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Abstract

In deep learning, the recently introduced state space models utilize HiPPO (High-order
Polynomial Projection Operators) memory units to approximate continuous-time trajecto-
ries of input functions using ordinary differential equations (ODEs), and these techniques
have shown empirical success in capturing long-range dependencies in long input sequences.
However, the mathematical foundations of these ODEs, particularly the singular HiPPO-
LegS (Legendre Scaled) ODE, and their corresponding numerical discretizations remain
unsettled. In this work, we fill this gap by establishing that HiPPO-LegS ODE is well-posed
despite its singularity, albeit without the freedom of arbitrary initial conditions. Further,
we establish convergence of the associated numerical discretization schemes for Riemann
integrable input functions.

1 Introduction

State-space representation is a cornerstone of dynamical-system theory and has been instrumental in the
analysis and control of physical processes in control engineering, signal processing, and computational neu-
roscience. In the deep-learning literature, this classical framework has recently re-emerged as a promising
paradigm for sequence modelling, offering a principled alternative to recurrent and attention-based architec-
tures Gu et al. (2022); Dao & Gu (2024); Zhu et al. (2024); Nguyen et al. (2022); Goel et al. (2022). Modern
state-space models for long sequences build on a synthesis of two pillars: (i) linear state-space theory in its
canonical form Williams & Lawrence (2007); Zak et al. (2003) and (ii) the HiPPO (High-order Polynomial
Projection) framework Gu et al. (2020), which prescribes optimal polynomial projections for compressing
the history of an input signal. This amalgamation provides both an interpretable memory mechanism and
a mathematically tractable route for capturing long-range dependencies within deep architectures.

HiPPO is a framework using an N -dimensional ordinary differential equation (ODE) to approximate the
continuous-time history of an input function f . In particular, the HiPPO-LegS (Legendre Scaled) ODE is

c′(t) = −1
t
Ac(t) + 1

t
Bf(t), (1)

for t ∈ [0, T ], where T > 0 is some terminal time and f : [0, T ] → R is an input function. With specific
choices of A ∈ RN×N and B ∈ RN×1, the solution c : [0, T ] →∈ RN encodes the continuous-time history of f

via cj(t) = 1
t

〈
f(·),

√
2j − 1Pj−1

( 2 ·
t − 1

)〉
L2([0,t])

=
√

2j−1
t

∫ t

0 f(s)Pj−1
( 2s

t − 1
)

ds, where Pj−1 is the j − 1-th

Legendre polynomial Gu et al. (2020).

Unlike previous linear time-invariant (LTI) methods such as Legendre Memory Units (LMUs) Voelker et al.
(2019), which considers measures with a fixed-length support, the LegS formulation considers the uniform
measure on [0, t] that widens with the progression of time t, and therefore provides a memory unit keeping
track of the entire trajectory of f(·) from time 0 to t. This distinctive property makes the LegS formulation
powerful in many practical applications.

However, despite receiving much attention for its use in state space models in deep learning, the careful
mathematical foundation of the LegS ODE is missing. To begin with, the singularity at t = 0 renders the
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question of existence and uniqueness of the solution c(t) a non-obvious matter. Moreover, the numerical
methods used in the work of Gu et al. (2020) are not mathematically justified in the sense of convergence:
In the limit of small stepsizes, do the discrete simulations converge to the true continuous-time solution?
What regularity conditions must f satisfy for such convergence?

Contributions In this work, we provide the rigorous mathematical foundations of the HiPPO-LegS ODE
formulation and its discretization. Specifically, we show that (i) the solution to the LegS ODE exists and is
unique, but the initial condition is fixed to a predetermined value depending on f(0), (ii) the commonly used
discretization schemes for LegS converges to the exact continuous-time solution for all Riemann integrable
f , and (iii) obtain convergence rate guarantees.

1.1 Related works

State space models for deep learning The use of state space models (SSMs) in deep learning has gained
significant recent attention due to their ability to process sequential data efficiently. While the transformers
architecture Vaswani et al. (2017) has become the standard for language models, recent SSM models such as
mamba Gu & Dao (2024) have been reported to achieve state-of-the-art results, especially in handling long
sequences.

Large-scale SSMs deploy an initialization scheme motivated by the HiPPO theory Gu et al. (2023). One
distinctive characteristic of state-of-the-art SSMs is that the computation cost displays a near-linear growth
with respect to sequence length, unlike the quadratic growth of transformers. S4 Gu et al. (2022) uses the
fast Fourier transform to attain the near-linear cost, whereas Mamba leverages hardware-aware computa-
tion techniques to attain near-linear parallel compute steps. The SSM architecture has been applied to or
motivated numerous model structures Fu et al. (2023); Hasani et al. (2023); Sun et al. (2024); Peng et al.
(2023) and are used across various modalities Zhu et al. (2024); Li et al. (2025); Shams et al. (2024).

Legendre memory units for LSTMs A fundamental challenge in training recurrent neural networks
(RNNs) is the vanishing gradient problem, which causes long-range dependencies in temporal data to be
lost during training Bengio et al. (1994); Le et al. (2015). While LSTMs Hochreiter & Schmidhuber (1997)
alleviate this problem by incorporating nonlinear gating mechanisms, modeling very long sequences remains
challenging. Motivated by applications in computational neuroscience, LMUs Voelker (2019); Voelker et al.
(2019) introduced a novel approach to extend LSTM’s capability to ‘remember’ the sequence information
by constructing a N -dimensional ODE, for which the solution is the projection of the input function on
the orthonormal basis of measure 1[t−θ,t], where θ is a hyperparameter. The HiPPO framework could be
understood as a generalization of LMUs. While LMU and its variants has proven to be effective for long
sequence modeling Liu et al. (2024); Zhang et al. (2023); Chilkuri & Eliasmith (2021), their scope is limited
to LTI methods.

Convergence analysis of SSMs from control theory State space models have been extensively stud-
ied in control theory Kalman (1960); Zabczyk (2020), with significant research dedicated to discretization
schemes and their analysis Kowalczuk (1991). However, these results are not directly applicable to the LegS
ODE due to their exclusive focus on LTI systems Karampetakis & Gregoriadou (2014) or their assumption
of discrete-time inputs Meena & Janardhanan (2020). Furthermore, the objectives of state-space models in
deep learning applications differ fundamentally from those in classical control theory, where for the latter,
controlling or statistically estimating the state is usually the focus. This difference makes it challenging to
directly adapt these results to modern deep-learning contexts.

2 Problem setting and preliminaries

In this work, we consider the LegS ODE

c′(t) = −1
t
Ac(t) + 1

t
Bf(t)
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for t ∈ (0, T ], where T > 0 is some terminal time and c : [0, T ] → RN is the state vector encoding the
continuous-time history of the input function f : [0, T ] → R. The matrix A ∈ RN×N and vector B ∈ RN×1

are given by

Aij =


(2i − 1)1/2(2j − 1)1/2 if i > j

i if i = j

0 if i < j,

Bj = (2j − 1)1/2.

Since A is lower-triangular with distinct diagonal entries, we immediately recognize that A is diagonalizable
with simple eigenvalues {1, 2, . . . , N}. We denote the eigendecomposition as

A = V DV −1, D = diag (1, 2, . . . , N).

with invertible V ∈ RN×N . In the indexing of matrices and vectors, such as Aij , Bj , and ci(t), we have
i, j ∈ {1, . . . , N}, i.e., we use 1-based indexing. (The prior HiPPO paper Gu et al. (2020) uses 0-based
indexing.)

Shifted Legendre polynomials We write Pj(x) : [−1, 1] → [−1, 1] to denote the j-th Legendre polyno-
mial, normalized such that Pj(1) = 1, for j = 0, 1, . . . . However, we wish to operate on the domain [0, 1], so
we perform the change of variables x 7→ 2x − 1. This yields,

P̃j(x) = Pj(2x − 1) =
j∑

k=0
(−1)j

(
j

k

)(
j + k

k

)
(−x)k,

the j-th shifted Legendre polynomial, for j = 0, 1, . . . . The shifted Legendre polynomials satisfy the recur-
rence relation

xP̃ ′
j(x) = jP̃j(x) +

j−1∑
k=0

(2k + 1)P̃k(x), (2)

which can be derived by combining the following well-known identities Arfken et al. (2011)

(2n + 1)Pj(x) = P ′
j+1(x) − P ′

j−1(x), P ′
j+1(x) = (n + 1)Pj(x) + xP ′

j(x).

Numerical discretization methods In this work, we analyze the numerical methods of the LegS ODE
used in the prior work Gu et al. (2020). For all the discretization methods, we consider a mesh grid with n
mesh points, with initial time t0 = 0 and stepsize h = T/n. Starting from c0 = c(0), we denote k-th step of
the numerical method as ck, and f(kh) as fk.

The backward Euler method

ck+1 =
(

I + 1
k + 1A

)−1
ck +

(
I + 1

k + 1A
)−1 1

k + 1Bfk+1

is well defined for k = 0, 1, 2 . . . , n − 1. However, the forward Euler method

ck+1 =
(

I − 1
k

A
)

ck + 1
k

Bfk

and the bilinear (trapezoidal) method

ck+1 =
(

I + 1
2(k + 1)A

)−1(
I − 1

2k
A
)

ck +
(

I + 1
2(k + 1)A

)−1( 1
2k

fk + 1
2(k + 1)fk+1

)
B

hold only for k = 1, 2, . . . , n−1, and are not well defined for k = 0. One remedy would be to use the identity
c′(0) = (A + I)−1

f ′(0), which we derive in Lemma 2. However, if f is not differentiable at t = 0, then even
this remedy is not possible. Hence, in Section 4, where we consider general f , we “zero-out” the ill-defined
terms by setting them to be 0. So, for the step 0 of forward Euler, we set

c1 = c0
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and for the step 0 of bilinear (trapezoidal), we set

c1 =
(

I + 1
2A
)−1

c0 + 1
2

(
I + 1

2A
)−1

Bf1.

