
Under review as a conference paper at ICLR 2023

A UNIFIED OPTIMIZATION FRAMEWORK OF ANN-
SNN CONVERSION: TOWARDS OPTIMAL MAPPING
FROM ACTIVATION VALUES TO FIRING RATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) have attracted great attention as a primary can-
didate for running large-scale deep artificial neural networks (ANNs) in real-time
due to their distinctive properties of energy-efficient and event-driven fast com-
putation. Training an SNN directly from scratch is usually difficult because of
the discreteness of spikes. Converting an ANN to an SNN, i.e., ANN-SNN con-
version, is an alternative method to obtain deep SNNs. The performance of the
converted SNN is determined by both the ANN performance and the conversion
error. The existing ANN-SNN conversion methods usually redesign the ANN with
a new activation function instead of the regular ReLU, train the tailored ANN and
convert it to an SNN. The performance loss between the regular ANN with ReLU
and the tailored ANN has never been considered, which will be inherited to the
converted SNN. In this work, we formulate the ANN-SNN conversion as a unified
optimization problem which considers the performance loss between the regu-
lar ANN and the tailored ANN, as well as the conversion error simultaneously.
Following the unified optimization framework, we propose the SlipReLU activa-
tion function to replace the regular ReLU activation function in the tailored ANN.
The SlipReLU is a weighted sum of the threhold-ReLU and the step function,
which improves the performance of either as an activation function alone. The
SlipReLU method covers a family of activation functions mapping from activa-
tion values in source ANNs to firing rates in target SNNs; most of the state-of-
the-art optimal ANN-SNN conversion methods are special cases of our proposed
SlipReLU method. We demonstrate through two theorems that the expected con-
version error between SNNs and ANNs can theoretically be zero on a range of
shift values δ ∈ [− 1

2 ,
1
2] rather than a fixed shift term 1

2 , enabling us to achieve
converted SNNs with high accuracy and ultra-low latency. We evaluate our pro-
posed SlipReLU method on CIFAR-10/100 and Tiny-ImageNet datasets, and the
results show that the SlipReLU outperforms the state-of-the-art ANN-SNN con-
version methods and directly trained SNNs in both accuracy and latency. To our
knowledge, this is the first work to explore high-performance ANN-SNN conver-
sion method considering the ANN performance and the conversion error simulta-
neously, with ultra-low latency, especially for 1 time-step (T = 1).

1 INTRODUCTION

Spiking neural networks (SNNs) are biologically-inspired neural networks based on biological plau-
sible spiking neuron models to process real-time signals (Hodgkin & Huxley, 1952; Izhikevich,
2003). With the significant advantages of low power consumption and fast inference on neuro-
morphic hardware (Roy et al., 2019), SNNs are therefore becoming a primary candidate to run
large-scale deep artificial neural networks (ANNs) in real-time. The most commonly used neuron
model in SNNs is the Integrate-and-Fire (IF) neuron model (Liu & Wang, 2001). Each neuron in the
SNNs emits a spike only when its accumulated membrane potential exceeds the threshold voltage,
otherwise, it stays inactive in the current time-step. This setting makes SNNs more similar to bio-
logical neural networks. Compared to ANNs, event-driven SNNs have binarized/spiking activation
values, resulting in low energy consumption when implemented on specialized neuromorphic hard-
ware. Another significant property of SNNs is the pseudo-simultaneity of their inputs and outputs

1

Under review as a conference paper at ICLR 2023

for making inferences in a spatial-temporal paradigm. Compared to conventional ANNs that present
a whole input vector at once, and process layer-by-layer to produce one output value, the forwarding
pass in SNN can efficiently process streaming time-varying inputs.

Generally, there are two distinct routes to obtain an SNN: (1) training an SNN from scratch (Wu
et al., 2018; Neftci et al., 2019; Zenke & Vogels, 2021), and (2) ANN-SNN conversion (Cao et al.,
2015; Diehl et al., 2015; Deng & Gu, 2021), i.e., converting ANNs to SNNs. Training from scratch
uses a gradient-based supervised optimization method in back-propagation, pretending that SNNs
are specialized ANNs. Due to the non-differentiability of the binary activation function in SNNs,
surrogate gradients are usually used (Neftci et al., 2019), but it essentially optimizes different net-
works in forward and backward passes. This method can only train SNNs on small- and moderate-
size datasets (Li et al., 2021). ANN-SNN conversion is an effective method to obtain deep SNNs,
with comparable performance as ANNs on large-scale datasets. There are two main types of ANN-
SNN conversion mechanism: (1) one-step conversion, which converts the pre-trained ANN to SNN
without changing the architecture of the pre-trained ANN, for example Diehl et al. (2015); Li et al.
(2021), and (2) two-step conversion, which involves redesigning the ANN, training it and converting
it to SNN, for example Cao et al. (2015); Deng & Gu (2021); Bu et al. (2021).

In this work, we investigate the two-step ANN-SNN conversion methods, where we usually redesign
the ANN by replacing the regular ReLU activation function to a new activation function, train the
tailored ANN and convert it to an SNN. A tailored ANN that deviates too much from the regular
ANN will degrade its performance, resulting in a performance loss which will be inherited to the
converted SNN. However, the performance degradation between the regular ANN and the tailored
ANN has never been considered in the existing ANN-SNN conversion studies. To achieve high-
accuracy and low-latency SNNs (e.g., 1 or 2 time-steps), we are the first to consider the performance
loss between the regular ANN with ReLU and the tailored ANN, as well as the conversion error
simultaneously. Our main contributions are summarized as follows:
(1) We formulate the ANN-SNN conversion as a unified optimization problem which considers the
ANN performance as well as the conversion error simultaneously.
(2) We propose to use the SlipReLU activation function in the tailored ANN, in order to minimize
the layer-wise conversion error and keep tailored ANN performance as good as the regular ANN.
(3) The SlipReLU method covers a family of activation functions mapping from activation values in
source ANNs to firing rates in target SNNs; most of the state-of-the-art optimal ANN-SNN conver-
sion methods are special cases of our proposed SlipReLU method.
(4) We demonstrate through two theorems that the expected conversion error between SNNs and
ANNs can theoretically be zero on a range of shift values δ ∈ [− 1

2 ,
1
2] rather than a fixed shift 1

2 .
Experiment results also demonstrate the effectiveness of the proposed SlipReLU method.

2 PRELIMINARIES

Given a classification problem on an image dataset (x, y) ∈ D, where y ∈ {1, · · · , C} is the
true class label for image x ∈ Rm, we train a neural network f : x → f(x) in the form of an
ANN/SNN, by optimizing the standard cross-entropy (CE) loss, LCE(y,p) = −

∑C
j=1 yc log(pc),

where yc and pc are the c-th elements of the label y and the network prediction p = f(x). Since the
infrastructures of the source ANN and target SNN are the same, we use the same f notation when it
is unambiguous. And fANN or fSNN, otherwise. For the notations, refer to Table S1.

ANN Neuron Model. In conventional ANN, a whole input vector is presented to the network at
one time, and processed layer-by-layer through continuous activation to produce one output value.
In ANNs, the forwarding computation of analog neurons is formulated as

a(ℓ) = FANN(z
(ℓ)) = FANN(W

(ℓ)a(ℓ−1)) , (1)

where z(ℓ) and a(ℓ) are the pre-activation and post-activation vectors of the ℓ-th layer considered,
W(ℓ) denotes the weight matrix, and FANN(·) is the activation function of the ANN.

SNN Neuron Model. Compared with ANN, SNN employs binary activation (i.e. spikes) in each
layer. To compensate the weak representation capacity of the binary activation, the time dimension
(or the latency) is introduced to SNN, where the inputs of the forwarding pass in SNN are presented
as streams of events, by repeating the forwarding pass T time-steps to get the final result.

2

Under review as a conference paper at ICLR 2023

Here we consider the Integrate-and-Fire (IF) neuron model (Cao et al., 2015; Bu et al., 2021; Deng
& Gu, 2021) for SNNs. We derive the forward propagation of PSP through layers in the target
SNN which is equivalent to the forwarding computation of the analog neurons in the source ANN.
Suppose at time-step t the IF neuron in ℓ-th layer receive its binary input x(ℓ−1)(t) from the previous
layer, the IF neuron will temporarily update its membrane potential by

u(ℓ)(t) = v(ℓ)(t− 1) +W(ℓ)x(ℓ−1)(t) , (2)

where v(ℓ)(t) denotes the membrane potential at time step t, u(ℓ)(t) denotes the temporary inter-
mediate variable that would be used to determine the update from v(ℓ)(t − 1) to v(ℓ)(t). For each
IF neuron, if the temporary intermediate potential u(ℓ)

i (t) exceeds the membrane threshold V
(ℓ)
th , it

would produce a spike output s(ℓ)i (t). Otherwise, it would release no spikes s(ℓ)i (t) = 0.

s
(ℓ)
i (t) = H(u

(ℓ)
i (t)− V

(ℓ)
th) =

{
1, if u(ℓ)

i (t) ⩾ V
(ℓ)
th ,

0, otherwise.
(3)

The vector s(ℓ)(t) = {s(ℓ)i (t)} collects spikes of all neurons of ℓ-th layer at time t. Note that V (ℓ)
th

can be different in each layer. We update the membrane potential by the reset-by-subtraction mech-
anism (Rueckauer et al., 2017; Han et al., 2020), which means the temporary membrane potential
u
(ℓ)
i (t) is subtracted by the threshold value V

(ℓ)
th if the neuron fires, s(ℓ)i (t) = 1. That is

v(ℓ)(t) = u(ℓ)(t)− s(ℓ)(t)V
(ℓ)
th . (4)

Similar to Deng & Gu (2021); Bu et al. (2021), if the neuron in the current ℓ layer fires a spike, then
it will release an unweighted PSP (postsynaptic potential) x(ℓ)(t) as input to the next layer,

x(ℓ)(t) = s(ℓ)(t)V
(ℓ)
th .

As for the input to the first layer and the output of the last layer of the SNN, we do not employ any
spiking mechanism as in Li et al. (2021). We directly encode the static image to temporal dynamic
spikes as input to the first layer, which can prevent the undesired information loss introduced by the
Poisson encoding. For the last layer output, we only integrate the pre-synaptic input and do not fire
any spikes.

3 UNIFIED OPTIMIZATION FRAMEWORK OF ANN-SNN CONVERSION

In this section, we formulate the ANN-SNN conversion problem as an optimization problem deter-
mined by two terms: one is used to make the tailored ANN not far away from the regular ANN with
ReLU, the other one is used to control the ANN-SNN conversion error.

Starting from the first ANN-SNN conversion work (Cao et al., 2015), all the previous ANN-SNN
conversion methods (Cao et al., 2015; Diehl et al., 2015; Deng & Gu, 2021) have focused on opti-
mizing the ANN-SNN conversion error. The performance of the converted SNN is determined by
both the ANN performance and the conversion error. However, no research work has considered
the ANN performance in the two-step ANN-SNN conversions, which is considered in our unified
optimization framework. In the two-step conversion method, we need to redesign the new activa-
tion function of the regular ANN to get a tailored ANN, train the tailored ANN and convert it to
SNN. By considering the performance loss between the tailored ANN and the regular ANN, the
new activation function should not deviate too much from the regular ReLU.

