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ABSTRACT

Out-of-distribution recognition forms an important and well-studied problem in
deep learning, with the goal to filter out samples that do not belong to the dis-
tribution on which a network has been trained. The conclusion of this paper is
simple: a good hierarchical hyperbolic embedding is preferred for discriminating
in- and out-of-distribution samples. We introduce Balanced Hyperbolic Learning.
We outline a hyperbolic class embedding algorithm that jointly optimizes for hi-
erarchical distortion and balancing between shallow and wide subhierarchies. We
can then use the class embeddings as hyperbolic prototypes for classification on
in-distribution data. We outline how existing out-of-distribution scoring functions
can be generalized to operate with hyperbolic prototypes. Empirical evaluations
across 13 datasets and 13 scoring functions show that our hyperbolic embeddings
outperform existing out-of-distribution approaches when trained on the same data
with the same backbones. We also show that our hyperbolic embeddings outper-
form other hyperbolic approaches, can beat state-of-the-art contrastive methods,
and natively enable hierarchical out-of-distribution generalization.

1 INTRODUCTION

Detecting out-of-distribution samples is crucial in real-world settings to make classification pre-
dictions reliable and ensure a safe deployment of trained models (Liu et al., [2021). These models
are typically trained on datasets with closed-world assumptions |He et al.| (2015)), referred to as in-
distribution (ID) data, and testing samples that significantly deviate from training distribution are
referred to as out-of-distribution (OOD) data. A wide range of works have proposed approaches to
score the likelihood of a testing sample being OOD or not (Yang et al.,[2022; Zhang et al., 2023b)).
Since OOD samples are unseen during training, the key approaches to determine OOD score for a
model are based only on ID samples. Scoring functions to classify OOD samples are primarily based
on model’s confidence (Hendrycks & Gimpel, [2016} |Liang et al.l 2018; Hendrycks et al., 2022; [Liu
et al.,[2020b) or the feature distance from ID embeddings (Lee et al.,[2018b; |Sun et al., 2022)

Recent literature has highlighted that scoring functions and optional training or outlier exposure are
not the only considerations for effective out-of-distribution detection; the choice of embedding space
directly influences out-of-distribution discrimination (Ming et al., 2023; [Lu et al.,[2024]). In this pa-
per, we find that hyperbolic embeddings naturally help to discriminate in- and out-of-distribution
samples. We show this in Figure Different from the Euclidean classifier, the hyperbolic clas-
sifier provides strongly uniform distributions for samples near the origin and strongly peaked dis-
tributions for samples near the boundary. This observation matches directly with recent literature
on hyperbolic learning (Mettes et al., 2023). Hyperbolic geometry makes it possible to deal with
hierarchical distributions (Nickel & Kielal [2017)), spatial object boundaries (Ghadimi Atigh et al.,
2022), adversarial shifts (Guo et al.| [2022), and uncertainty (Franco et al.| |2023). All papers find
a direct link between the norm of representations in hyperbolic space and sample certainty, akin
to Figure [Ta] We seek to take advantage of this natural property in hyperbolic learning to help
discriminate out-of-distribution from in-distribution samples.

This paper introduces Balanced Hyperbolic Learning. We first represent classes as prototypes in
hyperbolic space based on their hierarchical relations. This naturally leads to a desirable ordering,
where in-distribution classes end up near the edge of the Poincaré ball and less specific (i.e. more
general and uncertain) inner nodes end up closer to the origin as a function of their hierarchical
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Figure 1: (a)Examining distances in different embedding spaces. [Top] The @ represents classi-
fiers in Euclidean space (left) and prototypes in hyperbolic space (right, here a Poincaré disk). The m
represents image embeddings for various images. In Euclidean space, logits are obtained by the dot
product with classifiers, while in the proposed hyperbolic method, logits are based on the distance to
the class prototype, measured along the geodesic. [Bottom] shows how the softmax distribution of
the image embeddings changes based on the distance to the classifier. In hyperbolic space, the model
gives higher confidence to images near the classification boundary and relatively lower confidence
to those further away, which is a desirable property for detecting out-of-distribution samples. (b)
Illustration of desirable hyperbolic embeddings for OOD detection. Depending on relation to ID
samples, OOD samples lie between ID clusters (slightly related) or closer to the origin (unrelated).

depth. We find that existing hyperbolic embedding methods are biased towards deeper and wider
sub-trees, with smaller sub-trees pushed towards the origin. This is in direct conflict with Figure [Ta]
since it leads to less uniform softmax distributions for OOD samples that end up near the origin. We
propose a distortion-based loss function with norm balancing across all hierarchical levels to obtain
class embeddings and optimize ID samples to align with their class prototypes. Over the years, many
scoring functions have been introduced in out-of-distribution literature. Rather than introduce yet
another alternative, we show how existing functions effortlessly generalize to work with prototypes
in hyperbolic space. Figure [Ib]illustrates the outcome, where OOD samples lie between ID clusters
or near the origin. Empirical results on a wide range of datasets and scoring functions show that our
hyperbolic embeddings structurally lead to better OOD discrimination.

2 PRELIMINARIES
2.1 OUT-OF-DISTRIBUTION DETECTION

Let X := R™ and V" := {1, ..., C'} denote the input and label space of the in-distribution training
data for multi-class image classification. For this closed-world setting, the data D;q = {(x;, ¥:)} Y,
is drawn i.i.d from Py yin and assumes the same distribution during training and testing. The aim of
Out-of-Distribution (OOD) detection is to decide whether a sample x € X is from Py (ID) or not
(OOD). We consider the canonical OOD setting (Hendrycks & Gimpel, |2016) where OOD samples
are from unknown classes, i.e. Ji® N yeod — (). With S (x), a scoring function on logits or features
of a trained model, an input x is identified as OOD if S(x) < o, where threshold o is a level set
parameter determined by the false ID detection rate (e.g., 0.05) (Ming et al.,|2022; |Chen et al.| 2017)).

2.2 THE POINCARE BALL MODEL OF HYPERBOLIC SPACE

This paper works with the most commonly used model of hyperbolic geometry in deep learning,
namely the Poincaré ball model (Khrulkov et al., 2020; |Ghadimi Atigh et al.| 2021} [van Spengler
et al.l 2023). The d-dimensional Poincaré ball with constant negative curvature —c is defined as
the Riemannian manifold (BZ, g.), where B = {x € R% : ||x||> < 1/c}, equipped with the
Riemannian metric tensor (Cannon et al.,[1997)),
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where g = I; denotes the Euclidean metric tensor. The Euclidean metric is changed by a simple
scalar field, hence the model is conformal (i.e. angle preserving), yet distorts distances.
Definition 2.1 (Induced distance and norm). The induced distance between two points x, y on the
Poincaré ball BY, is given by d.(x,y) = (2/+/c) tanh~'(\/¢||—x @, y||). For the Poincaré ball
with ¢ = —1, the induced distances becomes,

. Ix — y|I?
dp(x,y) = cosh™! <1+2 ) . )
’ (1 — =P - Iyl

The Poincaré norm is then defined as:
x| := dg(0,x) = 2 tanh™ " (||x]]). 3)

Definition 2.2 (Exponential map). The exponential map provides a way to map a vector from the
tangent spaces onto the manifold, T.Re — ]B%f, given by (Ganea et al., [2018):

A(J
exp, (X) := v @, (tanh (\/E ng”) \ﬁ)ﬁﬂ) , 4)

where x € B? and v € T,R¢ with &, the Mdbius addition (Ungar, [2022):

(1+2¢(v,w) +c|[wl*)v + (1 = c|v]*)w

VO W= &)
L+ 2¢ (v, w) + ¢ ||v]* | w]
In practice, v is set to the origin, which simplifies the exponential map to
x
expy(x) = tanh(\ﬁ||x||)m~ (6)

3 METHOD

3.1 OVERVIEW OF THE PROPOSED METHOD

The hypothesis of this paper is that hyperbolic embeddings, accompanied by a hierarchical orga-
nization of in-distribution classes, are a natural match for out-of-distribution detection. The in-
distribution hierarchy is given as G = (V, E) with |[V| > C denoting the C' classes as leaf nodes
with additional inner nodes leading to a root node. While an additional assumption, we find that
such hierarchical information typically comes for free, for example by using large-scale knowledge
graphs such as WordNet (Miller, |1995)) or VerbNet (Schuler, |2005)), or simply by prompting a large
language model to provide a hierarchical decomposition of a set of classes (Liu et al.| [2024).

