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ABSTRACT

Discrete dynamical systems are principled models for real-world cascading phe-
nomena on networks, and problems for learning dynamical systems have garnered
considerable attention in ML. Existing studies on this topic typically assume that
the training data is noise-free, an assumption that is often impractical. In this
work, we address this gap by investigating a more realistic and challenging set-
ting: learning discrete dynamical systems from data contaminated with noise. We
present efficient noise-tolerant learning algorithms that provide provable perfor-
mance guarantees, and establish tight bounds on sample complexity. We show
that, even in the presence of noise, the proposed learner only incurs a marginal
increases in training set size to infer a system. Notably, the number of training
samples required in the noisy setting is the same (to within a constant factor) as
the upper bound in the noise-free scenario. Further, the number of noisy training
samples used by the algorithm is only a logarithmic factor higher than the best-
known lower bound. Through experimental studies, we evaluate the empirical
performance of the algorithms on both synthetic and real-world networks.

1 INTRODUCTION

Background and Motivation. Discrete dynamical systems serve as formal models for various real-
world diffusion processes on networks, including the spread of rumors, information, and diseases
(Battiston et al., 2020; Ji et al., 2017; Lum et al., 2014; Sneddon et al., 2011; Schelling, 2006;
Laubenbacher & Stigler, 2004; Kauffman et al., 2003). For dynamical systems in the real world,
however, one often cannot readily obtain a full system specification. Thus, learning unknown com-
ponents of dynamical systems is an active research area (Chen et al., 2021; Chen & Poor, 2022;
Conitzer et al., 2022; 2020; Rosenkrantz et al., 2022; He et al., 2016; Narasimhan et al., 2015;
Dawkins et al., 2021; Adiga et al., 2019).

In essence, a discrete dynamical system consists of an underlying network over which a contagion
spreads. Vertices in the network are entities such as individuals, and edges denote their relation-
ships. To model a cascade, each vertex has a contagion state and an interaction function. As the
contagion spreads, the states of vertices evolve in discrete time steps based on the mechanism of
interaction functions. Thus, the interaction functions play an important role in the system dynamics
as they model the behavior of individuals. One concrete example is the threshold function, a classic
model for social contagions (Granovetter, 1978; Watts, 2002; Li et al., 2020; Trpevski et al., 2010;
Rosenkrantz et al., 2022; Chen et al., 2021). Here, each individual adopts a contagion (e.g., believes
a rumor) only when the number of its neighbors adopting this contagion reaches a tipping point.

Our work focuses on learning discrete dynamical systems where the interaction functions are un-
known. Notably, existing methods for learning interaction functions (e.g., (Adiga et al., 2019; Qiu
et al., 2024a)) were developed under one critical assumption: the training data is noise-free. How-
ever, it is widely recognized that real-world data are often contaminated by noisy labels (i.e., clas-
sification noise) (Sarfraz et al., 2021; Natarajan et al., 2013; Cesa-Bianchi et al., 1999; Gupta &
Gupta, 2019; Kearns & Vazirani, 1994; Angluin & Laird, 1988). In particular, the presence of noise
in training data can significantly degrade the prediction accuracy of learning algorithms that are not
noise-tolerant. Nevertheless, noise-tolerant learning for discrete dynamical systems has not received
attention in the literature. In this work, we address this gap with a systematic study of learning dis-
crete dynamical systems under classification noise.
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Problem description. There is a target ground-truth dynamical system where all the interaction
functions of vertices are unknown. A learner must infer the missing functions from only snapshots
of the system’s dynamics (provided in a training set) which specify the evolution of vertices’ states.
Moreover, the training set is contaminated by classification noise (Angluin & Laird, 1988) such that
in each snapshot of the dynamics, the updated state of each vertex is incorrect with some (unknown)
probability. Our goal is then to design noise-tolerant algorithms that learn all the unknown interac-
tion functions and recover a system that models the behavior of the true system, with performance
guarantees under the Probably Approximately Correct (PAC) model (Valiant, 1984).

Challenges. Empirical risk minimization (ERM) is often a promising method under the PAC frame-
work. However, the results in (Adiga et al., 2017) (Theorem 4 on page 132) show that in our setting,
ERM cannot be done efficiently unless P = NP. In particular, one cannot even efficiently approxi-
mate the problem of constructing a system that is consistent with the maximum number of training
samples. The second difficulty is that, in our noise setting (see Section 2), the probability of a multi-
class label (a vector of the states of vertices) being incorrect in the training set asymptotically goes
to one as the system size increases. In other words, almost surely all the multi-class labels in the
training set are wrong.

Given the importance of the problem and the challenges, we aim to answer the following questions
about learning discrete dynamical systems: 1. Is efficient learning possible under classification
noise? 2. How many additional samples do we need compared to the noise-free case?

Our contributions. Despite the challenges, we answer both questions. In particular, we show that
one can still efficiently learn discrete dynamical systems under high classification noise. Notably,
the number of training samples required is the same (to within a constant factor) as the upper bound
in the noise-free scenario, and it is only a log factor higher than the best-known lower bound.

• Efficient learnability. Formally, we propose two efficient noise-tolerant algorithms V-ERM and
VisRange with respective theoretical and empirical advantages. Both algorithms achieve the
PAC guarantee: w.p. at least 1− δ, the prediction error is at most ϵ, for any ϵ, δ > 0. However,
Algorithm V-ERM uses O(n2 log (n)) training samples, whereas Algorithm VisRange uses
only O(n log n) samples.
From a theoretical perspective, VisRange wins: the corresponding bound O(n log (n)) on the
sample complexity is close to optimal; it matches (to within a constant factor) the information-
theoretic upper bound in the noise-free scenario (Haussler, 1988; Laird, 2012). That is, the
algorithm VisRange is strongly noise-tolerant, with only a marginal increase in the number of
samples used in comparison with the noise-free case. Further, its sample complexity is only a
factor O(log n) larger than the general lower bound in the noisy setting (Angluin & Laird, 1988).

• Experimental evaluation. We conduct an experimental study of the algorithms over both real
and synthetic networks. Our results highlight a drastic difference in their empirical behaviors:
VisRange exhibits a phase transition w.r.t. the error rate when the size of the training set reaches
a critical threshold. This phenomenon is expected from our theoretical analysis. In contrast, V-
ERM shows a steady increase in learning accuracy as more training samples are given. Overall,
our experiments underscore that V-ERM is the preferred empirical algorithm due to its simplicity
and consistent performance. We then further explore the property of V-ERM w.r.t. different
model parameters such as network size, density, and error rates.

Related work. The random classification noise (RCN) model is a classic framework for learning
under noise, introduced by Angluin and Laird (1988) where they proved the efficient learnability
of CNF formulas with at most k literals per clause. Many other learning algorithms under the
RCN model have been developed for different concept classes (see e.g., Decatur (1997); Sakakibara
(1991; 1993); Kearns & Schapire (1990); Decatur & Gennaro (1995)). Further, both lower and upper
bounds on the sample complexity for learning under classification noise are established in Simon
(1993); Aslam & Decatur (1996); Laird (2012); Mukhopadhyay & Banerjee (2020). Several other
noise models have also been considered (e.g., Kearns & Li (1993); Kearns (1993); Jabbari et al.
(2012); Natarajan et al. (2013); Bshouty et al. (2002); Diakonikolas et al. (2019)).

Rigorous methods have been proposed for learning various components of a dynamical system, such
as the interaction functions, edge parameters, infection sources, and contagion states, from sys-
tem dynamics Lokhov (2016); Conitzer et al. (2020); Chen & Poor (2022); Conitzer et al. (2022);
Dawkins et al. (2021); Wilinski & Lokhov (2021); Kalimeris et al. (2018); Wen et al. (2017); He
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et al. (2016); Narasimhan et al. (2015); Daneshmand et al. (2014); Du et al. (2014); González-Bailón
et al. (2011); Hellerstein & Servedio (2007); Li et al. (2020); He et al. (2020); Santos et al. (2024);
Sinha et al. (2023). The problem of learning the underlying system topology has also been exam-
ined Huang et al. (2019); Pouget-Abadie & Horel (2015); Abrahao et al. (2013); Du et al. (2012);
Myers & Leskovec (2010); Gomez-Rodriguez et al. (2010); Soundarajan & Hopcroft (2010). To
the best of our knowledge, the problem of learning discrete dynamical systems under classification
noise has not been studied in the existing literature.

2 PRELIMINARIES

2.1 DISCRETE DYNAMICAL SYSTEMS

A discrete dynamical system over domain B = {0, 1} is defined as a pair h∗ = (G,F), where (i)
G = (V, E) is an underlying undirected graph with n vertices (e.g., individuals in a social network);
(ii) F = {fv : v ∈ V} is a set of interaction functions, where fv is the function for v ∈ V .

Interaction functions. Each vertex in G has a state from domain B representing its contagion state
(e.g., inactive or active). Starting from the initial states of vertices, a system h∗ evolves over discrete
time, with vertices updating their states synchronously using the interaction functions. Specifically,
for any interaction function fv , the inputs are the current states of v’s neighbors; the output of
fv is the next state of v. In this work, we focus on dynamical systems with threshold interaction
functions. Such systems are fundamental models for the spread of social contagions such as rumors
and information (Granovetter, 1978; Watts, 2002; Li et al., 2020; Trpevski et al., 2010; Rosenkrantz
et al., 2022; Chen et al., 2021).

Formally, each vertex v ∈ V has an integer threshold τ∗v ∈ [0, degv + 1], where degv is the degree
of v in G. At each time t ≥ 1, the function fv computes v’s state at the next time-step t + 1 as
follows: fv outputs (state) 1 if the number of state-1 vertices in v’s neighborhood at time t is at least
τ∗v ; fv outputs (state) 0 otherwise. In the rumor-spreading example, a person’s belief changes when
the number of neighbors believing in the rumor reaches a certain tipping point. An example of a
threshold dynamical system is shown in Figure 4 in Appendix A.2.

Configurations. A configuration C of a system h∗ is a length-n binary vector specifying the con-
tagion states of all vertices; here, C[v] is the state of v under C. Thus, one can view the evolution
of system h∗ as a time-ordered trajectory of configurations. In a trajectory, a configuration C′ is the
successor of C if the system evolves from C to C′ in a single time-step, denoted by C′ = h∗(C).