3.1 ANN-SNN CONVERSION IN A UNIFIED OPTIMIZATION FRAMEWORK

Definition 1 (Unified Optimization Framework of ANN-SNN Conversion). The ANN-SNN conver-
sion can be formulated into a unified optimization framework with an implicit variable, T ,

min
F,T

{wEz (|f(z;W,ReLU)− f(z;W, T,FANN)|) (5)

+ (1− w)Ez (|f(z;W,FANN)− f(z;W, T,FSNN)|)} .
where w ∈ [0, 1]. Specially, if FANN is designed by considering the deviation from the regular
ReLU, the layer-wise conversion error becomes

Ez

(∣∣∣Err(ℓ)∣∣∣) = Ez

(∣∣∣FANN(a
(ℓ−1);W(ℓ))−FSNN(x̄

(ℓ−1);W(ℓ), T)
∣∣∣) . (6)

3

Under review as a conference paper at ICLR 2023

Here f denotes the same neural network infrastructures shared by the source ANN and tar-
get SNN (see description in Sect. 2), f(z;W,ReLU) denotes the regular ANN with ReLU,
f(z;W, T,FANN) is the tailored ANN with activation function FANN, f(z;W, T,FSNN) is the
converted SNN, z is the input to the neural network, W = {W(ℓ)} are the weight matrix trained
from the tailored ANN and copied to the target SNN, F = FANN ∪ FSNN is the space of activation
functions of the tailored ANNs and the target SNNs, and the latency T (or time-steps) is seen as an
implicit variable inherently inherited from the target SNNs. Moreover, the latency also allows the
flexibility of adjusting T to balance between the latency and the accuracy of the converted SNN for
different applications.
Remark 1. (A) An effective activation function FANN of the tailored ANN should address the per-
formance lose caused by the deviation from the regular ReLU. (B) When FANN is designed by
considering the deviation from the regular ReLU, the layer-wise error Eq. (6) would come from any
mismatch of the three parts: (1) different activation values from source ANNs and target SNNs, i.e.
a(ℓ) and x̄(ℓ), (2) different activation functions, i.e. FANN(·) and FSNN(·), and (3) the latency vari-
able T which implicitly affects both the activation values and activation functions. (C) Whenever
the conversion error Ez(|Err(ℓ)|) achieves its minimum, it is called an “optimal” ANN-SNN conver-

sion. For example, Deng & Gu (2021) achieves optimal minimum error of (V
(ℓ)
th)2

4T , whereas Bu et al.
(2021) can theoretically achieve optimal minimum error of 0.

3.2 ANN-SNN CONVERSION ERROR ANALYSIS

3.2.1 FIRING RATES IN SNNS AND ACTIVATION VALUES IN ANNS

To make the layer-wise error as small as possible, ideally, the converted SNN is expected to have
approximately the same activation values as the source ANN for each layer, i.e.,

a(ℓ) ≈ x̄(ℓ) =
1

T

T∑
t=1

x(ℓ)(t) =
1

T

T∑
t=1

s(ℓ)(t)V
(ℓ)
th = V

(ℓ)
th s̄(ℓ) . (7)

Here a(ℓ) denotes activation value of the ANN, and x̄(ℓ) is activation value of the SNN which is
actually the average postsynaptic potential (i.e. average PSP) released by the ℓ-th layer as input to
the next layer. Note s̄(ℓ) is the firing rate over latency T of ℓ-th layer. Note that the thresholding V

(ℓ)
th

in SNN can be different from layer to layer, we make it a trainable parameter that can be learned
in the source ANN and copied to the target SNN. Any mismatch between the activation values a(ℓ)

and x̄(ℓ) can lead to conversion error.

3.2.2 ACTIVATION FUNCTION IN SNNS

We use the derivation in Deng & Gu (2021); Li et al. (2021) to deduce the SNN activation function
FSNN which gives the relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of
SNN. By combining Eq. (2) and Eq. (4) and summing up the time-step from 1 to T , then we get

v(ℓ)(T)− v(ℓ)(0) = W(ℓ)
T∑

t=1

x(ℓ−1)(t)−
T∑

t=1

s(ℓ)(t)V
(ℓ)
th .

The accumulated spikes are m =
∑T

t=1 s
(ℓ)(t) = {mi} where each mi ∈ {0, 1, 2, · · · , T} denotes

the total number of spikes of neuron i. Further assume v(ℓ)(T) ∈ [0,V
(ℓ)
th). Therefore, we have

TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th

V
(ℓ)
th

+ δ < m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ with shift δ =
v(ℓ)(0)

V
(ℓ)
th

.

Then, we use the clip and floor functions to determine m,

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, T

)
.

We provide the detailed analysis of the activation function of SNNs in Appendix A. Here the
clip (x, a, b) function sets the lower bound a and upper bound b. Floor function ⌊x⌋ gives the

4

Under review as a conference paper at ICLR 2023

greatest integer that is less than or equal to x. With x̄(ℓ) = V
(ℓ)
th s̄(ℓ) = mV

(ℓ)
th /T , finally, the SNN

activation function gives the relationship between activation values x̄(ℓ−1) and x̄(ℓ) as follows,

x̄(ℓ) = FSNN

(
W(ℓ)x̄(ℓ−1)

)
= V

(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
. (8)

The SNN activation functionFSNN(·) is a step function in interval [0, V (ℓ)
th] with a step size V

(ℓ)
th

T (see
the green curve in Fig. 1). Since the SNN output is discrete while the ANN output is continuous,
there actually would be an intrinsic difference between a(ℓ) and x̄(ℓ) as shown in Fig. 1.

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

V
(ℓ)
th
2T

θ(ℓ)

T

A
ct

iv
at

io
n

va
lu

e

Pre-activation, δ =
V

(ℓ)
th
2T

(A)

SNN Step Function
Shift-threshold ReLU

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

θ(ℓ)

T

Pre-activation, N=6, T=3, δ = 0

(B1)

SNN Step Function
QCFS Activation

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

θ(ℓ)

T

Pre-activation, N=3, T=6, δ = 0.5

(B2)

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

θ(ℓ)

T

A
ct

iv
at

io
n

va
lu

e

Pre-activation, N=T=3, shift-0

(C1)

SNN Step Function
SlipReLU Activation

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

θ(ℓ)

T

Pre-activation, N=T=3, shift-I

(C2)

0 2V
(ℓ)
th
T

2θ(ℓ)

T

V
(ℓ)
th

θ(ℓ)

V
(ℓ)
th
T

θ(ℓ)

T

Pre-activation, N=3, T=6, shift-0

(C3)

Figure 1: Activation functions of source ANNs, i.e., the shift-threshold-ReLU (blue curve) (Deng &
Gu, 2021) in (A), quantization clip-floor-shift (QCFS) activation (orange curve) (Bu et al., 2021) in
(B1)-(B2), and our proposed SlipReLU (red curve) in (C1)-(C3). The activation functions of target
SNNs is the step function (green curve). The error between the activation function (of ANNs) and
the step function (of SNNs) is obtained by summing up of all the shaded area together, which is the
ANN-SNN conversion error.

4 PROPOSED SLIPRELU: OPTIMAL ANN-SNN CONVERSION

4.1 THE SLIPRELU ACTIVATION FUNCTION

In this section, by following our unified optimization framework, we will exploit the two-step con-
version mechanism. We redesign the ANN with to get a tailored ANN, train the tailored ANN
and convert it to SNN by copying the weights from the tailored ANN to the target SNN. Perfor-
mance loss will occur if the the new activation function of the tailored ANN deviates too much
from the regular ReLU activation function, and we need to minimize the conversion error at the
same time. By keeping that in mind, an effective activation function FANN of the tailored ANN
should not deviate too much from the regular ReLU and be close to the step function. Therefore,
we propose the SlipReLU activation function which is a weighted sum of the threshold-ReLU and
the step function to balance the trade-off between the regular ReLU and step function. Assume
that both ANN and SNN receive the same input from the previous layer, a(ℓ−1) = x̄(ℓ−1). Denote
z(ℓ) = W(ℓ)x̄(ℓ−1) = W(ℓ)a(ℓ−1).

Proposed SlipReLU activation function. Following the unified optimization framework Sect. 3,
new activation functions of the tailored ANNs are designed by minimizing the mismatch to the step

5

Under review as a conference paper at ICLR 2023

function of the target SNNs, and minimizing the deviation from the regular ReLU. We propose the
SlipReLU activation function for the tailored ANN (see the red curves in (C1)-(C3) of Fig. 1),

FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
. (9)

From definition in Eq. (9), the SlipReLu activation function is just a weighted sum of the threshold-
ReLU (first part) and the step function (second part), with the slope 0 ⩽ c ⩽ 1 balancing its weight.

With some linear algebra, the SlipReLU can be formulated as a piece-wise linear function with a
constant slope c (see the red curves in (C1)-(C3) of Fig. 1 and detailed derivation in Appendix B),
SlipReLU(z(ℓ)) = cz(ℓ) + (1 − c)kθ

(ℓ)

N , kθ(ℓ)

N ⩽ z(ℓ) < (k+1)θ(ℓ)

N , k = 0, 1, · · · , N − 1. Here
0 ⩽ c ⩽ 1 is the constant slope of the piece-wise linear function. From the definition and red
curves in (C1)-(C3) of Fig. 1, we see that the new proposed function is very similar to a slippery
step function with a slope, hence the name “SlipReLU”.

SlipReLU extension The SlipReLU extension with shift (see Appendix B) can be formulated as

FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
. (10)

An application of the unified optimization framework. Recall the step activation function of
target SNNs in Eq. (8), by setting c = 0 the SlipReLU becomes the step function,

a(ℓ) = FANN(z
(ℓ)) = θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
. (11)

Note that Eq. (11) is exactly the step function in Eq. (8), except V (ℓ)
th ← θ(ℓ), T ← N . Because the

latency T in Eq. (8) is an inherent property of the target SNNs, so it cannot be used in the source
ANN. Therefore, instead of T , we use quasi-time-steps N in SNN. As mentioned in Sect. 3.2.1, the
threshold V

(ℓ)
th in SNN can be different from layer to layer, and we make it a trainable value θ(ℓ) in

the ANN which can be learned and copied to the target SNN. Coincidentally, Bu et al. (2021) uses
this function defined in Eq. (11) as the activation function in the source ANNs, and they name it the
quantization clip-floor-shift (QCFS) activation function and call N the quantization steps.

Special cases of SlipReLU Here we list some related works which fall in to our proposed unifined
optimization framework and are special cases of the SlipReLU. (1) When c = 0, δ = [12], the
proposed SlipRLU activation function becomes the quantization clip-floor-shift in Bu et al. (2021).
It only considers to be close to the SNN step function, but neglects the deviation from the regular
ReLU. (2) When c = 1, δ1 = [− 1

2N], the proposed SlipRLU activation function becomes shift-
threshold ReLU in Deng & Gu (2021). It considers the deviation from the regular ReLU but neglects
the closeness to the step function of the target SNN. Our proposed SlipReLU balances the trade-off
between the regular ReLU and the step function. Refer to Appendix B for the details.

4.2 THEOREMS ON THE CONVERSION ERROR

The following two theorems gives the conversion error of the proposed unified method.

Theorem 1. An ANN trained with SlipReLU activation function Eq. (10) is converted to an SNN
with the same weights. Let V (ℓ)

th = θ(ℓ), v(ℓ)(0) = V
(ℓ)
th δ, c = 0. Then for arbitrary T and N , the

expectation of the conversion error of the proposed unified method reaches 0, i.e.,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

= 0 , (12)

holds for any the shift term δ in the source ANN when δ ∈ [− 1
2 ,

1
2] .

Theorem 1 indicates that for c = 0 the expected conversion error reaches zero even though N ̸= T
provided that the shift term δ ∈ [− 1

2 ,
1
2]. The proof is in Appendix C.

6

Under review as a conference paper at ICLR 2023

Theorem 2. An ANN trained with SlipReLU activation function Eq. (10) is converted to an SNN
with the same weights. Let V (ℓ)

th = θ(ℓ), v(ℓ)(0) = V
(ℓ)
th δ, δ1 = [δ−1/2

T]. Then for arbitrary T and
N and arbitrary c ∈ [0, 1], the expectation of the conversion error of the proposed unified method

reaches the optimal c(V
(ℓ)
th)2

4T , i.e.,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

=
c(V

(ℓ)
th)2

4T
, (13)

holds for any the shift term δ in the source ANN when δ ∈ [− 1
2 ,

1
2] .