The proposed method consists of two steps, (i) we first learn balanced hyperbolic embeddings for
class labels in the hyperbolic space, B¢, by optimizing for pairwise distances between class labels
in the hyperbolic space to be equivalent to the graph distance defined by a given hierarchy of the
classes. (ii) We then learn a network encoder fy : X — R¢ and project the embeddings to the
hyperbolic space, B, with an exponential map. A distance-based loss between image features and
class labels as prototypes in the hyperbolic space is used to shape the embedding space and enable
the learning of fy, which will produce naturally discriminative embeddings for OOD detection. We
then show that we can use our resulting model with the plethora of existing scoring functions to
determine OOD scores.

3.2 BALANCED HYPERBOLIC EMBEDDING AND LEARNING

Given a hierarchy represented as a directed graph G = (V, E) with n nodes, we compute pairwise
graph distances between all nodes by Dijkstra’s algorithm for the undirected graph, represented as
d;j = da(vi,v;) where v;,v; € V. We initialize the hyperbolic embeddings corresponding to the
n graph nodes as Py = {p1,ps, .., pn} Where p;,p; € IB%‘Z,. Our objective for Balanced Hyperbolic
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Algorithm 1 Obtaining Balanced Hyperbolic Embeddings

Input: Poincare ball BY with ¢ = —1 and d = 64, hierarchy G = (V, E),
graph distance matrix dg, total epochs e
Output: Balanced Hyperbolic Embeddings, Py

P{ = PoincaréEmbeddings(G) Initialization
for 7 in e do;
L =73, j(ds(pi,p;) — da(vi, v5))/dc (vis vj) Distortion loss, Equation
L, =1/n>,3, (0t —mb) Norm loss, Equation 9]
L=1Lg+ife -7 Ly
Pi=9R Pt (—miARL(P) Riemannian gradient update
end for

Embeddings is to optimize embeddings Pg, such that the distances between any two nodes, (p;, p;)
is similar to distances between the graph nodes, (v;,v;). We do so by directly minimizing the
distortion |Sala et al.| (2018]) between the hyperbolic and graph distances. Additionally, we want to
avoid a bias towards broad sub-trees by balancing the hyperbolic norms of nodes at the same level
of granularity. An overview is provided in Algorithm [I] below we outline our losses in detail.

Distortion loss. We first initialize Pp using the Poincaré Embeddings of |Nickel & Kielal (2017)) to
obtain coarsely aligned embeddings. We want to optimize the embeddings such that their pairwise
distances, given by Equation [2} closely reflect the graph’s hierarchical distances d;;, with minimal
error. We do so by directly optimizing this difference:

dg(pi,pj) — da(vi, vj)
dG('UivUj)

Ly = . (7

Norm loss. Ideally, nodes on the same level in the hierarchy should have the same norm, ensuring
a uniform distribution across levels. However, this uniformity often doesn’t hold in current algo-
rithms. It is especially evident in imbalanced graphs where one of the paths might have fewer leaf
nodes, leading to uneven embeddings (refer Appendix [A). We introduce an additional norm-based
constraint to promote a more balanced and representative embedding of the hierarchical structure
within the Poincaré ball. We want all points within a particular level, [ of the hierarchy, to have the
same norm (eq. . This is done by ensuring the norm of each point, p! in level [ is close to the
average norm. The average norm for level [ is calculated as

1
1 n

' = 2 Il ®
1

where n! is the number of points at level I. The overall norm loss is given as a sum over all nodes
with respect to the mean at their hierarchical level:

L= 570 - m). ©)
I n!

As shown in Algorithm [I} we initialize a Poincaré ball model with curvature ¢ = —1 and obtain
coarse embeddings with Poincaré Embeddings trained for 100 epochs. The inputs for the training
are the edges and the targets are the pairwise distances d;;. We train the model with the joint
loss from L, and L,, with Riemannian SGD (Becigneul & Ganeal 2018) for 10,000 epochs. We
increase the contribution of the norm loss to the total loss as a function of the number of epochs.
The multiplying factor, 7, for the norm loss depends on the depth of the hierarchy. We empirically
find that 7 can be set to 0.01 for two-level hierarchies and 0.1 for any deeper hierarchy. We set the
dimension of the Poincaré ball ]B%f to 64, following the literature (Khrulkov et al., 2020).

Learning ID data with balanced hyperbolic embeddings. During training, we project input
images to the same space as the hyperbolic embeddings, such that we can optimize their alignment.
We can obtain a hyperbolic representation of an input image x using equation [6]as follows:

z = expg(F(x;0)), (10)
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where Fp(x) € R? denotes an arbitrary network backbone that yields a d-dimensional Euclidean
output representation for each input image x.

With classes given as prototypes from Pp and images as vectors z in the same hyperbolic space,
we keep the prototype fixed and define a hyperbolic distance-based cross-entropy objective, akin to
Long et al|(2020), where dp is the geodesic distance defined in equation [2}

C

N
33 log exp(—dp (Z(n,k): Pk)) (11)
n=1

L=— & ,
= 2oic1 eXp(—dB(Z(n,i), Pi))

2=

3.3 HYPERBOLIC OUT-OF-DISTRIBUTION SCORING

Scoring functions have been well-studied in out-of-distribution detection. We believe that adding
yet another does not fully hammer down our point that hyperbolic embeddings are powerful for out-
of-distribution detection in the broad sense. We will therefore focus on generalizing a wide range of
existing functions to operate on hyperbolic embeddings or prototypes. As we will show, this requires
minimal to no changes. We exclude functions that use additional outlier data, as our goal is to show
the effect of hyperbolic embeddings as is. We also exclude Mahalanobis-based functions, as each
explicitly assume features to be Euclidean. We perform evaluations on 13 different scoring functions
in total: MSP (Hendrycks & Gimpell 2016)), Temperature Scaling (Guo et al.l 2017), ODIN(Liang
et al.,[2018), Energy(Liu et al.,2020b), Activation Shaping(ASH) (Djurisic et al.|[2022)), Generalized
Entropy (GEN) (Liu et al.,|2023)) use logits to design their OOD score. Gram (Sastry & Oorel|[2020),
KNN (Sun et al., [2022), DICE (Sun & Li, [2022), RankFeat (Song et al., [2022), SHE(Zhang et al.,
2022b), NNGuide (Park et al.}[2023) and SCALE (Xu et al.}2023)). All functions use features, logits,
or probabilities at the intermediate or last layer.

