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ABSTRACT

Scene Graph Generation (SGG) remains a challenging visual understanding task
due to its complex compositional property. Most previous works adopt a bottom-up
two-stage or a point-based one-stage approach, which often suffers from overhead
time complexity or sub-optimal design assumption. In this work, we propose
a novel SGG method to address the aforementioned issues, which formulates
the task as a bipartite graph construction problem. To solve the problem, we
develop a transformer-based end-to-end framework that first generates the entity
and predicate proposal set, followed by inferring directed edges to form the relation
triplets. In particular, we develop a new entity-aware predicate representation
based on a structural predicate generator to leverage the compositional property
of relationships. Moreover, we design a graph assembling module to infer the
connectivity of the bipartite scene graph based on our entity-aware structure,
enabling us to generate the scene graph in an end-to-end manner. Extensive
experimental results show that our design is able to achieve the state-of-the-art
or comparable performance on two challenging benchmarks, surpassing most of
the existing approaches and enjoying higher efficiency in inference. We hope
our model can serve as a strong baseline for the Transformer-based scene graph
generation.

1 INTRODUCTION

Inferring structural properties of a scene, such as the relationship between entities, is a fundamental
visual understanding task. The visual relationship between two entities can be formally represented
by a triple <subject entity, predicate, object entity>. Based on these visual relationships, a scene
can be modeled in a form of graph structure, with entities as nodes and predicates as edges, termed
scene graph. Such a graph provides a compact structural representation for a visual scene, which has
potential applications in many vision tasks such as visual question answering Teney et al. (2017);
Shi et al. (2019); Hildebrandt et al. (2020), image captioning Yang et al. (2019; 2021b) and image
retrieval Johnson et al. (2015).

Different from the traditional vision tasks (e.g., object detection), which focus on detecting individual
instances, the main challenge of scene graph generation (SGG) lies in building an effective and
efficient model for the pair-wise relations between the entities. The compositional property of visual
relationships induces cubic complexity in terms of their constituents, which makes it difficult to learn
a compact representation of the relationship concept for localization and/or classification.

Most previous work attempt to tackle this problem using two distinct design patterns: bottom-up
two-stage Li et al. (2021); Yang et al. (2021a); Yao et al. (2021a); Desai et al. (2021); Chiou et al.
(2021); Guo et al. (2021); Knyazev et al. (2021); Abdelkarim et al. (2021) and point-based one-stage
design Liu et al. (2021); Dong et al. (2021). The former design typically first detects N entity
proposals, followed by predicting the predicate categories of those entity combinations. While this
strategy achieves high recalls in discovering relationship instances, its O(N2) predicate proposals
not only incur considerable computation cost but also produce substantial noise in context modeling.
For the one-stage methods, entities and predicates are often extracted separately from the image in
order to reduce the size of relationship proposal set. Nonetheless, they rely on a strong assumption
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Figure 1: The illustration of SGTR pipeline paradigm. We formulate SGG as a bipartite graph
construction process. First, the entity and predicate nodes are generated respectively. Then we
assemble the bipartite scene graph from two types of nodes.

on the non-overlapping property of interaction regions, which severely restricts their application in
modeling complex scenes1.

In this work, we aim to tackle the aforementioned limitation by leveraging the compositional property
of scene graphs. To this end, as illustrated in Fig. 1, we first formulate the SGG task as a bipartite
graph construction problem, in which each relationship triplet is represented as two types of nodes
(entity and predicate) linked by directed edges. Such a bipartite graph allows us to jointly generate
entity/predicate proposals and their potential associations, yielding a rich hypothesis space for
inferring visual relations. More importantly, we propose a novel entity-aware predicate representation
that incorporates relating entity proposal information into each predicate node. This enriches the
expressive power of predicates and therefore enables us to produce a relatively small number of
high-quality predicate proposals. Moreover, such a representation encodes potential associations
between each predicate and its subject/object entities, which can facilitate predicting the graph edges
and leads to efficient generation of the visual relation triplets.

Specifically, we develop a new transformer-based end-to-end SGG model, dubbed Scene graph
Generation TRansformer (SGTR), for constructing the bipartite graph. Our model consists of
three main modules, including an entity node generator, a predicate node generator and a graph
assembling module. Given an image, we first introduce two CNN+Transformer sub-networks as the
entity and predicate generator to produce a set of entity and predicate nodes, respectively. In order
to compute the entity-aware predicate representations, we design a structural predicate generator
consisting of two parallel transformer decoders, which integrate each predicate feature with an entity
indicator representation. After generating entity and predicate node representations, we then devise
a differentiable graph assembling module to infer the directed edges of the bipartite graph, which
exploits the entity indicator to predict the best grouping of the entity and predicate nodes.

We validate our method by extensive experiments on two SGG benchmarks: Visual Genome and
OpenImages-V6 datasets. We report both prediction accuracy and efficiency with comparisons to
the previous state-of-the-art methods. The results show that our method outperforms or achieves
comparable performance on both benchmarks with high efficiency during inference. We hope this
work can serve as a strong baseline for the transformer-based scene graph generation.

The main contribution of our work has three-folds:

• We propose a novel transformer-based end-to-end scene graph generation method with
bipartite graph construction process, which inherits the advantages of both two-stage and
one-stage methods.

1e.g., two different relationships cannot have largely overlapped area – a phenomenon also discussed in the
recent works on (HOI) Chen et al. (2021); Tamura et al. (2021)
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• We develop the entity-aware structure for incorporating compositional property of visual
relationship.