Theorem 2 indicates that for any ∀ c ∈ [0, 1], the expectation of the conversion error can reach the

minimum c(V
(ℓ)
th)2

4T , provided that the shift term δ in the source ANN is in the interval [− 1
2 ,

1
2], and

δ1 = δ−1/2
T . The proof is in Appendix C. These results indicate we can achieve high-performance

converted SNN at ultra-low time-steps.

4.3 ALGORITHM FOR TRAINING SLIPRELU ACTIVATION FUNCTION IN BACKPROPAGATION

Training an ANN with SlipReLU activation instead of ReLU is also a challenging problem. Al-
though the SlipReLU has a constant slope as its derivative from Eq. (9), however, small slope values
c ∈ [0, 1] can cause the gradient vanishing problem. Therefore, inspired by Bu et al. (2021); Bengio
et al. (2013), we use the surrogate gradient as the derivative of the floor function d⌊x⌋

x = 1. The
overall derivation rule is given as follows,

dFANN(z
(ℓ))

dz(ℓ)i

=

{
1, if z(ℓ)i ∈ D1 ∪D2

0, otherwise

where D1 = [−δ1θ, θ − δ1θ], D2 = [−δθ, θ − δθ], and z(ℓ)i is the i-th element of z(ℓ). Then we can
train the ANN with SlipReLU activation using Stochastic Gradient Descent algorithm, and convert
it to the SNN. Refer to Appendix D for our proposed ANN-SNN conversion algorithm.

5 RELATED WORK

The first study of ANN-SNN conversion is proposed by Cao et al. (2015), which convert the ANNs
with the ReLU activation function to SNNs. Afterwards, Diehl et al. (2015) proposed data-based
and model-based weight-normalization method to convert a three-layer CNN to an SNN. How-
ever, it usually requires hundreds of time-steps for the converted SNN to get accurate results due to
the error analyzed in Sect. 3. To address the potential information loss, the “reset-by-subtraction”
mechanism (Rueckauer et al., 2017), also called “soft-reset” (Han et al., 2020) rather than “reset-
to-zero” is proposed. Recently, many methods and algorithms have been proposed to eliminate the
conversion error. Sengupta et al. (2019) proposed a novel weight-normalization technique which
considers the actual SNN operation in the conversion step. For direct conversion from a pre-trained
ANN to an SNN, Ding et al. (2021) proposed Rate Norm Layer to replace the ReLU activation
function in source ANN training, and Li et al. (2021) proposed calibration for weights and biases
using quantized fine-tuning to correct the error layer-by-layer. Our work share similarity with Deng
& Gu (2021); Bu et al. (2021) which are also on optimal conversion. Deng & Gu (2021) min-
imized the layer-wise error by shift-threshold ReLU which only considers the deviation from the
ReLU in the unified optimization framework in Sect. 3. Bu et al. (2021) proposed to use the quan-
tization clip-floor-shift activation function to train ANNs and the clip-floor-shift activation function
only minimizes the conversion error neglecting the performance loss of the tailored ANN with new
activation function. They all got the theoretical “optimal” results with some fixed shift term. In
comparison, our proposed unified framework gives more flexibility for different application scenar-
ios to covert ANN into SNN with techniques eliminating the conversion error and keeping the ANN
performance with less deviation from the regular ANN with ReLU. Our SlipReLU can balance the
trade-off between the ANN performance and the conversion error simultaneously.

6 EXPERIMENTS

In this section, we compare our SlipReLU method with existing state-of-the-art approaches for im-
age classification task on CIFAR-10 (LeCun et al., 1998) and CIFAR-100 (Krizhevsky & Hinton,

7

Under review as a conference paper at ICLR 2023

Table 1: Comparison between the proposed SlipReLU method and previous works on CIFAR10.
Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

ResNet-20

RTS 91.46 10.00 10.00 10.00 10.00 10.00 21.10 90.34 90.54
SNNC-AP 97.11 55.02 66.56 82.03 89.38 94.75 96.23 96.83 97.02
QCFS 91.29 56.60 67.53 79.73 88.06 90.99 91.73 91.69 91.56
ReLU 93.71 11.58 12.54 16.05 36.47 70.84 83.47 85.93 86.46
Ours 93.37 80.30 82.80 84.69 86.12 90.45 92.95 93.49 93.52

VGG-16

RTS 92.09 10.00 10.00 10.00 10.00 10.00 89.48 91.84 91.25
RNL 86.10 10.00 10.00 10.00 10.00 10.10 17.20 38.56 60.20
SNNC-AP 95.93 73.82 75.16 86.58 90.26 92.87 94.53 95.41 95.78
QCFS 92.69 75.51 83.81 88.58 91.47 92.50 92.83 92.83 92.90
ReLU 95.92 10.00 10.00 11.51 70.97 88.39 93.05 94.76 95.19
Ours 95.60 85.40 86.59 88.27 89.67 95.20 95.66 95.65 95.66

ResNet-18

RTS 91.94 10.00 10.00 10.00 10.00 10.00 11.00 89.60 90.14
QCFS 95.84 88.30 91.52 93.89 95.02 95.51 95.72 95.70 95.69
ReLU 96.71 11.00 25.07 55.21 73.80 88.44 94.50 96.00 96.50
Ours 96.67 93.11 93.97 94.59 94.92 95.08 96.31 96.53 96.52

2009). Similar to previous works, we utilize VGG-16, ResNet-18, and ResNet-20 network structures
for source ANNs. We compare our method with the state-of-the-art ANN-SNN conversion meth-
ods, including RNL from Ding et al. (2021), ReLU-Threshold-Shift (RTS) from Deng & Gu (2021),
SNN Conversion with Advanced Pipeline (SNNC-AP) from Li et al. (2021), and ANN-SNN con-
version with quantization clip-floor-shift activation function (QCFS) from Bu et al. (2021), as well
as ANN-SNN conversion with regular ReLU activation function (ReLU). Refer to Appendix E for
the network structures and training setups. We use SlipReLU with shift setting δ1 = 0, δ = 0.5,
refer to Appendix H for ablation studies on SlipReLU and SlipReLU-shift activation.

6.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Table 1 shows the performance comparison of the proposed SlipReLU with the state-of-the-art
ANN-SNN conversion methods on CIFAR-10. For ultra-low latency inference (T = 1 or T = 2),
our proposed SlipReLU has the best performance compared to existing state-of-the-art ANN-SNN
conversion methods. Specially, when the latency T = 1, our SlipReLU method is able to achieve an
accuracy of 93.11% for ResNet-18, with a good margin compared to the next best baseline QCFS
(88.30%); the accuracy for VGG-16 is 85.40% with SlipReLU activation, while the next best ac-
curacy is 75.51% with QCFS activation. For ResNet-20, we achieve an accuracy of 82.8% with
2 time-steps. Our proposed SlipReLU method indeed gives the best SNN accuracy for ultra-low
latency inference. When considering low-latency inference (T ⩽ 4), our model outperforms almost
all the other methods with the same time-step setting. Notably, our ultra-low latency performance is
comparable with other state-of-the-art supervised training methods, which is shown in Table S2.

The most competitive method of our SlipReLU is the QCFS method, however, it cannot to pro-
vide as high performance as our SlipReLU in terms of ANN accuracy, which can be seen from the
ANN testing accuracy. Here the ANN accuracy of ReLU activation is the baseline. The results with
SlipReLU activation shows that it has higher ANN accuracy than the QCFS (step function). The
reason is that QCFS only considers the conversion error but not the ANN performance, while our
SlipReLU proposes to consider the conversion error as well as the ANN performance. The highest
ANN accuracy can sometimes be achieved by the SNNC-AP method, which is a one-step conver-
sion method, however, the SNNC-AP usually fails to give moderate accuracy for low-latency SNN
inference. Considering both ANN accuracy and SNN inference accuracy, the SlipReLU performs
the best among all the other state-of-the-art models and it is the closest to the regular ReLU acti-
vation function, as our SlipReLU method is designed to consider both the ANN accuracy and the
conversion error simultaneously. We further test the performance of our method on the large-scale
dataset. Experimental results on CIFAR-100 and Tiny-ImageNet datasets are reported in Table S3
and Table S4 of Appendix G.

6.2 EFFECT OF THE SLOPE c AND EFFECT OF THE QUASI-LATENCY N

In our SlipReLU method, the slope c balances the weight of the threshold ReLU and the step func-
tion, which affects the accuracy of the converted SNN. To analyze the effect of c and better deter-

8

Under review as a conference paper at ICLR 2023

1 2 4 8 16 32 64 128256
Time-step T

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(a) Influence of different slopes with the quasi-latency N = 2 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(b) Influence of different slopes with the quasi-latency N = 32 on CIFAR-10 and CIFAR-100

Figure 2: Effect of different slopes c with different quasi-latency N on CIFAR-10 and CIFAR-100.

mine the optimal value, we train VGG-16 and ResNet-20 networks with quasi-latency N = 2 and
N = 32, and then convert the trained ANNs to SNNs. The experimental results on CIFAR-10 and
CIFAR-100 dataset are shown in Fig. 2, where each of the colored curves shows the effect of the
slope c on the SNN accuracy over different time-step/latency T , under different quasi-latency N .

Results in Fig. 2 show that for small values of quasi-latency N , the slope c has a large effect on SNN
accuracy for ultra-low and low-latency inference. In particular, for small quasi-latency N , different
slope values c can result in different SNN accuracy when the time-step T is small. But for large
values of quasi-latency N , the colored curves are close to each other, and different values of slope
c give similar results no matter whether the time-step T is small or large. This brings the flexibility
to apply our SlipReLU to different scenarios. When we need ultra-low/low- latency inference for
the converted SNN, we choose small quasi-latency N , but when we do not care about the inference
time (the time-step T can be large), we then choose large quasi-latency N . Refer to Appendix I for
more detailed results.

7 DISCUSSION AND CONCLUSION

The performance of the converted SNN is determined by both the ANN performance and the con-
version error. The performance loss between the regular ANN with regular ReLU and the tailored
ANN has never been considered in the existing ANN-SNN conversion methods, which will be in-
herited to the converted SNN. In this work, we formulate the ANN-SNN conversion as a unified
optimization problem which considers the performance loss between the regular ANN with and the
tailored ANN, as well as the conversion error simultaneously. Following the unified optimization
framework, we propose the SlipReLU activation function to replace the regular ReLU activation
function in the tailored ANN. The SlipReLU is a weighted sum of the shift-threhold-ReLU and
the step function, which improves the performance of either as an activation function alone. The
SlipReLU method covers a family of activation functions mapping from activation values in source
ANNs to firing rates in target SNNs; most of the state-of-the-art optimal ANN-SNN conversion
methods are special cases of our proposed SlipReLU method. We demonstrate through two theo-
rems that the expected conversion error between SNNs and ANNs can theoretically be zero on a
range of shift values δ ∈ [− 1

2 ,
1
2] rather than a fixed shift term 1

2 , enabling us to achieve converted
SNNs with high accuracy and ultra-low latency. We evaluate our proposed SlipReLU method on
CIFAR-10 dataset, and the results show that our proposed SlipReLU outperforms the state-of-the-
art ANN-SNN conversion in both accuracy and latency. To our knowledge, this is the first work
to explore high-performance ANN-SNN conversion method considering the ANN performance and
the conversion error simultaneously, with ultra-low latency, especially for 1 time-step (T = 1).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–
436. Springer, 2012.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
2015.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113–123, 2019.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. International Conference on Learning Representations, 2021.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. ieee, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks. In International Joint Conference on
Artificial Intelligence, pp. 2328–2336, 2021.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp. 13558–
13567, 2020.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569–1572, 2003.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ANN: towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325. PMLR, 2021.