MSP and Temp Scaling take the maximum of the softmax of the logits, f; as the score, and ODIN ad-
ditionally adds a noise perturbation to the input. This is directly applicable in our setup as well, with
the only difference that the logits are now given by the negative of hyperbolic distances, —dp (2, p;)
for the hyperbolic embedding of z; of image z; and class prototype p; The energy score is defined
as F(x,f) = =T -log Zlc efi®)/T where f; is the logit corresponding to i-th label and T is the
temperature hyperparameter. In our method, with z = exp§( f;(x;)), this score is given by

C
E(x,f) =T logy_ e ®@»)/T, )

Note that we no longer take the negative energy values because our logits are already given by the
negative of the prototype distance. Throughout the experiments, we use a 7' = 10 in the energy-
based scoring function for ours and 7" = 1 for the baseline, as these are the best performing settings
for both. All other scoring functions use features at the intermediate or last layer. We have investi-
gated generalizing these functions to operate the exponential mapping and found no clear difference.
Therefore, for scoring functions using features or intermediate layers, we compute scores on the eu-
clidean features in our approach as well for direct comparison to Euclidean-trained counterparts.
We note that the features have in our case been optimized to align with hyperbolic class prototypes,
hence these features still benefit from our approach.

4 EXPERIMENTAL SETUP

Datasets. For a standard out-of-distribution detection setting, we follow the OpenOOD bench-
mark (Yang et all 2022; [Zhang et al. 2023b). Our in-distribution datasets are CIFAR-
100 (Krizhevsky et all 2009) and Imagenet-100 (Deng et all 2009). For CIFAR-100, we
use CIFAR-10 (Krizhevsky et al., [2009) and TinyImagenet (Le & Yang, 2015) as near out-of-
distribution datasets. MNIST (Deng, 2012), Textures(Cimpoi et al., 2014), SVHN (Yuval, 2011}
and Places365(Zhou et al., [2017) serve as far out-of-distribution datasets. For Imagenet-100, SSB-
hard (Vaze et al.| [2021) and NINCO (Bitterwolf et al.l [2023)) are near out-of-distribution data, with
iNaturalist(Van Horn et al., 2018)), Textures(Cimpoi et al., [2014)), and Openlmage-O (Wang et al.,
2022) as far out-of-distribution data. For all evaluations, we only assume hierarchical information
for the in-distribution classes, nothing is assumed for the out-of-distribution data. For the core eval-
uations, we follow the OpenOOD protocol (Zhang et al.|[2023b). As an extra verification, we report
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Table 1: Balanced Hyperbolic Learning across 13 scoring functions evaluated on OpenOOD with
CIFAR-100. We find that scoring functions benefit from relying on hyperbolic embeddings as the
final layer, especially for lowering false positive rates.

FPR@95 | AUROC 1t AUPR 1 n-AUROC 1
Base  Ours Base  Ours Base  Ours Base  Ours
MSP (Hendrycks & Gimpel!2016) 58.24 4946 77.05 8243 06437 7041 7748 178.01

TempScale (Guo et al.[|[2017) 57.54 48.61 78.18 83.02 64.73 71.13 7829 78.25
Odin (Liang et al.||2018) 60.96 49.45 76.63 8296 6249 70.26 78.06 77.94
Gram (Sastry & Oore![2020) 8333 57.78 6231 76.84 43.58 64.64 46.60 62.37
Energy (Liu et al.[[2020b) 5847 5541 77.65 81.74 6430 6183 7818 77.45
KNN (Sun et al.|[[2022) 4795 44.00 8329 8550 71.02 73.71 7845 78.84
DICE (Sun & Li![2022) 64.61 54.67 7435 8096 59.43 6635 7429 77.64
Rank Feat (Song et al.[[2022) 73.03 4991 6898 81.25 51.89 68.51 60.59 64.87
ASH (Djurisic et al.|[2022) 6748 5529 76.88 76.83 57.43 64.89 7520 75.44
SHE (Zhang et al.[[2022b) 77.07 5378 67.09 82.02 49.58 67.21 68.76 78.77
GEN (Liu et al.|[2023) 5466 4870 79.21 8296 6725 7098 79.08 78.18
NNGuide (Park et al.[[2023) 6544 5793 7637 8123 60.56 63.13 7527 77.47
SCALE (Xu et al.[[2023) 57.65 5331 79.68 7920 67.88 66.71 77.66 77.18

the performance on the benchmark datasets defined by Hendrycks and Gimpel (Hendrycks & Gim-
pel, 2016). We are also interested in hierarchical out-of-distribution evaluations. For this, we use
the CIFAR-100 OSR splits from OpenOOD (Zhang et al.,|2023b) for in- and out-of-distribution and
generate hierarchies and balanced hyperbolic embeddings only for the in-distribution classes.

CIFAR100 has a two-level hierarchy with superclasses and classes as defined by the dataset itself.
For CIFAR-100 OSR splits from OpenOOD (Zhang et al., 2023b)), we use only part of the hierarchy
corresponding to the split, leading to imbalanced hierarchies. For ImageNet100, we use the pruned
6-level hierarchy and split from [Linderman et al.|(2023)).

Implementation details. For CIFAR-100 and ImageNet-100, we train a ResNet-34 for 200 epochs.
The batch size is 128 for CIFAR and 256 for ImageNet. We use SGD with 0.9 momentum and a
learning rate of 0.1 with cosine annealing scheduler (Loshchilov & Hutter, 2016), with a weight
decay of 0.0005. We perform 3 independent training runs for each method and report the average
performance. For a fair comparison to other hyperbolic methods, we use the same setting as our
method whenever possible. The hyperbolic prototypes are scaled by a factor 0.95 for a more stable
training, and the resulting logit distances are multiplied by a temperature factor v = 10.

Evaluation metrics. Following OpenOODv1.5 (Zhang et al., [2023b)), we use the AUROC, AUPR
and FPR@95 scores as metrics. We also report near- and far-OOD AUROC averaged over all out-
of-distribution datasets in each group. In the hierarchical evaluations, we report out-of-distribution
metrics on CIFAR-OOD along with the benchmark datasets. We are also interested in measuring
whether out-of-distribution samples conform to the hierarchical structure of the in-distribution data,
without any knowledge of the out-of-distribution classes during training. We report two hierarchical
metrics: hierarchical distance @k (Bertinetto et al.,2020) on in- and out-of-distribution samples and
the hierarchical similarity index (Dengxiong & Kong}|[2023)).

5 EXPERIMENTAL RESULTS

We evaluate our method for OOD detection, benchmarking it against a baseline Euclidean network
across 13 scoring functions on various ID and OOD datasets. Additionally, we ablate the effects
of distortion and balancing, compare it with other hyperbolic approaches, and state-of-the-art OOD
methods. Finally, we provide a brief overview of the hierarchical OOD setting, with additional
analysis and details presented in Appendix [C|

Out-of-distribution comparison overview. In the first experiment, we focus on a thorough com-
parative evaluation of Balanced Hyperbolic Learning compared to the standard in out-of-distribution
detection with a softmax cross-entropy classifier. The purpose of the experiment is to evaluate how
well a wide range of existing out-of-distribution scoring functions work when making the switch
from a standard classification head to our hyperbolic embeddings. For this experiment, we compare
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Table 2: Balanced Hyperbolic Learning across 5 scoring functions evaluated on OpenOOD with
ImageNet100. Our approach is also viable with ImageNet classes as in-distribution data.

FPR@95 | AUROC 1 AUPR 1 n-AUROC 1
Base  Ours Base Ours Base  Ours Base  Ours
MSP Hendrycks & Gimpel|(2016) 49.08 47.98 90.06 91.46 89.10 92.89 8456 86.00

Odin |[Liang et al.|{(2018) 42.13 3979 9131 9342 90.23 9440 8024 85.29
Gram Sastry & Oore|(2020) 8346 63.25 72.18 80.28 7440 88.60 63.63 81.13
Energy Liu et al.|(2020b) 4523 3938 92.03 9349 9136 94.27 8258 87.18
KNN (Sun et al.|(2022) 3713 4574 9358 9299 9433 98.81 81.11 87.86
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Figure 2: Out-of-distribution ablation study. Across scoring functions and evaluation metrics, we
find that hyperbolic embeddings in combination with a distortion-based objective and subhierarchy
balancing all help to get the best out-of-distribution scores. The ID data is CIFAR-100. FPR@95 |
(left) and AUROC 1 (right).

the baseline to ours across all datasets for FPR@95, AUROC, AUPR, and near-AUROC. For the
baseline and ours, we use the exact same backbone and training procedure.

