro-508

posed by Kuzmenko and Herbelot (2019), which509

we refer to as VG-count. Herbelot (2020) improved510

on this and proposed EVA, a Skip-gram model511

trained on the same kind of co-occurrence data.512

Large Corpus Baselines: We trained two Skip-513

gram Word2vec models (Mikolov et al., 2013) us-514

ing 1 billion and 6 billion tokens from Wikipedia,515

using Gensim (Řehůřek and Sojka, 2010). We will516

refer to them as Word2vec-1B and Word2vec-6B.517

The window sizes are set to be 10 in two directions,518

so they contextualize with far more words than our519

model. We also use Glove (Pennington et al., 2014)520

trained on 6 billion Wikipedia tokens as another521

strong baseline, which we refer to as Glove-6B. For522

all three baselines, the dimensionality is set to 300.523

Compared to the large corpus baselines, our524

model has fewer parameters per word (100 vs. 300),525

and is trained on far fewer data points (2.8M rela- 526

tion triples vs. 1B or 6B tokens). 527

4.2.2 Lexical similarity and relatedness 528

We use two lexical similarity/relatedness datasets, 529

MEN (Bruni et al., 2014) and Simlex-999 (Hill 530

et al., 2015), both of which give scores for pairs 531

of words. MEN contains 3000 word pairs, and 532

SimLex-999 contains 999 pairs. After filtering for 533

the Visual Genome vocabulary, we have 584 pairs 534

for MEN and 169 pairs for SimLex-999. 535

MEN evaluates relatedness, while SimLex-999 536

evaluates similarity. For example, ‘coffee’ and 537

‘cup’ are related, but not similar. Capturing simi- 538

larity rather than relatedness is hard for most text- 539

based distributional semantics models because they 540

build concept representations based on their co- 541

occurrence in corpora, which generally reflects re- 542

latedness but not similarity. However, similarity 543

might be more directly reflected in terms of visual 544

features which can be captured by our model. 545

The results are shown in Tab. 1. Our model 546

outperforms the two baselines trained on Vi- 547

sual Genome, and matched the performance of 548

Word2vec-1B (the difference is statistically in- 549

significant, p>0.5). 550

If we force our model to evaluate on the full 551

1000 word pairs in the MEN test set (assigning the 552

median similarity score to the out-of-vocabulary 553

pairs), it still achieves 0.304. Using the loosely 554

filtered training set, our model can achieve the even 555

higher score of 0.670 (on the same strictly filtered 556

subset of MEN). This illustrates that one limit of 557

our model’s performance is the size of the Visual 558

Genome dataset. In contrast, the performance of 559

Word2vec does not improve much as the training 560

data increases from 1B to 6B, which suggests there 561

is a limit on how much can be learnt from local 562

textual co-occurrence information alone. 563

On SimLex-999, our model achieves 0.431, 564

which outperforms all baselines. Compared to 565

Glove-6B, the strongest baseline, it is weakly sig- 566

nificant (p<0.15). This might justify our point that 567

there is advantage of learning similarity from visual 568

features. Additionally, our model can use parame- 569

ters and data more effectively and efficiently than 570

Word2vec and Glove, achieving better performance 571

with less training data and fewer parameters. 572

Compared with VG-count and EVA, our model 573

can understand more semantics because it learns 574

from the visual information. As far as we know, 575

we have achieved a new state of the art on learning 576
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Models
Lexical datasets Contextual datasets

MEN SimLex-999 GS2011 RELPRON

Large corpus
baselines

Word2vec-1B 0.641 0.384 0.265 0.381
Word2vec-6B 0.652 0.397 0.278 0.401
Glove-6B 0.717 0.409 0.293 0.432

VG baselines
VG-count 0.336 0.224 0.063 0.038
EVA 0.543 0.390 0.068 0.032

Proposed approach Our model 0.639 0.431 0.171 0.117

Table 1: Evaluation results. For MEN, SimLex-999 and GS2011, the metric is Spearman correlation; for RELPRON,
mean average precision. All models are evaluated on subsets of the data covered by the VG vocabulary.