• Our method achieves the state-of-the-art or comparable performance on all metrics w.r.t the
prior SGG methods but with fast inference.

2 RELATED WORKS

We categorize the related work of SGG/HOI into three directions: Two-stage Scene Graph Generation,
One-stage Scene Graph Generation and One-stage Human-Object Interaction.

Two-stage Scene Graph Generation Two-stage SGG methods predict the relationships on densely
connected entities pairs. Some works propose contextual modeling structure on dense relationship
proposals Zellers et al. (2018); Xu et al. (2017); Li et al. (2017); Woo et al. (2018); Tang et al.
(2019); Li et al. (2018); Yang et al. (2018); Qi et al. (2019); Yin et al. (2018); Wang et al. (2019);
Lin et al. (2020); Zareian et al. (2020b;a;c); Yuren et al. (2020); Wang et al. (2020b); Khandelwal
et al. (2021); Li et al. (2021). More recent works mainly address the long-tail recognition challenge
in the SGG task by developing logits adjustment and training strategies Tang et al. (2020); Knyazev
et al. (2017); Yan et al. (2020); Wang et al. (2020b); Suhail et al. (2021); Li et al. (2021); Yang et al.
(2021a); Yao et al. (2021a); Desai et al. (2021); Chiou et al. (2021); Guo et al. (2021); Knyazev
et al. (2021); Abdelkarim et al. (2021). These two-stage designs are capable of dealing with the
complicated scenario encountered in SGG. However, as mentioned earlier in Sec. 1, the overhead
relation proposal leads to large time complexity and unavoidable noise in context modeling. There
are many two-stage-based works that propose heuristic designs to address these issues (e.g. proposal
generation Yang et al. (2018), efficient context modeling Li et al. (2018); Tang et al. (2019); Qi et al.
(2019); Yang et al. (2019); Wang et al. (2019); Li et al. (2021)). However, those complex two-stage
approaches limit the end-to-end optimization and further development.

One-stage Scene Graph Generation Inspired by the fully convolutional one-stage object detection
methods Tian et al. (2019); Carion et al. (2020); Sun et al. (2021), the SGG community starts to explore
the one-stage design. These one-stage methods detect the relationship from image feature directly by
the fully convolutional network Liu et al. (2021); Teng & Wang (2021) or CNN-Transformer Dong
et al. (2021) architectures. The sparse proposal set allows these one-stage frameworks to perform
efficiently. Neverless, with less instance-aware structure, those designs may have difficulty modeling
the more complex compositing situations of visual relationships. Additionally, the node-edge
consistency is disregarded in the majority of one-stage methods, since each triplet is predicted
separately.

One-stege Human-Object Interaction The HOI is the similar sub-task of SGG. Recently, there
is a trend of study on the one-stage framework for Human-Object Interaction Liao et al. (2020);
Kim et al. (2020); Wang et al. (2020a); Zou et al. (2021); Chen et al. (2021); Tamura et al. (2021);
Kim et al. (2021); Zhang et al. (2021). The Chen et al. (2021); Kim et al. (2021) introduce the
interesting framework with a dual decoder structure that simultaneously extracts the human, object,
and interaction, and then groups the components to produce final triplets. This decoding-grouping
design provides a more suitable insight for modeling the compositional structure of interaction with
the various combination, especially on one-stage scene graph generation, which has more complex
composition characteristics. Inspired by their explorations, SGTR reformulates the scene graph
generation as a bipartite graph construction. We further propose an entity-aware structure to explicitly
model the association between entity and predicate, which allows us to achieve better results on SGG
with an efficient pipeline.

3 PRELIMINARY

In the following of this section, we first introduce the problem setting of scene graph generation in
Sec. 3.1. Then an overview of our approach is presented in Sec. 3.2

3.1 PROBLEM SETTING

The task of scene graph generation aims to parse an input into a scene graph Gscene = {Ve, Er},
where Ve is the node set denoting noun entities, and Er is the edge set that represents predicates
between pairs of subject and object entities. Specifically, each entity vi ∈ Ve has a category label
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Figure 2: Illustration of overall pipeline of our SGTR model. Left) We use CNN backbone
together with transformer encoder for image feature extraction. The entity/predicate node generator
are introduced to produce the entity node and entity-aware predicate node. A graph assembling
mechanism is developed to construct the final bipartite scene graph. Right) The predicate node
generator consists of a) predicate query initialization, b) predicate encoder, and c) structural predicate
decoder, which is designed to generate entity-aware predicate nodes.

from a set of entity classes Ce and a bounding box depicting its location in the image, while each
edge ei→j ∈ Er between a pair of nodes vi and vj is associated with a predicate label from a set of
predicate classes Cp in this task.

One feasible way to generate the scene graph Gscene is extracting the relationship triplet set of the
given image. We formulate the relationship triplet generation process as a bipartite graph construction
taskLi et al. (2021). Specifically, the graph consists of two groups of nodes Ve,Vp, which correspond
to entity representation and predicate representation respectively. These two groups of nodes are
connected by two sets of directed edges Ee→p, Ep→e representing the direction from the entities to
predicates and vice versa. Hence the bipartite graph has a form as Gb = {Ve,Vp, Ee→p, Ep→e}.

3.2 MODEL OVERVIEW

Our model defines a differentiable function Fsgg that takes an image I as the input and outputs
the bipartite graph Gb, denoted as Gb = Fsgg(I), which allows end-to-end training. We propose to
explicitly model the bipartite graph construction process by leveraging the compositional property
of relationships. The bipartite graph construction is composed by two steps: a) node (entity and
predicate) generation, and b) directed edge connection.