The results of the comparison with OpenOOD for CIFAR-100 are shown in Table [T} Each number
represents the performance averaged across all in- and out-of-distribution datasets. We find that our
hyperbolic embeddings have a positive effect on all 13 scoring functions. Despite the unique nature
of many scoring functions, ranging from density-based to perturbation-based approaches, they all
benefit from relying on hyperbolic embeddings to perform the out-of-distribution detection. Inter-
estingly, some scoring functions which are less effective in standard out-of-distribution detectors
become highly viable functions on top of hyperbolic embeddings. As example, the canonical maxi-
mum softmax probability function yields an improvement from 58.24 to 49.46 in terms of FPR@95.

In Table2] we show the results with ImageNet100 as in-distribution dataset, with the same outcome.
We conclude that Balanced Hyperbolic Learning enriches existing scoring functions without the
need for any more parameters or longer training/testing time.

Effect of distortion and balancing. The strong out-of-distribution performance of our approach
is a result of using hyperbolic embeddings with hierarchical distortion and subhierarchy balancing.
To understand which aspect is most crucial for the final performance, we have performed an abla-
tion study to dissect these aspects. We use five well-known scoring functions. For each, we train
a standard (Euclidean) baseline. We also train a model that uses hyperbolic embeddings without
hierarchies by taking one-hot vectors as class prototypes, scaled down by a factor 0.95 to fit in-
side the Poincaré ball. We also train our distortion-based hierarchical embeddings with and without
balancing. In Figure 2] we compare all four variants for both the FPR@95 and the AUROC met-
rics. Across all scoring functions, we observe a similar trend, where each addition improves the
results. We first notice that simply using one-hot prototypes in hyperbolic space already for 4/5
(FPR@95) and 3/5 (AUROC) scoring functions. Including our distortion-based hierarchical objec-
tive and balancing on top continue to improve the results. We conclude that balancing, distortion,
and hyperbolic embedding all matter for out-of-distribution detection.

Comparison to Hierarchical Embedding Methods. Several hyperbolic embeddings have previ-
ously been proposed for embedding hierarchical knowledge, with Poincaré Embeddings Nickel &
Kielal (2017) and Hyperbolic Entailment Cones (Ganea et al.|(2018) as the most popular algorithms.
In the third experiment, we investigate whether our Balanced Hyperbolic Embeddings are better
for the task at hand than existing options. In Table [3] (left), we show the out-of-distribution per-
formance. We observe that hierarchical hyperbolic embeddings in general are highly effective for
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Table 3: Comparisons to other hyperbolic approaches. OOD evaluations when training on
CIFAR-100 and scoring with the maximum softmax probability. (Left) Poincaré Embeddings
(PE) (Nickel & Kielal 2017) and Hyperbolic Entailment Cones (HEC) (Ganea et al.| 2018) form
strong baselines for out-of-distribution, even with low in-distribution performance. This highlights
the inherent match of hierarchical hyperbolic embeddings and OOD detection. Our approach re-
mains the strong for both in- and out-of-distribution classification. (Right). Our hyperbolic embed-
dings are preferred over Clipped Hyperbolic (CH)|Guo et al.| (2022) classifiers and Poincaré ResNet
(PR) (van Spengler et al., 2023)).* denotes our re-implementation of the baseline, T denotes results
with publicly available pre-trained model.

Embedding  Dist)  ACCt FPR@95] AUROCT AUPRT  Method FPR@95]  AUROCT  AUPRT

PE 0.714 61.2  50.50 8348 7283 CH’ 65.38 73.38 53.93
HEC 0.172 521  53.18 81.92 70.63 PR 87.83 5827 37.73
Ours 0.026 734 49.46 8243 7041 Ours 49.46 82.43 7041

out-of-distribution detection. For FPR@95 for example, we outperform Poincaré Embeddings and
Hyperbolic Entailment Cones, but not by a big margin. We also include the in-distribution clas-
sification accuracy and the hierarchical distortion rates (Sala et al.| 2018)) to get the full picture.
These values reveal that the baseline embeddings yield a much higher hierarchical distortion than
our approach and are actually not well suited for standard classification. In other words, even a
suboptimal hierarchical hyperbolic embedding space is a strong out-of-distribution detector. Our
Balanced Hyperbolic Embeddings obtain strong out-of-distribution evaluations while maintaining
similar in-distribution classification compared to standard softmax cross-entropy training.

Comparison to Hyperbolic Networks. The clipped hyperbolic classifiers of |Guo et al.|(2022) and
the Poincaré ResNet of van Spengler et al.|(2023)) have previously reported out-of-distribution results
on OpenOOD. In the fourth experiment, we investigate how well our approach fares compared to
the state-of-the-art hyperbolic out-of-distribution approaches. Both baselines rely on the maixmum
softmax probability in their work, hence we use the same scoring function for our approach. The
results in Table 3] (right) show that our approach is preferred over both alternatives.

Comparison to SOTA prototype-based meth- Table 4: Comparison with prototype-based
ods. Recent prototype-based approaches like approaches. KNN scoring function (k=300)
CIDER Ming et al| (2023) and PALM [Lu et al| T evaluated with publicly available pre-trained
(2024) use class means as prototypes on a hy- models. * with 128-dim with projection layer
persphere to learn compact embeddings for OOD.  and embeddings

CIDER uses one prototype per class and PALM

uses 6 prototypes per class and use MLE to en- FPR@95 | AUROC+ n-AUROC 1
courage the <I:30ml£)actnk<:,5fi betlwein samples ;’n'd thei CIDER | B %618 "
prototypes. Both methods also have an additional — p,y \r+ 3807 37.76 78.96
contrastive loss to push prototypes far away from gy * 35.83 89.45 78.50

each other. In contrast, we predetermine the hy-
perbolic prototypes based on hierarchy and train with a cross entropy loss based on hyperbolic
distances. For fair comparison, we use the same backbone for all methods, ResNet with a 128-dim
projection head and use 128-dim hyperbolic prototypes. We show in Table @] that our method out-
performs CIDER and PALM on far-OOD datasets and is on-par with PALM on near-OOD datasets.

Hierarchical generalization. To assess how well our method Taple 6: Hierarchical general-
generalizes to unseen data with a closely related hierarchy, we jzation evaluation on hierarhci-
use the five CIFAR-100 OSR splits from OpenOOD [Zhang| ca] relationships with H-Dist and
et al. (2023b), defining a hierarchy only for in-distribution HSJ for CIFAR-OOD split.
classes during training. The evaluation for hierarchical gener-

alization is defined as follows: (1) OOD Detection Granularity: HDist| HSL-b, 1 HSI-by
The model’s ability to classify the closely related open-set split - =< 3183 4043

as OOD is measured on standard OOD benchmark datasets, Ours 232 67.21 71.32
treating the split as near-OOD. (2) Precision in Hierarchical
Relationships: Metrics such as H-Dist Bertinetto et al.| (2020) and HSI |Dengxiong & Kong| (2023)
are used to measure how accurately the model identifies the closest related ID class for open-set
samples. Detailed metric descriptions are in Appendix [C.3]
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Table 5: Hierarchical generalization evaluation on OOD performance. In-distribution data is
from CIFAR-OSR splitZhang et al.| (2023b). All benchmark compares the performance on far-OOD
datasets and AUROC on near-OOD dataset, which includes the OOD split of CIFAR100. CIFAR-
ood-split reports the full near-OOD performance on the OSR eval split. Hierarchical hyperbolic
embeddings perform better on challenging near-OOD splits.