In the prior work Gu et al. (2020), the authors sidestep the division by 0 in the 1/k terms by shifting the k
index up by 1, leading to the approximate bilinear method

ck+1 =
(

I + 1
k + 1A/2

)−1(
I − 1

k + 1A/2
)

ck +
(

I + 1
k + 1A/2

)−1( 1
k + 1fk+1

)
B

for k = 0, 1, 2, . . . , n − 1. In this work, we establish convergence of both the bilinear method (with zero-out)
and the approximate bilinear method.

Lastly, prior work has also used the Zero-order hold method

ck+1 = eA log( k
k+1 )ck + A−1(I − eA log( k

k+1 ))Bfk

for k = 0, 1, 2, . . . , n − 1, where we set eA log
(

n
n+1

)
= 0 at n = 0, consistent with the limit eA log

(
n

n+1

)
→ 0 as

n → 0+. We also establish convergence for the zero-order hold method.

Convergence of numerical discretization methods The numerical methods we consider are one-step
methods of the form

ck+1 = ck + hΦ(tk, tk+1, ck, ck+1; h), k = 0, 1, ..., n − 1

with stepsize h = T/n and tk = t0 + kh for k = 0, . . . , n − 1, approximating the solution to the
initial value problem c′(t) = g(t, c(t)). Here, Φ is a numerical integrator making the approximation
Φ(tk, tk+1, ck, ck+1; h) ≈ c(tk+1) − c(tk) =

∫ tk+1
tk

g(s, c(s)) ds.

To analyze such methods, one often estimates the local truncation error (LTE) Tk at timestep tk as Tk =
c(tk+1)−c(tk)

h − Φ(tk, tk+1, c(tk), c(tk+1); h), and then estimates its accumulation to bound the global error
en = c(tn) − cn, which is calculated at the endpoint. We say that a numerical discretization method is
convergent if the global error converges to 0, i.e., if

∥c(tn) − cn∥ → 0, as n → ∞.

Further, we quantify the convergence rate with the order of the method: we say the method has order p if

∥cn − c(tn)∥ ≤ O (1/np) , as n → ∞.

Classical ODE theory states that if the right-hand-side g in the initial value problem is continuous with
respect to c and t, and Lipschitz continuous with respect to c, the solution exists and is unique in an interval
including the initial point t0 = 0. Moreover, under the same conditions, the global error can be bounded
with the local truncation error Ascher & Petzold (1998); Süli & Mayers (2003). However, this standard
theory does not apply to the LegS ODE due to the singularity at t = 0, and the non-smoothness of the input
function f .

Absolute continuity on a half-open interval For T ∈ (0, ∞), we say a function c : (0, T ] → RN is
absolutely continuous if its restriction to the closed interval [ε, T ] for any ε ∈ (0, T ) is absolutely continuous.
(Recall that the standard definition of absolute continuity assumes a closed interval for the domain.) Even if
limt→0+ c(t) is well defined and finite, the continuous extension of c to [0, T ] may not be absolutely continuous
on [0, T ]. In other words, absolute continuity on [ε, T ] for all ε ∈ (0, T ) does not imply absolute continuity
on [0, T ]. We discuss this technicality further in Section 3, in the discussion following Theorem 1.

Lebesgue point Let f : [0, T ] → R be Lebesgue measurable and integrable. We say f has a Lebesgue
point at t = 0 if limε→0+

1
ε

∫ ε

0 |f(s) − f(0)| ds = 0. If f(t) is continuous at t = 0, then f has a Lebesgue
point at t = 0.
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3 LegS is well-posed

In this section, we show that the LegS ODE is well-posed despite the singularity. Crucially, however, we
show that there is no freedom in choosing the initial condition.

Theorem 1 (Existence and uniqueness). For T > 0 and c0 ∈ RN , we say c : [0, T ] → RN is a solution (in
the extended sense) of the LegS ODE if c is continuous on [0, T ], absolutely continuous on (0, T ], c satisfies
equation 1 for almost all t ∈ (0, T ], and c(0) = c0. Assume f : [0, T ] → R is Lebesgue measurable, integrable,
and has a Lebesgue point at t = 0. Then, the solution exists and is unique if c0 = f(0)e1, where e1 ∈ RN is
the first standard basis vector. Otherwise, if c0 ̸= f(0)e1, a solution does not exist.

Proof. Since A is diagonalizable, the problem can be effectively decomposed into N one-dimensional sub-
problems. Recall A = V DV −1 where D = diag (1, 2, . . . , N). We see the LegS ODE equation 1 could be
rewritten as

c′(t) = −1
t
Ac(t) + 1

t
Bf(t) = −1

t
V DV −1c(t) + 1

t
Bf(t).

Multiply both sides by V −1 and denote c̃(t) = V −1c(t). Then, the ODE becomes

c̃′(t) = V −1c′(t) = −1
t
DV −1c(t) + 1

t
V −1Bf(t) = −1

t
Dc̃(t) + 1

t
V −1Bf(t),

which is a decoupled ODE with respect to c̃. Recalling Djj = j, we see that the j-th component of the above
equation is

c̃′
j(t) = −j

t
c̃j(t) + dj

t
f(t) (3)

where dj = (V −1B)j and c̃j is j-th component function of c̃. Since V is a bijective linear map from RN to
RN , the existence and uniqueness of the solution of the LegS ODE is satisfied if and only the existence and
uniqueness of the solution of the ODE equation 3 is satisfied for all j ∈ {1, 2, ..., N}.

We now proceed by examining the existence and uniqueness of the solution of the ODE equation 3. We first
establish existence by presenting the explicit form of the solution. Define c̃j : [0, T ] → R as

c̃j(t) =
{

dj

tj

∫ t

0 sj−1f(s)ds if t ∈ (0, T ]
dj

j f(0) if t = 0.
(4)

By fundamental theorem of calculus, d
dt

(∫ t

0 sj−1f(s)ds
)

= tj−1f(t) holds for almost all t ∈ (0, T ] and thus
c̃j is differentiable for almost all t ∈ (0, T ]. Therefore,

tj

(
c̃′

j(t) + j

t
c̃j(t)

)
= d

dt
(tj c̃j(t)) = d

dt

(
dj

∫ t

0
sj−1f(s)ds

)
= djtj−1f(t)

holds for almost all t ∈ (0, T ]. Dividing both sides by tj , we conclude that c̃j satisfies equation 3 for almost
all t ∈ (0, T ].

We now show c̃j is continuous on [0, T ]. It is sufficient to check c̃j is continuous at t = 0 by showing
limt→0

dj

tj

∫ t

0 sj−1f(s)ds = dj

j f(0). Since f is locally integrable and has a Lebesgue point at t = 0, observe
that

0 = lim
t→0+

1
t

∫ t

0
|f(s) − f(0)|ds = lim

t→0+

∫ 1

0
|f(tx) − f(0)|dx,
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where the second equality follows by change of variables x = s/t. Therefore, we could deduce∣∣∣∣ lim
t→0+

dj

tj

∫ t

0
sj−1f(s)ds − dj

j
f(0)

∣∣∣∣ ≤ lim
t→0+

dj

t

∫ t

0

∣∣∣∣ 1
tj−1 sj−1f(s) − 1

j
f(0)

∣∣∣∣ ds

= lim
t→0+

dj

∫ 1

0

∣∣∣∣xj−1f(tx) − 1
j

f(0)
∣∣∣∣ dx

≤ lim
t→0+

dj

∫ 1

0
xj−1|f(tx) − f(0)|dx + dj

∫ 1

0

∣∣∣∣xj−1 − 1
j

∣∣∣∣ |f(0)|dx

≤ lim
t→0+

dj

∫ 1

0
|f(tx) − f(0)|dx + dj |f(0)|

∫ 1

0

(
xj−1 − 1

j

)
dx

= 0,

concluding that c̃j is continuous at t = 0. Lastly, c̃j is absolutely continuous on (0, T ], since for every
[t0, t] ⊂ (0, T ], both 1

tj and
∫ t

0 sj−1f(s)ds are absolutely continuous on [t0, t] and therefore their product is
also absolutely continuous on [t0, t]. Hence we conclude that c̃j is a solution of the ODE equation 3.

We now establish uniqueness. Suppose ĉj is another solution of the ODE equation 3. Multiplying both sides
of equation 3 by tj and reorganizing, for almost all t ∈ (0, T ] we have

d

dt
(tj ĉj(t)) = tj

(
ĉ′

j(t) + j

t
ĉj(t)

)
= djtj−1f(t).

Since ĉj is a solution, it is absolutely continuous on (0, T ], therefore tj ĉj(t) is absolutely continuous on (0, T ].
Thus for [t0, t] ⊂ (0, T ], by fundamental theorem of calculus we obtain

tj ĉj(t) − tj
0ĉj(t0) = dj

∫ t

t0

sj−1f(s)ds.

Since ĉj is a solution it is continuous at 0, we obtain tj ĉj(t) = dj

∫ t

0 sj−1f(s)ds by taking limit t0 → 0+.
Dividing both sides by tj we conclude

ĉj(t) = dj

tj

∫ t

0
sj−1f(s)ds = c̃j(t)

for all t ∈ (0, T ]. It remains to check ĉj(0) = c̃j(0). Since ĉ is continuous at 0, we know ĉj(0) = limt→0+ ĉj(t).
Thus

ĉj(0) = lim
t→0+

ĉj(t) = lim
t→0+

c̃j(t) = c̃j(0).