In node generation step, we extract the entity nodes and predicate nodes from the image with entity
node generator and predicate node generator respectively. Specifically, the predicate node generator
utilizes three parallel sub-decoders to update the predicate proposals. In directed edge connection
step, we design the graph assembling module to assemble the bipartite scene graph from the entity
and predicate proposals. An overview of our method is illustrated in Fig 2 and we will start with a
detailed description of our model architecture below.

4 MODEL ARCHITECTURE

Our model has a modular architecture consisting of four main submodules: (1) a backbone network
to generate feature representation of the scene (Sec. 4.1); (2) a transformer-based entity node
generator to predict entity proposals (Sec. 4.1), (3) a structural predicate node generator to decode
predicate nodes (Sec. 4.2), (4) a differentiable bipartite graph assembling module to contruct the
final bipartite graph by connecting the entity node and entity-aware predicate node(Sec. 4.3). The
learning and inference are detailed in Sec. 4.4.
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4.1 BACKBONE AND ENTITY NODE GENERATOR

We adopt an CNN backbone consists of a ResNet network, which produces a convolutional feature
representation for the subsequent modules. Motivated by the Transformer-based detector, DETR Car-
ion et al. (2020), we introduce a multi-layer Transformer encoder for entity node generator and
predicate node generator. The output feature of the Transformer encoder is denoted as Z ∈ Rw×h×d,
where w, h, d are the width, height, and channel of the feature map, respectively.

We adopt the decoder of DETR as the entity generator to decode the entity nodes from the learnable
entity queries. Formally, we define the entity detector as a mapping function Fe from initial entity
query Qe ∈ RNe×d and the feature map Z to entity predicted localization Be ∈ RNe×4 and class
scores Pe ∈ RNe×(Ce+1), along with its associated feature representation He ∈ RNe×d as follows,

Be,Pe,He = Fd
dec(Z,Qe) (1)

where Be = {b1, · · · , bNe
}, b = (xc, yc, wb, hb), xc, yc are the normalized center coordinates of the

instance, wb, hb are the normalized width and height of each entity box.

4.2 PREDICATE NODE GENERATOR

Our predicate node generator aims to decode the entity-aware predicate representation by incorporat-
ing relating entity proposal information into each predicate node. This design enables us to encodes
potential associations between each predicate and its subject/object entities, which can facilitate
predicting the graph edges and leads to efficient generation of the visual relation triplets. As shown
in Fig. 3, the predicate node generator is composed of three components: (1) a predicate query
initialization module for initializing the entity-aware predicate query (in Sec. 4.2.2), (2) a predicate
encoder for image feature extraction (in Sec. 4.2.1), and (3) a structural predicate decoder for
decoding a set of entity-aware predicate nodes. (in Sec. 4.2.3).

4.2.1 PREDICATE NODE ENCODER

Based on the feature provided by the shared encoder, we introduce a lightweight extra predicate
encoder to extract predicate-specific image features. Using a similar structure as the shared encoder,
the predicate encoder has a form of multi-layer multi-head self-attention with the skip-connected
feed-forward network. The resulting predicate-specific feature is denoted as Zp ∈ Rw×h×d.

4.2.2 PREDICATE QUERY INITIALIZATION

A simple strategy for initializing the predicate proposal is adopting a fixed set of holistic learnable
queries as same in the entity detector. However, such a holistic predicate query design ignores not
only the compositional property of the visual relationships but also entity candidate information.
The resulting representations are often less expressive for capturing the structured and diverse visual
relationship.

To cope with this challenge, we develop a compositional representation for learning the entity-aware
predicate nodes by decoupling the predicate query Qe

p = {Qis;Qio;Qp} ∈ RNr×3d. It has three
parts: subject/object entity indicator 2 Qis,Qio ∈ RNr×d and predicate representation Qp ∈ RNr×d.
We use the decoupled queries Qis,Qio as entity indicator to explicitly modeling the predicate-entity
association.

We dynamically generate this query with the entity-aware and scene-adaptive predicate representation
Qe

p, from the initial query initial predicate queries Qinit ∈ RNr×d and entities representation
Be,He. Inspired by the previous work Yao et al. (2021b), we build the geometric-aware entity
representation as to the key and value as follows: Kinit = Vinit = (He +Ge) ∈ RNe×d,Ge =
ReLU(BeWg) ∈ RNe×d, where Ge is the learnable geometric embedding of each entity query,
Wg ∈ R4×d is the transformation parameters from bounding box location to embedding space.
To generate the entity-aware predicate queries, a multi-head cross-attention is conducted between
the initial predicate queries Qinit ∈ RNr×d and Kinit. We use A(q, k, v) = FFN(MHA(q, k, v))
to denote the multi-head attention operation in the following sections for clarity. Thus we have
Qe

p = A(Qinit,Kinit,Vinit)We ∈ RNr×3d and We ∈ Rd×3d. Finally, we split the Qe
p into three

2The subscripts ’s’, ’o’ stand for the subject and object entity, respectively.
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decoupled queries Qis,Qio,Qp To this end, we obtain the structural query which incorporates the
entity information into the predicate query explicitly.
4.2.3 STRUCTURAL PREDICATE NODE DECODER

To leverage the compositional property, we develop a structural predicate node decoder to decode
each component of the entity-aware predicate query Qe

q in parallel. Our structural decoder consists
of three modules: a) predicate sub-decoder; b) entity indicator sub-decoders; c) predicate indicator
fusion. These two types of decoders take the encoder feature map Zp and entity instance feature
from entity generator He respectively. Based on the updated predicate and entity indicators, the
predicate-indicator fusion is adopted to refine the association within the predicate node query.