FPR@95] AUROCYT AUPR?T n-AUROC?T
Base Ours Base Ours Base Ours Base Ours

All benchmarks 55.64 44.49 78.84 84.54 57.02 65.80 79.40 81.54
CIFAR-ood-split 59.84 54.16 77.83 82.55 7539 78.02 - -

Fnore Seoee

(a) MSP score: baseline (left) vs ours (right). (b) Energy score: baseline (left) vs ours (right).

Figure 3: MSP and energy score histograms for standard deep networks and the same networks
with our hyperbolic embeddings. We find that hyperbolic embeddings naturally position out-of-
distribution samples farther from in-distribution classes and obtain more easy to discriminate densi-
ties, whether only look at the closest in-distribution class (a) or at all classes (b).

In Table [5] we report results averaged over five splits comparing with baseline Euclidean model
without any hierarchical information. For far-OOD datasets (MNIST, Textures, SVHN, Places365),
we evaluate FPR@95, AUROC, and AUPR. For near-OOD datasets (CIFAR-10, TIN, and CIFAR-
OOD split), we report near-AUROC. Specifically, for the CIFAR-OOD split, we report OOD met-
rics separately to highlight the benefits of incorporating hierarchical information through hyperbolic
prototypes. Table [f]evaluates hierarchical precision with H-Dist, which measures the LCA distance
between the predicted ID class and ground truth, and HSI, which calculates the inverse of the dis-
tance between the LCA and ground truth ancestor (b1), LCA and ground truth class (b2). Higher
HSI values indicate better recognition of unknown classes, showcasing the advantages of hyperbolic
learning with hierarchical information.

From both tables, we conclude that our method performs well in highly challenging settings (Ta-
ble 5 and that hierarchical in-distribution training results in better alignment between in- and out-
of-distribution classes, even without knowledge of OOD classes (Table 6)

Analyzing the hyperbolic embeddings, To better understand the match between our hyperbolic
embeddings and out-of-distribution detection, we have performed additional analyses and visual-
izations. In Figure 3] we show the maximum softmax probability and energy-based histograms for
CIFAR-100 (in-distribution) and SVHN (out-of-distribution). We observe that our approach natu-
rally embeds out-of-distribution samples farther from class prototypes. When using the maximum
softmax probability as scoring function, nearly all out-of-distribution samples obtain a score below
0.5, making for a stronger separation. The same holds when looking at the entire probability dis-
tribution, as done in energy-based scoring. We conclude that our hyperbolic embeddings make it
easier to pinpoint out-of-distribution samples, despite being trained on the same in-distribution data,
with the same backbone, and the same scoring criteria.

In Figure ] we show the distribution of ID and OOD samples in the hyperbolic space. We trained a
ResNet-34 with 2D hyperbolic embeddings and plot the relative densities of ID and OOD samples.
OOD samples mostly have low norm while ID samples are more confident and closer to prototypes
near the boundary. This result is in line with other recent findings from hyperbolic learning, indicat-
ing that the distance to the edge of the Poincaré ball provides a natural measure of uncertainty.

6 RELATED WORK

We briefly introduce recent works that form the motivation for our proposed method and expand on
a complete list of related works in Appendix [D]
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in-: CIFAR-100, out-: CIFAR-10 in-dist in-: CIFAR-100, out-: SVHN in-dist in-: CIFAR-100, out-: DTD in-dist in-: CIFAR-100, out-: Places365 in-dist.
0

Figure 4: Visualizing our hyperbolic embeddings in a 2D Poincaré ball. We plot a relative density
heatmap for ID and OOD samples in the Poincaré ball. The red areas denote higher concentration
of the out-of-distribution samples and blue area denotes in-distribution samples.

Out-of-distribution detection. Recent methods like CIDER (Ming et al. 2022), PALM
2024) show that training with hyperspherical prototypes makes the network robust to out-
of-distribution samples. where OOD samples lie between ID clusters on the hypersphere. Motivated
in a similar way, our method allows OOD samples to additionally lie between ID clusters and origin
by choosing hyperbolic geometry. There is some recent exploration into methods that do not just
rely on binary out-of-distribution detection. introduce hierarchical novelty detec-
tion where they aim to find the closest super class for a novel class. This has also been investigated
in generalized open-set recognition (Geng et all, [2020; [Dengxiong & Kong| [2023), using hierar-
chies and attributes. In our work, beyond conventional OOD detection, we introduce a fine-grained
evaluation approach that leverages hierarchies for improved detection.

Hyperbolic embeddings of hierarchies. The foundational work of Nickel and Kiela
demonstrated that hyperbolic embeddings outperform Euclidean embeddings for hier-
archical data. Extensions include entailment cones for stricter hierarchical relations
2018), combinatorial constructions 2018), and effective applications of the Lorentz
model (Nickel & Kiela, 2018; [Law et al.l 2019).Recent unsupervised metric learning methods
let all, 2021} [Kim et al., [2023) were also effective to discover hierarchical information about data.
We find that existing embedding algorithms assume balanced hierarchies, resulting in suboptimal
embeddings of shallow subhierarchies. We introduce a distortion-based objective with explicit
subhierarchy-balancing to avoid this limitation, which directly benefits out-of-distribution detection.

Hyperbolic learning of visual data. Hyperbolic learning has shown promise for OOD detec-
tion (Guo et all [2022} [van Spengler et al.l 2023). Hyperbolic embeddings have been used for
generalized open-set recognition (Lee et al., [2018a; [Dengxiong & Kong, 2023)) and visual anomaly
detection 2023)), where OOD samples are naturally positioned near the origin. A similar
recent work from Zeng et al. show that learning hierarchies through tree distance
regularization in euclidean space is beneficial for robustness. We take inspiration such works and
strive to balance shallow and wide sub-hierarchies in our hyperbolic embeddings to avoid unwanted
biases to outperforms existing hyperbolic out-of-distribution detection approaches. Our approach is
general in nature and can be used with any out-of-distribution scoring function.

7 CONCLUSIONS

Out-of-distribution detection is a difficult task. This work advocates for hierarchical hyperbolic em-
beddings to perform such a discrimination. We introduce an algorithm for positioning in-distribution
classes as prototypes using their hierarchical relations through a balanced distortion-based objective.
In turn, in-distribution learning becomes a hyperbolic sample-to-prototype optimization. Rather than
adding yet another score, we show how the well-known existing functions effortlessly generalize to
operate with hyperbolic prototypes. Experiments across a wide range of datasets and scoring func-
tions highlights the strong potential of hyperbolic embeddings for out-of-distribution detection. We
furthermore show that our approach leads to hierarchical out-of-distribution generalization without
any knowledge about out-of-distribution classes. We conclude that Balanced Hyperbolic Learning is
a powerful, general-purpose approach to enrich your out-of-distribution detection. Limitations. We
assume that a correct and known hierarchy is available. While it is possible to use LLM-generated
hierarchies|Liu et al.| (2024), verifying the correctness and usability is an exciting direction for future
work.
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A MOTIVATION FOR BALANCED HYPERBOLIC EMBEDDINGS

On bias towards deeper and wider subtrees. To better understand bias in existing methods to-
wards imbalances in hierarchies, we construct an imbalanced hierarchy over CIFAR-100 for 2,3
and 4 levels of granularity. This hierarchy deliberately incorporates subtrees of varying depths ( i.e.
levels of hierarchy) and widths (i.e. number of nodes), allowing us to systematically analyze how dif-
ferent approaches learn embeddings across uneven hierarchies. Specifically, we compare the learned
hierarchies from three methods: Poincaré embeddings (PE) [Nickel & Kielal (2017), Hyperbolic en-
tailment cones (HEC) |Ganea et al.| (2018]), and our proposed balanced hyperbolic embeddings. To
analyze these methods, we plot the pairwise distances between nodes in the hierarchy, as shown in
Figure[5] These pairwise distance plots help visualize the structural relationships within the learned
embeddings, including the granularity and differentiation between hierarchical levels.