Ying-Hui Liu and Xiao-Jing Wang. Spike-frequency adaptation of a generalized leaky integrate-
and-fire model neuron. Journal of computational neuroscience, 10(1):25–45, 2001.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. 2017.
URL https://openreview.net/forum?id=Skq89Scxx.

Patrick Mehlitz and Matúš Benko. On implicit variables in optimization theory. Journal of Nons-
mooth Analysis and Optimization, 2, 2021.

10

https://openreview.net/forum?id=Skq89Scxx

Under review as a conference paper at ICLR 2023

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural computation, 33(4):899–925,
2021.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. Advances in Neural Information Processing Systems, 33:12022–12033, 2020.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062–11070, 2021.

NOTATIONS IN THE APPENDIX

Throughout the paper and this Appendix, we use the following notations in Table S1. Bold-face
lower-case letters refer to vectors, and normal-face letters refer to scalars. Note V

(ℓ)
th and θ(ℓ)

are vectors whose dimensions match the number of neurons in the layer of interest, and denote
V

(ℓ)
th = [V

(ℓ)
th] and θ(ℓ) = [θ(ℓ)] respectively. Namely, vector V

(ℓ)
th = [V

(ℓ)
th] means that each

element is the same V
(ℓ)
th . Denote δ = [δ].

Table S1: Summary of notations in this paper.
Symbol Definition Symbol Definition

N Quasi-time-steps of ANNs FANN(·) ANN activation function
T Total time-steps of SNNs FSNN(·) SNN activation function
a(ℓ) Activation values of ANNs s(ℓ)(t) Spike outputs of SNN
x̄(ℓ) Average PSP of SNNs x(ℓ)(t) PSP released by l-th layer
θ(ℓ) Trainable threshold in ANNs v(ℓ)(t) Membrane potential after firing
V

(ℓ)
th Firing threshold in SNNs W(ℓ) Weight matrix

11

Under review as a conference paper at ICLR 2023

A ANALYSIS OF ACTIVATION FUNCTION IN SNNS

We will derive the activation function of SNN, FSNN(·) in this section.

The activation function of SNN gives the relationship between activation values x̄(ℓ−1) and x̄(ℓ) of
successive layers of SNN, which defines input-output function mapping for adjacent layers.

Specifically, we can get the potential update equation by combining Eq. (2) and Eq. (4),

v(ℓ)(t) = v(ℓ)(t− 1) +W(ℓ)x(ℓ−1)(t)− s(ℓ)(t)V
(ℓ)
th . (A.1)

By summing the time-step from time 1 to T , then we get

v(ℓ)(T)− v(ℓ)(0) = W(ℓ)
T∑

t=1

x(ℓ−1)(t)−
T∑

t=1

s(ℓ)(t)V
(ℓ)
th . (A.2)

Due to the spike-in-spike-out property of the IF neurons in SNN, the output at each time-step can be
ether 0 or 1. For each neuron i, let mi =

∑T
t=1 s

(ℓ)
i (t), and each mi ∈ {0, 1, 2, · · · , T} denotes the

total number of spikes of each neuron i. Then m = {mi} is the vector collecting all the number of
spikes of all neurons in the ℓ-th layer. The accumulated spikes m =

∑T
t=1 s

(ℓ)(t) denotes the total
number of spikes. According to the above equations, we have

v(ℓ)(T)− v(ℓ)(0) = W(ℓ)T · x̄(ℓ−1) −mV
(ℓ)
th . (A.3)

Then we get
mV

(ℓ)
th = TW(ℓ)x̄(ℓ−1) − (v(ℓ)(T)− v(ℓ)(0)) . (A.4)

A.1 ELEMENT-WISE VERSION DERIVATION

Denote
z(ℓ) = W(ℓ)x̄(ℓ−1) .

We use z(ℓ)i , v(ℓ)i (T), v(ℓ)i (0), and mi to denote the i-th element in vector z(ℓ), v(ℓ)(T), v(ℓ)(0), and
m respectively. That is, z(ℓ) = {z(ℓ)i }, v(ℓ)(T) = {v(ℓ)i (T)}, v(ℓ)(0) = {v(ℓ)i (0)}, and m = {mi}.
Then we have

mV
(ℓ)
th = Tz(ℓ) − (v(ℓ)(T)− v(ℓ)(0))

⇐⇒ miV
(ℓ)
th = T z(ℓ)i − (v(ℓ)

i (T)− v(ℓ)i (0)) (For each neuron i with m = {mi}, z(ℓ) = {z(ℓ)i }) .

Note that we assume the terminal membrane potential v(ℓ)
i (T) lies within the range [0, V

(ℓ)
th), by

further assuming v(ℓ)i (0) = 0, we get

0 ⩽ v(ℓ)
i (T) < V

(ℓ)
th

⇐⇒ − V
(ℓ)
th < −v(ℓ)

i (T) ⩽ 0 (adding T z(ℓ)i to each term)

⇐⇒ T z(ℓ)i − V
(ℓ)
th < T z(ℓ)i − v(ℓ)

i (T) ⩽ T z(ℓ)i (mi = T z(ℓ)i − v(ℓ)i (T))

⇐⇒ T z(ℓ)i − V
(ℓ)
th < miV

(ℓ)
th ⩽ T z(ℓ)i

⇐⇒
T z(ℓ)i − V

(ℓ)
th

V
(ℓ)
th

< mi ⩽
T z(ℓ)i

V
(ℓ)
th

.

Then we use floor operation and clip operation to determine the totoal number of spikes, mi,

mi = clip

(⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, T

)
(and mi = T s̄(ℓ)i)

s̄(ℓ)i = clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, 1

)
(and x̄(ℓ)i = V

(ℓ)
th s̄(ℓ)i)

x̄(ℓ)i = V
(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, 1

)
.

12

Under review as a conference paper at ICLR 2023

The assumption v(ℓ)i (0) = 0 may be too strong, without it, we will get

⇐⇒ T z(ℓ)i − V
(ℓ)
th + v(ℓ)

i (0) < miV
(ℓ)
th ⩽ T z(ℓ)i + v(ℓ)

i (0)

⇐⇒
T z(ℓ)i − V

(ℓ)
th + v(ℓ)i (0)

V
(ℓ)
th

< mi ⩽
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⇐⇒
T z(ℓ)i − V

(ℓ)
th

V
(ℓ)
th

+ δ < mi ⩽
T z(ℓ)i

V
(ℓ)
th

+ δ with δ =
v(ℓ)i (0)

V
(ℓ)
th

.

Denote δ =
v(ℓ)i (0)

V
(ℓ)
th

. Then we have

mi = clip

(⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, T

)
(and mi = T s̄(ℓ)i)

s̄(ℓ)i = clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
(and x̄(ℓ)

i = V
(ℓ)
th s̄(ℓ)i)

x̄(ℓ)i = V
(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

The relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of SNN can be
formulated as

x̄(ℓ)i = V
(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

A.2 VECTOR VERSION DERIVATION

The accumulated spikes m =
∑T

t=1 s
(ℓ)(t) denotes the total number of spikes, and m = {mi} is the

vector collecting all the number of spikes of all neurons in the ℓ-th layer. Each mi ∈ {0, 1, 2, · · · , T}
denotes the total number of spikes of each neuron i. According to the above equations, we have

v(ℓ)(T)− v(ℓ)(0) = W(ℓ)T · x̄(ℓ−1) −mV
(ℓ)
th . (A.5)

Then we get
mV

(ℓ)
th = TW(ℓ)x̄(ℓ−1) − (v(ℓ)(T)− v(ℓ)(0)) . (A.6)

Note that we assume the terminal membrane potential v(ℓ)(T) lies within the range [0,V
(ℓ)
th), by

further assuming v(ℓ)(0) = 0, we get

0 ⩽ v(ℓ)(T) < V
(ℓ)
th

⇐⇒ −V
(ℓ)
th < −v(ℓ)(T) ⩽ 0

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th < TW(ℓ)x̄(ℓ−1) − v(ℓ)(T) ⩽ TW(ℓ)x̄(ℓ−1)

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th < mV

(ℓ)
th ⩽ TW(ℓ)x̄(ℓ−1)

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th

V
(ℓ)
th

< m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

.

Then we use floor operation and clip operation to determine the totoal number of spikes, m,

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, T

)
(and m = T s̄(ℓ))

s̄(ℓ) = clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, 1

)
(and x̄(ℓ) = V

(ℓ)
th s̄(ℓ))

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, 1

)
.

13

Under review as a conference paper at ICLR 2023

The assumption v(ℓ)(0) = 0 may be too strong, without it, we will get

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th + v(ℓ)(0) < mV

(ℓ)
th ⩽ TW(ℓ)x̄(ℓ−1) + v(ℓ)(0)

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th + v(ℓ)(0)

V
(ℓ)
th

< m ⩽
TW(ℓ)x̄(ℓ−1) + v(ℓ)(0)

V
(ℓ)
th

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th

V
(ℓ)
th

+ δ < m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ with δ =
v(ℓ)(0)

V
(ℓ)
th

.

Denote δ = v(ℓ)(0)

V
(ℓ)
th

. Note δ is a vector whose dimension matches the number of neurons in that

layer. Then we have

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, T

)
(and m = T s̄(ℓ))

s̄(ℓ) = clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
(and x̄(ℓ) = V

(ℓ)
th s̄(ℓ))

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

The relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of SNN can be
formulated as

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

Note V
(ℓ)
th is a vector whose dimension matches the number of neurons in that layer, and V

(ℓ)
th =

[V
(ℓ)
th] means each element is the same V

(ℓ)
th .

Denote
z(ℓ) = W(ℓ)x̄(ℓ−1) .

Then

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

B DERIVATION OF SLIPRELU ACTIVATION FUNCTION

In this section, we will give detailed derivation of the proposed SlipReLU activation function
in Eq. (9) and its extension in Eq. (10) with different shift modes. In ANNs, denote

z(ℓ) = W(ℓ)x(ℓ−1) .

Then the forward propagation of activation values through layers in the ANN is

a(ℓ) = FANN(z
(ℓ)) = FANN(W

(ℓ)x(ℓ−1)) .

B.1 DERIVATION OF SLIPRELU ACTIVATION FUNCTION

Derivation of SlipReLU activation function in Eq. (9). We start with the initial definition of the
SlipReLU function in Eq. (B.1),

SlipReLU(z(ℓ)) =

0 if z(ℓ) < 0

cz(ℓ) + (1− c)kθ
(ℓ)

N if kθ(ℓ)

N ⩽ z(ℓ) < (k+1)θ(ℓ)

N

θ(ℓ) if z(ℓ) ⩾ θ(ℓ)

. (B.1)

Here k = 0, 1, · · · , N − 1. Note θ(ℓ) should be a vector whose dimension matches the number of
neurons in that layer, θ(ℓ) = [θ(ℓ)].

14

Under review as a conference paper at ICLR 2023

Then we can rewrite it to

SlipReLU(z(ℓ)) = ytemp + c · (ztemp − ytemp) = cztemp + (1− c)ytemp

where ztemp = θ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
, and ytemp =

θ(ℓ)

N

⌊
N · ztemp

θ(ℓ)

⌋
.