We adopt the standard transformer decoder structure in this work, where each decoder layer consists
of a multi-head self-attention layer, a multi-head cross-attention layer, and FFN layers. For notation
clarity, we focus on the single decoder layer and omit layer number l while introducing the decoder
of this section. The detailed notation of self-attention operation is also omitted. The iterative form
will be discussed in the predicate-indicator fusion paragraph.

Predicate Sub-decoder. The predicate sub-decoder is designed to decode the predicate representation
from the image feature map Zp, which utilizes the spatial context of the image for extracting predicate
representation. We implement this decoding process using the cross-attention mechanism: Q̃p =

A(q = Qp, k = Zp, v = Zp). Q̃p is updated predicate representation.

Entity Indicator Sub-Decoders The entity indicator sub-decoders explicitly learn the representation
of which entity associates with the predicate. Instead of relie on image feature, we leverage more
accurate entity information of the given scene to conduct cross-attention between entity indicator
of each predicate Qis,Qio and entity feature He from the entity node generator, which explicitly
modeling the association between entity and predicate. We denote the updated representation of the
entities indicator as Q̃is, Q̃io, which are generated with standard cross-attention operation:

Q̃is = A(Qis,He,He), Q̃io = A(Qio,He,He) (2)

Predicate-Indicator Fusion The predicate sub-decoder owns a multi-layer self-attention design for
modeling the relationships among all the predicates. However, it is necessary to encode the context
between the predicate and its entity indicator for calibrating the features of each component. We
explicitly fuse the current l-th decoder layer outputs Q̃l

p, Q̃
l
is, Q̃

l
io to update each component of as

the query for next layer Ql+1
p ,Ql+1

is ,Ql+1
io . Specifically, we adopt simple fully connected layers for

updating the predicate by fusing entity indicators representation as Eq. 3:

Ql+1
p =

(
Q̃l

p +
(
Q̃l

is + Q̃l
io

)
·Wi

)
·Wp (3)

where Wi,Wp ∈ Rd×d is the transformation parameters for updating. For entity indicator, we
simplicity adopt the previous layer output as input: Ql+1

is = Q̃l
is,Q

l+1
io = Q̃l

io.

Based on the entity-aware predicate queries, we are able to predict the geometric and semantic
prediction of the predicate node, and generate the location/category of its associated entity indicator.

Pp = Softmax(Q̃p ·W p
cls) ∈ RNr×(Cp+1), (4)

Bp = σ(Q̃p ·W p
reg) = {(xs

c, y
s
c , x

o
c , y

o
c )} ∈ RNr×4 (5)

where Pp is classification predictions of predicates, and Bp = {(xs
c, y

s
c , x

o
c , y

o
c )} is the box center

coordinates of its associated subject and object entities. The entity indicators are also translated
as location prediction of entities Bs,Bo ∈ RNr×4 and their classification predictions Ps,Po ∈
RNr×(Ce+1), which are similar to the entity detector. Finally, each predicate decoder layer produces
the location and classification prediction of each entity-aware predicate query. With this multi-layer
structure, the predicate decoder is able to gradually improve the quality for predicate and entity
association.

4.3 BIPARTITE GRAPH ASSEMBLING

In the proposed SGTR, we convert the original scene graph into a bipartite graph structure which
consists of Ne entity nodes and Nr predicate nodes, as shown in Fig. 3. The main goal of the
assembling is to link the entity-aware predicate nodes to the proper entity node.
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Figure 3: The illustration of Bipartite Graph Assembling.

To achieve this, we need to obtain the adjacency matrix between the Ne entity nodes and Nr predicate
nodes, which can be encoded into a correspondence matrix M ∈ RNr×Ne . Concretely, those
correspondence score is defined by the distance between the entity indicators of predicates and
the entity nodes. Taking the subject entity indicator as example, we have: M s = dloc(Bs,Be) ·
dcls(Ps,Pe), where dloc(·) and dcls(·) are the distance function to measure the matching quality from
different perspectives3. The correspondence of object entity Mo ∈ RNr×Ne is obtained following
the same strategy. The empirical analysis of different distance measurements will be discussed in the
experiment section. Based on the correspondence matrix, we keep the top-K links according to the
matching score as the edge links for each predicate node,

Rs = Ftop(M
s,K) ∈ RNr×K (6)

Ro = Ftop(M
o,K) ∈ RNr×K (7)

where Ftop is the top-K index selection operation, Rs and Ro are the index matrix of entity kept for
each triplet from the two relationship roles of subject and object, respectively.

Based on the index matrix, we are able to generate the final relationship triplets as T =
{(bse,ps

e, b
o
e,p

o
e,pp, bp)}. The bse, b

o
e ∈ R1×4 and ps

e,p
o
e ∈ R1×(Ce+1) are bounding box and

classification prediction of subject and object entity respectively. pp ∈ R1×(Cp+1) is classification
predication of each predicate Pp, and bp ∈ Bp is the centers of the predicate’s associated entities. To
this end, the graph assembling module generates the final scene graph as the output of SGTR.

4.4 LEARNING AND INFERENCE

Learning To train our SGTR model, we design a multi-task loss that consists of two components,
including Lenc for entity generator and Lpre for predicate generator. The overall loss function is
formulated as:

L = Lenc + Lpre, Lpre = Lpre
i + Lpre

p (8)

As we adopt a DETR-like detector, the Lenc follows a similar form with Carion et al. (2020), detailed
loss equation is reported in the supplementary material. We mainly focus on Lpre in the remaining of
this section.