The visualizations reveal that existing methods such as PE and HEC exhibit a tendency to over-
prioritize narrower subtrees (those with fewer nodes) compared to wider subtrees, especially as
granularity increases. Moreover, these methods display limited differentiation between deeper lev-
els of hierarchy, as evidenced by lower color gradient between leaf nodes (diagonal) and their cor-
responding parent nodes in the pairwise distance plot. Our proposed approach, on the other hand,
demonstrates a more balanced representation, effectively addressing these biases, providing a more
accurate representation of the hierarchical structure.

Motivation for losses. The distortion loss ensures that all in-distribution classes are distributed in a
uniform hierarchical manner. The norm loss ensures that all nodes at the same hierarchical level are
equally far away from the origin. This is highly preferred for OOD, especially when dealing with
imbalanced trees, as OOD samples tend to be embedded closer to the origin. With our norm loss,
we avoid a bias of OOD samples to shallow subtrees, leading to better ID/OOD discrimination. We
visualize the variance of norms across all hierachical levels for a toy tree example to explain our
point. For a balanced tree with 3 levels and 5 nodes per level, we remove a percentage of nodes
randomly to introduce imbalance. In Figure [6| we plot the variance of norms as a function of the
percentage of nodes removed comparing our approach with distortion loss alone to the combination
of distortion and norm loss. The results clearly demonstrate that without the norm loss, the variance
of the norms increases significantly in imbalanced hierarchies, thereby underscoring the role of norm
loss in achieving balanced hierarchical representations.

B EVALUATING THE QUALITY OF BALANCED HYPERBOLIC EMBEDDINGS

Visualizing learnt hierarchies. Figure [7] depicts the hierarchies learnt for CIFAR-100 and
ImageNet-100 datasets and average norms of each level of the hierarchy. These visualizations con-
sist of three components for each dataset: the structure of the learned hierarchical tree, the pairwise
hyperbolic distance matrix between the graph nodes, and the average norm of samples at each level
of the hierarchy. Overall, the visualizations demonstrate the effectiveness of our approach in learn-
ing fair approximations of hierarchies in hyperbolic space.

Ablation of embedding dimensions. The embedding dimensionality is a hyperparameter that can
be freely set. In Table[7, we show how well the graph distances are preserved using the distortion
and MAP metrics of Sala et al. (2018). We find that our approach is highly stable, with a
small preference for 64 dimensions.

Table 7: Embedding quality as a function of embedding dimensions on CIFAR-100.

Emb. dim. 8 16 32 64 128 256
MAP t 084 084 086 0.8 086 0.86
Distortion |  0.054 0.029 0.028 0.026 0.026 0.026
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Figure 5: Stability in the face of bias. Pairwise distance plots across different levels of granularity
for an imbalanced CIFAR-100 graph. Lighter distances are closer in the embedding space compared
to darker distances. Showing (left) Poincaré embeddings [Nickel & Kielal (2017), (middle) Hyper-
bolic entailment cones [Ganea et al.| (2018)) and our (right) balanced hyperbolic embeddings. Our
method is better at reconstructing the hierarchy, especially for imbalanced deeper hierarchies.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL SETUP FOR EUCLIDEAN BASELINE

For CIFAR-100 and ImageNet-100, we train a ResNet-34 for 200 epochs trained with cross entropy
loss. The batch size is 128 for CIFAR and 256 for ImageNet. We use SGD with 0.9 momentum and
a learning rate of 0.1 with cosine annealing scheduler (Loshchilov & Hutter], 2016), with a weight
decay of 0.0005. We perform 3 independent training runs for each method and report the average
performance.

C.2 EXPERIMENTS (CONTD.)

Norms in ID vs OOD embeddings. We plot the distribution of hyperbolic norms, (Eq.[3) dg(x, 0),
for in-distribution (ID) vs out-of-distribution (OOD) samples to visualize the separation between the
embeddings based on the norm of the samples (Figure[8). As expected, we observe that the norms
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(a) Distortion Loss Only (b) Distortion Loss + Norm Loss

Figure 6: Variance in norms with and without balancing for increasing tree imbalance. Adding norm
loss (b) leads to consistent norms across all levels, compared to distortion loss alone (a).

(a) CIFAR-100

(b) ImageNet-100

Figure 7: Hierarchies learnt in CIFAR-100 @ and ImageNet-100 @ (Left) Tree of the hierarchy,
(Middle) Plot of pairwise hyperbolic distances between each nodes of the graph to illustrate the
learned hierarchy. Lighter distances are closer in the embedding space compared to darker distances.
(Right) Average norm of samples at each level of the hierarchy.

of ID samples are generally high, indicating that these points closer to the boundary of the Poincaré
ball. In contrast, most OOD samples exhibit lower norm, positioning them closer to the origin.

Additional backbones. We show results on other common backbones in OOD literature, WideRes-
Net and DenseNet-BC in FigureEl for MSP and KNN. We find that for all backbones, our balanced
hyperbolic learning outperforms the Euclidean baseline across scoring functions.

Expanded results Imagenet-100. We expand on Table [2| for additional scoring functions below in
Table [8] This confirms the primary observations, further highlighting the versatility of hyperbolic
embeddings under various scoring settings.
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Figure 8: Hyperbolic norms across in-distribution (CIFAR-100) and various out-of-distribution
(OOD) datasets. Most OOD samples can be easily identified based on their distance to the ori-
gin.
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Figure 9: FPRO5 for the Euclidean baseline and ours with different backbones on CIFAR-100, with
MSP (left) and KNN (right) as scoring functions.

Dataset wise results OOD. We expand on the dataset-specific results corresponding to our main
table (Table[I) for out-of-distribution (OOD) evaluation when the model is trained on is CIFAR-100
as in-distrubution data (see Table [9). To outline, we employed a ResNet-34 trained on CIFAR-
100 for 200 epochs. In the baseline approach, the model is trained with a cross-entropy loss. In our
proposed method, we project the features of the last layer into a Poincaré ball and compute distances
to prototypes derived from Balanced Hyperbolic Embedding training, as outlined in Section 3.2 of
the main text, and trained using cross-entropy loss. The far-OOD evaluation datasets are MNIST,
SVHN, Textures and Places 365.

C.3 ABLATIONS

AUPR and AUROC. Continuation of Figure 2] where we report the ablations of euclidean and
hyperbolic approaches for OOD on FPR@95 and AUROC, in Figure [10] we report the AUPR and
near-AUROC. These metrics follow the same trends observed in earlier reported metrics, demon-
strating that balanced hierarchical embeddings consistently lead to the best OOD performance.

100 100

0 Standard (Eucl.) = Hierarchical (hyp.)
B Non-hierarchical (hyp) ~ EEEN Balanced Hierarchical (hyp.)

= Standard (Eucl.)
B Non-hierarchical (hyp.)

[ Hierarchical (hyp.)
BN Balanced Hierarchical (hyp.)

75

50

n-AUROC

Energy Odin Energy

Figure 10: Out-of-distribution ablation study for AUPR 7(left) and AUROC 1 (right).