2.2 LEARNING UNDER NOISE

Let h∗ be a ground-truth discrete dynamical system. The learner is provided with incomplete infor-
mation about the system h∗, where the underlying graph is known, but all the interaction functions
are unknown. In this case, the hypothesis class H consists of all systems with the same graph
as h∗, over all possible threshold assignments for vertices in V . By observing the noisy snapshots
of system dynamics (given in a training set), the learner’s goal is to infer the missing interaction
functions and learn a system h ∈ H that closely approximates the behavior of the true h∗.

The noisy training set. Our algorithms learn from a training set that consists of noisy snapshots of
the true system h∗’s dynamics, under the PAC framework. In particular, we extend the well-known
Random Classification Noise (RCN) model (Angluin & Laird, 1988) for binary classification to our
multi-class learning context. Let N = {ηv : v ∈ V(G)} be a collection of unknown noise rates
where each ηv satisfies 0 < ηv ≤ η̄ < 1/2; here, η̄ is an upper bound on all noise parameters. A
noisy training set T = {(Cj , Ĉj)}qj=1 is formed as follows. For each data point (Cj , Ĉj) ∈ T ,

1. The configuration Cj ∼ D is sampled independently from an unknown distribution D. Let C′j
be the true successor of Cj , produced by the unknown ground truth system h∗.

2. The learner does not see the true successor C′j . Instead, the observed successor Ĉj in (Cj , Ĉj) ∈
T is a noisy version of C′j where the value of each entry C′j [v] is altered with probability ηv .
Formally, for each v ∈ V(G): (i) Ĉj [v] = ¬ C′j [v] w.p. ηv , and (ii) Ĉj [v] = C′j [v] w.p. 1− ηv .
As in the RCN model, errors are introduced here by a random process that is independent of the
sampling step over D (Angluin & Laird, 1988). Let O denote the noisy oracle described above.
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For simplicity, we use (C, Ĉ) ∼ O to denote a training pair generated by the oracle O, such that
C is first sampled from D, then the random noise is applied to C′ to get Ĉ. We use T ∼ Oq to
denote the sampling of a size-q training set T from O.

Note that ηv is often fixed w.r.t n. Thus, we sometimes omit the terms involving ηv (or η̄) in our
bounds for clarity, and focus on the expressions with the dominating terms given as a function of n.
Remark 1. In our learning under noise model, the learner is not involved in generating the training
set. That is, the learner does not generate training data or sample the data; rather, the data are
provided to our model. Therefore, it does not have control over how the noise is applied to each
vertex, and it also does not know which vertex’s state is wrong in any training sample. Further,
the learner does not have the exact value of each noise parameter ηv , v ∈ V . It is important to
note that our multi-class learning model is different from the standard Random Classification Noise
(RCN) model. In particular, in the RCN model, strictly less than half of the labels are incorrect
in expectation. On the other hand, in our setting, the probability of a multi-class label (i.e., the
successor of a configuration) in the training set being incorrect (i.e., altered by noise) asymptotically
goes to one as n increases. In other words, almost surely all the labels in the training set are wrong.
Remark 2. In real-world scenarios, the training set T can be viewed as a collection of snapshots of
the true system dynamics: these snapshots can exhibit correlations (w.r.t. the system dynamics), as
one snapshot might be the immediate predecessor of another in a trajectory. Consequently, learning
from a trajectory of the system evolution can be cast as a special case of our setting. Specifically,
suppose T consists solely of configurations on a trajectory P . Then the underlying sampling dis-
tribution (unknown to the learner) is such that only configurations on P are sampled with positive
probability, while all other configurations are sampled with probability P . In this work, we present
learners that work under arbitrary sampling distributions, including the one mentioned above.
Remark 3. We now discuss the model parameters where assumptions are made:

1. Noise rate ηv < 1/2. As highlighted on Page 6, Section 2.1 of (Angluin & Laird, 1988), under
the Random Classification Noise Model, when the noise rate equals 1/2, the errors in the noise
process destroys all information about the underlying true hypothesis in the training set. As
a result, nothing can be learned in a meaningful manner and noise-tolerant learning becomes
impossible if ηv = 1/2. This is also discussed in (Kearns & Vazirani, 1994).
Next, when ηv > 1/2, note that the problem is equivalent to our ηv < 1/2 case due to symmetry.
In particular, in the ηv > 1/2 regime, one can simply take the complement of the noisy label
for each individual vertex, which leads to an error of 1 − ηv < 1/2. This is also discussed
in (Angluin & Laird, 1988). Due to these reasons, in our setting (and also in the existing work
on random classification noise model), having ηv < 1/2 represents the most general form.

2. Graph is known. As shown in (Qiu et al., 2024a), when the graph is unknown, one cannot
efficiently learn the interaction function of dynamical systems even in the noise-free scenario.
It immediately follows that the problem remains intractable in our noisy case. Therefore, if
efficient noise-tolerant learning of interaction functions is possible, one needs to assume that the
underlying graph structure is known.

Learning from the noisy training set. Even though the training set T is from the noisy oracle O,
the aim of the learner remains to find an appropriate hypothesis w.r.t the true (unknown) distribution
D. Given a new C ∼ D, a learned hypothesis h should predict the true successor C′ (i.e., h∗(C)) with
high probability. Formally, we use errD(h) = Pr C∼D[h(C) ̸= h∗(C)] to denote the error admitted
by h. Note that in our setting, a prediction is considered incorrect if h(C) and h∗(C) disagree on the
state of at least one vertex; that is, we want to predict the output states of all vertices correctly.

Following the PAC model, for any parameters ϵ, δ > 0, a learner should find a hypothesis h ∈ H
such that with probability at least 1−δ over T ∼ Oq , the error errD(h) ≤ ϵ. The minimum number
of training examples required by any learner to achieve the above PAC-guarantee is known as the
sample complexity of the classH.

3 ELEMENT-WISE ERM

We prove the efficient learnability of threshold discrete dynamical systems under classification noise.
We begin by establishing the sufficient sample size for a general scheme of multiclass learning under
noise using any element-wise ERM (defined later). We then propose an efficient element-wise ERM
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algorithm V-ERM for learning threshold discrete dynamical systems that use O(1/ϵ2 ·n2 ·log (n/δ))
training samples. Due to space limits, full proofs appear in the Appendix A.3.

A general learning model. We present a general learning model. Following this, learning discrete
dynamical systems becomes a special case of this general scheme. This new model follows our
learning setting in Section 2 for a finite hypothesis classH′, with the following generalizations: (i)
the training set T consists of q pairs of n-dimensional vectors, denoted by (Wj , Ŵj), j = 1, ..., q;
(ii) the input vectorWj ∈ {0, 1}n is drawn from an unknown distribution D, where each entry of
Wj is the feature value associated with an entity; (iii) the observed label vector Ŵj in (Wj , Ŵj) is
an erroneous version of the true label vectorW ′

j ; (iv) the number of labels for each entity is k ≥ 2.
Also see Appendix A.3 for a detailed definition of this general learning model.

3.1 ANALYSIS OF ELEMENT-WISE ERM FOR THE GENERAL MODEL

We analyze the number of training samples required by any element-wise ERM for the general multi-
class learning problem defined in the previous section; the result extends the sample complexity
proof in (Angluin & Laird, 1988) for binary classification.

Element-wise ERM. Given a training set T = {(Wj , Ŵj)}qj=1, for any hypothesis h ∈ H′ and en-

tity i, i = 1, ..., n, we refer to the number of empirical disagreements
∑q

j=1 1

(
h(Wj)[i] ̸= Ŵj [i]

)
as the empirical loss (over T ) of h w.r.t entity i. Let A be an element-wise ERM algorithm. That
is, for any training set T , algorithm A outputs a hypothesis h from the spaceH′, such that for every
entity i = 1, ..., n, the empirical loss of h w.r.t i is minimized. We note that for some problems,
such an algorithm A might not exist. Therefore, the results in this section are for problems that
admit at least one such element-wise ERM.

Canonical partition of the hypothesis class. We now to define a partition of the hypothesis class
H′. For each ith entity, i = 1, ..., n, let Pi be a partition of the hypothesis class H′ into ti subsets,
denoted by H′

1, ...,H′
ti , such that the following condition holds for each H′

ℓ, ℓ = 1, ..., ti: for any
training set T , the empirical loss w.r.t. entity i for all hypotheses inH′

ℓ are the same.

Note that the construction of such a partition is problem-dependent. Clearly, one trivial partition Pi

is of size |H′|, where each subset in the partition consists of just one hypothesis. Given a collection
of partitions P = {{P1, ...,Pn}} defined above, let tmax(P) be the largest ti over i = 1, ..., n.

Sample complexity. We now establish the sample complexity of learning under the general frame-
work in Lemma 3.1. We note that the main purpose of Lemma 3.1 is to later derive a sample
complexity bound for learning discrete dynamical systems. Nevertheless, this general result may
also be of independent interest.

Lemma 3.1. LetP = {{P1, ...,Pn}} be a collection of canonical partitions of the hypothesis class
H′; tmax(P) is the size of the largest partition in P . For any ϵ, δ ∈ (0, 1), and any ηi ≤ η̄ < 1/2,

i = 1, ..., n, with a training set of size q = O
(

1
(1−2η̄)2 ·

1
ϵ2 · n

2 log( tmax(P)·n
δ )

)
, any element-wise

ERM A learns a h ∈ H′ such that with probability at least 1− δ (over T ∼ Oq), errD(h) < ϵ.

Remark 4. We note the following: an element-wise ERM A in general does not minimize the
empirical loss over the training set T . In fact, due to the high probability of receiving a wrong
prediction on each sampled data, any true ERM is unlikely to perform well in this case. The second
remark is that knowing the exact value of η̄ is not needed in our setting. In particular, one can easily
extend the binary search technique introduced in (Angluin & Laird, 1988) (Theorem 3 in (Angluin
& Laird, 1988)) to estimate the value of η̄, such that w.p. at least 1 − δ, the estimated η̄ satisfies
ηi ≤ η̄ < 1/2 for all i = 1, ..., n.