To calculate the loss for the predicate node generator, we first obtain the matching matrix between
the prediction and the ground truth, by adopting the Hungarian matching algorithm Kuhn (1955).
We first convert the ground-truth of the visual relationships into a set of triplet representations in the
similar form of T , denoted as T gt. The cost of the set matching is defined as:

C = λpCp + λeCe (9)

3e.g., cosine distance between the classification distribution, GIOU and L1 distance between the bounding
box predictions, detailed illustration is presented in supplementary details.

7



Under review as a conference paper at ICLR 2022

# EPN SPD GA mR@50 mR@100 R@50 R@100
1 ✓ ✓ ✓ 24.2 28.2 13.9 17.3
2 ✓ ✓ 12.0 15.9 22.9 26.3
3 ✓ ✓ 11.4 15.1 21.9 24.9
4 ✓ 11.3 14.8 21.2 24.1
5 ✓ ✓ 4.6 7.0 10.6 13.3

Table 1: Ablation study on model components. EPN: Entity-aware Predicate Node; SPD: Structural
Predicate Decoder, GA: Graph Assembling.

The two components of the total cost correspond to the cost of the predicate, subject, and object
entity, respectively. 4 The matching index Itri between the triplet prediction and the ground truth
is produced by: Itri = argminT ,T gtC, which is used for the following loss calculation of predicate
node generator.

The two terms of Lpre, that is, Lpre
i ,Lpre

p are used to supervise two types of sub-decoder in predicate
node generator. For the entity indicator sub-decoder, we have Lpre

i = Li
box + Li

cls, where Li
box

and Li
cls are the localization loss (L1 and GIOU loss) and cross-entropy loss for entities indicator

Ps,Bs,Po,Bo. Similarly, for the predicate sub-decoder, we have Lpre
p = Lp

ent + L
p
cls. The Lp

ent is
the L1 loss of the location of the predicate’s associated entities Bp. The Lp

cls is the cross entropy of
the predicate category Pp.

Inference During model inference, we generate K · Nr visual relationship predictions after the
assembling stage. We further remove the invalid self-connection edges during inference. We adopt a
post-process operation to filter the self-connected triplets (subject and object entities are identical).
Then, we rank the remaining predictions by the triplet score St and take the top N relationship triplet
as final outputs. We have St = {(sts · sto · stp)}, where sts, s

t
o and stp are the classification probability

of subject entity, object entity and predicate, respectively.

5 EXPERIMENTS

5.1 EXPERIMENTS CONFIGURATION

We evaluate our methods on Openimage V6 datasets Kuznetsova et al. (2020) and Visual Genome Kr-
ishna et al. (2017). We mainly adopt the data splits and evaluation metrics from the previous work Xu
et al. (2017); Zellers et al. (2018); Li et al. (2021). In Openimage banchmark, the weighted evaluation
metrics (wmAPphr, wmAPrel, scorewtd) are adopted by us for more class-balance evaluation. For Vi-
sual Genome dataset, we adopt the evaluation metric recall@K (R@K) and mean recall@K (mR@K)
of SGDet, and also report the mR@100 on each long-tail category groups: head, body and tail as
same as Li et al. (2021).

We use the ResNet-101 and DETR Carion et al. (2020) as backbone networks and entity detector.
To increase the speed of convergence, we first train the entity detector on the target dataset, before
the joint training with the predicate node generator. Differently, we don’t fix the parameters of
the detector in the SGG training phrase, the detection performance still can preserve or improve.
In our predicate node generator, we use the 3 layers for predicate encoders, 6 layers decoder for
predicate and entity indicator sub-decoder respectively, with Nr = 150 queries with d = 256 hidden
dimensions. We set the K = 40 in training time and K = 3 in test time for the graph assembling
module.

5.2 ABLATION STUDY

Model Components As shown in Tab. 1, we ablate each module to demonstrate the effectiveness of
our design on the validation set of Visual Genome.

•We find that using the holistic query for predicate rather than the proposed structural form decreases
the performance by a margin of R@100 and mR@100 at 1.9 and 1.4 in line-2.

4We utilize the location and classification prediction to calculate the cost for each component, detailed
formulations are presented in supplementary.
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NPD NED mR@50 mR@100 R@50 R@100
3 3 10.6 13.3 23.4 27.4
6 6 13.9 17.3 24.2 28.2
12 12 13.7 17.0 24.0 28.4

Table 2: Ablation study on number of predicate decoder layers. NPD: number of predicate
sub-decoder layers; NED: number of entity indicator sub-decoder layers;

GA mR@50 mR@100 R@50 R@100
S 10.6 11.8 24.4 27.7
F 13.3 16.1 23.7 27.5
Ours 13.9 17.3 24.2 28.2

Table 3: Ablation study on graph assembling, S: spatial distance between the predicate and entity-
based matching function proposed by AS-NetChen et al. (2021); F: feature similarity-based matching
function proposed by HOTR Kim et al. (2021).

• Adopting the shared cross-attention between the image features and predicate/entity indicator
instead of the structural predicate decoder leads to the sub-optimal performance as reported in line-3

•We further remove both entity indicators and directly decode the predicate node from the image
feature. The result is reported in line-4, which decreases the performance by a marge of 4.2 and 2.5
on R@100 and mR@100.

• We also investigate the graph assembling mechanism by directly adopting the prediction of
entity indicators as entity nodes for relationship prediction. The poor results are shown in line-5
demonstrate that the model struggles to tackle such a complex multi-task within a single structure,
while proposed entity-prediction association modeling and graph assembling largely reduce the
difficulty of optimization.