Therefore, we conclude ĉj(t) = c̃j(t) for all t ∈ [0, T ], the solution of the ODE equation 3 is unique.

As a result, we conclude the solution of the LegS ODE uniquely exists if c̃j(0) = dj

j f(0), and it is given by
c = V c̃. Finally, we show the unique solution c = V c̃ should satisfy c(0) = f(0)e1. From

V −1cj(0) = c̃j(0) = dj

j
f(0) = 1

j
(V −1B)jf(0),

we see
V −1c(0) = diag

(
1,

1
2 ,

1
3 , ...,

1
N

)
(V −1B)f(0) = D−1V −1Bf(0).

Multiplying both sides by V , we conclude

c(0) = V D−1V −1Bf(0) = (V −1DV )−1Bf(0) = A−1Bf(0) = f(0)e1

where e1 = [1, 0, . . . , 0]t. Therefore if c0 = f(0)e1, the solution exists and is unique, and otherwise, there is
no solution.
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Remark 3.1. Theorem 1 does not guarantee that c is absolutely continuous on the closed interval [0, T ],
only on the half-open interval (0, T ]. The following lemma provides a counterexample of a continuous input
function f such that the corresponding solution of the LegS ODE is not absolutely continuous on [0, T ].
Lemma 1. Let T = 1/2. Consider the LegS ODE with f : [0, T ] → R defined as

f(t) =
{

d
dt

(
t2

log(1/t) sin (1/t)
)

if 0 < t ≤ 1/2
0 otherwise.

Since f is continuous on [0, T ] (including at t = 0) it satisfies the conditions of Theorem 1. However, the
solution of the LegS ODE is not absolutely continuous on [0, T ].

Proof Sketch. We prove by showing that the first component of c(t) corresponding to the given input function
f(t) is not absolutely continuous. The full proof can be found in appendix A.

Remark 3.2. Recall that the motivation of the LegS ODE is to provide an online approximation of the input
function f . By change of variables, {

√
2j−1

t Pj−1
( 2s

t − 1
)
}j∈N could be shown to be an orthogonal basis on

the interval [0, t], with respect to the L2([0, t]) norm. The following corollary shows that the solution found
in Theorem 1 is the projection of f onto this basis. We defer the proof to appendix B.
Corollary 1. The solution c of the LegS ODE as defined as in Theorem 1 is, if it exists, an L2-approximation
of f on 1

t 1[0,t] for all t ∈ (0, T ] in the sense that the j-th component of c(t) ∈ RN is given by

cj(t) = 1
t

〈
f(·),

√
2j − 1Pj−1

( 2 ·
t − 1

)〉
L2([0,t])

=
√

2j − 1
t

∫ t

0
f(s)Pj−1

( 2s
t − 1

)
ds, (5)

for all t ∈ (0, T ], where Pj−1 denotes the (j − 1)-th Legendre polynomial.
Remark 3.3. The well-posedness argument of Theorem 1 crucially relies on the fact that all eigenvalues of
A are positive. To see what happens when A has negative eigenvalues, consider the case N = 1 and A = −1.
This leads to the ODE

d

dt
c(t) = 1

t
c(t) + 1

t
f(t), c(0) = c0,

for which c(t) = t
∫ t

0
1
s2 f(s) ds+Ct is a solution for any C ∈ R. Since the initial condition does not determine

the value of C, the solution is not unique.
Remark 3.4. If a stronger condition, such as the (one-sided) differentiability of f(t) at t = 0 is provided,
the derivative of c(t) at t = 0 can be calculated as in the following lemma. In setups where f ′ is available, this
identity could be used to implement the first iteration of the forward Euler method and the bilinear method.
Lemma 2 (Behavior at t = 0). Consider the setup of Theorem 1, and further assume that f ′(0) :=
limt→0+

f(t)−f(0)
t exists. Then, c′(0) := limt→0+

c(t)−c(0)
t exists and

c′(0) = (A + I)−1Bf ′(0).

Proof. We examine the differentiability of V −1c(t) = c̃(t) = (c̃j(t))N
j=1 by checking for each component.

Recall that for the j-th component we have c̃j(t) = dj

tj

∫ t

0 sj−1f(s)ds and c̃j(0) = dj

j f(0) from equation 4.
Then,

lim
t→0+

c̃j(t) − c̃j(0)
t

= lim
t→0+

dj

∫ t

0 sj−1f(s)ds − tj

j f(0)
tj+1

(1)= lim
t→0+

dj
tj−1f(t) − tj−1f(0)

(j + 1)tj
= lim

t→0+

dj

j + 1
f(t) − f(0)

t
= dj

j + 1f ′(0)

where L’Hôpital’s rule was used for (1). Folding back to vector form, recalling V −1c′
j(0) = c̃′

j(t) = dj

j+1 f ′(0) =
1

j+1 (V −1B)jf ′(0), we obtain

V −1c′(0) = diag
(

1
2 ,

1
3 , ...,

1
N + 1

)
(V −1B)f ′(0)
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and hence c′(0) = (A + I)−1
B. Note that (A + I)−1B = [1/2, 1/(2

√
3), 0, ..., 0]t.

4 Convergence of LegS discretization schemes

In this section, we address the convergence of the numerical discretization methods introduced in Section 2,
i.e., do the methods produce numerical solutions cn that converge to the exact continuous-time solution c(t)
as h → 0?

As we discuss in Section 4.1, the standard analysis based on local truncation error does not lead to a
convergence guarantee for all of the schemes under consideration, and such approaches would require certain
local regularity conditions on f , such as (Lipschitz) continuity. Rather, in Section 4.2, we identify the
numerical schemes as quadrature rules on the input function f . Using this insight, in Section 4.3, we show
that the discretization schemes are convergent under the general assumption of Riemann integrability of f .

Extending the framework to accommodate general Riemann integrable functions f is important, given the
nature of the application. The HiPPO memory unit is used in deep learning to analyze sequence data, such
as language or audio signalsGu et al. (2020). For such data, there is no inherent expectation of smoothness,
and discontinuities are to be expected. Therefore, we aim to guarantee that the mathematics remains sound
for such data.

4.1 Convergence for smooth f

Discretization methods of ODEs with well-behaved right-hand-sides have a well-established theory based on
the local truncation error (LTE), and for sufficiently smooth input function f , the standard techniques can
be applied to the LegS ODE despite the singularity at t = 0. For example, it can be shown that LTE for
the forward Euler method applied to the LegS ODE satisfies

|Tk| ≤ 1
2hM2, M2 = max

t∈[0,T ]
|c′′(t)|.

However, when f is not differentiable, then c′′(t) may not be bounded, and this approach, as is, fails to yield
a convergence guarantee. Another issue is that the LTE for approximated bilinear method does not converge
to 0, even for smooth f . For N = 1, the approximated bilinear method reduces to

ck+1 = 2k + 1
2k + 3ck + 2

2k + 3fk+1 = ck − 2
2k + 3(ck − fk+1).

Using the exact solution c(t) = 1
t

∫ t

0 f(s)ds, the exact value of the LTE is

hTk = c(tk+1) − c(tk) + 2
2k + 3(c(tk) − fk+1)

= 1
(k + 1)h

∫ (k+1)h

0
f(s)ds − 2k + 1

k(2k + 3)h

∫ kh

0
f(s)ds − 2

2k + 3fk+1.

With the linear function f(x) = ax (a ̸= 0) as a particular choice, we obtain that at step k = 0,

T0 = a

2 − 2a

3 = −a

6 ̸= 0.

Thus, the LTE of the approximated bilinear method does not vanish as h → 0. Consequently, a naive global
error analysis based on the LTE will not guarantee convergence. In Section 4.3, we employ an alternative
proof technique to establish convergence.

4.2 LegS discretizations are quadratures of f

In this section, we provide the key insight that we can identify the discretization methods applied to the
solution c as quadrature rules on the input function f . Recall that the LegS ODE was proposed for online

8
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approximation of the input function f(t) on the interval [0, t]. Specifically, Corollary 1 says that the j-th
component of the solution is given by

cj(t) =
√

2j − 1
t

∫ t

0
Pj−1

(2s

t
− 1
)

f(s)ds,

where Pj−1 denotes the (j − 1)-th Legendre polynomial, for j = 1, 2, . . . , N . So cj(t) is a (signed) weighted
integral of f(·) on [0, t]. The following lemma shows that the numerical schemes of Section 2 can, in fact,
be interpreted as quadrature rules with uniformly spaced nodes, and in Section 4.3, we show that these
quadratures approximate the integral.
Lemma 3. Consider applying any of the discretization methods introduced in Section 2 (forward Euler,
backward Euler, bilinear, approximate bilinear, or zero-order hold) to the LegS ODE equation 1, with initial
time t0 = 0 and timestep h = T/n with n ≥ 2. Then, the numerical solution cn at step n can be expressed
in the form

cn = 1
n

n∑
l=0

α
(n)
l f l

for some α
(n)
l ∈ RN that depend only on l and n, where f l = f(lh).

Proof Sketch. The proof consists of direct computation and induction. For notational simplicity, we define
Qn for n ≥ 2, and Q̃n, Rn, R̃n for n ≥ 1 as follows:

Qn :=
n−1∏
j=1

(
I − 1

j + 1A
)

, Q̃n :=
n∏

j=1

(
I − 1

2j
A

)
,

Rn :=
n∏

j=1

(
I + 1

j
A
)−1

, R̃n :=
n∏

j=1

(
I + 1

2j
A

)−1
.