3.2 AN EFFICIENT VERTEX-WISE ERM FOR LEARNING DISCRETE DYNAMICAL SYSTEMS

Given Lemma 3.1, what remains is to (i) find an actual (efficient) algorithm that is an element-wise
ERM and (ii) determine an appropriate partition of the hypothesis class H for discrete dynamical
systems. In this section, we answer these two questions for learning discrete dynamical systems.
In particular, we present a simple and efficient algorithm that learns a hypothesis (system) that
minimizes the empirical risk w.r.t each vertex over the training set T . Further, we show the existence
of a canonical partition ofH w.r.t each vertex v ∈ V , such that the size of each Pv is at most ∆+2,
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where ∆ is the maximum degree of the graph. Subsequently, we prove that the number of samples
needed by the algorithm is O(1/ϵ2 · n2 · log (n/δ)).
The algorithm V-ERM. A system h is inferred as follows: for each vertex v ∈ V(G), we learn τv

to be the value such that the number of disagreements
∑q

j=1 1

(
h(Cj)[v] ̸= Ĉj [v]

)
over the training

set T is minimized. Note that such a τv can be found in polynomial time by iterating over each
integer in [0, degv + 1]. The pseudocode appears as Algorithm 1 in Appendix A.4.

The canonical partition. For each vertex v, a canonical partition Pv = {H0, ...,Hdegv+1} of H is
constructed such that each hypothesis in Hℓ, ℓ = 0, ..., degv + 1, has the following property: the
threshold of v is ℓ. One can verify that, for any training set, the empirical loss w.r.t. vertex v for
all hypotheses in Hℓ are the same. Further, the size of the partition is degv + 2. Consequently,
tmax(P) = ∆ + 2 ≤ n+ 1, where P = {{P1, ...,Pn}}.
Lastly, for our problem of learning threshold discrete dynamical systems, the label for each vertex
is either 0 or 1; that is, k = 2. By Lemma 3.1, the Theorem follows.

Theorem 3.2. For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set T of size

q = O
(

1
(1−2η̄)2 ·

1
ϵ2 · n

2 · log(nδ )
)

, Algorithm 1 (i.e., V-ERM) learns a hypothesis h ∈ H such

that with probability at least 1− δ (over T ∼ Oq), errD(h) < ϵ.

Remark 5. Theorem 3.2 establishes the efficient learnability of threshold discrete dynamical sys-
tems under classification noise. Note that the sample complexity bound derived from V-ERM is
not optimal, as it follows from the more general result, namely Lemma 3.1. In the next section, we
present a more sophisticated algorithm with much lower sample complexity. Nevertheless, it is note-
worthy that such a simple algorithm (i.e., V-ERM) can already achieve PAC performance guarantees
using only O(n2 log (n)) noisy samples. The simplicity of this algorithm makes it well-suited for
use in practice. In particular, one key property of V-ERM discovered through empirical analysis is
that, the learning accuracy consistently increases as more training samples are provided. Such a
property is not observed for the more complex algorithms presented in the next section.

4 LEARNING BASED ON VISITING TIMES

One immediate question is whether the sample complexity established in the previous section can be
improved. We now answer the question with a problem-dependent analysis and improve the bound
to matches the general upper bound in noise-free scenarios. Toward this end, we present the
algorithm VisRange that uses O(1/ϵ · n log (n/δ)) training samples under our high-noise setting,
which is only a constant factor larger than the general upper bound for learning under the noise-free
scenario (Haussler, 1988). That is, despite the presence of noise, the algorithm achieves efficient
learnability without needing many more samples compared to the noise-free scenario. Further, our
established upper bound is only a factor O(log n) larger than the best-known lower bound (Aslam
& Decatur, 1996). Due to space limit, all proofs appear in Appendix A.4.

We first discuss a simplified version of the algorithm for ease of understanding. This simpler algo-
rithm uses O(1/ϵ ·∆n log (n/δ)) training samples, where ∆ is the maximum degree of the graph.

Visiting a score. We define the notion of visiting a score, which plays a critical role in the algo-
rithm. Let v be a vertex in the graph. Given a configuration C, the score of v under C, denoted
by score(C, v), is the number of state-1 neighbors of v in C. Note that the score of v is in the
range [0, degv + 1]. For a C ∼ D, we say that a score s ∈ [0, degv + 1] is visited by C for v if
score(C, v) = s. Subsequently, the visiting probability of a score s w.r.t. v is the probability of
visiting s over C ∼ D. Given a training set T ∼ Oq , the visiting time of a score s is a random
variable recording the number of times s got visited by C, summing over all pairs (C, Ĉ) ∈ T .

The simplified algorithm VisScore. Fix a vertex v ∈ V . At a high level, when the size q of the
training set T is sufficiently large, with probability at least 1 − δ, each score with a high visiting
probability will be visited a sufficiently large number of times in the training set. We then learn from
the majority vote over the output states for each such input score in T .

Formally, let S be the set of scores that are visited at least q · ϵ/(2∆n) times in T . For each
score s ∈ S, the algorithm computes the majority output state (break ties randomly) of v over the
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erroneous successors under input score s; let ℓ′s be the majority output state for s ∈ S over T . Lastly,
the threshold of v is learned as τv = 1+max{s ∈ S : ℓ′s = 0}; τv = 0 if ℓ′s = 1 for all s ∈ S. This
procedure is then performed for each vertex v ∈ V , which produces a system with all thresholds
being inferred. The pseudocode for the algorithm is shown in Algorithm 2 in Appendix A.4.

In Theorem 4.1, we show that Algorithm 2 (i.e., VisScore) uses at most O(∆n log (n)) samples to
infer all the thresholds. For graphs where the maximum degree is o(n), this bound is already better
than the O(n2 log (n)) bound for the element-wise ERM Algorithm 1 (i.e., V-ERM) in Section 3.

Theorem 4.1. For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set of size

q = O
(

1−η̄
(1/2−η̄)2 ·

1
ϵ ·∆n · log(nδ )

)
, Algorithm 2 (i.e., VisScore) learns a hypothesis h ∈ H such

that with probability at least 1− δ (over T ∼ Oq), we have errD(h) < ϵ.

4.1 THE ALGORITHM BASED ON VISITING TIMES OF RANGES

In this section, we extend the simplified algorithm (i.e., VisScore ) to our final algorithm VisRange
which uses O(1/ϵ·n log (n/δ)) training samples. We then show that this bound is tight by comparing
it with the general upper and lower bounds from the literature.

Visiting a range. We extend the notion of visiting a score (used in VisScore) to visiting a range
of scores. Let v be a vertex in the graph. Let Rs1,s2 = [s1, s2] be a range of scores for v, s1, s2 ∈
{0, ..., degv + 1}, s1 ≤ s2. Note that there are O(∆2) such ranges for each v. For a configuration
C ∼ D, we say that a range Rs1,s2 is visited by C for v if score(C, v) ∈ Rs1,s2 . Similarly, the
visiting probability of a range Rs1,s2 w.r.t. v is the probability of visiting Rs1,s2 over C ∼ D.
Lastly, the visiting time of a range Rs1,s2 is a random variable representing the number of times
Rs1,s2 got visited by C, summing over all pairs (C, Ĉ) ∈ T .

The algorithm VisRange. Let S be the set of ranges that are visited at least ϵ/(2n) · q times in
T . For each range (s1, s2) ∈ S, the algorithm counts the total number of output state-0 and output
state-1 over all the erroneous successors with input scores in [s1, s2]; let ℓ′s1,s2 be the corresponding
majority output state for the range [s1, s2] over T . Lastly, the threshold of v is learned as τv =
1 + max{s1 : (s1, s2) ∈ S and ℓ′s1,s2 = 0}. If ℓ′s1,s2 = 1 for all (s1, s2) ∈ S, then τv = 0.
The pseudocode of the algorithm is shown in Algorithm 3 in Appendix A.4. It is clear that the
overall algorithm runs in polynomial time. In Theorem 4.2, we show that O(n log (n)) samples are
sufficient to learn the system.

Intuition of the proof. The algorithm is an extended version of VisScore, where we now care
about ranges of scores being visited. Fix a vertex v ∈ V . Intuitively, when the size q of the training
set T is sufficiently large, with probability at least 1 − δ, each range of scores (for v) with a high
visiting probability would be visited a large number of times. We then learn from the majority vote
of the output states of v over all the input scores in each such range with high visiting probabilities.

Theorem 4.2. For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set of size

q = O
(

1−η̄
(1/2−η̄)2 ·

1
ϵ · n · log(

n
δ )
)

, Algorithm 3 (i.e., VisRange) learns a hypothesis h ∈ H such

that with probability at least 1− δ (over T ∼ Oq), we have errD(h) < ϵ.

Remark 6. The increase in the number of samples required for our VisRange Algorithm is only a
factor of O(1/(1− η)2) compared to the noise-free setting. We remark that this is a very tight result
that one can expect in this domain. Specifically, (i) the presence of η is inevitable, as it reflects the
expected increase in sample complexity when noise level increases; (ii) more importantly, we do
not incur larger complexity w.r.t the dominant term n. This ensures that, in practice, as noise level
increases, the increase in the number of samples remains proportional to the effect of noise and does
not grow disproportionately. Lastly, we note that the expression O(1/(1 − η)2) is common in the
sample complexity bound for learning under noise (e.g., (Angluin & Laird, 1988; Laird, 2012).

4.2 ALGORITHM SCALABILITY

We remark on the scalability of our algorithms to large networks. First, the running time of all the
proposed algorithms is O(n∆2q), where n is the number of vertices, ∆ is the maximum degree,
and q is the training set size. More importantly, all algorithms are inherently parallelizable at
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vertex level. This significantly improve the scalability of the model, effectively reducing the time
complexity by a factor of n, giving a runtime of O(∆2q).

Further, we have proved that, when the noise level increases, the sufficient number of samples for the
algorithm does not grow w.r.t n, the dominant term. Consequently, in noisy real-world systems, only
a minimal additional training set is required to handle increased noise. These features collectively
make our algorithms scalable to larger and more complex systems.

Dependency on n. We now discuss how the dependency on n in the sample complexity (even
before parallelization) can be further relaxed. In particular, consider a scenario where only a σ
number of vertices has unknown interaction functions, and we want to learn these vertices. Then,
by the mechanism of the proposed algorithms, our techniques can be naturally extended where the
factor n in our sample complexity analysis can be all replaced by σ. Consequently, when σ is low
(e.g., only a small fraction of vertices, say log (n), are to be learned), the corresponding number of
samples is significantly reduced, and as σ approaches n, the bounds approach our bounds.