Curvature of Hyperbolic Space. To investigate the impact of curcature on OOD detection per-
formance, conduct an ablation study by varying the curvature parameter c for network trained with
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Table 8: Balanced Hyperbolic Learning 8 functions evaluated on OpenOOD with ImageNet100,
extension of Table 2]

FPR@95 | AUROC 1 AUPR 1 n-AUROC 1
Base  Ours Base Ours Base  Ours Base Ours
DICE Sun & Li (2022} 3851 3731 88.10 89.10 7654 7933 80.12 80.19

RankFeat Song etal.[(2022) 98.72 74.82 36.12 73.13 4589 58.17 50.71 57.84
' 3244 27.84 9041 91.02 7564 76.87 79.84 78.12
46.18 37.54 86.80 89.31 70.23 75.64 7456 77.26
GE L1u et al.[(2 3710 3725 8992 8996 7621 7715 81.04 80.24

NNGuide [Park et al.|(2023 31.84 27.21 90.12 91.24 7456 76.38 8234 83.11
SCALE [Xu et al. 2631 25.69 88.14 86.21 7589 7344 80.81 79.83

Table 9: Dataset-wise results on far-OOD datasets. The model is trained on CIFAR-100 and
evaluated on four far-OOD datasets: MNIST, SVHN, Textures and Places 365. shows FPR |
performance and@ shows AUROC 1 performance across the datasets.

(a) FPRY5 |
MNIST SVHN Textures Places 365 Average

Base Ours Base Ours Base Ours Base Ours Base Ours
MSP 64.70£1.50 56.91+1.59 46.0+0.08 27.65+0.20 61.25+0.06 53.69 +0.25 60.99 +0.87 59.59 +0.22 58.24 + 1.08 49.46 + 0.23
TempScale 64.38 +1.67 56.52 +1.64 44.02+0.05 2543 £0.21 60.58 £0.08 53.11+0.24 61.21+0.92 59.37+0.17 57.55+1.21 48.61 +0.24
Odin 63.37+1.72 55.03+1.93 56.52+0.14 28.64+1.16 60.17 +£0.85 52.37+0.19 63.76+0.92 61.78 +0.59 60.96 + 1.36 49.45 + 0.34
Gram 85.82+2.36 55.30 +4.19 62.18 £4.08 22.70 +1.18 89.61 +3.46 68.48 +3.48 95.73+1.63 84.61+0.48 83.33+0.28 57.77 +0.31
Energy 66.95+1.79 70.21 £2.43 40.66 £0.03 29.93 £3.36 60.83 £0.08 52.49+5.27 6543+ 1.25 68.99+3.47 5847+ 1.34 55.41+1.30
KNN 52.39+£2.20 51.06 +0.60 30.80 +£2.00 20.34 +2.55 53.29 +1.50 46.67 +3.58 60.21 +4.13 57.93+1.05 49.17 +0.68 44.00 + 0.10
DICE 67.36 £5.01 67.51+£3.06 40.91 £8.97 28.34 +£5.58 63.88 +£2.83 56.94+0.98 65.34+2.50 65.89+0.67 59.37+0.57 54.67 +0.24
Rank Feat 73.62+1.01 53.26 +1.20 63.64 +5.86 37.36 +1.54 68.94+5.02 37.12+4.09 8591 +230 71.89+0.71 73.03+1.85 49.91+0.33
ASH 79.13+£0.93 61.82+0.17 49.66 +2.08 34.45+2.35 64.57 £3.34 5845+1.29 76.56+0.19 66.42+3.95 67.48+0.73 55.29 + 0.04
SHE 87.45+2.89 64.67 +0.64 58.07 +£2.03 34.34 +£3.21 80.38 +0.69 48.47 +£3.66 82.38+0.37 67.65+0.55 77.07+0.43 53.78 + 0.25
GEN 60.89 + 1.81 56.78 £0.15 40.18 +0.04 24.96 +1.37 58.72+0.36 53.53 +0.28 58.86 +0.74 59.53 +£0.30 54.66 + 1.37 48.70 + 0.35

NNGuide 76.71 £0.83 72.45£1.30 52.93+£0.14 26.94+0.03 68.09+0.39 59.02+1.56 64.02+2.34 73.34+1.79 65.44+0.58 57.94 +1.02
SCALE 66.60 + 1.87 60.53 £0.23 40.89£0.07 32.44£0.34 56.59+1.40 5599 +1.20 66.53+0.67 64.50 £0.03 57.65+1.07 53.36 +0.15

(b) AUROC 1
MNIST SVHN Textures Places 365 Average

Base Ours Base Ours Base Ours Base Ours Base Ours
MSP 69.9+£0.67 7542£0.21 84.79+0.01 93.02+0.23 76.60£0.19 81.78+0.04 76.91£0.09 78.49+0.18 77.05+0.48 82.43£0.26
TempScale 70.98 +0.82 76.77 £1.22 86.31+0.02 94.31+0.17 77.86+0.21 82.24+0.02 77.58+0.08 78.80+0.13 78.18+0.59 83.02+0.16
Odin 72.84+1.05 7821£0.29 77.77+0.29 92.16+0.43 78.77+0.19 8297+0.26 77.15+0.15 78.52+0.28 76.63+0.83 82.97 +1.24
Gram 5429+1.33 70.68+1.56 81.76+0.58 95.19£0.53 69.95+3.83 83.05+0.79 4322+1.76 58.42+0.23 62.31£0.36 76.84+1.15
Energy 71.01 £1.32 77.07£0.10 87.51+0.07 88.58+0.38 78.79+0.14 8221+0.97 76.21+023 78.85+0.08 78.38+0.99 81.74 +0.50
KNN 76.66 £4.78 80.26 £1.93 91.85+0.27 9591+£0.08 83.33+£2.33 86.00+0.36 78.53+024 79.79+0.24 82.59+0.28 85.51£0.17
DICE 7244 £0.25 72.17+0.34 87.27+1.81 93.06+0.19 7727 +1.66 81.27+2.40 7488+121 77.33+1.68 77.96+1.12 80.96 +1.73
Rank Feat 72.75+0.11 80.15+0.68 74.63 +4.55 85.35+0.64 74.07 £5.37 90.58 £0.64 5448 +10.24 68.93+1.17 6898+ 1.13 81.25+0.35
ASH 68.18 £0.83 73.46£0.17 86.47 £0.16 85.89+0.02 80.08+0.19 7576+2.34 72.77+0.02 7221+1.22 76.88+0.55 76.83+0.51
SHE 55.74+£287 76.58+1.61 80.85+0.92 90.32+0.58 67.83+0.21 8513+0.65 63.95+1.27 78.53+0.33 67.09+226 82.02=0.60
GEN 7278 £0.68 76.73+0.01 86.61 +£0.01 94.25+1.08 78.62+022 82.18+0.11 78.82+0.08 78.65+0.25 79.21 £0.49 82.95+0.40

NNGuide 63.97+1.03 76.08+0.20 85.76+0.70 88.45+0.14 77.57+0.70 81.98+1.42 7819+1.05 78.39+£0.58 76.37+0.80 81.23 +0.99
SCALE 71.86+1.21 76.66 £1.67 88.37+0.02 86.89+0.33 81.82+0.03 7838+134 76.65+0.15 74.85+0.43 79.67+0.78 79.20 +0.79