Then, the numerical solution cn obtained by applying forward Euler, backward Euler, bilinear, approximated
bilinear, and zero-order hold are computed as follows:

(cn)for = Qn−1(e1f0 + Bf1) + Qn−1

n−1∑
l=2

1
l
Q−1

l Bf l (6)

(cn)back = Rn(e1f0 + Bf1) + Rn

n−1∑
l=1

1
l + 1R−1

l Bf l+1 (7)

(cn)bilin = Q̃n−1R̃ne1f0 + Q̃n−1R̃n

n−1∑
l=1

1
2l

(
Q̃−1

l R̃−1
l + Q̃−1

l−1R̃−1
l−1
)
Bf l+R̃nR̃−1

n−1
B

2n
fn (8)

(cn)approx = Q̃nR̃nc0 + Q̃nR̃n

n−1∑
l=1

Q̃−1
l+1R̃−1

l

(
1

l + 1Bf l+1
)

(9)

(cn)zoh = 1
n

n∑
l=0

α
(n)
l f(lh) =

n−1∑
l=0

(
eA log( l+1

n ) − eA log( l
n )
)

A−1Bf l. (10)

The full derivation can be found in appendix C. With some inspection, one can conclude that all of the
numerical solutions above acquire the desired form.

4.3 Convergence for Riemann integrable f

In this section, we prove the convergence of all discretization methods of interest for Riemann integrable
f ’s. In particular, we prove the convergence of the approximate bilinear method, justifying its use for the
experiments in the HiPPO paper Gu et al. (2020). The results are summarized in the following theorem:

9
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Theorem 2 (Convergence of discretization schemes for Riemann integrable f). Consider the LegS equation
equation 1 with dimension N ≥ 1 and domain t ∈ [0, T ], where T > 0. Assume f is Riemann integrable
on [0, T ]. Let n ≥ 2 be the number of mesh points and let h = T/n. Consider discretization methods with
initialization and iterations

c0 = f(0)e1, ck+1 = ck + hΦ(tk, tk+1, ck, ck+1; h)

using mesh points tk = kh for k = 0, 1, 2, . . . , n, where Φ is the one-step integrator defined by the given
discretization method. Denote the exact solution at step n as c(tn) = c(nh) ∈ RN . Then, for all the forward
Euler, backward Euler, bilinear, approximate bilinear, and zero-order hold methods defined in Section 2, we
have convergence of the numerical solution to the exact solution in the sense that

∥cn − c(tn)∥ → 0, as n → ∞.

To prove the theorem above, note that in light of Lemma 3, we can denote the iterates of the numerical
schemes as cn = 1

n

∑n
l=0 α

(n)
l f l. If we can show

cn
j = 1

n

n∑
l=0

(
α

(n)
l

)
j

f l −→ cj(tn) =
√

2j − 1
tn

∫ tn

0
Pj−1

(
2s

tn
− 1
)

f(s)ds,

as n → ∞, for all j ∈ {1, 2, . . . , N} and Pj is the j-th Legendre polynomial, we are done. Now, the key
idea of the proof is, instead of directly characterizing the coefficients α

(n)
l , to consider a function sequence

defined on [0, 1] that interpolates those points. This significantly reduces the complexity of analyzing the
asymptotic behavior of the numerical solution as the number of mesh points n goes to infinity. We start
with an elementary lemma that enables this approach.
Lemma 4. Let f : [0, t] → R be a Riemann integrable function. Let {G(n)}n∈N be a sequence of continuous
functions defined on [0, 1] uniformly converging to G ∈ C[0, 1]. Then, for h = t/n,

1
n

n∑
l=1

G(n)
(

l

n

)
f (lh) → 1

t

∫ t

0
G
(s

t

)
f(s)ds as n → ∞.

Proof. Fix ϵ > 0. Since f is Riemann integrable and G is continuous, G
(

s
t

)
f(s) is Riemann integrable for

s ∈ [0, t]. Hence we can find N1 ∈ N such that for all n ≥ N1,
∣∣∣ 1

n

∑n
l=1 G

(
l
n

)
f (lh) − 1

t

∫ t

0 G
(

s
t

)
f (s) ds

∣∣∣ <

ϵ/2. Since f is bounded, supx∈[0,t] |f(x)| ≤ M holds for some M > 0. Then, due to the uniform convergence
of G(n), we can find N2 ∈ N such that ∥G − G(n)∥ < ϵ

2M holds for all n ≥ N2. Therefore, choosing n ∈ N
with n ≥ max{N1, N2}, we conclude:∣∣∣∣∣1t

∫ t

0
G
(s

t

)
f(s)ds − 1

n

n∑
l=1

G(n)
(

l

n

)
f (lh)

∣∣∣∣∣
≤

∣∣∣∣∣1t
∫ t

0
G
(s

t

)
f(s)ds − 1

n

n∑
l=1

G

(
l

n

)
f (lh)

∣∣∣∣∣+ 1
n

n∑
l=1

∣∣∣∣G( l

n

)
f (lh) − G(n)

(
l

n

)
f (lh)

∣∣∣∣
≤ ϵ

2 + M∥G − G(n)∥sup ≤ ϵ.

This result is relevant since if we interpret the shifted Legendre polynomials as G
(

s
t

)
in the lemma above,

we can obtain a sufficient condition for a numerical solution to converge to the exact solution of the ODE.
This observation is specified in the next corollary.

10
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Corollary 2. Consider an array of vectors
{

(cn)j = 1
n

∑n
l=0
(
α

(n)
l

)
j
f(lh) ∈ RN

}
n∈N, where h = T/n and

f : [0, t] → R a Riemann integrable function. Assume that for each j, there exists a vector-valued degree j −1
polynomial function sequence {F (n) : [0, 1] → RN }n∈N satisfying the following condition(

F

(
l

n

))
j

=
(

α
(n)
l

)
j
, ∀l ∈ {1, 2, . . . , n − 1}. (11)

Further assume
∥∥ (F (n)(·)

)
j

−
√

2j − 1Pj−1 (2 · −1)
∥∥

sup([0,1]) → 0 holds as n → ∞ for all j ∈ {1, 2, . . . , N}.
Then,

∥cn − c(tn)∥ → 0, as n → ∞.

Proof. Since the sequence {F (n)} is a polynomial sequence defined on a compact domain, with fixed degree
of order, it is uniformly bounded. Hence, for all j ∈ {1, 2, . . . , N}, we can choose some Bj > 0 and Cj > 0
such that Fj ≤ Bj for all F ∈ {F (k)} and supn,l

(
α

(n)
l

)
j

≤ Cj . Also, supx∈[0,t] |f(x)| ≤ M for some M > 0
from the definition of Riemann integrable functions. Fix component index j.

Since
(
F (k) ( l

n

))
j

=
(

α
(n)
l

)
j

for l ∈ {1, 2, . . . , n − 1}, we can write

(cn)j = 1
n

n∑
l=1

(
F (n)

(
l

n

))
j

f(lh) + 1
n

((
α

(n)
0

)
j

f(0) +
(

α(n)
n

)
j

f(nh) −
(

F (n)(1)
)

j
f(nh)

)
.

Fix ϵ > 0. Since the function sequence F (n) satisfies the conditions in Lemma 4, we can find N1 ∈ N
such that

∣∣∣ 1
n

∑n
l=1
(
F (n) ( l

n

))
j

f(lh) −
√

2j−1
t

∫ t

0 Pj−1
( 2s

t − 1
)

f(s)ds
∣∣∣ < ϵ/2 holds for all n ≥ N1. Choose

n ∈ N so that n ≥ max{N1,
2M(2Cj+Mj)

ϵ }. Constructing the following triangular inequality, we conclude the
following holds for all j ∈ {1, 2, . . . , N}:∣∣∣∣(cn)j −

√
2j − 1

t

∫ t

0
Pj−1

(
2s

t
− 1
)

f(s)ds

∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

l=1

(
F (n)

(
l

n

))
j

f(lh) −
√

2j − 1
t

∫ t

0
Pj−1

(
2s

t
− 1
)

f(s)ds

∣∣∣∣∣
+ 1

n

∣∣∣∣(α
(n)
0

)
j

f(0) +
(

α(n)
n

)
j

f(nh)
∣∣∣∣+ 1

n

∣∣∣∣(F (n)(1)
)

j
f(nh)

∣∣∣∣ ≤ ϵ

2 + M

n
(2Cj + Bj) ≤ ϵ

The result of this corollary implies that instead of directly proving the convergence of the numerical solution
cn to the exact solution, it would suffice to find a function sequence {F (n)}n∈N satisfying equation 11 that
converges to the (scaled) shifted Legendre polynomial. A natural choice to construct such a sequence would
be to interpolate the n−1 points using polynomials so that the function would satisfy equation 11. However,
the degree of the interpolating polynomials in the sequence could diverge as n → ∞, complicating the analysis
of their limiting behavior. Surprisingly, the following lemma shows that for all discretization methods of
interest, the sequence {F (n)}n∈N is a polynomial sequence of fixed degree. Note that if we interpolate n + 1
points, i.e. including

(
0,
(
α

(n)
0
)

j

)
,
(

1,
(
α

(n)
n

)
j

)
as interpolating points, the following lemma does not work.