Extension to other loss. We discuss an extension of our algorithm to a natural loss function based
on Hamming weights, such as the one given in the the PMAC model (Balcan & Harvey, 2011). In
this model, instead of trying to predict the states of all vertices correctly, the notion of a successful
prediction is relaxed: we allow at most β fraction of the states of the n vertices to be wrong. This
new setting implies that the Hamming distance between the predicted configuration and the true
configuration can be at most βn. Importantly, our algorithms can be extended to this context without
any modification. Further, the resulting sample complexity bound is only increased by an extra
multiplicative factor 1/β and 1/β2 for Algorithm 1 and Algorithm 2,3, respectively.

4.3 TIGHTNESS OF THE SAMPLE COMPLEXITY BOUND

- Upper bound. The work by Haussler (1988) shows that the sample complexity of general PAC
learning in the noise-free setting is O

(
1
ϵ · log (

|H|
δ )
)

, where |H| is the size of the hypothesis
class. For learning threshold dynamical systems, since |H| = O(nn), the corresponding noise-
free upper bound becomes O

(
1
ϵ · n log (nδ )

)
.

In the presence of noise, one would expect the above bound to become higher. Neverthe-
less, our derived bound under classification noise, O

(
1−η̄

(1/2−η̄)2 ·
1
ϵ · n · log(

n
δ )
)

, is only a fac-
tor O(1/(1 − η̄)2) larger than the noise-free upper bound, where the expressions involving
the dominant term n remain the same. Our result also matches a general upper bound of
O
(

1
(1−2η)2 ·

1
ϵ · n log (nδ )

)
by Laird (2012) for PAC learning under classification noise.

More importantly, one cannot generally expect efficient PAC learning algorithms to achieve
the upper bounds from Haussler (1988) or Laird (2012) since there exist problems that are not
efficiently PAC learnable unless NP = RP (Kearns & Vazirani, 1994). Our result (i.e., Theo-
rem 4.2), using VisRange reveals that such a bound indeed holds for efficiently learning thresh-
old dynamical systems.

- Lower bound. By a result of Aslam and Decatur (1996), a general lower bound on sample
complexity for PAC learning under classification noise is Ω

(
1

(1−2η)2 ·
1
ϵ · (Ndim(H) + log 1

δ )
)

,
where Ndim(H) is the Natarajan dimension (Natarajan, 1989) of the class H. For learning
threshold systems, it is known that Ndim(H) = n (Qiu et al., 2024b). Hence, the lower bound
becomes Ω

(
1

(1−2η)2 ·
1
ϵ · (n+ log 1

δ )
)

. Notably, our upper bound in Theorem 4.2 is only a
factor O(log n) higher than the general lower bound.

Remark 7. With everything in place, we now discuss the advantages of V-ERM (i.e., Algorithm 1)
and VisRange (i.e., Algorithm 3) from both theory and practice perspectives:

- Theory. With more problem-dependent mechanism and analysis as given for VisRange, one
can significantly improve the upper bound (by a multiplicative factor of n) of the sufficient
training size from the bound derived by V-ERM. Specifically, there exists a problem instance
(e.g., a graph G and a distribution D) such that VisRange requires multiplicative Ω(n) fewer
samples than V-ERM to achieve the same error rate. Further, VisRange provides an important
(and somewhat surprising) theory insight: despite the presence of classification noise, one can
still efficiently learn threshold dynamical systems using the same number of training samples (to
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within only a constant factor) as the noise-free case. Further, the number of required samples is
only a factor O(log n) higher than the lower bound.

- Practice. A distinct nature of VisRange is that, one expects to see a drop in the error rate only
when the size of the training set q reaches a critical threshold (i.e., a phase transition). Before
q reaches that threshold, however, the behavior of the algorithm can be unpredictable as the
high-probability guarantee is not yet satisfied. On the other hand, such a critical threshold on the
training set size is not inherent to V-ERM. In particular, as more training samples are given, the
corresponding loss for V-ERM always decreases correspondingly. Thus, V-ERM is the preferred
method in practice due to both its simplicity and smoother performance. As a result, we focus
on V-ERM for our empirical evaluations, as shown in the next section.

5 EXPERIMENTAL EVALUATION

In this section, we present an exploratory study on the empirical feasibility of the proposed algo-
rithms, V-ERM and VisRange, on both synthetic and real-world networks (Erdös & Renyi, 1959;
Leskovec et al., 2007; Kunegis, 2013). Our goal is to complement our theoretical results by analyz-
ing the empirical behaviors of our algorithms across different model parameters.

Experimental setup. The details of the synthetic networks (Gnp) and real-world networks are given
in Appendix A.5. For each network, we create a target ground-truth system h∗ where the thresholds
are unknown to the learning algorithm. Under each h∗, a training set T = {(Cj , Ĉj)}qj=1 is generated
such that (i) in each Cj , the state of a vertex is 0 or 1 with the same probability; (ii) Ĉj is a noisy
version of the true successor C′j where the noise rate η > 0 is the same for all vertices. Here, we
consider different η values ranging from 0.05 to 0.4. Given a training set T , our algorithm then
learns a system h by inferring all the thresholds. Lastly, to quantify the solution quality, we sample
1, 000 new configurations and compute the empirical loss ℓ, which is the proportion of the sampled
configurations that the learned hypothesis h makes incorrect predictions. The parameter settings are
given in Table 1 in the Appendix.

5.1 EXPERIMENTAL RESULTS

Distinct behaviors of the algorithms. We first examine the behaviors of the algorithms in terms
of the loss ℓ when more training samples are given. Figure 1 shows the change of loss for V-ERM
(i.e., Algorithm 1) and VisRange (i.e., Algorithm 3) for synthetic networks of different sizes n.
We observe that for larger n, VisRange exhibits a phase transition w.r.t. loss when the number of
training samples q reaches a critical threshold. Algorithm VisScore (i.e., Algorithm 2) also exhibits
a similar phase transition behavior (see Figure 6 in the Appendix). Such phenomena are expected
from our theoretical analysis (see Remark 7). In contrast, V-ERM steadily gains in performance
when it is given more training samples.

0.5 1.0
q/1000 (# Samples)

0

1

` 
(L

os
s)

V-ERM

n=500

n=2000

n=4000

0.5 1.0
q/1000 (# Samples)

0

1

` 
(L

os
s)

VisRange Figure 1: Comparison of V-ERM
and VisRange across various network
sizes. The average loss is shown after
every 50 training samples. Across all
the experiments, noise η is set to 0.05
and average density davg is set to 5.

In Figure 1, we further observe that VisRange achieves a loss lower than V-ERM with fewer train-
ing samples in the long run for network sizes of 2000 or 4000. Nonetheless, as the network size
grows, the required number of training samples for VisRange to reach an acceptable empirical
loss also grows. Overall, V-ERM is more suitable for practical purposes, where there is often a
trade-off between performance and the number of samples. Since the learning performance of V-
ERM steadily improves with increase in the number of samples, such a trade-off can be obtained
with fewer training samples with V-ERM compared to VisRange. Overall, although VisRange
can promise an improved performance in the long run, V-ERM provides reasonable performance in
most practical scenarios. Therefore, the remaining experiments focus on V-ERM.
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Further evaluation of V-ERM. We perform additional studies on the more applicable algorithm V-
ERM. The first evaluation highlights its learning behavior across different noise settings. The results
are shown in Figure 2 in two parts, for synthetic networks and real-world networks, respectively.
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(b) Real-world Networks

Figure 2: Learning curve of V-ERM (Algorithm 1) for various graphs under different noise settings.
The shaded region accounts for one standard deviation error.

Figure 2a shows the loss of V-ERM for two synthetic networks under different noise settings. Over-
all, when the noise rate η increases, we see an increase in the number of training samples needed by
V-ERM to achieve the same loss. This behavior is expected. The first plot in Figure 2a is for a sparse
network with 500 vertices. We find that even under the high noise setting (η = 0.4), the algorithm
performs well. For instance, when η ≤ 0.3, the loss is close to 0 after observing fewer than 3, 000
training samples. The second plot in Figure 2a is for a network with 5, 000 vertices and an average
degree of 40, a larger and much denser network. Even in such case, V-ERM achieves reasonable
accuracy for moderate noise levels (η ≤ 0.2). Experimental results for a more comprehensive set of
synthetic networks are presented in Figure 8 in Appendix A.5. Similar results for the two real-world
networks are shown in Figure 2b. Overall, we observe that V-ERM achieves a high accuracy upon
observing samples that are much less than its worst-case theoretical bound (shown in Theorem 3.2).
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ERM for achieving a spec-
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ent variates. Error bars ac-
count for two standard de-
viation errors.

From the observed decreasing pattern of the loss curve, one can conclude that V-ERM will converge
towards a zero-loss as it is provided with more training samples. We illustrate this fact using an alter-
nate perspective in Figure 3, where we show the number of training samples required to achieve loss
below a certain threshold under three settings: (i) various noise rates (Figure 3a), (ii) various net-
work sizes (Figure 3b), and (iii) various graph densities (Figure 3c). We observe that as the threshold
of acceptable loss decreases, the number of required training samples increases. Interestingly, this
phenomenon is most sensitive to density, followed by noise and then the network size. Results from
a similar experiment on real-world networks are presented in Figure 7 in Appendix A.5.

6 FUTURE WORK

In this work, we presented efficient algorithms for learning threshold dynamical systems under clas-
sification noise. Much work remains to be done for learning discrete dynamical systems under
different models of noise. First, it is of interest to investigate whether our algorithms can be ex-
tended to other classes of interaction functions such as weighted threshold functions and symmet-
ric functions (Crama & Hammer, 2011). A second direction is to investigate whether the sample
complexity bounds can be improved when additional information about a dynamical system (e.g.,
correct threshold values of some vertices) is available. Finally, it is also of interest to study whether
improved learning algorithms can be developed for restricted graph topologies such as planar graphs
or intersection graphs.
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A APPENDIX

In the Appendix, we present details of the technical results established in the main paper. These
include (i) proofs for Lemma 3.1, Theorem 3.2, Theorem 4.1, Theorem 4.2, and (ii) pseudocodes
for Algorithm 1 (i.e., V-ERM) and Algorithm 3 (i.e., VisRange). We also include additional exper-
imental results for the algorithms.