(c) AUPR T
MNIST SVHN Textures Places 365 Average

Base Ours Base Ours Base Ours Base Ours Base Ours
MSP 40.95+1.43 48.15+5.58 74.69+0.01 87.07+0.72 8531+0.03 88.56+0.03 56.54+0.51 57.84+0.11 64.37+1.24 70.41+0.39
TempScale 41.43+1.38 48.66+0.77 76.52+0.00 88.85+0.56 86.01+0.04 88.84+0.03 56.79+0.80 58.17 £0.10 65.18+1.39 71.13 +0.40
Odin 42.84+1.92 49.78+1.19 6549027 85.67+231 86.44+0.06 89.25+0.10 55.18 £1.49 56.34+0.21 62.48+1.56 70.26 +0.91
Gram 18.02+5.62 50.07 £4.59 63.57+1.94 89.25+3.07 74.08+2.82 86.81+0.33 18.67+0.94 32.45+1.23 43.58+2.62 64.64+5.13
Energy 38.92£2.61 29.80+19.85 7824 +0.11 79.45+11.83 86.37+0.02 8582+1.53 53.65+2.42 4884179 6430+1.14 61.83+5.06
KNN 55.69£1.17 54.07+1.09 8545+0.77 91.23+0.36 89.43+1.10 91.04£0.20 58.96 £2.49 57.87+1.65 71.02+1.55 73.71+1.44
DICE 3043 +3.31 38.46+4.77 73.92+0.32 86.06+2.24 83.59+0.07 87.73+£1.45 49.80+3.44 53.16£3.20 59.43+236 66.35+3.74
Rank Feat  35.10+5.63 54.97 £6.26 60.12+2.24 79.30 £8.69 82.53+20.71 93.97 £0.03 29.80+5.08 45.81£7.52 51.89+10.90 68.51 +2.98
ASH 26.09+6.08 45.79+4.61 72.71+0.61 80.57 £0.08 86.46+0.02 84.95+0.27 44.44+0.27 50.48 £5.28 57.43+2.46 64.89+0.86
SHE 18.82£5.19 37.96 +£6.93 66.28 +2.02 88.18+2.45 77.30+0.15 87.49+0.46 3592+5.17 5520+1.35 49.58+4.06 67.21+5.66
GEN 45.08+9.90 48.41+4.96 78.32+0.00 88.67+2.99 86.67+0.07 88.79+0.06 58.94+1.03 58.03+0.22 67.25+833 70.98 +0.43

NNGuide 30.25+11.94 32.74+5.59 70.74 £8.50 83.17+3.50 84.47+0.08 87.13£1.25 56.77+2.19 49.49+3.17 60.56+3.60 63.13 £4.77
SCALE 39.47+7.32 46.26+2.56 78.48+0.06 81.35+1.26 8828+0.03 86.69+£0.76 53.13+1.66 52.54+0.15 67.88+4.11 66.71 £1.19

hyperbolic embeddings on CIFAR-100. We evaluate the OOD performance across the benchmark
datasets: CIFAR-10, TinyImageNet as near-OOD and MNIST, SVHN, Places-365 and Textures as
far-OOD datasets. The results are in Table [I0]

From the table we observe that smaller curvatures (e.g. ¢ = 0.5) achieve relatively good ID perfor-
mance but do not excel in OOD detection. Larger curvatures lead to noticeable degradation in both
ID and OOD performance. Our method, with ¢ = 1 achieves the best results across all metrics.
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Table 10: Ablation of hyperbolic curvature for CIFAR-100, with reported OOD performance
using MSP scoring. We show that c=1 is beneficial for this dataset and generalize it to other datasets.

curvature IDacc FPR95 AUROC AUPR n-AUROC

0.5 72.36  73.40 76.91 55.7 75.24
0.75 7191  74.99 76.99 54.47 74.41
1.5 69.81  82.31 71.00 48.51 71.67
2.0 68.89  85.29 69.79 46.49 70.62

Ours (c=1) 73.20  49.46 82.43 70.41 78.01

C.4 ABOUT HIERARCHICAL GENERALIZATION

The setting for hierarchical generalization aims to evaluate how well our proposed model can handle
OOD samples that belong to a closely related hierarchy. To this end, we adopt the CIFAR-100 OSR
50/50 split setting from OpenOOD |f|’|Zhang et al.| (2023b) and only use hierarchy information for
the training data. For the evaluation of hierarchical metrics in Table[6] we use the whole hierarchy
to measure the Lowest Common Ancestor (LCA) distances during evaluation. Below we give a
detailed description of the hierarchical metrics used.

Hierarchical Distance (H-Dist). The H-Dist metric, as defined by Bertinetto et al.|(2020), calcu-
lates the mean height of the LCA between the ground truth and the predicted class when the input
is misclassified. Here, we adapt this metric to consider H-dist as the mean height between LCA and
the predicted ID class for an OOD sample.

Hierarchical Similarity Index (HSI). We adapt the HSI metric from Dengxiong & Kong| (2023)
originally proposed for generalized open-set recognition(G-OSR), to fit our hierarchical OOD de-
tection setup. While G-OSR focuses on identifying the closest ancestor for unseen samples from
ancestor nodes, our approach instead evaluates how closely the predicted ID class aligns with the
true hierarchy of the OOD samples. The metrics are summarized as follows:

1 1
HSI-by = — Y~ (13)
m= d(Yg1> Yicar)
1 m 1
HSL-by = — (14)
m ; l”(d(yémv Yleaz) +1)e

The hierarchical similarity index is defined by the Lowest Common Ancestor (LCA) distance be-
tween ground truth and the direct ances- tor of the predicted class. HSI-b; is the inverse of distance
between direct ground truth ancestor and the lowest common ancestor and HSI-b5 is the inverse of
the distance between ground truth class and lowest common ancestor. A lower distance represents
better result.

D RELATED WORK

Out-of-distribution Detection. Conventional out-of-distribution detection is viewed as a binary
task; a sample is either from the same distribution as the one used during training or not. It was
addressed early on by Hendrycks & Gimpel|(2016)) which proposed a score based on softmax output
to detect such samples. Since then, numerous methods have been proposed to address this problem,
aiming to utilize confidence and score-based (Hendrycks & Gimpell, 2016} [Lee et all,[2018b; [Liang
et al, [2018; [Liu et al., [2020D), distance-based (Lee et al., 2018b; [Sehwag et al.| Tao et al.,
20225 |Sun et al., [2022) or generative-based (Ryu et al.,[2018};|[Kong & Ramanan,[2021)) methods to
reliably classify whether a sample is out-of-distribution or not. Training-time methods additionally
train with outlier data or have additional training strategies to make the network robust to outliers.

"https://github.com/Jingkang50/OpenOOD/tree/main/configs/datasets/osr_cifar50
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Methods that use non-overlapping outlier-data (Liu et al.l [2020b} [Yu & Aizawd, 2019} [Yang et al.}
2021}, [Zhang et al| [2023a) and that generate outlier-data (Kong & Ramanan), [2021) fine-tune the

model on the outlier data which makes the model robust to other unseen outliers. Training-time
methods like LogitNorm [2022) and Decoupled Max Logit 2023) re-
formulate logits and derive new training losses. Similarly G-ODIN(Hsu et al., 2020) decompose
confidence scoring and modify input pre-processing. Sehwag et al.| (2021)) and|Winkens et al.|(2020)
train with contrastive losses for better out-of-distribution generalization.

Hyperbolic learning of visual data. Hyperbolic learning is quickly gaining traction in deep learn-
ing, with applications and new possibilities on various problems, as highlighted in recent sur-
veys (Mettes et al., 2023} [Peng et al., 2021). Hyperbolic learning has shown to be beneficial for
few-shot learning (Cui et al., [2023; |Gao et al, 2021}, [Khrulkov et al, 2020}; [Ma et al., 2022} [Zhang
et al.| 2022a)), hierarchical recognition (Ghadimi Atigh et al.l 2021; [Dhall et al., 2020; [Liu et al.,
2020a} [Yu et al. [2022)), retrieval (Desai et al., [2023}, [Ermolov et al., 2022; [Long et al., [2020), deal-
ing with uncertainty (Ghadimi Atigh et al., 2022; [Franco et al.,[2023; [Suris et al., 2021}, generative
learning on scarce data (Bose et al., 2020; Hsu et al.l 2021} |Li et al., [2022; Mathieu et all, 2019}

Nagano et al.}[2019), and more.
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