Lemma 5. Denote the j-th index of the numerical solution obtained by a given discretization method as
(cn)j = 1

n

∑n
l=0

(
α

(n)
l

)
j

f l where h = t/n. Consider the following n − 1 points(
1
n

,
(

α
(n)
1

)
j

)
,

(
2
n

,
(

α
(n)
2

)
j

)
, . . . ,

(
1 − 1

n
,
(

α
(n)
n−1

)
j

)
. (12)

Then, for all n ∈ N and j ∈ J , there exists a degree j − 1 polynomial F
(n)
j that interpolates the above

n − 1 points obtained by any discretization method introduced in Section 2. Moreover, define {F (n)}n∈N as

11
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a vector-valued function sequence that for each n, the j-th component is F
(n)
j . Then, given the eigenvalue

decomposition A = V DV −1, the sequence {F (n)(x)}n∈N pointwise converges to

F (x) = V diag
(
1, 2x, 3x2, . . . , NxN−1)V −1e1

as n → ∞ for all x ∈ [0, 1].

Proof. Here we provide the proof for the forward Euler case, and defer the proof for the other methods
to appendix D. Fix n ∈ N. Let p(n) : [0, 1] → RN be some vector whose j-th component is a function
interpolating the n − 1 points in equation 12. Then, referring to equation 18, p(n) by construction satisfies

p(n)
(

l

n

)
= n

l

n−1∏
k=l+1

(
I − 1

k
A

)
Ae1

for l ∈ {1, 2, ..., n − 1}. Let A = V DV −1 where D ∈ RN×N is the diagonal matrix with entries (D)jj = j.
Then,

n−1∏
k=l+1

(
I − 1

k
A

)
=

n−1∏
k=l+1

V

(
I − 1

k
D

)
V −1 = V

(
n−1∏

k=l+1

(
I − 1

k
D

))
V −1

= V diag
(

n−1∏
k=l+1

(
1 − 1

k

)
, . . . ,

n−1∏
k=l+1

(
1 − j

k

)
, . . . ,

n−1∏
k=l+1

(
1 − N

k

))
V −1.

Now, since we are interested in the limiting behavior of n → ∞, we can assume that n is considerably larger
than N . Then we can cancel out terms in the denominator and the numerator to calculate the i-th term in
the diagonal matrix,

1
l

n−1∏
k=l+1

(
1 − i

k

)
= 1

l

1∏n−1
k=l+1 k

n−1∏
k=l+1

(k − i) =
∏i−1

k=1 (l − k)∏i
k=1 (n − k)

where
∏0

k=1 (l − k) = 1. Therefore we arrive at

p(n)
(

l

n

)
= nV diag

(
1

n − 1 ,
(l − 1)

(n − 1)(n − 2) , . . . ,

∏N−2
k=1 (l − k)∏N−1
k=1 (n − k)

,

∏N−1
k=1 (l − k)∏N
k=1 (n − k)

)
DV −1e1

for l ∈ {1, 2, . . . , n − 1}. Now we change variables and let l = nx. Then, we can define a vector function F (n)

with the j-th component

F
(n)
j (x) = net

jV diag
(

1
n − 1 ,

(nx − 1)
(n − 1)(n − 2) , . . . ,

∏N−2
k=1 (nx − k)∏N−1
k=1 (n − k)

,

∏N−1
k=1 (nx − k)∏N

k=1 (n − k)

)
DV −1e1.

such that F (n) ( l
n

)
= p(n) ( l

n

)
for all l = {1, 2, . . . , n − 1}, for all x ∈ [0, 1]. Notice in the above expression

of F
(n)
j (x) that the i-th term in the diagonal matrix is a i − 1 degree polynomial of x. Since V and V −1 are

both lower triangular, we conclude that F
(n)
j is a j − 1 degree polynomial interpolating the n − 1 points of

interest. Moreover, for any fixed x ∈ [0, 1], taking the limit n → ∞ yields

lim
n→∞

F (n)(x) = V diag
(
1, 2x, 3x2, . . . , NxN−1)V −1e1. (13)

Combining the results, we can prove Theorem 2.

12
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Proof of Theorem 2. Given a discretization method, we can express the numerical solution as cn =
1
n

∑n
l=0 α

(n)
l f l by Lemma 3. Then, define the function sequence {F (n)}n∈N as in Lemma 5. Then for

all n ∈ N, the j-th component of F (n) : [0, 1] → RN is a j − 1 degree polynomial with pointwise limit F (x)
for all x ∈ [0, 1]. This implies that all the coefficients of the polynomials in the sequence converge to the
coefficients of F , and hence we can conclude that {F (n)}n∈N converges to F uniformly. Note that we also
have that all the coefficients α

(n)
l of cn are uniformly bounded, since the limit is well-defined.

Now it suffices to show that the j-th component of the limit function F (x) : [0, 1] → RN is equal to
√

2j − 1
times the j − 1-th shifted Legendre polynomial,

√
2j − 1Pj−1(2x − 1). Once this is shown, we can apply the

result of Corollary 2 to conclude the proof. Recall that the exact form of F is:

F (x) = V diag
(
1, 2x, 3x2, . . . , jxj−1, . . . , NxN−1)V −1e1.

Differentiating both sides with respect to x, we get

F ′(x) = V diag
(
0, 2, 6x, . . . , j(j − 1)xj−2, . . . , N(N − 1)xN−2)V −1e1.

Combining these two equations, we obtain the following differential equation that holds for all x ∈ [0, 1]:

xF ′(x) = (A − I)F (x). (14)

Since we know the exact form of A, we can derive a recurrence relation for F for arbitrary dimension N .
Rewriting the j-th component F as Fj(x) =

√
2j − 1fj−1(x), we obtain the recurrence relation

xf ′
j(x) = jfj(x) +

j−1∑
l=0

(2l + 1)fl(x). (15)

Notice that equation 15 is exactly the recurrence relation satisfied the j-th shifted Legendre polynomial P̃j .
Matching the initial condition F (1) = Ae1 = B, we have fj(1) = 1 for all j ∈ J . Then by induction, we can
prove that fj(x) = P̃j(x) = Pj(2x − 1). Finally, utilizing the uniqueness of the solution for the IVP defined
with ODE equation 14 and initial condition at x = 1, we arrive at the conclusion:

Fj(x) =
√

2j − 1Pj−1(2x − 1).

5 Convergence rate analysis

In this section, we analyze the convergence rates of the numerical solutions obtained by the discretization
methods introduced in Section 2.
Theorem 3 (Convergence rates of numerical solutions). Consider the setup in Theorem 2. Assume further
that f is of bounded variation on [0, T ]. Then, we can obtain O(1/n) convergence rate for forward Euler,
backward Euler, bilinear, approximated bilinear, and zero-order hold. Further assume that f ∈ C2([0, T ]).
Then, we attain O(1/n2) convergence rate for the bilinear method.

Proof. Define T (n) = 1
n

∑n
l=0 Pj−1

( 2l
n − 1

)
f(lh) − 1

2n (Pj−1(−1)f(0) + Pj−1(1)f(n)) as the result of ap-
plying the composite trapezoidal rule to the exact solution. Then we can construct a triangle inequality
as ∣∣∣∣(cn)j −

√
2j − 1

t

∫ t

0
Pj−1

(
2s

t
− 1
)

f(s)ds

∣∣∣∣
≤
∣∣∣(cn)j −

√
2j − 1T (n)

∣∣∣︸ ︷︷ ︸
(1)

+
√

2j − 1
∣∣∣∣T (n) − 1

t

∫ t

0
Pj−1

(
2s

t
− 1
)

f(s)ds

∣∣∣∣︸ ︷︷ ︸
(2)

.
(16)

13
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(1) corresponds to the error between the numerical solution and the Riemann sum (obtained by applying
the trapezoidal rule). For (2), we note that for fixed t > 0, v(x) = Pj−1( 2x

t )f(x) is of bounded variation,
and bounded by V > 0 in closed interval [0, t]. Denoting h = t/n and V b

a (v) to be the total variation of v on
the interval [a, b], we obtain

∣∣∣∣T (n) − 1
t

∫ t

0
Pj−1(2s

t
− 1)f(s)ds

∣∣∣∣ ≤

∣∣∣∣∣ 1n
n∑

i=1
v(nh) − 1

nh

∫ nh

0
v(s)ds

∣∣∣∣∣+ 1
2n

|v(0) − v(1)|

≤ 1
nh

n∑
i=1

∫ ih

(i−1)h

|v(s) − v(ih)| ds + V

n

≤ 1
n

n∑
i=1

(
sup

x∈[(i−1)h,ih]
v(x) − inf

x∈[(i−1)h,ih]
v(x)

)
+ V

n

≤ 1
n

n∑
i=1

V ih
(i−1)h(v) + V

n
≤ 2V t

0 (v)
n

.