lexical semantics from Visual Genome. Combining577

results across all four datasets (including the con-578

textual datasets below), the difference between our579

model and EVA is highly significant (p<0.001).580

4.2.3 Contextual semantics581

We consider two contextual evaluation datasets.582

GS2011 (Grefenstette and Sadrzadeh, 2011) gives583

similarities of verbs in a given context. Each data584

point is a pair of subject-verb-object triples, where585

only the verbs are different. For example, [‘ta-586

ble’,‘show’, ‘result’] and [‘table’, ‘express’, ‘re-587

sult’] are judged highly similar. The dataset has588

199 distinct triple pairs and 2500 judgment records589

from different annotators. The evaluation metric590

is Spearman correlation across all judgments. As591

Van de Cruys et al. (2013) point out, the second592

verb in each pair is often nonsensical when com-593

bined with the corresponding subject and object.594

Therefore, we only compare the triple pairs in a595

single direction, inferring pixies from the first triple596

and applying the second verb’s semantic function.597

RELPRON (Rimell et al., 2016) evaluates com-598

positional semantics. It contains a list of terms,599

each associated with around 10 properties. Each600

property is a noun modified by a subject or object601

relative clause. For example, the term ‘theater’ has602

the subject property [‘building’, ‘show’, ‘film’] and603

object property [‘audience’, ‘exit’, ‘building’]. The604

task is to find the correct properties for each term,605

evaluated as Mean Average Precision (MAP). The606

development set contains 65 terms and 518 proper-607

ties; the test set, 73 terms and 569 properties.608

Under the loosely filtered condition, our sub-609

set of GS2011 contains 252 similarity judgments;610

RELPRON, 57 terms and 150 properties.611

Rimell et al. (2016) find that vector addition per-612

forms surprisingly well at combining contextual613

information. Therefore, for all baselines, we repre-614

sent a triple by adding the three word embeddings. 615

As aforementioned, we re-train our model and the 616

two VG baselines with loosely filtered data. 617

The results are shown in Tab. 1. The corpus 618

models outperform the VG models. However, this 619

is perhaps expected given that the vocabulary in 620

GS2011 and RELPRON is more formal, and even 621

when they are covered in Visual Genome, their 622

frequencies are low: for RELPRON, 54% of the 623

covered vocabulary has frequency below 100, com- 624

pared to only 6% for MEN. Furthermore, GS2011 625

evaluates similarity of verbs, but we saw in Sec- 626

tion 4.1.2 that our model is less accurate for verbs. 627

However, our model outperforms both VG base- 628

lines on both datasets. This suggests that our model 629

is less affected by data sparsity. For the baselines, 630

if a training triple contains multiple rare predicates, 631

the sparsity problem is compounded. However, our 632

model relies on the images, whose visual features 633

are shared across the whole training set. 634

5 Conclusion 635

In this paper, we proposed a method to train a Func- 636

tional Distributional Semantics model with visual 637

data. Our model outperformed the previous works 638

and achieved a new state of the art on learning 639

natural language semantics from Visual Genome. 640

Further to this, our model achieved better perfor- 641

mance than Word2vec and Glove on Simlex-999 642

and matched Word2vec-1B on MEN. This shows 643

that our model can use parameters and data more 644

efficiently than Word2vec and Glove. Additionally, 645

we also showed that our model can successfully be 646

used to make contextual inferences. As future work, 647

we could leverage previous work to jointly train the 648

Functional Distributional Semantics model with 649

both visual and textual data, such that we could 650

improve the vocabulary coverage and have better 651

understanding of abstract words. 652
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A Training and evaluation details 853

A.1 Filtering 854

For EVA, Herbelot (2020) filtered the Visual 855

Genome dataset with a minimum occurrence fre- 856

quency threshold of 100 in both ARG1 and ARG2 857

directions. After filtering, the resulting subset con- 858

tains 2.8M relation triples and the vocabulary size 859

is 1595. When evaluating the external datasets, it 860

only includes the noun predicates. For the results 861

reported in the intrinsic evaluations and in Tab. 1 862

where we specify ‘strict filtering’, we follow the 863

same filtering conditions with EVA. 864

We also train our model with a less strict filtering 865

setting, where the minimum frequency threshold 866

is set at 10 in at least one direction. Under this 867

filtering setting, the resulting subset contains 3.4M 868

relation triples and the vocabulary size is 6788. 869

When evaluating the external datasets, we includes 870
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all the covered predicates regardless of their POS.871

The results under the ‘loose filtering’ columns in872

Tab. 1 are evaluating under this setting. Addition-873

ally, every time we use the model trained under this874

setting, we will emphasize it is ‘under less strict875

filtering condition’.876

A.2 CNN877

For the visual feature extractor, the pretrained CNN,878

we used ResNet101 (He et al., 2016), which has879

101 layers deep and trained on ImageNet (Deng880

et al., 2009).881

A.3 PCA882

During the PCA transform, we reduce the pixie883

dimension from 1000 to 100, whose eigenvalue884

components cover 93.2% of the total information.885

After the PCA, we re-scaled each dimension by886

dividing them over the square root of their corre-887

sponding eigenvalues and scale up by a factor of888

1.15, such that the determinant of the covariance889

matrix of the world model is close to 1.890

A.4 Conditional independence assumption891

The conditional independence assumption of the892

world model is raised for the consideration of ap-893

plying our framework to larger graphs with more894

individuals in the future. It allows us to decompose895

a complicated graph in terms of relations. Other-896

wise, a separate precision matrix is required for897

each graph topology. However, this assumption898

theoretically damages the ability of contextual in-899

ference of our model, as pixies X and Z are only900

dependent on one another via the pixie Y .901

To investigate the effects of this assumption902

quantitatively, we performed experiment to com-903

pare the evaluation results under two settings.904

All other settings of hyperparameters remain the905

same. For single-word similarity datasets MEN and906

SimLex-999, the effect on performance is inconsis-907

tent, and the differences are statistically insignifi-908

cant (p>0.5). For contextual datasets GS2011 and909

RELPRON, releasing the assumption improves re-910

sults, and the differences are statistically significant911

(p<0.1 for each dataset, and p<0.01 when combin-912

ing both datasets).913

Possible avenues for future work would be to914

improve the modeling of events, which could make915

the conditional independence assumption more rea-916

sonable (recall that in Section 4.1, the modeling of917

events was identified as a limitation), or to modify918

With CI Without CI
MEN 0.639 0.658
SimLex-999 0.430 0.410
GS2011 0.171 0.182
RELPRON 0.117 0.137