Graph Assembling Design We further investigate the effectiveness of our graph assembling design.
Specifically, we adopt the differentiable entity-predicate pair matching function proposed by recent
HOI methods Chen et al. (2021); Kim et al. (2021), as shown in Tab. 3. Comparison experiments
are conducted on the validating set of Visual Genome by using different distance functions for the
assembling module. In AS-NetChen et al. (2021), the matching is conducted based on the distance
between entity bounding box and entity center predicted by interaction branch, which lacks the entity
semantic information. The HOTR Kim et al. (2021) introduces a cosine similarity measurement
between the predicate and entity in feature space. We implement this form for calculation the distance
between the entity indicator Q̃is, Q̃io and entity nodes He. Compared with location-only Chen et al.
(2021) similarity and feature-based Kim et al. (2021) similarity, our proposed assembling mechanism,
taking both semantic and spatial information into the similarity measurement, is preferable. We
also empirically observe that the feature-based Kim et al. (2021) similarity design has a slower and
unstable convergence process.

Model Size To investigate the decoder layers’ number of structural predicate decoder, we incremen-
tally vary the number layer L of predicate and entity indicator decoder. The quantitative results are
shown in Tab. 2. The results indicate that our model achieves the best performance while L = 6. We
observe that the performance improvement is considerable when increasing the number of decoder
layers from 3 to 6, and the performance will be saturate when L = 12.

5.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We conduct experiments on Openimage benchmarks and VG datasets to demonstrate the effectiveness
of our design. We compare our method with several state-of-the-art two-stage(e.g. EMB, VCTree-
PCPL, VCTree-DLFE, BGNN Li et al. (2021) , VCTree-TDE) and one-stage methods(e.g. AS-Net,
HOTR, FCSGG) on Visual Genome dataset. Since our backbone is different from what they reported,
we reproduced the SOTA methods BGNN and its baseline RelDN with the same Res101 backbone
for more fair comparisons. Furthermore, since there are only FCSGG for SGG specifically, we
reproduce the result of several strong related one-stage HOI methods with similar entity-predicate
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B Models mR@50 R@50 wmAP scorewtd
rel phr

X
10

1-
F RelDN 37.20 75.40 33.21 31.31 41.97

GPS-Net 38.93 74.74 32.77 33.87 41.60
BGNN 40.45 74.98 33.51 34.15 42.06

R
10

1

BGNN∗† 39.41 74.93 31.15 31.37 40.00
RelDN† 36.80 72.75 29.87 30.42 38.67

HOTR† 40.09 52.66 19.38 21.51 26.88
AS-Net† 35.16 55.28 25.93 27.49 32.42
Ours 42.61 59.91 36.98 38.73 42.28

Table 4: The Performance on Openimage V6. † denotes results reproduced with the authors’ code.
The performance of ResNeXt-101 FPN is borrow from Li et al. (2021). * means using resampling
strategy.

pairing mechanisms (AS-Net Kim et al. (2021), HOTR Kim et al. (2021)) by authors code for a more
comprehensive comparison.

OpenImage V6 The performance on the OpenImage V6 dataset is reported in Tab. 4. We re-
implement the SOTA one-stage and two-stage methods with the same ResNet-101 backbone. Our
method outperforms two-stage SOTA method BGNN with a improvement of 2.28. Specifically, our
design has a significant improvement on weighted mAP metrics of relationship detection (rel) and
phrase detection (phr) sub-tasks of 5.83 and 7.36 respectively, which indicates that leveraging the
compositional property of the visual relationship is beneficial for the SGG task.

B D Method mR@50/100 R@50/100 Head Body Tail Time/Sec
⋆ ⋆ FCSGG Liu et al. (2021) 3.6 / 4.2 21.3 / 25.1 - - - 0.12

X
10

1-
FP

N

Fa
st

er
-R

C
N

N

RelDN Li et al. (2021) 6.0 / 7.3 31.4 / 35.9 - - - 0.65
MotifsTang et al. (2020) 5.5 / 6.8 32.1 / 36.9 - - - 1.00
VCTreeTang et al. (2020) 6.6 / 7.7 31.8 / 36.1 - - - 1.69
BGNN∗† Li et al. (2021) 10.7 / 12.6 31.0 / 35.8 34.0 12.9 6.0 1.32

VCTree-TDETang et al. (2020) 9.3 / 11.1 19.4 / 23.2 - - - -
VCTree-PCPL† Chiou et al. (2021) 10.8 / 12.6 26.6 / 30.1 - - - -
VCTree-DLFE Chiou et al. (2021) 11.8 / 13.8 22.7 / 26.3 - - - -
VCTree-EBM Suhail et al. (2021) 9.7 / 11.6 20.5 / 24.7 - - - -
VCTree-BPLSA Guo et al. (2021) 13.5 / 15.7 21.7 / 25.5 - - - -
MOTIFS-VDS Yao et al. (2021a) 13.8 / 15.2 23.9 / 25.7 - - - -
DT2-ACBS Desai et al. (2021) 22.0 / 24.4 15.0 / 16.3 - - - -

R
10

1

BGNN∗† 8.6 / 10.3 28.2 / 33.8 29.1 12.6 2.2 1.32
RelDN† 4.4 / 5.4 30.3 / 34.8 31.3 2.3 0.0 0.65

D
E

T
R

AS-Net† Chen et al. (2021) 6.12 / 7.2 18.7 / 21.1 19.6 7.7 2.7 0.33
HOTR† Kim et al. (2021) 9.4 / 12.0 23.5 / 27.7 26.1 16.2 3.4 0.25

Ours1 12.0 / 14.6 25.1 / 26.6 27.1 17.2 6.9 0.35
Ours 12.0 / 15.2 24.6 / 28.4 28.2 18.6 7.1 0.35
Ours∗ 15.8 / 20.1 20.6 / 25.0 21.7 21.6 17.1 0.35

Table 5: The SGDet performance on test set of Visual Genome dataset. † denotes results
reproduced with the authors’ code. ∗ denotes the bi-level resampling Li et al. (2021) is applied for
this model. 1 denotes that our model uses the top-1 matching in graph assembling. ⋆ denotes the
special backbone HRNetW48-5S-FPN×2-f and entities detector, CenterNetZhou et al. (2019).