For the asymptotic rate of (1), recall for (cn)j = 1
n

∑n
l=0

(
α

(n)
l

)
j

f l, the interpolating function F
(n)
j was

defined such that F
(n)
j

(
l
n

)
=
(

α
(n)
l

)
j

for l = {1, . . . , n − 1} (endpoints are excluded). It was proved in
Lemma 5 and Theorem 2 that

lim
n→∞

F (n)(x) = F (x) = V diag
(
1, 2x, 3x2, . . . , NxN−1)V −1e1,

and that the j-th component of F (x) is the scaled-shifted (j − 1)-th Legendre polynomial, i.e., Fj(x) =√
2j − 1Pj−1(2x − 1). Rewriting (1), we obtain

∣∣∣(cn)j −
√

2j − 1T (n)
∣∣∣ =

∣∣∣∣∣ 1n
n∑

l=0

(
α

(n)
l

)
j

f l −
√

2j − 1T (n)

∣∣∣∣∣
≤ 1

n

n−1∑
l=1

∣∣∣∣F (n)
j

(
l

n

)
f l −

√
2j − 1Pj−1

(
2l

n
− 1
)

f l

∣∣∣∣
+ 1

n

∣∣∣∣(α
(n)
0

)
j

f0 +
(

α(n)
n

)
j

f1 −
√

2j − 1
2

(
Pj−1(−1)f0 + Pj−1(1)f1)∣∣∣∣︸ ︷︷ ︸

=Kn

= M

n

n−1∑
l=1

∣∣∣∣F (n)
j

(
l

n

)
− Fj

(
l

n

)∣∣∣∣+ Kn

n

≤ M ∥F
(n)
j − Fj∥sup︸ ︷︷ ︸

(⋆)

+Kn

n

where M is an upper bound for f . Note that Kn is uniformly bounded, so the second part automatically
is of O(1/n). For the first term, note that (⋆) differs depending on which discretization method we are
considering. Starting with the forward Euler method, recall that from Lemma 5 that the interpolating
function Fj is defined as

F
(n)
j (x) = et

jV diag
(

n

n − 1 ,
n (nx − 1)

(n − 1)(n − 2) , . . . ,
n
∏N−1

k=1 (nx − k)∏N
k=1 (n − k)

)
DV −1e1.

for x ∈ [0, 1]. Observing the diagonal components, for every x ∈ [0, 1], we can write the component of
Fj(x) − F

(n)
j (x) as px(n)

q(n) with some polynomials px, q. Note Fj(x) is constant with respect to n. Taking

14
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closer look at the numerators of F
(n)
j (x), we can check the coefficients of px(n) are polynomials with respect

to x. Denote the coefficient of leading term as a(x). Since limn→∞
px(n)
q(n) = 0, we have limn→∞ n px(n)

q(n) =
a(x) ≤ maxx∈[0,1] |a(x)|. As Fj(x) − F

(n)
j (x) is finite dimensional, we conclude ∥Fj − F

(n)
j ∥sup = O(1/n) for

all j ∈ {1, . . . , N}.

The same argument holds with the backward Euler method, approximate bilinear method, and zero-order
hold, with the only difference in computing (⋆). From Lemma 5, we have:

(F (n)
j )backward(x) = net

jV diag
(

1
n + 1 ,

(nx + 1)
(n + 1)(n + 2) , . . . ,

∏N−1
k=1 (nx + k)∏N

k=1 (n + k)

)
DV −1e1

(F (n)
j )approx bilin(x) = et

jV diag
(

2n

2n + 1 ,
n2x

n(n + 1) , . . . ,
n
∏j−1

k=1 (nx − j/2 + k)∏j
k=1 (n − j/2 + k)

)
DV −1e1

(F (n)
j )zoh(x) = et

jV diag
(

1, 2x + 1
n

, . . . ,
1

nN−1

N−1∑
k=0

(
N

k

)
(nx)k

)
V −1e1.

Using the same argument, all methods shown above achieve 1/n convergence rate.

For the bilinear method, we now assume that f ∈ C2([0, T ]). Starting from equation 16, we first know that
(2) is of O(1/n2) by classical quadrature results for smooth f . For the asymptotic rate of (1), we have to
consider the asymptotic rate of both (⋆) and Kn.

The convergence rate for (⋆) could be obtained in a similar manner. From Lemma 5, F
(n)
j obtained by

applying the bilinear method is

F
(n)
j (x) = et

jV diag
(

n2

n2 − 1/4 ,
n2x

n2 − 1 , . . . ,
n2∏N−1

k=1 (nx − N/2 + k)∏N+1
k=1 (n − N/2 + k − 1)

)
DV −1e1.

for x ∈ [0, 1]. Observe that denominator of the j-th term in the diagonal matrix is calculated as∏j+1
k=1 (n − j/2 + k − 1) = n

∏j/2
k=1(n2 − k2) when j is even, and

∏j+1
k=1 (n − j/2 + k − 1) =

∏(j+1)/2
k=1 (n2 −

(k − 1/2)2) when j is odd. In both cases, the subleading term (w.r.t. n) is 2 orders less than the leading
term. Then, as before, writing a component of Fj(x) − F

(n)
j as px(n)

q(n) , we have limn→∞ n2 px(n)
q(n) = a(x) ≤

maxx∈[0,1] |a(x)|. Hence we conclude ∥Fj − F
(n)
j ∥sup = O(1/n2).

For the second term, note that

Kn ≤ M

∣∣∣∣(α
(n)
0

)
j

−
√

2j − 1
2 Pj−1(−1)

∣∣∣∣+ M

∣∣∣∣(α(n)
n

)
j

−
√

2j − 1
2 Pj−1(1)

∣∣∣∣ .
It suffices to show that each term on the right-hand side is O(1/n). Also, note that(√

2j − 1Pj−1(−1)
)

j
=
(

(−1)j−1√2j − 1
)

j
= V diag (1, 0, . . . , 0) V −1e1(√

2j − 1Pj−1(1)
)

j
=
(√

2j − 1
)

j
= V diag (1, 2, . . . , N) V −1e1.

Recalling that Q̃n =
∏n

j=1

(
I − 1

2j A
)

and R̃n =
∏n

j=1

(
I + 1

2j A
)−1

, the exact expression for the numerical
solution obtained by the bilinear method is

cn = Q̃n−1R̃n (I + A/2) c1 + Q̃n−1R̃n

n−1∑
l=1

Q̃−1
l R̃−1

l

1
2

(
1
l
Bf l + 1

l + 1Bf l+1
)

.
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Now, consider the rightmost endpoint, i.e. the coefficient of fn. From the expression above, we can imme-
diately find (

α(n)
n

)
j

= 1
2

(
I + 1

2n
A

)−1
Bfn = 1

2V

(
I + 1

2n
D

)−1
V −1e1fn

= 1
2V diag

(
1

1 + 1/2n
,

2
1 + 1/n

, . . . ,
N

1 + N/2n

)
V −1e1fn.

From this expression, we can directly verify that
∣∣∣∣(α

(n)
n

)
j

−
√

2j−1
2 Pj−1(1)

∣∣∣∣ = O(1/n) for all j ∈

{1, 2, . . . , N}. It remains to check the leftmost endpoint, i.e. coefficient of f0. The terms containing
t = 0 in cn are

Q̃n−1R̃n (I + A/2) c1 = Q̃n−1R̃n

(
c0 + h

2 (I + A)−1
Bf ′(0) + B

2 f1
)

.

Notice that due to the extra h = O(1/n) term, f ′(0) term is negligible. Now considering the remaining term
for the coefficient of f0,

(
α

(n)
0

)
j

= nQ̃n−1R̃nc0 = nV

(
I + 1

2n
D

)−1 n−1∏
k=1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1
V −1e1f0

= nV

(
I + 1

2n
D

)−1
(

diag
(

n−1∏
k=1

(
k − 1/2
k + 1/2

)
, . . . ,

n−1∏
k=1

(
k − N/2
k + N/2

)))
V −1e1f0

= V

(
I + 1

2n
D

)−1
(

diag
(

n/2
n − 1/2 , 0, . . . ,

n−1∏
k=1

(
k − N/2
k + N/2

)))
V −1e1f0.

Note that the prefix term
(
I + 1

2n D
)−1 does not affect the asymptotic rate with respect to n. Observe that

the j-th term in the diagonal matrix is 0 if j is an even number, and O(1/nj−1) if j is an odd number. Hence∣∣∣∣(α
(n)
0

)
j

−
√

2j−1
2 Pj−1(−1)

∣∣∣∣ = O(1/n) for all j ∈ {1, 2, . . . , N}.

Remark 5.1. As discussed earlier, the classical technique of bounding the global error of ODEs by adding
up the LTEs is not applicable due to the non-regularity of f , and the singularity at t = 0. On the other
hand, the quadrature formulation only requires f to have bounded variation for O(1/n) rate, which does not
impose strong local conditions on the input function f .
Remark 5.2. The derived convergence rates are tight in the sense that when certain polynomials are used as
the input function, the global error matches the upper bound. By direct computation, one can show that the
input function f(t) = t2 yields a global error of Θ(1/n) for all methods except the bilinear method. Similarly,
for the bilinear method, input function f(t) = t3 attains a global error of Θ(1/n2). Notably, our rate analysis
and these matching examples show that the approximate bilinear method is genuinely a first-order method
while the bilinear method is a second-order method, when applied to the LegS ODE.

6 Numerical experiments

We perform simple numerical experiments to verify the tightness of the convergence theory. The results are
shown in Figure 1. The experiments were carried out with dimension N = 8, a time domain t ∈ [0, 2], and
stepsize h = 2/n. The y-axis represents the global error ∥cn −c(tn)∥. As discussed in the caption of Figure 1,
the numerical behavior precisely matches the theoretical guarantees of Theorems 2 and 3.
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(a) Smooth input function 1 (b) Smooth input function 2

(c) Non-smooth input function 1 (d) Non-smooth input function 2

Figure 1: Numerical convergence behavior of the global error of the discretization methods under various
regularity properties. The numerical rates agree with theoretical estimates of Theorem 3. (a) f(t) =
2t3e−t (smooth). Bilinear exhibits O(1/n2) rate while others exhibit O(1/n) rate. (b) f(t) = 1

4 sin(10t) +
1
2 sin( 10t

3 ) + sin( 10t
7 ) (smooth). The qualitative behavior is the same as in (a). (c) f(t) =

√
t (non-smooth,

bounded variation). All methods exhibit O(1/n) rate. (d) f(t) = t
1

20 sin( 1
t ) (not bounded variation, Riemann

integrable). All methods converge in accordance with Theorem 2, but the rates are slower than O(1/n).
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A Proof of Lemma 1

Proof. We first show f satisfies the desired conditions. Since f is continuous on (0, 1/2], it is suffices to show
f is continuous at t = 0. Calculating the differentiation, we see that

f(t) = d

dt

(
t2

log(1/t) sin(1/t)
)

= 2t

log(1/t) sin(1/t) + t

log2(1/t)
sin(1/t) − 1

log(1/t) cos(1/t)

holds for t ∈ (0, 1/2]. Since limt→0+ log(1/t) = limu→∞ log(u) = ∞, limt→0+ f(t) = 0. Therefore, f is
continuous at t = 0, so it is integrable and has a Lebesgue point at 0.