A.1 ADDITIONAL REMARKS

Remarks on sample complexity analysis. It is expected that the sample complexity for learning
under noise would be higher than the noise-free case, since noise introduces higher variances in the
data and higher uncertainty in the hypothesis space. Further, noise leads to misleading patterns in
the training process. For a simple example, in the training set, we often observe that under the same
input to a vertex v’s (deterministic) interaction function, the outputs are sometimes 0 and sometimes
1 (due to noise). Such uncertainties require more training samples for an algorithm to unpack useful
information about the true hypothesis.

Impact of the theoretical findings. Below we address additional impact of the findings from both
theoretical and practical perspectives.

1. Theory. Existing work on learning threshold discrete dynamical systems focuses on the noise-
free setting; the problem of efficient learning under noise has remained open. We fill this gap
and establish that one can efficiently learn threshold discrete dynamical systems under high
classification noise. Further, our proposed algorithms are strongly noise-tolerant, with only a
marginal increase in the number of samples used in comparison with the noise-free case. Overall,
we establish a theoretical foundation for learning threshold discrete dynamical systems in the
presence of noise.

2. Practice. Our results provides practical methodologies on learning real-world large-scale com-
plex systems (e.g., social, multi-agent, infrastructure systems).
Practical applications. As discussed in the paper, discrete dynamical systems are widely used to
model dynamic processes in various fields such as biology, social sciences, and network analysis.
Our results provide efficient techniques for robust modeling and inference in these domains,
under the realistic setting where training data is noisy (which is often the case in fields like
social science). This robustness w.r.t noise is crucial for practical applications when (i) perfect
data are rare, and still, (ii) reliable decisions are needed.
Training data. Despite the presence of noise, the increase in the required number of samples
for our proposed algorithm is marginal. As a result, even when the noise level rises in real-world
applications, practitioners do not need to excessively increase data collection efforts while main-
taining model accuracy. This efficiency is particularly beneficial in fields where data collection
is expensive, such as social science which often involves extensive surveying and field research.
Model simplicity. The algorithms are in the classic ML domain, and they are inherently sim-
pler and interpretable compared to deep learning methods. This simplicity translates into more
straightforward implementation and less intricate engineering effort. As a result, practitioners
can quickly deploy these algorithms in real-world applications. Further, because the learning
process employs gradient-free optimization, the extensive computation associated with back-
propagation is not a bottleneck for the algorithms, making them accessible to a broader range
of users with limited computational resources. These are also reflected in our code and experi-
mental evaluation which use only standard (single thread) CPUs. Consequently, the transparent
training process can easily be interpreted since it involves only a small number of parameters.
Scalability. As discussed in the main paper, our proposed algorithms can learn the interaction
function for each vertex independently. Therefore, the algorithms can be easily scaled across
batches of vertices given the necessary computational resources, making the algorithms suitable
for deployment in settings where analysis over large-scale networks is required.
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A.2 ADDITIONAL INFORMATION FOR SECTION 2

The settings of existing studies on learning dynamical systems

Our setting for learning discrete dynamical systems (see Section 2 in the main paper) aligns with
the line of existing research. Here, we present the detailed setting of a few illustrative papers on
learning discrete dynamical systems. These works are also cited in our main paper.

All the existing work presented below considers the following setting: 1. The vertex state is binary;
2. The update scheme is synchronous; 3. The time-scale is discrete; 4. The interaction functions
are either threshold functions, susceptible-infected, or independent cascade.

ICML-2024 (Qiu et al., 2024b); AAAI-2022 (Conitzer et al., 2022); ICML-2022 (Rosenkrantz
et al., 2022); ICML-2021 (Chen et al., 2021); ICML-2021 (Dawkins et al.,
2021); ICML-2021 (Wilinski & Lokhov, 2021); NeurIPS-2020 (Li et al., 2020);
ICML-2020 (Conitzer et al., 2020); ICML-2019 (Adiga et al., 2019); NeurIPS-2016 (He
et al., 2016); NeurIPS-2015 (Narasimhan et al., 2015).

A pictorial example of a discrete dynamical system

We present a toy example of the evolution of a threshold discrete dynamical system. The goal of this
figure is to assist readers in understanding the formal definitions presented in Section 2 of the main
paper. For large-scale realistic discrete dynamical systems used in the real world, we refer readers
to the following references: (Battiston et al., 2020; Ji et al., 2017; Lum et al., 2014; Sneddon et al.,
2011; Schelling, 2006; Laubenbacher & Stigler, 2004; Kauffman et al., 2003).

time-step 1 time-step 2 Continues

Figure 4: The evolution of an example threshold dynamical system with 5 vertices. The threshold
value of each vertex is shown in the figure. Here, we present system updates over two time-steps,
where vertices in state-1 are highlighted in blue. For instance, the threshold of vertex v1 is 2. In the
first configuration, v1 has only one neighbor in state-1, which is less than its threshold. Therefore,
its state gets updated to 0 (shown in the second configuration) after time step 1. In the second
configuration, v1 has two neighbors of type-1, which satisfies its threshold value. Thus, its state gets
updated to 1 after time-step 2.

A.3 ADDITIONAL INFORMATION FOR RESULTS IN SECTION 3

The general learning model

We now present the details of the general learning model stated in Section 3. Following this, learning
discrete dynamical systems becomes a special case of this general scheme. The new scheme follows
our learning setting in Section 2 for a finite hypothesis classH′, with the following generalizations:

- Training set. The training set contains pairs of n-dimensional vectors. For each pair, the in-
put vector represents the features of n entities (e.g., vertices); their corresponding labels are
computed from the input features collectively.
Formally, a training set T of size q consists of q pairs of n-dimensional vectors, denoted by
(Wj , Ŵj), j = 1, ..., q. For each (Wj , Ŵj) ∈ T , the input vectorWj ∈ {0, 1}n is drawn from
an unknown distributionD, where each entry ofWj is the feature value associated with an entity.
LetW ′

j denote the true label forWj , computed by some unknown ground truth labeling function
(i.e., hypothesis) h∗ ∈ H′. Here, each W ′

j [i] ∈ {0, ..., k − 1} is the label for the ith entity,
i = 1, ..., n, where there are k ≥ 2 possible labels. We do not restrict the actual form of h∗.
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- Noise process. The observed label vector Ŵj in (Wj , Ŵj) is an erroneous version of W ′
j . In

particular, for each entity i = 1, ..., n and for some 0 ≤ ηi < 1/2, (i) with probability 1 − ηi,
the value of Ŵj [i] =W ′

j [i]; (ii) with probability ηi, Ŵj [i] is a label in {0, ..., k − 1} \ {W ′
j [i]}

that is different from the true labelW ′
j [i], chosen uniformly at random from the k−1 labels. Let

η̄ < 1/2 be an upper bound on the error terms.

The goal is to search for a hypothesis h ∈ H′ such that, when given a new feature vectorW ∼ D, h
predicts the resulting true label vectorW ′ under the PAC guarantee.

Detailed proof of Lemma 3.1.

Recall that Lemma 3.1 establishes an upper bound on the number of noisy training samples needed
by any element-wise ERM for learning under the general learning model.

Lemma 3.1 Let P = {P1, ...,Pn} be a collection of partitions of the hypothesis classH′; tmax(P)
is the size of the largest partition in P . For any ϵ, δ ∈ (0, 1), and any ηi ≤ η̄ < 1/2, i = 1, ..., n,
with a training set of size

q = O

(
1

(1− 2η̄)2
· 1
ϵ2
· n2 log(

tmax(P) · n
δ

)

)
any element-wise ERMA learns a hypothesis h ∈ H′ such that with probability at least 1−δ (over
T ∼ Oq), errD(h) < ϵ.

Proof. We show that a training set of size

q =

⌈
8η̄ · n2 + ϵ(1− (2− k′) · η̄) · n

ϵ2 · (1− (2− k′) · η̄)2
· ln

(
2tmax(P) · n

δ

)⌉
(1)

is sufficient to establish the (ϵ, δ)-PAC guarantee, where k′ = (k − 2)/(k − 1).

Let
errD(h, i) = PrW∼D[h(W)[i] ̸= h∗(W)[i]]

be the probability (over W ∼ D) of a hypothesis h makes a wrong prediction on the state of the
entity i = 1, ..., n. We say that a hypothesis h ∈ H is γ-bad w.r.t entity i if errD(h, i) > γ.

We show the following result.

Claim A.1. The probability (over T ∼ Oq) that the learned hypothesis h is ϵ/n-bad w.r.t. at least
one entity i = 1, .., n is at most δ

Note that by the above claim,
Pr T ∼Oq [errD(h) > ϵ] ≤ δ (2)

since if errD(h) > ϵ for the learned h, it must be the case that errD(h, i) > ϵ/n for at least one
entity i = 1, .., n. We thus have

Pr T ∼Oq [errD(h) > ϵ] ≤ Pr T ∼Oq [errD(h, i) > ϵ for at least one i = 1, ..., n] ≤ δ

and Lemma 3.1 thus follows. The rest of the proof focuses on showing that Claim A.1 holds under
the training size q given in Eq 1.

First, fix an entity i ∈ {1, ..., n}. For a noisy training data point (W, Ŵ) ∼ O provided by the
oracle, let ˆerrO(h, i) be the probability of h(W) disagrees with the state of i in Ŵ returned from
the erroneous oracle O. Formally,

ˆerrO(h, i) = Pr (W,Ŵ)∼O[h(W)[i] ̸= Ŵ[i]]

Note that for the ground-truth hypothesis h∗, it holds that ˆerrO(h
∗, i) = ηi since the disagreement

only happens when an erroneous state is returned by the oracle O. Similarly, for any hypothesis h
that is ϵ/n-bad w.r.t. the entity i, one can easily verify that

ˆerrO(h, i) = (1− errD(h, i)) · ηi + errD(h, i) · (1− ηi) + errD(h, i) · ηi · k′ (3)

≥ ηi +
ϵ

n
· (1− (2− k′)η̄)
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where k′ = (k − 2)/(k − 1).

Let
z =

ϵ

n
(1− (2− k′)η̄)

be the lower bound on the difference of the error probability (over (W, Ŵ) ∼ O) between h∗ and
any hypothesis h that is ϵ/n-bad w.r.t. entity i.

We now fix a hypothesis h′ that is ϵ/n-bad w.r.t. entity i. Note that Claim A.1 trivially holds if
no such h′ exists. Let X(h′, i, T ) be the random variable representing the number of disagreements
over T between the states of i predicted by h′ and the states of i returned by the erroneous oracle
O. That is, X(h′, i, T ) is number of samples (Wj , Ŵj) in T such that Ŵj [i] ̸= h(Wj)[i].