Here

ytemp =
θ(ℓ)

N

⌊
Nztemp

θ(ℓ)

⌋
⇐⇒ ytemp =

θ(ℓ)

N

⌊
N · clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)⌋
⇐⇒ ytemp = θ(ℓ)clip

(
1

N

⌊
N · z

(ℓ)

θ(ℓ)

⌋
, 0, 1

)
⇐⇒ ytemp = θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

Then Eq. (B.1) can be written as follows,

a(ℓ) = SlipReLU(z(ℓ))

= cztemp + (1− c)ytemp

= cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

That is the SlipReLU activation function in Eq. (9),

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

B.2 SLIPRELU ACTIVATION FUNCTION WITH DIFFERENT SHIFT MODES

Derivation of SlipReLU extension in Eq. (10) with shift As mentioned in Sect. 4, the SlipReLU
activation function in Eq. (9) in a weighted combination of the threshold-ReLU (first part) and the
step function (second part), with the slope 0 ⩽ c ⩽ 1 balancing the weight, then any shift to
these two parts will lead to shift in the SlipReLU activation function. The SlipReLU extension with
in Eq. (10) can be formulated as follows,

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

The shift term δ1 ∈ [−N, 0] and δ ∈ [− 1
2 ,

1
2] for the source ANNs. And δ1 = [δ1], δ = [δ].

Here we list several examples of the proposed SlipReLU with different shift modes.

Mode 0 We set δ1 = δ = 0, then

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

Mode 1 We set δ1 = 0, δ = 1
2 , then

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+(1−c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ [

1

2
]

⌋
, 0, 1

)
.

B.3 SPECIAL CASES OF THE SLIPRELU ACTIVATION FUNCTION

Here we list four different special cases of the proposed SlipReLU.

15

Under review as a conference paper at ICLR 2023

Threshold-ReLU When c = 1 and δ1 = 0, the SlipReLU becomes the threshold ReLU activation
function which is studied in Deng & Gu (2021).

Shift-threshold-ReLU When c = 1 and δ1 = −1/(2N), the SlipReLU becomes the shift-
threshold ReLU activation function which is studied in Deng & Gu (2021).

Quantization clip-floor (QCF) When c = 0 and δ = 0, the SlipReLU becomes the quantization
clip-floor (QCF) activation function which is studied in Bu et al. (2021).

Quantization clip-floor-shift (QCFS) When c = 0 and δ = 1/2, the SlipReLU becomes the
quantization clip-floor-shift (QCFS) activation function which is studied in Bu et al. (2021).

C PROOF OF THEOREMS

Before we proof Theorem 1 and Theorem 2, we first introduce an important Lemma.
Lemma 1. If a random variable x ∈ [0, θ] is uniformly distributed in every small interval
(mt,mt+1) with pt (t = 0, 1, · · · , T), where m0 = 0,mT+1 = θ,mt = (2t−1)θ

2T for t =

1, 2, · · · , T , p0 = pT . For any value δ ∈ [− 1
2 ,

1
2], then we can conclude that

Ex

(∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣) = 0 . (C.1)

Proof. We consider x in different small intervals (mt,mt+1).

(1) For x ∈
(
0, θ

2T

)
,

0 < x <
θ

2T
⇐⇒ δ <

Tx

θ
+ δ <

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= 0 .

(2) For x ∈
(

(2t−1)θ
2T , (2t+1)θ

2T

)
, and t = 1, 2, · · · , T − 1

(2t− 1)θ

2T
< x <

(2t+ 1)θ

2T
⇐⇒ t− 1

2
+ δ <

Tx

θ
+ δ < t+

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= t .

(3) For x ∈
(

(2T−1)θ
2T , θ

)
,

(2T − 1)θ

2T
< x < θ ⇐⇒ T − 1

2
+ δ <

Tx

θ
+ δ < T +

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= T .

Then we have

Ex

(∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣)
=

∫ θ/2T

0

p0

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx
+

∫ θ

(2T−1)θ/2T

pT

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx
=p0

∫ θ/2T

0

|x| dx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

∣∣∣∣x− tθ

T

∣∣∣∣ dx+ pT

∫ θ

(2T−1)θ/2T

|x− θ| dx

=p0

∫ θ/2T

0

xdx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

(
x− tθ

T

)
dx+ pT

∫ θ

(2T−1)θ/2T

(x− θ) dx

=p0
θ2

8T 2
+ 0− pT

θ2

8T 2
= 0 .

16

Under review as a conference paper at ICLR 2023

Lemma 2. Let P be a probability distribution on R. If a random variable z ∈ Rm and z ∼ P, a
function g : z→ g(z) ∈ Rn and g(z) ⩾ 0 almost surely for ∀ z ∈ D, and

Ez |g(z)| = 0 ,

then we have
Ez ∥g(z)∥2 = 0 .

Proof. By the definition of L2-norm, we have

∥g(z)∥2 =
√
g21(z) + g22(z) + · · ·+ g2n(z) ⩽ |g1(z)|+ |g2(z)|+ · · ·+ |gn(z)| .

Then, we can get

Ez ∥g(z)∥2 ⩽ Ez |g1(z)|+ Ez |g2(z)|+ · · ·+ Ez |gn(z)|
= Ezg1(z) + Ezg2(z) + · · ·+ Ezgn(z) = 0 .

Then
Ez ∥g(z)∥2 = 0 .

C.1 PROOF OF THEOREM 1

For Theorem 1, we need to prove

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

= 0 .

Proof. The activation function of the SNN is

FSNN(z
(ℓ)) = V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)
.

For c = 0, the SlipReLU activation function used in the source ANN then becomes

FANN(z
(ℓ)) = θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

With V
(ℓ)
th = θ(ℓ), then the error becomes

Err(ℓ) = FSNN(z
(ℓ))−FANN(z

(ℓ)) =
θ(ℓ)

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
.

Then

Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

=Ez

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

⩽ Ez

(∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
− z(ℓ)

∣∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

+ Ez

(∣∣∣∣∣z(ℓ) − V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

.

Denote v(ℓ)i (0) and zi the i-th element of vector v(ℓ)(0) and z. Denote δ = [δ]. Then we need to
consider every element of vector z.

Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

⩽ Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
− z(ℓ)i

∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2]

+ Ezi

(∣∣∣∣∣z(ℓ)i −
V

(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)

i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

.

(C.2)

17

Under review as a conference paper at ICLR 2023

Then according to Lemma 1, we have

Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
− z(ℓ)i

∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2]

= 0

Ezi

(∣∣∣∣∣z(ℓ)i −
V

(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
) ∣∣∣v(ℓ)i (0)=δV

(ℓ)
th

= 0 .

This holds for any shift value δ in the ANNs when − 1
2 ⩽ δ ⩽ 1

2 , which gives the conclusion of
the Theorem 1.

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

= 0 .

C.2 PROOF OF THEOREM 2

For Theorem 2, we need to prove,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

=
c(V

(ℓ)
th)2

4T
, (C.3)

Proof. The activation function of the SNN is

FSNN(z
(ℓ)) = V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)
.

For arbitrary c ∈ [0, 1], the SlipReLU activation function used in the source ANN then becomes

FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

With V
(ℓ)
th = θ(ℓ), then the error becomes,

Err(ℓ) = FANN(z
(ℓ))−FSNN(z

(ℓ))

= c

{
θ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
− V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)}

+ (1− c)

{
θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
− V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)}

= c

{
z(ℓ) + δ1θ

(ℓ) −
V

(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}
(with v(ℓ)(0) = V

(ℓ)
th δ, V

(ℓ)
th = θ(ℓ))

+ (1− c)

{
θ(ℓ)

N

⌊
Nz(ℓ) + v(ℓ)(0)

θ(ℓ)

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}

= c

{
z(ℓ) + V

(ℓ)
th δ1 −

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋}
∆
= c · Err1 (C.4)

+ (1− c)

{
θ(ℓ)

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}
∆
= (1− c) · Err2 (C.5)

Then

Err(ℓ)
∆
= c · Err1 + (1− c) · Err2

=⇒
∣∣∣Err(ℓ)∣∣∣ = |c · Err1 + (1− c) · Err2| ⩽ c · |Err1|+ (1− c) · |Err2| .

18

Under review as a conference paper at ICLR 2023

So we can minimize the whole error by minimized each of the two terms.

Let δ1 = ϕ+δ
T . For Eq. (C.4), we have

|Err1|
∆
=

∣∣∣∣∣z(ℓ) + V
(ℓ)
th

T
(ϕ+ δ)−

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋∣∣∣∣∣
=

∣∣∣∣∣z(ℓ) + V
(ℓ)
th

T
ϕ−

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

⌋∣∣∣∣∣ . (C.6)

Here

z(ℓ) +
V

(ℓ)
th

T
ϕ is the activation function of ANN

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

⌋
is the step activation function of SNN .

This Eq. (C.6) recovers the loss of the shift-threshold ReLU (with a shift value ϕ) and the step
function, which is the same as Deng & Gu (2021). And as shown in (A) of Fig. 1, the conversion
error is the shaded area. The error between the activation function (of ANNs) and the step function
(of SNNs) is obtained by summing up of all the shaded area together, which is the ANN-SNN
conversion error.

Then the objective becomes minimize

min
ϕ
{Ez |Err1|} = min

ϕ

T

2

(V
(ℓ)
th

T
+

V
(ℓ)
th

T
ϕ

)2

+

(
V

(ℓ)
th

T
ϕ

)2
 =

(V
(ℓ)
th)2

4T
=⇒ ϕ = −1

2
.

Then

δ1 =
−1/2 + δ

T
. (C.7)

And the minimum L2-norm of the first error becomes

Ez (|Err1|) =
(V

(ℓ)
th)2

4T
.

For Eq. (C.5), with v(ℓ)(0) = V
(ℓ)
th δ, V

(ℓ)
th = θ(ℓ), we have

|Err2|
∆
=

∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
From Lemma 1 and Theorem 1, we have

Ez (|Err2|) = Ez

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2]

= 0 .

Then

Ez

(∣∣∣Err(ℓ)∣∣∣) = Ez

(∣∣∣FANN(z
(ℓ))−FSNN(z

(ℓ))
∣∣∣) = Ez (|c · Err1 + (1− c) · Err2|)

⩽ c · Ez (|Err1|) + (1− c) · Ez (|Err2|)

= c ·
(V

(ℓ)
th)2

4T
+ (1− c) · 0

=
c(V

(ℓ)
th)2

4T
.

This concludes the Theorem 2.

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2]

=
c(V

(ℓ)
th)2

4T
.

19

Under review as a conference paper at ICLR 2023

D PSEUDO-CODE FOR THE UNIFIED ANN-SNN CONVERSION ALGORITHM

Here is the pseudo-code for our proposed unified ANN-SNN conversion algorithm.

Algorithm 1: Algorithm for ANN-SNN conversion.

Input: ANN model structure fANN(x;W) with initial weights W = {W(ℓ)}; Quasi-latency
N ; Shift value δ from the interval δ ∈ [− 1

2 ,
1
2]; Initial dynamic threshold θ = {θ(ℓ)};

Learning rate ϵ.
Output: SNN model fSNN(x;W)
Data: Dataset D

1 for ℓ = 1 to fANN.layers do
2 if is ReLU activation then
3 Replace ReLU(x) by SlipReLU(x;N, θ(ℓ))

4 if is MaxPooling layer then
5 Replace MaxPooling layer by AvgPooling layer

6 for e = 1 to epochs do
7 for length of Dataset D do
8 Sample minibach {(x(0),y)} from D
9 for ℓ = 1 to fANN.layers do

10 x(ℓ) = SlipReLU(W(ℓ)x(ℓ−1);N, θ(ℓ))

11 Loss = CrossEntropy(x(ℓ),y)
12 for ℓ = 1 to fANN.layers do
13 W(ℓ) ←W(ℓ) − ϵ ∂Loss

∂W(ℓ)

14 θ(ℓ) ← θ(ℓ) − ϵ∂Loss
∂θ(ℓ)

15 for ℓ = 1 to fANN.layers do
16 fSNN.W

(ℓ) ← fANN.W
(ℓ)

17 fSNN.V
(ℓ)
th ← fANN.θ

(ℓ)

18 fSNN.v
(ℓ)(0)← fSNN.V

(ℓ)
th × δ

19 Return fSNN

20

Under review as a conference paper at ICLR 2023

E EXPERIMENTS DETAILS

E.1 NETWORK STRUCTURE AND TRAINING SETUPS

There are three steps in our proposed ANN-SNN conversion,
Step 1: Tailor the ANN;
Step 2: Train the tailored ANN;
Step 3: Convert the trained ANN to an SNN.