Visual Genome As shown in Tab. 5, with same ResNet-101 backbone, we compare our method with
two-stage method BGNN Li et al. (2021), and one-stage methods HOTR Kim et al. (2021). It shows
that our method outperforms with a significant margin of 4.9 and 3.2 on mRecall@100 respectively.

• Benefitting from the sparse proposal set, SGTR has a more balanced foreground/background
proposal distribution than the traditional two-stage design, where there exists a large number of
negative samples due to exhausted entity pairing. Thus our method achieves competitive performance
on the mean recall when equipped with the same backbone and learning strategy. We also list the
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Cup  on Table
Man walking on Street

(a) The attention maps of predicate sub-decoder

(b) The attention maps of entitie sub-decoder

Person Sitting-on
Sidewalk

Figure 4: The visualization on attention heatmap of structural predicate decoder.

rest newly proposed works, which propose different training strategies for solving the long-tailed
recognition. Our method achieves higher mR@100 performance with few overall performance drops
when using the resampling strategy proposed in Li et al. (2021).

•We also find that the performance of our model on the head category is lower than the two-stage
methods with the same backbone. The main reason lies in that the DETR detector performs weaker
on small entities than traditional Faster-RCNN. Since the Visual Genome has a large proportion
of relationships involved by small objects, our method performs sub-optimal on recognizing those
relationships. The detailed analysis will be discussed in supplementary.

•We also compare the efficiency with previous methods according to the inference time (second per
image) on NVIDIA GeForce Titan XP GPU with inference batch size of 1, with input size 600 x
1000. Our design obtains comparable inference time consuming with one-stage methods with the
same backbone, which demonstrates the efficiency of our method.

•Moreover, the performance of our model with the recent advanced long-tailed training strategy Desai
et al. (2021) is reported in supplementary.

5.4 QUALITATIVE RESULTS

As shown in Fig. 4, we visualize the attention weight of predicates sub-decoder, and entity sub-
decoder from the validation set of Visual Genome dataset. By Comparing the heatmaps shown in
Fig. 4 (a) and Fig. 4 (b), For the same triplet prediction, the predicate sub-decoder more focus on
contextual representation around the entities of triplets. Entity sub-decoders focus on relationship-
based entity regions. Thus, our compositional design allows the model to learn complementary
information simultaneously and explicitly, improving prediction accuracy. We further demonstrate
the other visualization results in supplementary(e.g. prediction of predicate decoder, comparison
between two-stage method).

6 CONCLUSIONS

In this work, we propose a novel end-to-end CNN-Transformer-based scene graph generating ap-
proach (SGTR). In comparison to the prior approaches, our major contribution consists of two
components: We formulate the SGG as a bipartite graph construction with three steps: entity and
predicate nodes generation and directed edges connection. We develop the entity-aware representation
for modeling the predicate nodes integrate with the entity indicators by structural predicate node
decoder. Finally, the scene graph is constructed by the graph assembling module in an end-to-end
manner. The extensive experimental results show that our SGTR outperforms or is competitive with
previous state-of-the-art methods on the Visual Genome and Openimage V6 datasets.
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7 SUPPLEMENTARY

7.1 QUERY REFINEMENT

After each layer of decoder structure, the triplet queries are updated with the decoder output. We
design the fusing process that aggregate the representation between the two branches, to further
improve the reprensetation of queries. For relationship predicate queries of next layer Qt+1

tp , we fuse
the triplet entities hidden state with the pair-wise fusion function proposed in Zhang et al. (2018),
which has been adopted in SGG task. The triplets entities queries Ql+1

to ,Ql+1
ts are updated with the

triplet predicate decoder output Qtp, with the nears neighbors feature representation on encoder
memory Zt, according to the center coordinates of predicted entities position [xc, yc].

Ql+1
tp = Ql

tp + ReLU(WxQ
l
ts +WyQ

l
to)− ||Ql

ts −Ql
to||22 (10)

Ql+1
ts = Ql

ts +Zt(m,n) + ReLU(WesQ
l
tp) (11)

Ql+1
to = Ql

to +Zt(m,n) + ReLU(WeoQ
l
tp) (12)

m,n← argmin
m,n∈[0,1]×[0,1]

(||[xc, yc]− [m,n]||1) (13)

7.2 MATCHING QUALITY CALCULATION FOR GRAPH ASSEMBLING

We take the matching quality of subject entities and predicates as example. For each factors of
distance function is determined by the semantic outputs of entity detector and triplet decoder. The
dgiou ∈ RNr×Ne , dcos ∈ RNr×Ne , dcenter ∈ RNr×Ne are calculated by following process.

