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Abstract

Transformer models like BERT have shown
great success in various natural language
processing tasks, but they often require a
significant amount of time and computa-
tional resources to train and deploy due
to their large size. In this analysis, we
are comparing the accuracy of four small
BERT transformers as a solution to re-
duce the computational requirements while
maintaining similar levels of performance.
Additionally, we are examining the impact
of using an MLP decoder, which seems to
have a positive effect on the accuracy for
the medium bert. We evaluate our results
on a new benchmark we call Sequence la-
bellIng evaLuatIon benChmark fOr spoken
laNguagE benchmark (SILICONE). 1

1 Introduction

Intent classification plays a crucial role in
improving the performance of models used for
spontaneous dialogue tasks. To achieve this,
it’s important to identify both the Dialog Acts
(DA) and Emotion/Sentiment (E/S) in spoken
language (Atmaja and Sasou, 2022; Dinkar*
et al., 2020). By accurately identifying the
intended action and emotional state of the
speaker, the system can avoid generating
generic responses that do not address the
user’s needs. This is a common problem in
automatic dialogue systems, where generic
responses may not provide specific solutions
to the user’s query (Yi et al., 2019; Colombo
et al., 2019)). Hence, identifying the intent
and emotional state of the speaker (Garcia*
et al., 2019) helps the system to provide more
relevant and personalized responses, leading to
an improved user experience.

In this problem, we first need to clearly
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define the challenge at hand. To define our
problematic, we rely on (Chapuis et al., 2020;
Colombo et al., 2021a). The purpose of their
paper is to achieve competitive results with
fewer parameters with hierarchical encoders.
To do so they use two data sets: Silicone and
Opensubtitles. As we do not have GPU on
our computers we can neither load important
model nor massive datasets. In this study, we
fine-tune pre-trained BERT models on the
SILICONE datasets (Godfrey et al., 1992;
Li et al., 2017; Leech and Weisser, 2003;
Passonneau and Sachar., 2014; Thompson
et al., 1993; Poria et al., 2018; Shriberg et al.,
2004; Mckeown et al., 2013) for the task
of intent classification. Then, we decide to
reproduce statistics descriptive of the paper
to ensure the right comprehension of the
SILICONE database and to compare small
pretrained transformer BERT models: with
tiny, small and medium pretrained model
and multi linear perceptron with the same
database.

2 Literature review

Different papers deal with the GPU/TPU
memory limitations and longer training times.
They try to find some solutions to overcome
these issues and then decreasing run time
without compromising performances.

Transformer distillation
In their 2019 study, (Jiao et al., 2019) tackle
this issue by proposing a novel transformer
distillation : a unique approach to knowledge
distillation (KD) of Transformer-based models
that enabled them to speed up inference,
reduce model size, and maintain accuracy.
Specifically, they developed a new KD method
that was tailored for distilling knowledge
from a large ”teacher” BERT to a smaller
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”student” tiny-BERT. This approach allowed
the abundant knowledge embedded in the
teacher model to be effectively transferred
to the student model. Furthermore, they
introduced a two-stage learning framework
for tiny-BERT that employed transformer
distillation during both pre-training and
task-specific learning stages. This framework
ensured that tiny-BERT could acquire both
general-domain and task-specific knowledge
from BERT.

Number of paramteres
On the contrary, (Lan et al., 2019) decide
to reduce the number of parameters used in
their model to lower the memory consumption.
Doing so, they get comprehensive empirical
evidence which shows that the methode they
used lead to models that scale much better
compared to the original BERT. However
these two papers rely on the database GLUE
which is not the one that we use.

The Silicone benchmark
We use Silicone which gather different
database. (Chapuis et al., 2020) also use this
base and underline that it gather both DA
and E/S annotated datasets and it is built
upon preexisting datasets which have been
considered by the litterature as challenging and
interesting. Any model that is able to process
multiple sequences as inputs and predict the
corresponding labels can be evaluated on
SILICONE. In their paper they demonstrate
how hierarchical encoders achieve competitive
results with consistently fewer parameters
compared to state-of-the-art models and they
show their importance for both pre-training
and finetuning.

3 Presentation of the databases

3.1 Global presentation

Despite a variety of small or medium-sized
tagged datasets being available (SwDA,
MRDA), they are often overlooked for evalua-
tion purposes due to the high computational
cost involved in analyzing the largest corpora
((Li et al., 2018)). To address this limitation,
we use the SILICONE benchmark, which
is introduced and described in this paper
(Chapuis et al., 2020). This is a group of

sequence labeling that integrate annotated DA
and E/S information from different sources.
The scientific community has already employed
tough and intriguing datasets that are part of
SILICONE. The latter can be used to assess
any model that can handle multiple sequences
as inputs and forecast the related labels.

Utterance DA

can you do push-ups ? Question

of course i can Inform

really ? i think that’s impossible ! Question

it’s easy . if you do exercise everyday, Inform
you can make it , too

Table 1: Samples of dialogs with the DA label
taken from the dyda da dataset

3.2 Descriptive statistics

To understand the database and to be able to
select interesting models, we realize descriptive
statistics by replicating table 2 of (Chapuis
et al., 2020).