In the first step, we first replace max-pooling with average-pooling and then replace the ReLU
activation with the proposed SlipReLU activation function. The tailored ANN is also called the
source ANN. In the second step, we train the tailored ANN. After training the tailored ANN, we
copy all weights from the trained-tailored source ANN to the converted SNN, and set the threshold
V

(ℓ)
th in each layer of the converted SNN equal to the threshold value θ(ℓ) of the source ANN in the

same layer. Besides, we set the initial membrane potential v(ℓ)(0) in converted SNN as V
(ℓ)
th δ to

match the optimal shift δ of the SlipReLU activation in the tailored source ANN, where the optimal
shift δ can be any value in the interval δ ∈ [− 1

2 ,
1
2].

Common data normalization and some data pre-processing techniques are used in the experiments.
For example, we resize the images in the CIFAR-10/CIFAR-100 datasets into 32 × 32. Besides,
random cropping images, Cutout (DeVries & Taylor, 2017) and AutoAugment (Cubuk et al., 2019)
are used for all datasets. The Stochastic Gradient Descent (SGD) optimizer (Bottou, 2012) is used
in the experiments with a momentum parameter of 0.9. We set the initial learning rate to ϵ = 0.1 for
CIFAR-10 and CIFAR-100. We use a cosine decay scheduler (Loshchilov & Hutter, 2017) to adjust
the learning rate with a weight decay 5 × 10−4 for CIFAR-10/CIFAR-100 datasets. All models
are trained for 300 epochs. When considering small quasi-latency N = 1 and N = 2, for models
that can not be trained properly with learning rate ϵ = 0.1, we set the initial learning rate to 0.05
for CIFAR-10/CIFAR-100. We train all the networks on CIFAR-10/CIFAR-100 dataset with two
different settings; we set the quasi-latency N = 1 with the slope c = 0.3, 0.4, 0.5 for low-latency
inference (T ⩽ 8), and we set the quasi-latency N = 4 with the slope c = 0.9 for latency T > 8.
We set δ1 = 0, δ = 1

2 for the SlipReLU activation for all the models and all the datasets.

As for the input to the first layer and the output of the last layer of the SNN, we do not employ any
spiking mechanism as in Li et al. (2021). We directly encode the static image to temporal dynamic
spikes as input to the first layer, which can prevent the undesired information loss introduced by the
Poisson encoding. For the last layer output, we only integrate the pre-synaptic input and do not fire
any spikes. We use constant input when evaluating the converted SNNs.

E.2 INTRODUCTION OF DATASETS

CIFAR-10: The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 60, 000 32× 32 color
images in 10 classes of objects such as airplanes, cars, and birds, with 6, 000 images per class. There
are 50, 000 samples in the training set and 10, 000 samples in the test set.

CIFAR-100: The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) consists of 60, 000 32×32 color
images in 100 classes with 6, 000 images per class. There are 50, 000 samples in the training set and
10, 000 samples in the test set.

Tiny-ImageNet: Tiny-ImageNet (Le & Yang, 2015) is a subset of ImageNet-1k (Russakovsky et al.,
2015) with 200 classes. Training data contains a total of 100, 000 images, 500 images from each
class. The test data contains a total of 10, 000 images, 50 images per class. The dimension of the
images is 64× 64.

F COMPARISON WITH THE STATE-OF-THE-ART SUPERVISED TRAINING
METHODS ON CIFAR-10 DATASET

Our proposed SlipReLU method is comparable with other state-of-the-art supervised training meth-
ods in terms of the ultra-low latency performance. Table S2 reports the results of the proposed
models against the state-of-the-art supervised training methods on CIFAR10 dataset. These state-
of-the-art supervised training methods include Hybrid-Conversion (HC) from Rathi et al. (2020),

21

Under review as a conference paper at ICLR 2023

STBP from Wu et al. (2018), TSSL from Zhang & Li (2020) and GDDP from Zheng et al. (2021),
which are back-propagation or hybrid training methods.

Our approach for CIFARNet achieves an accuracy of 95.31% with time-step T = 4, and the achieved
accuracy is higher than any other supervised trained models. Sufficient time-step is required for
back-propagation to train the SNN directly. The hybrid training method involves training the con-
verted SNN model using back-propagation as a second step, still it requires 200 time-steps to achieve
a good accuracy, which is high compared to the time-step required for our method. For VGG-16,
the hybrid training method requires 200 time-steps to obtain 92.03% accuracy, whereas our method
achieves 91.08% accuracy with 4 time-steps.

Table S2: Comparison with state-of-the-art supervised training methods on CIFAR-10 dataset.

Model Method Architecture SNN Accuracy Time-step T
HC Hybrid VGG-16 92.03 200

STBP Backprop CIFARNet 85.82 12
GDDT Backprop CIFARNet 87.35 4
TSSL Backprop CIFARNet 88.23 5
Ours ANN-SNN VGG-16 91.08 4
Ours ANN-SNN ResNet-18 92.86 2
Ours ANN-SNN CIFARNet 95.31 4

G RESULTS ON CIFAR-100 DATASET AND TINY-IMAGENET DATASET

We report the results on CIFAR-100 in Table S3, and the results on Tiny-ImageNet in Table S4.
From Table S3, we see that our SlipReLU method also outperforms the others both in terms of high
accuracy and ultra-low latency. For VGG16, the accuracy of the proposed method can achieve an
accuracy of 64.21% which is 29.1% higher than QCFS and 39.98% higher than SNNC-AP when
the time-steps is only 1. For ResNet-18, when T = 1, we can still achieve an accuracy of 71.51%.
These results demonstrate that our method outperforms the previous conversion methods.

Training an SNN on large-scale dataset such as Tiny-ImageNet is considered to be one of the chal-
lenges in the SNN literature. From Table S4, we can infer our SlipReLU method outperforms other
baselines in terms of the SNN accuracy when the time-step T is ⩽ 4. When the time-step is 1, for
ResNet-34 our SlipReLU method achieves an accuracy of 40.55% which is 6.94% higher than the
baseline QCFS (33.61%). For VGG16, our SlipReLU method outperforms other baseline methods
with the accuracy of 43.73% when time-step is 1, which is 12.14% better than the baseline QCFS
(31.59%) and 32.93% better than the baseline SNNC-AP (10.80%).

H COMPARISON OF SLIPRELU AND SLIPRELU-SHIFT ACTIVATION

Here we further conduct ablation studies on SlipReLU and SlipReLU-shift, by comparing the per-
formance of SNNs converted from ANNs with SlipReLU activation and ANN with SlipReLU-shift
activation. In Sect. 4, we prove that for arbitrary T and N , the expectation of the conversion error
reaches 0 with SlipReLU-shift activation function when c = 0. We also prove that for arbitrary
T and N and arbitrary c ∈ [0, 1], the expectation of the conversion error of the proposed unified
method reaches the optimal c(V (

thℓ)
2)/(4T). To verify these, we set N = 1, 2, 4, 8, 16, 32 and train

ANNs with SlipReLU activation and SlipReLU-shift activation, respectively.

Fig. S1 shows how the accuracy of converted SNNs changes with respect to the time-step T under
different quasi-latency N settings. The accuracy of the converted SNN from ANN with SlipReLU
activation (in the first and third columns) first increases or stays flat for time-step T ⩽ 4, and then
decreases rapidly with the increase of time-steps, because we cannot guarantee that the conversion
error is zero when c ̸= 0. The best performance is still lower than the SlipReLU-shift activation. The
non-shifted SlipReLU activation shows no advantage for ultra-low latency inference when T ⩽ 4.
In contrast, the accuracy of the converted SNN from ANN with SlipReLU-shift activation (in the

22

Under review as a conference paper at ICLR 2023

Table S3: Comparison between the proposed SlipReLU method and previous works on CIFAR-100.

Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

ResNet-20

RTS 66.05 1.00 1.00 1.00 1.00 1.00 9.54 63.22 62.49
SNNC-AP 81.08 16.16 25.71 49.60 65.97 75.80 76.64 80.63 80.90
QCFS 65.08 15.91 23.93 40.57 57.59 64.90 66.65 66.74 66.67
ReLU 70.18 1.28 1.16 1.76 2.91 4.03 6.17 8.95 11.66
Ours 69.45 47.08 51.34 54.51 56.00 62.26 68.71 70.06 70.29

VGG-16

RTS 70.59 1.00 1.00 1.00 1.00 1.08 64.13 69.88 68.74
SNNC-AP 76.17 24.23 40.16 49.86 62.97 69.89 74.36 76.51 77.63
QCFS 71.50 35.10 43.85 53.66 62.72 68.47 70.99 72.01 72.23
ReLU 73.39 1.00 1.53 15.55 28.56 46.03 62.42 70.05 72.16
Ours 75.25 64.21 66.30 67.97 69.31 70.09 71.84 74.61 75.13

ResNet-18

RTS 50.01 1.00 1.00 1.00 1.00 1.00 15.70 44.64 41.17
RNL 56.98 1.00 1.00 1.00 3.40 17.30 33.50 40.90 43.38
QCFS 76.68 49.19 58.65 68.31 74.46 76.70 77.24 77.37 77.43
ReLU 77.16 1.00 1.64 4.99 11.40 34.08 60.44 71.90 75.63
Ours 78.56 71.51 73.91 74.89 75.40 75.46 77.79 78.24 78.55

Table S4: Comparison between the proposed SlipReLU and other methods on Tiny-ImageNet.

Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

ResNet-34
QCFS 56.87 33.61 41.11 47.95 53.98 56.76 57.65 57.53 56.94
Ours 53.32 40.55 45.95 50.64 53.28 54.38 54.61 54.08 54.54

VGG-16
SNNC-AP 57.15 10.80 18.51 28.88 41.37 49.29 53.55 55.80 56.73
QCFS 55.59 31.59 43.43 49.72 54.08 55.48 56.02 55.97 55.93
Ours 52.75 43.73 47.95 51.23 52.89 54.01 53.84 53.74 53.68

second and fourth columns) increases with the increase of time-step T . It converges to the same
accuracy when the time-step is larger than 16. The SlipReLU-shift activation shows advantages for
ultra-low latency inference when T ⩽ 4.

I EFFECT OF THE SLOPE c AND THE QUASI-LATENCY N

In our SlipReLU method, the slope c balances the weight of the threshold ReLU and the step func-
tion, which affects the accuracy of the converted SNN. To analyze the effect of c and better determine
the optimal value, we train VGG-16/ResNet-20 networks with quasi-latency N = 1, 2, 4, 8, 16, 32,
and then converted the trained networks to SNNs. The experimental results on CIFAR-10/100
dataset are shown in Fig. S2, where each of the colored curves shows the effect of the slope c on the
SNN accuracy over different time-step/latency T , under different quasi-latency settings. Table S5,
Table S6 and Table S7 are the detailed data used to plot the curves.

J FUTURE STUDY

Remark 2. Our unified conversion framework exploits both the one-step conversion mechanism
and the two-step conversion mechanism. The one-step conversion method uses a pre-trained source
ANN, such as Li et al. (2021), however, the two-step conversion method needs to redesign the acti-
vation function of the ANN to get a tailored source ANN, train it and convert it to SNN, such as Deng
& Gu (2021); Bu et al. (2021).