Table 2: Evaluation results. For MEN, SimLex-999
and GS2011, the metric is Spearman correlation; for
RELPRON, mean average precision. All models are
evaluated on subsets of the data covered by the VG
vocabulary.

the graphical model to make it more flexible (which 919

would be a challenge for larger graphs). 920

A.5 Lexicon model training 921

When training the lexicon model, we used L2 reg- 922

ularisation with a weight of 5e−8 and the Adam 923

optimizer (Kingma and Ba, 2015). We train the 924

lexicon model for 40 epochs and the learning rate 925

is set at 0.01 with a step scheduler which reduces 926

the learning rate by a factor of 0.4 every 5 epochs. 927

The hyper-parameters are tuned on the training data 928

to maximize the number of predicates such that at 929

least one image annotated with that predicate has a 930

truth value of at least 0.1. For the model trained on 931

strictly filtered data, the number of such predicates 932

reaches 1343 out of the vocabulary size 1595, while 933

for loosely filtered model, the number is 4453 out 934

of 6788. 935

A.6 Truth regularization 936

To make the probabilistic truth values more inter- 937

pretable, Emerson (2020a) proposes a regulariza- 938

tion term which penalizes the model if all truth 939

values stay close to 0. This would modify the loss 940

function in Eq. 4, to give Eq. 10, with a hyper- 941

parameter α that we set to 0.5. 942

L = log
tr(x)∑
i ti(x)

+ α log tr(x) (10) 943

We find that adding the log-truth term improves 944

performance on intrinsic evaluation, but decreases 945

performance on extrinsic evaluation. Applying the 946

analysis in Section 4.1.2, the average AUC-ROC 947

is 0.86 for object predicates and 0.60 for event 948

predicates. This is illustrated in Fig. 6 for the same 949

example predicates as Fig. 5. In contrast, when 950

evaluating on MEN and SimLex-999, this model 951

achieves only 0.602 and 0.381 respectively. On 952

GS2011 and RELPRON, the model achieves lower 953

performance of 0.112 and 0.056. 954
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Figure 6: ROC curves of the semantic functions for
selected predicates, for the truth-regularized model.

The log-truth term makes predicates true over955

larger regions of pixie space. As shown by the956

intrinsic evaluation, this is helpful when consid-957

ering each classifier individually. However, the958

regions of different predicates also overlap more,959

which seems to hurt their overall performance on960

the external datasets. To quantify this, we calculate961

the total truth of all predicates, for 1000 randomly962

selected images. For the original version of our963

model, on average 0.83 predicates are true for an964

image. This is slightly below 1, illustrating the965

problem Emerson aimed to avoid. However, with966

the log-truth term, it becomes 25.5, which may967

have over-corrected the problem.968

A.7 Variational inference optimization969

For the variational inference, the hyper-parameter970

β is set to be 0.1. We run gradient descent for 800971

epochs with initial learning rate of 0.03 and a step972

scheduler which reduces the learning rate by a fac-973

tor of 0.6 every 50 epochs. The hyper-parameters974

for variational inference are tuned to maximize the975

ELBO on the filtered subset of MEN. (The ELBO976

does not depend on the similarity scores, just the977

input triples.) Tuning these hyper-parameters has978

no effect on the training of the world model or the979

lexicon model. The scores shown in Table 1 are the980

results averaged over 5 random seeds.981

A.8 Effects of hyperparameter β982

The hyperparameter β in ELBO, Equation 5, con-983

trols the weighting of prior knowledge during infer-984

β SimLex-999 RELPRON
0.05 0.395 0.091
0.1 0.430 0.117
0.2 0.35 0.123
0.3 0.289 0.133
0.4 0.194 0.150
0.5 0.083 0.144

Table 3: Evaluation results against different β. For
SimLex-999 the metric is Spearman correlation and for
RELPRON, mean average precision. All other settings
hyperparameters remain the same.

ence. Higher β value will drag the inferred pixies 985

closer to the average positions of all seen pixies 986

with corresponding semantic roles. Lower β will 987

push the inferred pixies to the center of semantic 988

functions of their corresponding predicates. In Ta- 989

ble 3, we show how the β affects the evaluation 990

results. For single-word similarity dataset SimLex- 991

999, better knowledge of the semantic functions 992

can give more information than prior knowledge 993

of average positions of their semantic roles. There- 994

fore lower value is preferred. On contrast, for con- 995

textual dataset RELPRON, emphasizing the prior 996

information could benefit the estimate of the jointly 997

distributed pixie triples. The performance peaks at 998

the value of 0.4. 999

A.9 Statistical tests 1000

All statistical tests are two-tailed bootstrap tests, 1001

which follows the recommendations of Dror et al. 1002

(2018). We use 1000 samples for each test. 1003
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