Note that if this hypothesis h′ is returned by our element-wise ERMA, the empirical loss of h′ must
be the minimum over all hypotheses inH, including the true hypothesis h∗. Thus, at least one of the
following two events must occur: (I)X(h∗, i, T ) > ηiq+ z/2 · q; (II)X(h′, i, T ) ≤ ηiq+ z/2 · q.

Observe that
E[X(h∗, i, T )] = ηi · q, E[X(h′, i, T )] ≥ (ηi + z)q

where the expectation is taken over T ∼ Oq . By Chernoff,

Pr T ∼Oq [X(h′, i, T ) ≤ ηiq + z/2 · q] = Pr T ∼Oq [X(h′, i, T ) ≤ (1− z

2(ηi + z)
) · (ηi + z)q]

≤ exp (−1

8
· q · z2

ηi + z
) (4)

One can then verify that, for the value of q specified in Eq 1, we have

exp (−1

8
· q · z2

ηi + z
) <

1

2
· δ

tmax(P)n
and thus by Ineq 4,

Pr T ∼Oq [X(h′, i, T ) ≤ ηiq + z/2 · q] < 1

2
· δ

tmax(P)n
(5)

Similarly, one can easily verify that for the same q,

Pr T ∼Oq [X(h∗, i, T ) > ηiq + z/2 · q] < 1

2
· δ
n

(6)

Recall that the hypothesis class H′ admits a collection of partitions P = {P1, ...,Pn}. Under each
partition Pj ∈ P , the empirical loss (under any training set T ) w.r.t the entity j for all hypotheses in
each subset ofH′ are the same. Suppose the event “X(h′, i, T ) ≤ ηiq+ z/2 · q” occurs for h′, then
this event must also occurred for all other hypotheses that are in the same subset with h′ under Pi.

Since the size of the partition Pi is ti ≤ tmax, by Ineq 5, it follows that the probability (over
T ∼ Oq) of the event “X(h′, v, T ) ≤ ηiq + z/2 · q” occurs for at least one ϵ/n-bad hypothesis h′

in the spaceH is at most 1/2 · δ/n.

Combining Ineq 5 and Ineq 6, it follows that the probability (over T ∼ Oq) of either

Event I: “X(h∗, i, T ) > ηiq + z/2 · q”

or

Event II: “X(h′, i, T ) ≤ ηiq + z/2 · q for at least one ϵ/n-bad hypothesis h′”

occurs is at most δ/n.

Lastly, let h denote the hypothesis returned by the element-wise ERM A. Note that h is ϵ/n-bad
(i.e., errD(h, i) > ϵ/n) w.r.t i only if either event I or event II (or both) happened. Thus, we have

Pr T ∼Oq [errD(h, i) > ϵ/n] ≤ δ

n
(7)
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Subsequently,

Pr T ∼Oq [errD(h, i) > ϵ/n for at least one entity i = 1, ..., n] ≤ δ (8)

Claim A.1 follows. This concludes the proof. ■

Pseudocode of Algorithm 1 Here, we present the pseudocode of Algorithm 1 (i.e., V-ERM).

ALGORITHM 1: Vertex-wise ERM (V-ERM)
Input : A training set T ; graph G
Output: A system h fromH

1 for v ∈ V(G) do
2 for τ = 0, 1, ...,degv + 1 do
3 hτ ← a system where the threshold of v is τ

4 sτ ←
∑

(C,Ĉ)∈T 1

(
hτ (C)[v] ̸= Ĉ[v]

)
5 end
6 In h, set τv ← argmin τ{sτ} // The threshold of v in h
7 end
8 return h

Detailed proof of Theorem 3.2

Theorem 3.2 establishes the sufficient number of training samples for Algorithm 1 on learning
threshold discrete dynamical systems. This result is an implication of Lemma 3.1. In particular,
one can define a partition of the hypothesis class H as follows. For each vertex v ∈ V , consider a
partition Pv = {H0, ...,Hdegv+1} of H such that each hypothesis in Hℓ, ℓ = 1, ..., degv + 1, has
the property: the threshold of v is ℓ. One can easily verify that, for any training set T , the empirical
loss w.r.t. vertex v for all hypotheses in Hℓ are the same. Further, note that the size of the partition
tv = degv+2. Subsequently, the value tmax(P) = ∆+2 where P = {P1, ...,Pn}. By Lemma 3.1,
it follows that a training set of size

q =

⌈
8η̄ · n2 + ϵ(1− 2η̄) · n

ϵ2 · (1− 2η̄)2
· ln

(
3∆ · n

δ

)⌉
is sufficient. Since ∆ < n, the theorem follows.

Theorem 3.2 For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set of size

q = O

(
1

(1− 2η̄)2
· 1
ϵ2
· n2 · log(n

δ
)

)
Algorithm 1 (i.e., (i.e., V-ERM)) learns a hypothesis h ∈ H such that with probability at least 1−δ
(over T ∼ Oq), errD(h) < ϵ.

A.4 ADDITIONAL INFORMATION FOR RESULTS IN SECTION 4

Pseudocode for Algorithm 2. We present the pseudocode for Algorithm 2 VisScore on learning
based on visiting times of scores.
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ALGORITHM 2: Visiting Scores (VisScore)
Input : A training set T ; graph G
Output: A system h

1 q ← |T | // Size of the training set
2 for v ∈ V(G) do
3 λs ← 0, s = 0, ...,degv + 1 // The hitting time of score
4 as, bs ← 0, s = 0, ...,degv + 1 // Count the number of output state-0’s

and output state-1’s under input score s

5 for (C, Ĉ) ∈ T do
6 s← score(C, v)
7 λs ← λs + 1

8 as ← as + 1 if Ĉ[v] == 0; else bs ← bs + 1
9 end

10 S ← ∅
11 for s = 0, ...,degv + 1, do
12 if λs ≥ ϵ

2∆n · q then
13 ℓ′s ← 0 if as > bs; else ℓ′s ← 1 // Majority voting on the correct

output state of v under input score s

14 S ← S ∪ {s}
15 end
16 end
17 if ∃ s ∈ S s.t. ℓ′s = 0 then
18 In h, set τv ← 1+max {s : s ∈ S, ℓ′s = 0} // The learned threshold of v
19 end
20 else
21 In h, set τv ← 0
22 end
23 end
24 return h

Detailed proof of Theorem 4.1

In Theorem 4.1, we prove the sufficient number of training samples needed by Algorithm 2.

Theorem 4.1 For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set of size

q = O

(
1− η̄

(1/2− η̄)2
· 1
ϵ
·∆n · log(n

δ
)

)
Algorithm 2 (i.e., VisScore) learns a hypothesis h ∈ H such that with probability at least 1 − δ
(over T ∼ Oq), we have errD(h) < ϵ.

Proof. We prove that a training set of size

q = 4 · 1− η̄

(1/2− η̄)2
· ∆n

ϵ
· ln

(
4∆n

δ

)
(9)

is sufficient for Algorithm 2 to guarantee the (ϵ, δ)-PAC bound. Recall that ∆ < n is the maximum
degree of the underlying graph. From a high level, we show that, when q is sufficiently large, with
probability at least 1− δ over T ∼ Dq , each score with a relatively “high” visiting probability will
be visited a sufficiently large number of times. We then take the majority output state of v over the
erroneous successors under each such score to be the correct output state and subsequently infer the
threshold v.

As shown in Algorithm 2, we learn the set of thresholds in a vertex-wise manner. Fix a vertex
v ∈ V . For each of v’s possible scores, denoted by s = 0, ..., degv + 1, we say that a score s is
ϵ-important w.r.t. v if its visiting probability (over C ∼ D) is at least ϵ. Recall that the visiting
probability of a score s in terms of v is the probability of sampling a configuration C ∼ D such that
the score of v under C is s.
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Now, we fix a score s that is (ϵ/(∆n))-important w.r.t v. Note that at least one score in {0, ..., degv}
is (ϵ/(∆n))-important w.r.t v. Let X(s, T ) be the random variable (over T ∼ Oq) representing the
visiting times of the score s in the training set T . That is, X(s, T ) is the number of (C, Ĉ) ∈ T such
that the score of v under C is s.

Importantly, since s is (ϵ/(∆n))-important, the expected value of X(s, T ) satisfies

E[X(s, T )] ≥ ϵ

∆n
· q

Recall that in Algorithm 2, we only learn from the scores whose visiting time in T is at least

t =
1

2
· ϵ

∆n
· q

Ideally, every (ϵ/(∆n))-important score is visited at least t = 1/2 · ϵ/(∆n) · q when q is sufficiently
large. Specifically, by tail bound, one can verify that

Pr T ∼Oq [X(s, T ) < t] ≤ exp (−1

8
· ϵ

∆n
· q) (10)

where the event “X(s, T ) < t” occurring for the (ϵ/(∆n))-important score s is undesirable. It then
follows that

Pr T ∼Qq [X(s, T ) < t for at least one ϵ/(∆n)-important score s] (11)

≤ 2∆ · exp (−1

8
· ϵ

∆n
· q)

there there are at most ∆ scores for vertex v. For clarity, we define the above (bad) event:

Event I: X(s, T ) < 1/2 · ϵ
∆n · q for at least one ϵ/(∆n)-important score s

One can then verify that, when the size of the training set q satisfies Eq 9, Event I happens with
probability (over T ∼ Oq) at most δ/(2n).

Another desirable property that Algorithm 2 utilizes is that, for sufficiently large q, when a score s
is visited enough number of times (i.e., at least t = 1/2 · ϵ/(∆n) · q times) in T , the majority output
state of v over the erroneous successor under the input score s is the true state of v in an error-free
successor under the same input score s. We now prove this.

We fix a score s of v that got visited at least t = (1/2) · ϵ/(∆n) · q times in T . Note that such
a score must exist. Let Q(s, T ) be the visiting times for s under T ; Q(s, T ) ≥ t. Let ℓs be the
correct output state of v under the input score s. That is, when there are no errors, if the input to v’s
interaction function is s, then the state of v returned by the ground-truth system h∗ is ℓs.