Remark 3. Usually, implicit variables of an optimization problem are variables which do not need
to be optimized but are used to model feasibility conditions (Mehlitz & Benko, 2021), and they are
often interpreted as explicit ones (Mehlitz & Benko, 2021), by using union of image sets associated

23

Under review as a conference paper at ICLR 2023

with given set-valued mappings to make the implicit variables as explicit variables, which can be an
interesting future work but not what we are interested in this paper.

As mentioned in Sect. 3.1, the multi-step output feature of SNN implies that higher-latency output
depend on the outputs of all previous time-steps, which can be explored through multi-task learning.
Therefore, it is reasonable to use multi-task learning for ANN-SNN conversion where the different
time-steps can be seen as different but related tasks.

24

Under review as a conference paper at ICLR 2023

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 with shift

1 2 4 8 16 32 64 128256
Time-step T

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(a) Compare SlipReLU activation with/without shift when the quasi-latency N = 1

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SN
N

ac
cu

ra
cy

vgg16 with shift

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

resnet20 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(b) Compare SlipReLU activation with/without shift when the quasi-latency N = 2

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 with shift

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

resnet20 without shift

1 2 4 8 16 32 64 128256
Time-step T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(c) Compare SlipReLU activation with/without shift when the quasi-latency N = 4

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 without shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N

ac
cu

ra
cy

vgg16 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

resnet20 without shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(d) Compare SlipReLU activation with/without shift when the quasi-latency N = 8

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N

ac
cu

ra
cy

vgg16 without shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N

ac
cu

ra
cy

vgg16 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

resnet20 without shift
c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(e) Compare SlipReLU activation with/without shift when the quasi-latency N = 16

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 without shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

resnet20 without shift
c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(f) Compare SlipReLU activation with/without shift when the quasi-latency N = 32

Figure S1: Ablation studies on SlipReLU activation and SlipReLU-shift activation on CIFAR-10
dataset under different slopes c with different quasi-latency N .25

Under review as a conference paper at ICLR 2023

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 on cifar10

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(a) Influence of different slopes with the quasi-latency N = 1 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(b) Influence of different slopes with the quasi-latency N = 2 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(c) Influence of different slopes with the quasi-latency N = 4 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(d) Influence of different slopes with the quasi-latency N = 8 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(e) Influence of different slopes with the quasi-latency N = 16 on CIFAR-10 and CIFAR-100

1 2 4 8 16 32 64 128256
Time-step T

0.2

0.4

0.6

0.8

SN
N

ac
cu

ra
cy

vgg16 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SN
N

ac
cu

ra
cy

resnet20 on cifar10

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

vgg16 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

1 2 4 8 16 32 64 128256
Time-step T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
N

ac
cu

ra
cy

resnet20 on cifar100

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(f) Influence of different slopes with the quasi-latency N = 32 on CIFAR-10 and CIFAR-100

Figure S2: Effect of different slopes c with different quasi-latency N on CIFAR-10 and CIFAR-100.
26

Under review as a conference paper at ICLR 2023

Table S5: Influence of different slope c with the quasi-latency N = 1.

Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256
VGG-16 on CIFAR-10

c=0.1 90.93 10.00 10.00 10.00 10.00 10.05 22.78 69.91 87.55 87.72
c=0.2 88.68 10.00 10.00 10.00 10.00 10.00 16.25 34.22 48.16 68.69
c=0.3 86.73 10.00 9.74 13.37 22.29 43.48 68.81 81.81 85.71 86.35
c=0.4 91.90 10.00 10.00 10.00 10.77 32.66 68.87 88.74 90.77 90.55
c=0.5 90.86 85.40 86.59 88.27 89.67 90.67 90.93 90.91 90.81 90.59
c=0.6 90.97 81.35 85.18 87.21 89.32 90.32 90.79 90.70 90.52 90.42
c=0.7 92.15 75.68 82.96 86.52 89.64 91.68 92.05 92.10 91.94 91.90
c=0.8 93.51 10.00 10.19 15.76 59.78 91.17 93.11 93.40 93.45 93.35
c=0.9 94.93 10.00 10.00 8.95 20.52 80.80 92.47 94.24 94.76 94.90

ResNet-18 on CIFAR-10
c=0.1 89.27 10.00 10.00 10.66 26.07 75.84 89.25 89.92 89.75 89.60
c=0.2 93.36 92.47 92.68 93.17 93.74 93.86 93.82 93.82 93.81 93.73
c=0.3 94.09 92.86 93.35 94.06 94.37 94.47 94.48 94.42 94.29 94.27
c=0.4 94.61 93.11 93.97 94.59 94.92 95.18 95.07 94.81 94.71 94.67
c=0.5 94.79 68.75 10.48 10.14 47.34 89.64 93.96 94.67 94.55 94.49
c=0.6 94.99 87.49 88.80 89.29 90.87 92.91 94.37 94.83 94.73 94.71
c=0.7 95.39 45.02 50.13 60.06 80.77 91.06 94.72 95.24 95.27 95.17
c=0.8 95.92 10.00 10.00 10.00 41.71 92.91 94.93 95.54 95.70 95.71
c=0.9 96.28 9.99 10.02 19.72 59.28 78.32 90.47 94.63 95.80 95.98

ResNet-20 on CIFAR-10
c=0.1 81.53 80.65 81.87 83.06 83.68 84.11 84.14 83.88 83.78 83.75
c=0.2 82.07 80.99 82.25 83.52 84.46 84.70 84.85 84.89 84.80 84.69
c=0.3 83.46 80.03 82.17 83.81 84.84 85.32 85.26 85.22 85.01 84.95
c=0.4 84.97 80.30 82.80 84.69 86.12 86.81 86.79 86.79 86.75 86.71
c=0.5 86.49 79.06 82.53 85.36 87.06 87.93 88.13 88.02 87.87 87.77
c=0.6 88.48 76.21 81.74 85.86 88.30 89.19 89.11 88.99 88.93 88.85
c=0.7 89.70 16.04 13.97 24.14 64.91 84.75 87.43 87.86 88.06 88.08
c=0.8 91.07 40.97 44.14 43.90 55.70 73.42 84.29 88.08 89.52 89.93
c=0.9 92.98 33.81 43.71 59.40 78.30 88.60 91.09 91.66 91.78 91.83

VGG-16 on CIFAR-100
c=0.2 65.04 1.00 1.00 1.01 1.53 4.57 30.82 58.80 65.33 65.13
c=0.3 66.05 1.00 1.00 1.00 1.00 2.15 18.58 54.26 64.34 65.96
c=0.4 68.46 64.21 66.30 67.97 69.31 70.09 70.19 70.05 69.79 69.62
c=0.5 69.30 61.99 64.31 66.71 68.91 70.42 70.50 70.18 70.03 69.85
c=0.6 69.49 49.34 53.22 57.83 62.58 66.67 69.11 70.07 69.63 68.96
c=0.7 70.97 30.19 34.77 41.37 50.01 59.17 66.61 70.07 70.85 70.45
c=0.8 72.13 12.81 15.68 22.37 32.70 47.78 62.35 69.54 71.31 71.11
c=0.9 74.76 1.00 1.00 1.03 2.02 9.97 32.00 55.97 67.82 71.85

ResNet-18 on CIFAR-100
c=0.1 71.84 71.11 72.51 73.32 73.41 73.38 72.63 72.19 72.06 71.88
c=0.2 72.32 34.00 39.42 48.16 59.34 67.41 70.63 70.14 67.63 64.74
c=0.3 74.01 71.51 73.91 74.89 75.40 75.41 75.30 74.98 74.90 74.71
c=0.4 73.90 51.56 55.56 60.20 64.74 69.16 71.99 72.89 72.76 71.94
c=0.5 74.88 53.01 55.92 57.37 60.59 67.62 73.15 74.53 73.70 72.81
c=0.6 75.93 4.45 1.01 1.01 2.05 4.33 44.28 69.24 72.85 71.71
c=0.7 76.44 1.13 1.00 1.00 1.00 1.66 34.47 66.96 72.57 73.35
c=0.8 78.41 1.00 1.00 1.00 1.00 2.31 37.50 62.62 71.34 73.83
c=0.9 78.18 1.00 1.00 1.04 30.44 66.73 73.81 77.04 77.52 77.66

ResNet-20 on CIFAR-100
c=0.1 48.62 46.80 49.85 51.61 52.19 51.95 51.23 50.31 49.56 49.12
c=0.2 50.79 48.12 51.35 53.27 54.17 53.91 53.11 51.75 50.89 50.35
c=0.3 52.84 47.08 51.34 54.51 56.00 56.31 55.46 54.46 53.82 53.42
c=0.4 55.18 45.58 50.63 54.72 57.44 57.67 56.69 55.38 54.54 53.97
c=0.5 57.51 40.65 47.14 54.15 58.37 59.59 58.47 57.33 56.41 55.88
c=0.6 59.98 25.56 34.28 47.01 56.64 59.60 59.16 57.74 56.73 56.35
c=0.7 64.71 18.87 25.93 37.26 46.92 51.28 51.68 51.52 51.12 50.84
c=0.8 66.96 9.73 12.76 21.48 39.48 46.84 48.91 49.90 50.01 50.18
c=0.9 69.36 5.82 7.25 11.01 22.58 47.32 61.57 65.26 65.96 66.32

27

Under review as a conference paper at ICLR 2023

Table S6: Influence of different slope c with the quasi-latency N = 2.

Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256
VGG-16 on CIFAR-10

c=0.1 92.73 87.94 89.45 90.91 92.06 92.72 93.06 93.00 93.01 93.02
c=0.2 93.02 88.17 89.57 91.08 92.26 92.96 93.19 93.25 93.24 93.25
c=0.3 93.11 86.81 88.60 90.19 91.83 92.96 93.25 93.41 93.40 93.40
c=0.4 93.10 83.57 86.65 89.47 91.48 92.81 93.08 93.18 93.18 93.12
c=0.5 92.84 75.46 81.96 86.56 90.51 92.19 92.53 92.62 92.56 92.48
c=0.6 93.44 73.83 83.96 88.69 91.73 92.79 93.39 93.36 93.42 93.41
c=0.7 94.31 72.17 80.16 86.63 91.38 93.52 94.11 94.41 94.47 94.54
c=0.8 94.93 61.41 81.37 89.14 92.70 94.32 94.80 94.95 94.91 94.93
c=0.9 95.47 59.55 80.19 89.92 93.77 95.13 95.42 95.39 95.44 95.42

ResNet-18 on CIFAR-10
c=0.1 94.20 89.30 91.26 92.61 93.76 94.19 94.42 94.42 94.43 94.50
c=0.2 95.16 90.79 92.68 94.11 95.08 95.28 95.41 95.37 95.39 95.35
c=0.3 95.42 89.97 92.13 93.90 95.14 95.68 95.82 95.70 95.74 95.69
c=0.4 95.56 90.37 92.32 93.85 94.96 95.62 95.68 95.71 95.75 95.78
c=0.5 95.97 90.63 92.77 94.36 95.44 96.07 96.14 96.15 96.11 96.10
c=0.6 95.98 86.23 90.08 93.02 94.96 95.81 96.10 96.14 96.12 96.15
c=0.7 96.06 85.96 89.72 92.81 94.81 95.60 95.93 95.95 96.10 96.14
c=0.8 96.46 82.69 88.09 92.04 94.81 95.99 96.29 96.39 96.31 96.29
c=0.9 96.48 68.90 77.39 86.43 92.76 95.38 96.15 96.36 96.45 96.48