Now, we show that c(t) is not absolutely continuous on [0, T ]. It is sufficient to prove that the first component
c1(t) is not absolutely continuous on [0, T ]. Plugging the definition of f(t) to equation 4, we obtain

c1(t) =


c1
( 1

2
)

if t > 1/2
d1

t
log(1/t) sin(1/t) if t ∈ (0, 1/2]

0 if t = 0.

Let δ > 0 be arbitrary positive number. For N > 0 such that 1
(2N+1)π+ π

2
< min

{
δ, 1

2 , T
}

, consider

tn =
{(

(2N + n + 1
2 )π
)−1 if n is odd

((2N + n)π)−1 if n is even.

Define xn = tn and yn = tn+1 for n ≥ 1. Then
∑∞

n=1 (yn − xn) = t1 = 1
(2N+1)π+ π

2
< δ. However, since

|c1(xn) − c1(yn)| = |c1(tn) − c1(tn+1)| =
{

|c1(tn)| if n is odd
|c1(tn+1)| if n is even,

we have
∞∑

n=1
|c1(xn) − c1(yn)| = |c1(t1)| + 2

∞∑
m=1

|c1(t2m+1)|

> 2d1

∞∑
m=1

t2m+1

log(1/t2m+1) = 2d1

∞∑
m=1

1
(2N + 2m + 3/2)π log((2N + 2m + 3/2)π)

> 2d1

∞∑
m=1

1
2π(N + m + 1) log(2π(N + m + 1)) = 2d1

∞∑
m=N+2

1
2mπ log(2mπ) = ∞,

where the last equality follows from integral test. Since (xn, yn) ⊂ [0, T ] are disjoint and δ > 0 was arbitrary,
we conclude c1 is not absolutely continuous on [0, T ].

B Proof of Corollary 1

Proof. If we assume that the solution exists, we know by the previous theorem that c(0) = A−1Bf(0).
Further, in the proof of Theorem 1, we have that c(t) = V c̃(t) for all t ∈ (0, T ] where

c̃j(t) =

(
V −1B

)
j

tj

∫ t

0
sj−1f(s)ds.

The j-th component of c could be expressed as

cj(t) =
N∑

k=1
Vjk

(
V −1B

)
k

tk

∫ t

0
sk−1f(s)ds = 1

t

∫ t

0

N∑
k=1

Vjk

(
V −1B

)
k

xk−1

︸ ︷︷ ︸
=Gj(x)

f(s)ds (17)
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where we made the substitution x = s
t . Since other terms do not depend on the index j, we simplify this

expression by analyzing Gj(x), regarding as x as a symbolic (differentiable) variable. Expression Gj(x) could
be rewritten as

Gj(x) =
N∑

k,l=1
Vjkxk−1V −1

kl Bl = et
jV diag

(
1, x, . . . , xj−1, . . . , xN−1)V −1B.

Define G(x) as a length N vector with its j-th component being Gj(x), which is a polynomial of x. Then
we obtain a matrix differential equation with respect to the symbolic variable x :

x
dG

dx
(x) = (A − I) G(x).

Since we know the precise structure of matrix A, letting gj−1(x) = Gj(x)√
2j−1 , we can obtain the following

recurrence relation for gj ’s,

xg′
j−1(x) = (j − 1)gj−1 +

j−2∑
k=0

(2k + 1)gk(x),

which is precisely the recurrence relation equation 2 for the shifted Legendre polynomials. Since Gj(1) =
Bj =

√
2j − 1, we conclude that gj is equal to the (j − 1)-th shifted Legendre polynomial P̃j−1. Finally,

incorporating this observation into equation 17, we can rewrite the solution of the LegS ODE for t ∈ (0, T ]
as

cj(t) = 1
t

∫ t

0

√
2j − 1P̃j−1 (x) f(s)ds =

√
2j − 1

t

∫ t

0
Pj−1

(
2s

t
− 1
)

f(s)ds.

C Proof of Lemma 3

Proof. For notational simplicity, we define Qn for n ≥ 2, and Q̃n, Rn, R̃n for n ≥ 1 as follows:

Qn :=
n−1∏
j=1

(
I − 1

j + 1A
)

, Q̃n :=
n∏

j=1

(
I − 1

2j
A

)
,

Rn :=
n∏

j=1

(
I + 1

j
A
)−1

, R̃n :=
n∏

j=1

(
I + 1

2j
A

)−1
.

We use the
∏

notation when the multiplications are commutative. Note that all Qn, Q̃n, Rn, R̃n are invert-
ible.

We start by proving for the forward Euler method. Recall that the forward Euler method yields the following
recurrence relation at step n:

cn+1 =
(

I − 1
n

A

)
cn + 1

n
Bfn.

Repeating this procedure, we can obtain an exact formula for the numerical solution obtained by applying
forward Euler method to the LegS ODE. By induction we obtain,

cn+1 =
(

I − 1
n

A

)
cn + 1

n
Bfn

=
(

I − 1
n

A

)(
I − 1

n − 1A

)
cn−1 +

(
I − 1

n
A

)
1

n − 1Bfn−1 + 1
n

Bfn

= Qn

(
c1 + Bf1)+ Qn

n∑
l=2

1
l
Q−1

l Bf l.
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As explained in Section 2, we ‘zero out’ the ill-defined iteration, thereby letting c1 = c0. Hence we have

cn = 1
n

n∑
l=0

α
(n)
l f(lh) = Qn−1(e1f0 + Bf1) + Qn−1

n−1∑
l=2

1
l
Q−1

l Bf l. (18)

One can verify that α
(n)
l depends only on l and n.

For the backward Euler method, we start from

cn+1 =
(

I + 1
n + 1A

)−1
cn +

(
I + 1

n + 1A

)−1 1
n + 1Bfn+1.

Then, we can derive inductively

cn+1 =
(

I + 1
n + 1A

)−1
cn +

(
I + 1

n + 1A

)−1 1
n + 1Bfn+1

=
(

I + 1
n + 1A

)−1(
I + 1

n
A

)−1
cn−1 +

(
I + 1

n + 1A

)−1(
I + 1

n
A

)−1 1
n

Bfn

+
(

I + 1
n + 1A

)−1 1
n + 1Bfn+1

= Rn+1(c0 + Bf1) + Rn+1

n∑
l=1

1
l + 1R−1

l Bf l+1.

Thus we can verify cn has the desired form with the specific expression

cn = 1
n

n∑
l=0

α
(n)
l f(lh) = Rn(e1f0 + Bf1) + Rn

n−1∑
l=1

1
l + 1R−1

l Bf l+1. (19)

For the bilinear method, we start from

cn+1 =
(

I + 1
n + 1A/2

)−1(
I − 1

n
A/2

)
cn +

(
I + 1

n + 1A/2
)−1 1

2

(
1
n

fn + 1
n + 1fn+1

)
B.

Similarly, by induction, we obtain

cn+1 =
(

I + 1
n + 1A/2

)−1(
I − 1

n
A/2

)
cn +

(
I + 1

n + 1A/2
)−1 1

2

(
1
n

Bfn + 1
n + 1Bfn+1

)
=
(

I + 1
n + 1A/2

)−1(
I + 1

n
A/2

)−1(
I − 1

n
A/2

)(
I − 1

n − 1A/2
)

cn−1

+
(

I + 1
n + 1A/2

)−1(
I + 1

n
A/2

)−1(
I − 1

n − 1A/2
)

1
2

(
1

n − 1Bfn−1 + 1
n

Bfn

)
+
(

I + 1
n + 1A/2

)−1 1
2

(
1
n

Bfn + 1
n + 1Bfn+1

)
= Q̃nR̃n+1 (I + A/2) c1 + Q̃nR̃n+1

n∑
l=1

Q̃−1
l R̃−1

l

1
2

(
1
l
Bf l + 1

l + 1Bf l+1
)

.

As for the forward Euler case, we ‘zero out’ the ill-defined term in the first iteration. This yields c1 =(
I + A

2
)−1

c0 +
(
I + A

2
)−1 ( 1

2 f1). Then,

cn = Q̃n−1R̃n

(
e1f0 + f1

2

)
+ Q̃n−1R̃n

n−1∑
l=1

Q̃−1
l R̃−1

l

1
2

(
1
l
Bf l + 1

l + 1Bf l+1
)

.
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Rearranging terms,

cn = 1
n

n∑
l=0

α
(n)
l f(lh)

= Q̃n−1R̃ne1f0 + Q̃n−1R̃n

n−1∑
l=1

1
2l

(
Q̃−1

l R̃−1
l + Q̃−1

l−1R̃−1
l−1
)

Bf l + R̃nR̃−1
n−1

1
2n

Bfn (20)

where we define Q̃0 = R̃0 = I. Thus we recover the desired form for cn.