Let Y (ℓs, s, T ) be the number of times that ℓs appears as the output state of v over the erroneous
successors in the training set T , under the input score s. Note that

E[Y (ℓs, s, T )] ≥ (1− η̄) ·Q(s, T ) ≥ (1− η̄) · t

where η̄ < 1/2 is the upper bound on the error terms over all vertices. Ideally, we should have
Y (ℓs, s, T ) > 1/2 · Q(s, T ), that is, the state ℓs wins is the majority vote. By Chernoff, one can
verify that:

Pr T ∼Oq [Y (ℓs, s, T ) ≤
1

2
·Q(s, T )] (12)

= Pr T ∼Oq [Y (ℓs, s, T ) ≤ (1− (1− η̄)− 1/2

1− η̄
) · ((1− η̄) ·Q(s, T ))]

≤ exp

(
−1

2
·
(
(1− η̄)− 1/2

1− η̄

)2

· (1− η̄) ·Q(s, T )

)

≤ exp

(
−1

2
·
(
(1− η̄)− 1/2

1− η̄

)2

· (1− η̄) · ϵq

2∆n

)
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where the event “Y (ℓs, s, T ) ≤ 1
2 ·Q(s, T )” occurring for the label ℓs is undesirable. It follows that

Pr T ∼Oq [Y (ℓs, s, T ) ≤
1

2
·Q(s, T ) for at least one score s with visiting time at least t] (13)

≤ 2∆ · exp

(
−1

2
·
(
(1− η̄)− 1/2

1− η̄

)2

· (1− η̄) ·
(
1

2

ϵ

∆n
q

))
Let Event II be the above bad event:

Event II: Y (ℓs, s, T ) ≤ 1/2 ·Q(s, T ) for at least one score s with visiting time at least t

One can verify that for a training set of size q shown in Eq 9, we have that Event II happens with
probability (over T ∼ Oq) at most δ/(2n).

Let h be the hypothesis returned by Algorithm 2. We say that hypothesis h is ϵ/n-good w.r.t v if
Pr C∼D[h(C)[v] ̸= h∗(C)[v]] < ϵ/n. We remark that:
Claim A.2. If both Event I and Event II do not occur under a training set T , then the learned h
must be ϵ/n-good w.r.t v.

To see this, suppose that both Event I and Event II do not occur. Then, the following are true
simultaneously:

(i) Every ϵ/(∆n)-important score got visited at least t times.

(ii) For any scores that got visited at least t times, the majority voting scheme (over T ) gives the
correct output state of v under the input score s to v’s interaction function.

Let S be the set of scores that got visited at least t times. Note that S includes all the (ϵ/(∆n))-
important scores, plus possibly some other scores.

Since both Event I and Event II do not occur, h learns the correct output state of v under each input
score in S. Let S′ ⊆ S be the subset of scores such that the learned output state of v is 0. If S′ is an
empty set, we then have τv = 0 as stated in Algorithm 2. On the other hand, suppose S′ contains at
least one score. As shown in Algorithm 2, we then set

τv = max s∈S′{s}+ 1

For either case, one can easily verify that h would not make a wrong prediction on the output state
of v when seeing any scores in S as an input. Consequently,

For a C ∼ D, the hypothesis h can make a wrong prediction on the output state of v only when the
input score (under C) is not in S.

Note that any score not in S is not (ϵ/(∆n))-important w.r.t. v. That is, the probability of visiting a
score s /∈ S of v under C ∼ D is less that ϵ/(∆n). Since there are at most ∆ such “bad” scores, we
have Pr C∼D[h(C)[v] ̸= h∗(C)[v]] < ϵ/n. This concludes the claim.

Lastly, since Event I (and Event II) happen with probability (over T ∼ Oq) at most δ/(2n) w.r.t v,
the probability of either one of them happening is at most δ/n. It follows that, the probability that h
is (ϵ/n)-bad w.r.t v (i.e., Pr C∼D[h(C)[v] ̸= h∗(C)[v]] < ϵ/n) is at most δ/n. That is,

Pr T ∼Oq [h is (ϵ/n)-bad w.r.t at least one v ∈ V] ≤ δ (14)

Thus, the probability (over T ∼ Oq) of errD(h) > ϵ is at most δ. This concludes the proof. ■

Pseudocode for Algorithm 3. We present the pseudocode for Algorithm 3 VisRange on learning
based on visiting times of ranges of scores.
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ALGORITHM 3: Visiting Ranges (VisRange)
Input : A training set T ; graph G
Output: A system h

1 q ← |T | // Size of the training set
2 for v ∈ V(G) do
3 λs1,s2 ← 0, for s1, s2 = 0, ...,degv +1, s1 ≤ s2 // The hitting time of range
4 as1,s2 , bs1,s2 ← 0, for s1, s2 = 0, ...,degv + 1, s1 ≤ s2 // The number of output

state-0’s and output state-1’s under input scores in range
[s1, s2]

5 for (C, Ĉ) ∈ T do
6 s← score(C, v)
7 λs1,s2 ← λs1,s2 + 1 for each range [s1, s2] that contains s
8 For each range [s1, s2] that contains s: as1,s2 ← as1,s2 + 1 if Ĉ[v] == 0; else

bs1,s2 ← bs1,s2 + 1
9 end

10 S ← ∅
11 for s1 = 0, ...,degv + 1 do
12 for s2 = s1, ..., degv + 1 do
13 if λs1,s2 ≥ ϵ

2n · q then
14 ℓ′s1,s2 ← 0 if as1,s2 > bs1,s2 ; Else, ℓ′s1,s2 ← 1 // Majority voting on

the correct output state of v under input scores in
range [s1, s2]

15 S ← S ∪ {(s1, s2)}
16 end
17 end
18 end
19 if ∃(s1, s2) ∈ S s.t. ℓ′s1,s2 = 0 then

20 In h, set τv ← 1 + max {s1 : (s1, s2) ∈ S, ℓ′s1,s2 = 0} // The learned
threshold

21 end
22 else
23 In h, set τv ← 0
24 end
25 end
26 return h

Detailed proof of Theorem 4.2

In Theorem 4.2, we prove the sufficient number of training samples needed by Algorithm 3.

Theorem 4.2 For any ϵ, δ ∈ (0, 1), and any ηv ≤ η̄ < 1/2, v ∈ V , with a training set of size

q = O

(
1− η̄

(1/2− η̄)2
· 1
ϵ
· n · log(n

δ
)

)
Algorithm 3 (i.e., VisRange) learns a hypothesis h ∈ H such that with probability at least 1 − δ
(over T ∼ Oq), we have errD(h) < ϵ.

Proof. We show that a training set of size

q = 8 · 1− η̄

(1/2− η̄)2
· n
ϵ
· ln

(
2∆n

δ

)
(15)

is sufficiently large to establish the (ϵ, δ)-PAC guarantee. Recall that ∆ < n is the maximum degree
of the underlying graph. Conceptually, different from the analysis of Algorithm 2 where one cares
about the number of times each score is visited in a training set T , here in Algorithm 3, we focus
on the visiting time of each possible range of scores. In particular, for a vertex v, each range R of
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scores with a “high” visiting probability should be visited a large number of times. Consequently,
the majority vote over the output states of v in the successors under each score in R would reveal
information about the true threshold of v, which is captured by Algorithm 3.

Fix a vertex v ∈ V . We consider all possible ranges of scores of v, denoted by

Rs1,s2 = [s1, s2], s1, s2 = 0, ..., degv + 1, s1 ≤ s2

We remark that there are O(∆2) such ranges for v, where ∆ is the maximum degree of the graph.

Similar to the definition of “importance” for scores, we say that a range Rs1,s2 is ϵ-important w.r.t.
v, if the visiting probability (over C ∼ D) of Rs1,s2 is at least ϵ. Recall that the visiting probability
of a range Rs1,s2 w.r.t. v is the probability of sampling a configuration C ∼ D such that the score of
v under C is in Rs1,s2 .

Fix a range Rs1,s2 that is (ϵ/n)-important w.r.t v; at least one such a range Rs1,s2 exists. Let
X(Rs1,s2,, T ) be the random variable (over T ∼ Oq) representing the sum of the visiting times over
the scores in the range Rs1,s2 under training set T . That is,

X(Rs1,s2,, T ) =
s2∑

s=s1

X(s, T ) (16)

where X(s, T ) is the random variable (over T ∼ Oq) that records the visiting time of each score
s under training set T . Given that Rs1,s2 is (ϵ/n)-important, the expected value of X(Rs1,s2,, T )
satisfies that

E[X(Rs1,s2,, T )] ≥
ϵ

n
· q

In Algorithm 3, one only cares about the ranges whose visiting time under T is at least

t =
1

2
· ϵ
n
· q

When q is sufficiently large, we want every (ϵ/n)-important range to be visited at least t times so
these important ranges will be examined by the learning algorithms. By Chernoff, one can verify
that

Pr T ∼Oq [X(Rs1,s2,, T ) < t] ≤ exp (−1

8
· ϵ
n
· q) (17)

Note that “X(Rs1,s2,, T ) < t” happening for the ϵ/n-important range Rs1,s2 is undesirable. We
now define the following bad event:

Event I: X(Rs1,s2,, T ) < t for at least one ϵ/n-important range Rs1,s2

By Ineq 17, we have

Pr T ∼Qq [X(Rs1,s2,, T ) < t for at least one ϵ/n-important range Rs1,s2 ] (18)

≤ 2∆2 · exp (−1

8
· ϵ
n
· q)

where the factor ∆2 comes from the fact that there are O(∆2) such ranges for v. Importantly, one
can verify that, when the size of the training set q satisfies Eq 15, Event I happens with probability
(over T ∼ Oq) at most δ/(2n).

The second property that Algorithm 3 uses is that, when a range Rs1,s2 is visited a sufficiently large
number of times (i.e., at least t = 1/2 · ϵ/n · q times) over the training set T , if the majority output
state of v over all the erroneous successors under the scores in Rs1,s2 is 0, then there must exist at
least one score s in Rs1,s2 such that the true output state of v in an error-free successor under the
score s is also 0.

We now fix a range Rs1,s2 that satisfies the following two properties under a training set T ∼ Oq:

Property I: Both s1, s2 < τ∗v or both s1, s2 ≥ τ∗v , where τ∗v is the threshold of vertex v under the
ground-truth system h∗

Property II: Range Rs1,s2 got visited at least t = (1/2) · (ϵ/n) · q times.
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We remark that such a range Rs1,s2 must exist since the entire range R0,degv+1 is visited exactly q
times over T . Let Q(Rs1,s2 , T ) be the visiting times of the range Rs1,s2 ; Q(Rs1,s2 , T ) ≥ t.