M s = dloc(Bs,Be) · dcls(Ps,Pe), dloc(Bs,Be) =
dgiou
dcenter

(14)

dgiou = max(min(GIOU(bs, be), 0), 1), dcos =
ps · p⊺

e

||ps|| · ||pe||
(15)

dcenter(i, j) = ||[xc, yc]
s
i − [xc, yc]

e
i ||1 (16)

where [xc, yc]
s are the center coordinates of one box in Bs.

7.3 TRIPLETS MATCHING COST

The triplets predication of the model is T = {(bse,ps
e, b

o
e,p

o
e,pp, bp)}. The triplets matching cost

C ∈ RNr×Ngt is composed by three part: predicate cost Cp and entity cost Ce.

C = λpCp + λeCe Itri = argmin
T ,T gt

C (17)

For the predicate cost Cp(i, j) between the i-th predicates prediction and j-th ground-truth relationship,
it is computed according the predicate classification distribution.

Cp(i, j) = exp

(
pp,i · one-hot(pgtp,j)

||pp,i|| · ||one-hot(pgtp,j)||
− 1

)
+ ∥bp,i − bgtp,j∥1 (18)

where pp,i is the i-th pp of T , and pgtp,j is the predicate label of the j-th triplet in ground truth.
Similarly, bp,i is the i-th center coordinates(subject and object) bp of the triplet prediction, bgtp,j is
entity centers set of the j-th triplet in ground truth.
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In entity cost Ce(i, j) between the i-th triplets prediction and j-th ground-truth relationship„ the
calculation is given by:

Ce(i, j) = + wgiou ·
∏

⋆={s,o}

exp
(
max(min(GIOU(b⋆e,i, b

⋆
gt,j), 0), 1)

)
(19)

+ wl1 ·
∑

⋆={s,o}

||b⋆e,i, b⋆gt,j ||1 (20)

+ wcls ·
∏

⋆={s,o}

exp

(
p⋆
e,i · one-hot(p(∗,gt)e,j )

||p⋆
e,i|| · ||one-hot(p(∗,gt)e,j )||

− 1

)
(21)

where b⋆e,i is the i-th entity box location come from the triplets prediction T after graph assembling,
p⋆
e,i is the i-th entity classification prediction. b⋆gt,j is the box location of j-th subject/object in the

ground truth triplets, and p
(∗,gt)
e,j is entity(subject/object) class label of j-th ground truth triplets.

Based is cost function, we can obtain the matching of relationship prediction. We adopt the one-
to-one Hungarian algorithm into an iterative many-to-one matching. Due to the label efficiency,
the relationships can not be exhausted labeled in datasets. The one-to-one matching may lead to
unstable training because many foreground relationships will be ignored. The model can not learn
the proper NMS mechanism for prediction calibration. To circumvent this, we relax the matching
threshold to prevent the NMS mechanism from learning. We iteratively execute T times of Hungarian
minimum-cost bipartite graph matching.

7.4 DATASETS AND IMPLEMENTATION DETAILS

7.4.1 DATASETS AND METRICS

Visual Genome Datasets For Visual Genome Krishna et al. (2017) dataset, we take the same split
protocol as Xu et al. (2017); Zellers et al. (2018). The most frequent 150 object categories and 50
predicates are adopted for evaluation. To demonstrate the long-tailed recognition performance on VG
dataset, we follow the protocol from Li et al. (2021) by dividing the categories into three disjoint
groups. We we adopt the evaluation metric recall@K(R@K) and mean recall@K (mR@K) of
SGDet, and also report the mR@100 on each long-tail category groups: head, body and tail.

Openimage V6 Datasets The Openimage datasets Kuznetsova et al. (2020) are large scale vision
recognition datasets proposed by Google, and been used as SGG benchmarks in Zhang et al. (2019);
Lin et al. (2020); Li et al. (2021); Teng & Wang (2021). We adopt the same data splits with the Li
et al. (2021), which has 126,368 images used for training, 1813 and 5322 images for validation and
test, respectively, with 301 object categories and 31 predicate categories.

The the weighted evaluation metrics (e.g. wmAPphr, wmAPrel, scorewtd) used in previous
works Zhang et al. (2019); Lin et al. (2020); Li et al. (2021); Teng & Wang (2021). However,
we argue that weighted scores are unfair when used to evaluate rare categories. Because it re-weights
by multiplying the frequency of categories on per-class performance, low-frequency categories
are disregarded, resulting in class unbalanced assessment metrics, even though this metric is more
numerically stable, as cited in Zhang et al. (2019). In this work, we will report both weighted and
initial performance (e.g. mAPphr, mAPrel, score) in our experiments, for more fair class balance
evaluation metrics.

7.4.2 IMPLEMENTATION DETAILS

We use the ResNet-101 and DETR Carion et al. (2020) as backbone networks and entities detectors,
with six layers encoder and six layers decoder. The Ne = 100 entities queries with d = 256 hidden
dimension are used as the proposals for feature aggregation. The same DETR detector parameters
are use for all one-stage methods reproduced by us. In our triplets constructor, we use the 3 layers
encoders. In triplets decoder, we adopt 12 layers decoder for predicate branch, and 5 layers decoder
for entity branch, with Nr = 150 queries with d = 256 hidden dimensions. For two-stage methods,
we use the Faster-RCNN detector with the ResNet-101 backbone.
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To speedup the convergence, we first train the entities detector on the target dataset. Then, using this
pre-trained detector, we train the relationship detector parts. The key difference between this work
and previous work Kim et al. (2021); Li et al. (2021) is that we do not need to fix the parameters of
the entities detector to avoid performance drop in SGG training. We keep the parameters of detector
in training mode, that still can preserve the considerable performance, or obtain better performance
in SGG training.
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