For the approximate bilinear method, we start from

cn+1 =
(

I + 1
n + 1A/2

)−1(
I − 1

n + 1A/2
)

cn +
(

I + 1
n + 1A/2

)−1( 1
n + 1fn+1

)
B.

By induction, we obtain

cn+1 =
(

I + 1
n + 1A/2

)−1(
I − 1

n + 1A/2
)

cn +
(

I + 1
n + 1A/2

)−1( 1
n + 1Bfn+1

)
=
(

I + 1
n + 1A/2

)−1(
I + 1

n
A/2

)−1(
I − 1

n + 1A/2
)(

I − 1
n

A/2
)

cn−1

+
(

I + 1
n + 1A/2

)−1(
I + 1

n
A/2

)−1(
I − 1

n + 1A/2
)(

1
n

Bfn

)
+
(

I + 1
n + 1A/2

)−1( 1
n + 1Bfn+1

)
= Q̃n+1R̃n+1c0 + Q̃n+1R̃n+1

n∑
l=1

Q̃−1
l+1R̃−1

l

(
1

l + 1Bf l+1
)

.

Thus we can verify cn has the desired form with the specific expression

cn = Q̃nR̃nc0 + Q̃nR̃n

n−1∑
l=1

Q̃−1
l+1R̃−1

l

(
1

l + 1Bf l+1
)

. (21)

For the Zero-order hold method, we start from

cn+1 = eA log( n
n+1 )cn +

(
I − eA log( n

n+1 )
)

A−1Bfn.

By induction, we obtain

cn+1 = eA log( n
n+1 )eA log( n−1

n )cn−1 +
(

I − eA log( n
n+1 )

)
A−1Bfn

+ eA log( n
n+1 )

(
I − eA log( n−1

n )
)

A−1Bfn−1

= eA log( n−1
n+1 )cn−1 +

(
I − eA log( n

n+1 )
)

A−1Bfn +
(

eA log( n
n+1 ) − eA log( n−1

n+1 )
)

A−1Bfn−1

=
n∑

k=0

(
eA log( n+1−k

n+1 ) − eA log( n−k
n+1 )

)
A−1Bfn−k.

Note that in this expression, we are denoting (with abuse of notation) elog 0 = 0. Thus we can verify cn has
the desired form with the specific expression

cn = 1
n

n∑
l=0

α
(n)
l f(lh) =

n−1∑
l=0

(
eA log( l+1

n ) − eA log( l
n )
)

A−1Bf l. (22)
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D Remaining Proof of Lemma 5

In this section, we provide the proof of Lemma 5 for the other methods, i.e., backward Euler, bilinear,
approximated bilinear, and zero-order hold.

Proof. For the backward Euler method, referring to equation 19, the interpolating function satisfies

p(n)
(

l

n

)
= n

l

n∏
k=l

(
I + 1

k
A

)−1
Ae1

for l ∈ {1, 2, . . . , n − 1}. Then the product term in the RHS is equal to

n∏
k=l

(
I + 1

k
A

)−1
=

n∏
k=l+1

V

(
I + 1

k
D

)−1
V −1 = V

(
n∏

k=l

(
I + 1

k
D

))−1

V −1

= V

(
diag

(
n∏

k=l

(
1 + 1

k

)−1
,

n∏
k=l

(
1 + 2

k

)−1
, . . . ,

n∏
k=l

(
1 + j

k

)−1
))

V −1

and by canceling out terms assuming n is large,

1
l

n∏
k=l

(
1 + i

k

)−1
= 1

l

∏n
k=l k∏n

k=l (k + i)
=
∏i−1

k=1 (l + k)∏i
k=1 (n + k)

.

Similar as in the forward Euler case, we can define the interpolating polynomial F
(n)
j as

F
(n)
j (x) = net

jV diag
(

1
n + 1 ,

(nx + 1)
(n + 1)(n + 2) , . . . ,

∏N−2
k=1 (nx + k)∏N−1
k=1 (n + k)

,

∏N−1
k=1 (nx + k)∏N

k=1 (n + k)

)
DV −1e1.

By the same reasoning as for the forward Euler case, we conclude that F
(n)
j is a j − 1 degree polynomial.

Moreover, it converges to equation 13 pointwise as n → ∞ for x ∈ [0, 1] as n → ∞.

For the bilinear method, referring to equation 20, the interpolating function satisfies

p(n)
(

l

n

)
= n

2l

(
I + 1

2n
A

)−1
×(

n−1∏
k=l

(
I − 1

2k
A

)(
I + 1

2k
A

)−1
+

n−1∏
k=l+1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1
)

Ae1

= n

2l

(
I + 1

2n
A

)−1
×(

I +
(

I − 1
2l

A

)(
I + 1

2l
A

)−1
)

n−1∏
k=l+1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1
Ae1

for l ∈ {1, 2, . . . , n − 1}. For the RHS, the last term simplifies to

n−1∏
k=l+1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1

= V

n−1∏
k=l+1

(
I − 1

2k
D

)(
I + 1

2k
D

)−1
V −1

= V

(
diag

(
n−1∏

k=l+1

(
k − 1/2
k + 1/2

)
,

n−1∏
k=l+1

(
k − 1
k + 1

)
, . . . ,

n−1∏
k=l+1

(
k − j/2
k + j/2

)))
V −1
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and the prefix terms simplify to

n

2l

(
I + 1

2n
A

)−1
(

I +
(

I − 1
2l

A

)(
I + 1

2l
A

)−1
)

= n

2l
V

(
I + 1

2n
D

)−1
(

I +
(

I − 1
2l

D

)(
I + 1

2l
D

)−1
)

V −1

= V

(
diag

((
n2

(n + 1/2)(l + 1/2)

)
,

(
n2

(n + 1)(l + 1)

)
, . . . ,

(
n2

(n + 1/2j)(l + 1/2j)

)))
V −1.

Combining these two terms and simplifying the denominators and numerators, we obtain

p(n)
(

l

n

)
= V diag

(
n2

n2 − 1/4 , . . . ,

∏N
k=1 (l − N/2 + k)∏N

k=1 (n − N/2 + k − 1)
· n2

(l + j/2)(n + j/2)

)
DV −1e1.

Define F
(n)
j as

F
(n)
j (x) = et

jV diag
(

n2

(n − 1/2)(n + 1/2) , . . . ,

∏N−1
k=1 (nx − N/2 + k)∏N

k=1 (n − N/2 + k − 1)
· n2

n + N/2

)
DV −1e1.

By the same reasoning as for the forward Euler case, we conclude that F
(n)
j is a j − 1 degree polynomial.

Moreover, it converges to equation 13 pointwise as n → ∞ for x ∈ [0, 1] as n → ∞.

For the approximated bilinear method, referring to equation 21, the interpolating function satisfies

p(n)
(

l

n

)
= n

l

n∏
k=l+1

(
I − 1

2k
A

) n∏
k=l

(
I + 1

2k
A

)−1
Ae1

= n

l

(
I + 1

2l
A

)−1 n∏
k=l+1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1
Ae1

for l ∈ {1, 2, . . . , n − 1}. Assuming n is large, the product term in RHS simplifies as
n∏

k=l+1

(
I − 1

2k
A

)(
I + 1

2k
A

)−1

=
n∏

k=l+1
V

(
I − 1

2k
D

)(
I + 1

2k
D

)−1
V −1

= V

(
diag

(
n∏

k=l+1

(
k − 1/2
k + 1/2

)
,

n∏
k=l+1

(
k − 1
k + 1

)
, . . . ,

n∏
k=l+1

(
k − j/2
k + j/2

)))
V −1

and the prefix term simplifies to

1
l

(
I + 1

2l
A

)−1
= 1

l
P −1

(
I + 1

2l
D

)−1
P = V

(
diag

(
1

l + 1/2 ,
1

l + 3/2 . . . ,
1

l + j/2

))
V −1.

Assuming that n is large and canceling out terms, we obtain

p(n)
(

l

n

)
= V diag

(
2n

2n + 1 ,
ln

n(n + 1) , . . . ,

∏N
k=1 (l − N/2 + k)∏N
k=1 (n − N/2 + k)

· n

l + N/2

)
DV −1e1

Define F
(n)
j as

F
(n)
j (x) = et

jV diag
(

2n

2n + 1 ,
n2x

n(n + 1) , . . . ,
n
∏j−1

k=1 (nx − j/2 + k)∏j
k=1 (n − j/2 + k)

)
DV −1e1
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By the same reasoning as in the forward Euler case, we conclude that F
(n)
j is a j − 1 degree polynomial.

Moreover, it converges to equation 13 pointwise as n → ∞ for x ∈ [0, 1] as n → ∞.

For zero-order hold, referring to equation 22, the interpolating function satisfies

p(n)
(

l

n

)
= n

(
eA log( l+1

n ) − eA log( l
n )
)

e1

for l ∈ {1, 2, . . . , n − 1}. Diagonalize A by A = V DV −1 and

p(n)
(

l

n

)
= nV

(
eD log( l+1

n ) − eD log( l
n )
)

V −1e1

= V diag
(

1, . . . ,
1

nj−1

(
(l + 1)j − lj

)
, . . . ,

1
nN−1

(
(l + 1)N − lN

))
V −1e1.

Similarly as in the other cases, we can define F
(n)
j as

F
(n)
j (x) = et

jV diag
(

1, 2x + 1
n

,
1

nj−1

j−1∑
k=0

(
j

k

)
(nx)k

, . . . ,
1

nN−1

N−1∑
k=0

(
N

k

)
(nx)k

)
V −1e1

which pointwise converges to equation 13.
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