Note that, by property (I) stated above, the true output state of vertex v under all the scores in Rs1,s2
are the same. Let ℓs1,s2 denote this true output state of vertex v under the scores in Rs1,s2 . That is,
when there are no errors, if the input to v’s interaction function is any score s in Rs1,s2 , then the
state of v returned by the ground-truth system h∗ is ℓs1,s2 .

Let Y (ℓs1,s2 , T ) be the number of training samples (C, Ĉ) ∈ T such that, the score of v under C is
in rangeRs1,s2 , and Ĉ[v] = ℓs1,s2 is the succeeding state of v. One can verify that

E[Y (ℓs1,s2 , T )] ≥ (1− η̄) ·Q(Rs1,s2 , T ) ≥ (1− η̄) · t

where η̄ < 1/2 is the upper bound on the error terms. Ideally, Y (ℓs1,s2 , T ) should be strictly larger
than 1/2 ·Q(Rs1,s2 , T ). That is, the output state ℓs1,s2 of v appears in strictly more than half of the
pairs (C, Ĉ) ∈ T where score(C, v) ∈ Rs1,s2 . By Chernoff, one can verify that:

Pr T ∼Oq [Y (ℓs1,s2 , T ) ≤
1

2
·Q(Rs1,s2 , T )] (19)

≤ exp

(
−1

2
·
(
(1− η̄)− 1/2

1− η̄

)2

· (1− η̄) · ϵq
2n

)
(20)

Here, the event “Y (ℓs1,s2 , T ) ≤ 1
2 · Q(Rs1,s2 , T )” happening for label ℓs1,s2 is undesirable. Now

define the following bad event:

Event II: Y (ℓs1,s2 , T ) ≤ 1/2 ·Q(Rs1,s2 , T ) for at least one range Rs1,s2 with Property I and II.

By Ineq 19, we have:

Pr T ∼Oq [Y (ℓs1,s2 , T ) ≤ 1/2 ·Q(Rs1,s2 , T ) for at least one range Rs1,s2 with Property I and II]

(21)

≤ 2∆2 · exp

(
−1

2
·
(
(1− η̄)− 1/2

1− η̄

)2

· (1− η̄) · ϵq
2n

)
Subsequently, one can verify that for q in Eq 15, Event II happens with probability (over T ∼ Oq)
at most δ/(2n).

Let h be the hypothesis returned by Algorithm 3. We now present the last piece of the proof which
shows that h is ϵ/n-good w.r.t v with probability at least 1 − δ. Recall that h is ϵ/n-good w.r.t v if
Pr C∼D[h(C)[v] ̸= h∗(C)[v]] < ϵ/n. The key claim is as follows:

Claim A.3. If both Event I and Event II do not occur under T , then the learned h must be ϵ/n-good
w.r.t v.

Suppose Claim A.3 is true. We have shown that, under q in Eq 15, Event I (and also Event II)
happens with probability (over T ∼ Oq) at most δ/(2n) w.r.t v. Thus, the probability of either one
of them happening is at most δ/n. Consequently, Pr T ∼Oq [h is (ϵ/n)-bad w.r.t at least one v] ≤ δ.
It follows that, the probability of errD(h) > ϵ is at most δ and the proof of the Theorem is complete.

We now show that Claim A.3 is true. If both Event I and Event II do not occur under T , then the
followings are true:

Fact 1. Every ϵ/n-important range is visited at least t times in T .

Let R be the subset consisting of each range Rs1,s2 where (i) both s1 and s2 lie on the same side of
τ∗v , and (ii) Rs1,s2 got visited at least t times (note that Rs1,s2 does not need to be ϵ/n-important).
Note that the true output state of vertex v under all the scores in Rs1,s2 are the same.

Fact 2. For each Rs1,s2 ∈ R, the majority output state of v is the true output state of v.
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Let R0 and R1 be the subsets of R where the majority output state of v for every range in Ri is
i, i = 0, 1. Let W be the set of ranges (of scores for v) that got visited at least t times in T ,
and the corresponding majority output state of v is 0. We remark that R0 ⊆ W . In Algorithm 3,
we effectively choose the range in W with the largest s1 value, denoted by Rs∗1 ,s

∗
2

and learn the
threshold of v to be s∗1 + 1.

Importantly, we observe that such a Rs∗1 ,s
∗
2

is not in R1 by Fact 2 above. Thus, it holds that

Rs∗1 ,s
∗
2
∈ R0, or s∗1 < τ∗v ≤ s∗2

Let τ ′v be an positive integer less than τ∗v where (i) the probability (over C ∼ D) of sampling a
configuration C with score of v in range [τ ′v, τ

∗
v − 1] is larger than ϵ/n, and if τ ′v ≤ τ∗v − 2, then (ii)

the probability of sampling a score between [τ ′v + 1, τ∗v − 1] is at most ϵ/n. If no such a τ ′ exists,
then the algorithm sets τv = 0 and one can easily verify that the learned h is ϵ/n-good w.r.t v.

Note that the range Rτ ′
v,τ

∗
v−1 is an ϵ/n-important range w.r.t v, and both τ ′v, τ

∗
v − 1 lie on the same

(left) size of τ∗v . Thus by Fact 1 and the definition of R0, we have that

Rτ ′
v,τ

∗
v−1 ∈ R0

Since Rs∗1 ,s
∗
2

is the range in W with the largest s1 value, and since R0 ⊆W it follows that s∗1 ≥ τ ′v ,
and the learned threshold

τv = s∗1 + 1 > τ ′v

As a result, the learned system h can only make a wrong prediction on the output state of v when the
score of v under the sample configuration C ∼ D falls within the range [s∗1 + 1, τv], which happens
with probability strictly less than ϵ/n. That is, h is ϵ/n-good w.r.t v. This concludes the proof of
Claim A.3 and therefore the theorem. ■

A.5 ADDITIONAL DETAILS ABOUT THE EXPERIMENTS

System Specification. All experiments were conducted on an HPC cluster. Each compute node in a
cluster is a 20–40 core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz processor with 128–384 GB
of memory. To achieve scalability, experiments with different networks were conducted on different
compute nodes utilizing the SLURM scheduler. Each job used up to 64GB of memory and 1 CPU
core during execution. All scripts were implemented using Python 3.7.

Overall, we generated up to 5, 000 training samples for learning each system under synthetic net-
works with up to 4000 vertices and varying density. For other networks, the number of training
samples is up to twice the network size.

Parameter settings of the synthetic networks.

Table 1: Parameter Settings of the Synthetic Networks

Parameter Notation Parameter Space
Network Size n {500, 1000, 2000, 4000, 5000}
Average Degree davg {5, 10, 20, 30, 40}
Noise η {0.05, 0.1, 0.2, 0.3, 0.4}

Information about the networks.

Synthetic Networks: We generated Gn,p random graphs based on the ER model (Erdös & Renyi,
1959). The values of n are shown in Table 1. By using suitable values of the probability p, we
also created networks with different average degree (davg) values, as shown in Table 1. Thus, our
experiments use both sparse and dense synthetic networks.

Real-World Networks: The first real-world network we use, ca-GrQc, is a collaboration network
within the field of General Relativity and Quantum Cosmology spanning published works from Jan-
uary 1993 to April 2003 (Leskovec et al., 2007). It has 5, 242 vertices and 14, 496 edges. The second
real-world network, USpowerGrid, has 4, 941 vertices and 6, 594 edges. It contains information on
the power grid of the Western States of the USA. Here, vertices represent electrical components
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(e.g., transformer, generator) and edges represent power supply lines (Kunegis, 2013). Both of
these graphs were obtained from the website (https://net.science) for the net.science software
tool (Ahmed et al., 2020).

Execution Times

Figure 5 shows the execution times of the algorithms over networks of different sizes and densities.
We ran each algorithm with 100 training samples to maintain consistency in the study of execution
times. In general, V-ERM has the longest execution time, followed by VisRange and VisScore.

This is consistent with the time complexities of the algorithms: O(n∆2q), and the complexity is
reduced to O(∆2q) upon parallelization, where n is the network size, ∆ is the maximum degree and
q is the size of the training set. For sparse networks (where ∆ is a constant), both of these algorithms
have a time complexity of O(nq) (or O(q) by parallelization), as reflected in Figure 5. However,
as the network becomes denser, the difference in the second component of the complexity becomes
more dominant and this is also reflected in the second panel of Figure 5.
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Figure 5: Execution times of the algorithms. The left panel is for sparse networks of various sizes.
The right panel is for dense networks. The y-axis scales are different across the two plots. Error bars
account for two standard deviation error.
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Figure 6: Comparison between the three algorithms on sparse networks in low-noise setting

Comparison of the algorithms: Figure 6 compares the learning patterns of all three algorithms.
Contrary to the steady nature of V-ERM, both VisScore and VisRange do not learn reasonably
until they have a sufficient number of samples, after which they both learn in a phase-transition
like manner. It is also observed that for N = 2, 000, VisRange requires fewer training samples to
achieve reasonable performance compared to VisScore.

Figure 7 shows the number of samples required to achieve threshold loss for the two real-world
networks. Since the density and network size are fixed, we only present the sensitivity to noise in
the figure. Similar to synthetic networks, we find that the required number of samples increases as
the threshold loss is decreased. Moreover, scenarios with higher noise need more training samples
for achieving the same threshold loss. It is also observed that the required number of samples for
ca-GrQc is higher than UspowerGrid for same parameter setting. Since ca-GrQc is larger than US-
powerGrid both in terms of network size and density, this behavior coincides with that on synthetic
networks, described in the main section of the paper.

V-ERM on synthetic networks: Figure 8 shows the empirical loss of V-ERM for various synthetic
networks. The network size changes along columns and one row of the figure shows networks of
same size with increasing density. In general, the learning sensitivity to noise is more prominent
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Figure 7: Training samples needed by V-ERM for achieving specified loss thresholds on real-world
networks under various noise settings. Error bars account for two standard deviation errors.

for dense networks than sparse networks. This behavior is present but less prominent for different
network sizes with same density.
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Figure 8: Empirical Evaluation of the learning process of V-ERM (Algorithm 1) under different
noise settings for networks of various sizes and densities. Here, n ∈ {500, 2000, 4000} and davg ∈
{5, 20, 40}. The shaded region accounts for 1 standard deviation of the empirical loss.
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