ResNet-20 on CIFAR-10
c=0.1 87.91 75.92 80.90 85.29 88.14 89.10 89.35 89.19 89.01 88.95
c=0.2 88.66 75.06 80.65 86.17 88.65 89.51 89.90 89.83 89.69 89.61
c=0.3 89.53 71.77 78.42 84.76 88.82 90.24 90.45 90.37 90.20 90.15
c=0.4 89.73 68.57 76.85 84.33 88.71 90.05 90.14 90.20 90.25 90.20
c=0.5 90.72 66.82 76.31 84.58 89.57 91.13 91.46 91.45 91.35 91.32
c=0.6 91.48 56.46 67.99 80.94 88.52 90.99 91.77 91.89 91.84 91.88
c=0.7 92.17 60.32 70.93 81.52 88.88 91.72 92.26 92.26 92.25 92.27
c=0.8 92.91 50.95 60.84 74.04 86.55 91.83 93.14 93.40 93.35 93.26
c=0.9 93.11 35.47 46.10 62.81 82.57 90.93 92.71 93.14 93.21 93.18

VGG-16 on CIFAR-100
c=0.1 70.03 54.68 58.66 62.56 66.31 69.35 70.65 71.23 71.52 71.47
c=0.2 70.73 48.02 52.87 58.53 64.34 68.35 70.66 71.52 71.79 71.76
c=0.3 71.16 48.14 53.15 58.71 64.57 68.66 70.93 71.83 72.00 71.98
c=0.4 71.43 42.45 48.41 55.32 62.68 68.34 70.84 71.88 72.17 72.07
c=0.5 72.66 36.01 43.11 51.25 59.92 67.10 70.95 72.48 72.91 73.15
c=0.6 72.73 27.72 33.97 42.64 53.60 63.91 70.07 72.61 73.26 73.35
c=0.7 73.47 19.30 25.04 33.69 46.26 60.29 69.07 72.51 73.46 73.46
c=0.8 74.12 13.40 17.44 25.41 39.23 56.54 68.80 73.11 74.18 74.41
c=0.9 75.18 22.41 28.52 38.27 51.58 64.70 71.73 74.32 75.14 75.25

ResNet-18 on CIFAR-100
c=0.1 75.38 61.23 67.17 71.52 74.64 76.20 76.50 76.46 76.29 76.30
c=0.2 76.15 61.14 67.49 72.24 75.16 76.66 77.04 76.96 76.95 76.94
c=0.3 76.60 58.29 65.68 71.51 75.28 76.96 77.07 76.99 77.00 76.99
c=0.4 77.32 55.72 62.98 70.09 74.72 77.02 77.99 77.98 77.82 77.79
c=0.5 77.08 51.01 60.03 68.72 74.59 77.29 78.04 77.97 77.99 77.91
c=0.6 77.42 41.69 53.51 64.96 73.17 76.90 77.57 77.68 77.85 77.80
c=0.7 77.93 33.40 45.77 58.96 70.54 76.15 77.53 78.02 78.02 78.08
c=0.8 78.22 1.00 18.51 2.38 6.82 43.49 74.16 78.05 78.59 78.64
c=0.9 78.22 1.00 19.97 1.71 17.25 65.52 76.47 78.10 78.26 78.23

ResNet-20 on CIFAR-100
c=0.1 59.83 32.76 42.03 52.20 59.45 62.15 62.47 62.81 62.65 62.40
c=0.2 61.36 31.66 40.76 52.05 60.08 63.17 63.63 63.42 63.07 62.90
c=0.3 62.96 23.91 32.65 45.70 58.25 63.62 64.90 64.92 64.80 64.59
c=0.4 64.32 24.88 34.52 48.19 60.47 65.14 66.55 66.72 66.46 66.41
c=0.5 65.85 18.07 25.30 39.24 56.10 64.30 66.50 67.12 67.15 67.21
c=0.6 66.75 16.58 23.81 37.84 56.00 64.97 67.53 68.09 67.85 67.71
c=0.7 68.49 10.58 15.74 28.33 49.67 63.67 67.64 68.77 68.98 69.03
c=0.8 69.03 13.51 20.17 33.17 53.63 65.21 68.59 69.32 69.51 69.45
c=0.9 69.70 7.92 11.19 18.76 36.40 59.36 67.75 69.62 69.89 70.02

28

Under review as a conference paper at ICLR 2023

Table S7: Influence of different slope c with the quasi-latency N = 4.

Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256
VGG-16 on CIFAR-10

c=0.1 93.24 68.87 83.64 89.31 92.14 93.03 93.32 93.41 93.47 93.47
c=0.2 92.68 60.15 80.03 86.37 90.43 92.17 92.62 92.71 92.75 92.71
c=0.3 93.55 47.52 83.30 88.85 92.07 93.18 93.54 93.65 93.68 93.67
c=0.4 93.94 51.52 80.67 88.13 91.89 93.20 93.81 93.98 94.03 94.01
c=0.5 94.54 65.47 83.46 90.13 93.09 94.25 94.61 94.62 94.63 94.58
c=0.6 94.95 50.73 83.07 90.25 93.37 94.61 94.91 95.06 95.05 95.02
c=0.7 95.02 32.67 79.63 89.69 93.55 94.84 95.14 95.04 95.02 95.05
c=0.8 95.52 21.08 76.27 89.69 93.73 94.98 95.47 95.53 95.61 95.60
c=0.9 95.60 11.37 75.18 88.80 93.54 95.20 95.66 95.65 95.66 95.67

ResNet-18 on CIFAR-10
c=0.1 96.01 88.01 90.96 93.34 95.12 95.86 96.02 96.13 96.16 96.16
c=0.2 96.31 86.16 89.82 93.00 95.02 95.90 96.27 96.43 96.44 96.45
c=0.3 96.15 86.52 90.78 93.84 95.48 96.10 96.12 96.22 96.15 96.19
c=0.4 96.27 87.18 90.76 93.66 95.29 95.90 96.13 96.25 96.21 96.25
c=0.5 96.38 84.76 89.29 92.89 94.99 95.82 96.27 96.33 96.36 96.36
c=0.6 96.29 79.25 85.25 90.26 94.05 95.68 96.30 96.39 96.42 96.41
c=0.7 96.68 74.78 82.30 89.16 93.86 95.89 96.46 96.60 96.66 96.69
c=0.8 96.53 73.43 80.72 88.15 93.28 95.70 96.23 96.45 96.55 96.58
c=0.9 96.67 56.79 68.00 81.08 90.61 95.08 96.31 96.53 96.52 96.59

ResNet-20 on CIFAR-10
c=0.1 91.42 66.51 75.99 84.62 89.58 91.24 91.80 91.89 91.97 92.01
c=0.2 91.82 60.30 71.25 82.44 89.05 91.79 92.27 92.36 92.35 92.28
c=0.3 91.81 60.66 72.13 82.62 89.40 91.74 92.36 92.46 92.53 92.51
c=0.4 92.07 61.96 72.57 82.27 88.68 91.45 92.38 92.46 92.55 92.55
c=0.5 92.91 44.08 54.50 71.27 86.16 91.66 93.14 93.24 93.32 93.21
c=0.6 92.96 45.87 57.82 73.17 86.66 92.13 93.23 93.36 93.29 93.19
c=0.7 93.30 41.65 54.13 70.79 85.97 91.79 93.28 93.61 93.55 93.46
c=0.8 93.33 29.14 39.35 59.35 80.90 90.65 92.76 93.14 93.26 93.24
c=0.9 93.37 15.29 21.55 41.27 75.60 90.45 92.95 93.49 93.52 93.52

VGG-16 on CIFAR-100
c=0.1 71.78 22.27 28.83 38.88 51.68 63.38 69.68 71.64 72.04 71.92
c=0.2 72.16 20.01 26.24 35.41 47.79 60.82 68.78 71.67 72.47 72.59
c=0.3 73.40 26.37 33.29 42.97 55.27 65.80 71.30 73.26 73.55 73.69
c=0.4 73.18 18.13 24.70 34.32 47.98 61.11 69.59 72.83 73.65 73.51
c=0.5 73.25 15.29 20.91 30.29 43.65 58.57 68.41 72.33 73.28 73.53
c=0.6 74.26 18.37 24.09 32.89 46.76 61.41 70.50 73.83 74.42 74.50
c=0.7 74.94 19.95 26.09 35.86 49.68 63.12 71.18 74.05 74.91 75.03
c=0.8 74.50 9.07 13.70 22.44 37.92 57.41 69.20 73.02 74.33 74.69
c=0.9 75.25 13.62 21.23 32.24 47.76 63.32 71.84 74.61 75.13 75.15

ResNet-18 on CIFAR-100
c=0.1 76.71 46.54 56.14 66.28 73.07 75.93 76.72 77.11 77.20 77.15
c=0.2 77.82 45.71 55.72 66.18 74.02 77.19 77.96 78.15 78.21 78.25
c=0.3 77.85 42.74 53.62 64.77 73.37 76.95 78.06 78.26 78.26 78.26
c=0.4 78.28 44.72 55.01 65.50 73.58 77.36 78.61 78.54 78.76 78.78
c=0.5 77.69 38.73 50.81 63.20 72.84 76.69 77.95 77.94 77.77 77.74
c=0.6 78.30 29.83 40.41 55.37 69.27 76.07 77.94 78.66 78.61 78.59
c=0.7 78.56 25.33 35.45 51.41 68.22 75.46 77.79 78.24 78.55 78.75
c=0.8 77.96 21.54 30.90 45.51 64.42 73.94 77.14 78.16 78.34 78.33
c=0.9 78.00 13.54 20.76 33.67 57.43 72.09 76.43 77.60 77.98 78.14

ResNet-20 on CIFAR-100
c=0.1 66.37 15.69 23.85 40.99 58.23 65.42 67.39 67.68 67.51 67.33
c=0.2 66.91 19.33 27.89 43.62 59.79 66.51 68.16 68.40 68.42 68.45
c=0.3 67.39 15.92 22.44 38.25 57.74 66.47 68.29 68.70 68.59 68.45
c=0.4 68.40 16.52 23.79 37.94 57.20 66.61 68.76 69.04 69.09 68.96
c=0.5 68.86 11.14 15.27 26.79 49.58 64.77 68.70 69.63 69.75 69.69
c=0.6 68.83 9.15 12.99 23.57 45.74 63.08 68.25 69.08 69.24 69.32
c=0.7 69.45 6.90 10.56 19.27 40.90 62.26 68.71 70.06 70.29 70.13
c=0.8 69.59 7.09 9.00 14.88 32.93 59.35 68.05 69.61 70.08 69.94
c=0.9 70.18 4.79 7.11 12.04 25.98 53.20 66.77 69.95 70.54 70.46

29

	Introduction
	Preliminaries
	Unified optimization framework of ANN-SNN Conversion
	ANN-SNN conversion in a unified optimization framework
	ANN-SNN conversion error analysis
	Firing Rates in SNNs and Activation Values in ANNs
	Activation Function in SNNs

	Proposed SlipReLU: Optimal ANN-SNN conversion
	The SlipReLU activation function
	Theorems on the conversion error
	Algorithm for training SlipReLU activation function in backpropagation

	Related work
	Experiments
	Comparison with the state-of-the-art methods
	Effect of the slope TEXT and effect of the quasi-latency TEXT

	Discussion and Conclusion
	Analysis of Activation Function in SNNs
	Element-wise version derivation
	Vector version derivation

	Derivation of SlipReLU activation function
	Derivation of SlipReLU activation function
	SlipReLU activation function with different shift modes
	Special cases of the SlipReLU activation function

	Proof of theorems
	Proof of theorem 1
	Proof of theorem 2

	Pseudo-code for the unified ANN-SNN conversion algorithm
	Experiments Details
	Network Structure and Training Setups
	Introduction of Datasets

	Comparison with the state-of-the-art supervised training methods on CIFAR-10 dataset
	Results on CIFAR-100 dataset and Tiny-ImageNet dataset
	Comparison of SlipReLU and SlipReLU-shift activation
	Effect of the slope TEXT and the quasi-latency TEXT
	Future study