Dataset Task Train Valid Test Labels

swda DA 1000 115 11 43
mrda DA 56 6 11 5
dyda da DA 11118 1000 1000 4
maptask N/A 20905 2963 2894 12
oasis N/A 12076 1513 1478 42

dyda e E 11118 1000 1000 7
meld s S 1038 114 280 3
meld e S 1038 114 280 7
iemocap E 109 11 31 10
sem S 61 8 10 3

Table 2: Statistics of datasets composing SILI-
CONE. The Sizes of Train, Val and Test are given
in number of conversations.

We observe that results are almost the
same compared to the one of the paper
mentionned just before. However, it is not
really the case for maptask and oasis which do
not have the same columns as other datasets
and then cannot be used in the same way.
We observe that Dydada, Dydae and Maptask
are the three bases with the highest number of
conversation. On the contrary, Swda has the
most important number of unique labels, juste



before oasis.

4 Modelisation

4.1 Data preprocessing

We only used a subset of the training data
in order to speed up the experimentation
process. We took 10% of the orignal datasets
for training, validaiton and test.

In natural language processing, tokeniza-
tion is an essential preprocessing step that
involves breaking down raw text into smaller,
meaningful units called tokens. These tokens
can then be fed into machine learning models
for further processing. For our experiment,
we utilized the Hugging Face transformers
library (Wolf et al., 2019), which provides a
range of tokenizers designed for different use
cases and model architectures. We loaded
the tokenizer and model for each model
architecture, and used them together to
process the inputs and generate predictions.
Specifically, the tokenized inputs were passed
into the model as input features, which were
then processed through a series of layers to
generate a prediction for each input. The use
of tokenization and machine learning models
allowed us to effectively analyze and classify
text data.

4.2 Encoding - Decoding

The second step of each NLP task consists
in transforming language into vectors. There
are several ways to do so, and we consider
a pre-trained transformer-based language
model : the BERT model (Devlin et al.,
2018). However, as it is time computing to
use Bert-base model, we use tiny, mini, small
and medium Bert (Bhargava et al., 2021; Turc
et al., 2019).

Model Layers Size Attention
heads

Bert-tiny 2 128 2
Bert-mini 4 256 4
Bert-small 6 512 8
Bert-medium 8 512 8

Table 3: Number of parameters of bert models

Advantages of these models :
The use of smaller models have impacts in

computation as they have a fast inference time
and a low memory usage. However, they also
have some weakness : they may not perform as
well as larger models on more complex tasks.
We can also underline that medium model
is more powerfum and more time consuming
than the mini one.

MLP decoder
The decoder used in this code is the output
layer of the pre-trained transformer-based
model, which generates the predicted labels
for the input sequences. Several papers have
conducted analyses on the performance in
Sequence labelling of different decoders like
MLP and GRU (Colombo et al., 2020). In
order to improve the performance of the
pre-trained BERT models, we define a custom
MLP decoder using the PyTorchnn.Sequential
module. Our MLP decoder consists of three
fully connected layers with ReLU activation
functions and dropout regularization (Pascual
et al., 2021). We replace the original linear
classifier layer of the pre-trained BERT
model with the MLP decoder. The resulting
model is then fine-tuned on aspecific sequence
classification task. We hope that this new
choice of decoder will introduce non linearity
into the model to capture more complex
patterns in the data and provide regularization
benefits such as dropout, which can help to
prevent overfitting and improve generalization.

4.3 Loss Function

We chose the CrossEntropy loss function as
it is well-suited for classification. Indeed, it
combines a softmax activation function and a
negative log-likelihood loss function into a sin-
gle function. The output of the model’s final
layer is passed through a softmax activation
function, which generates a probability distri-
bution over the possible classes for each input
instance. The CrossEntropy loss function then
calculates the negative log-likelihood of the cor-
rect class based on this probability distribution.
For an input X, with a softmax vector Ŷ = (p1,
p2, p3, p4), where (pi) represents the computed
probability of i being the right label for X, the
value of the loss function is:

L(X, Ŷ ) =

4∑
i

−yilog(pi)



where Y = (yi) is the vector of the real label
of X (yi = 1 only if label of X is i).

4.4 Hyper-parameters

In order to chose hyperparameters of the model,
we rely on (Chapuis et al., 2020) as they use the
same database as the one we use. Then, for the
SILICONE dataset we decided to take a learn-
ing at 0.0001, 2 epochs and 64 as batch size.
These parameters were chosen based on com-
mon practices and empirical evidence in the
natural language processing (NLP) literature.
We selected hyperparameters such as number
of epochs, batch size, and optimizer based on
a trade-off between model performance, train-
ing time, computational efficiency, and model
stability. The CrossEntropyLoss is a standard
loss function for classification tasks and was
chosen because SILICONE is a sequence label-
ing task that requires predicting one of several
possible labels for each token in the input se-
quence. These parameters were chosen for the
list of transformer models because they are rea-
sonable starting values that have been shown
to work well for many NLP tasks. However,
the optimal values may vary depending on the
specific task, dataset, and model architecture.

5 Results

5.1 Evaluation of performances

In machine learning, it is essential to evaluate
the performance of the model on unseen
data to assess its ability to generalize well
new data. To achieve this, it is common to
split the available dataset into three parts:
training set, validation set, and test set. The
training set is used to optimize the model
parameters, the validation set is used to tune
the hyperparameters and prevent overfitting,
and the test set is used to evaluate the final
performance of the model.

We evaluated the model’s performance
using the accuracy metric on both the valida-
tion and test sets, where the former was used
for monitoring the model’s performance during
training and adjusting the hyperparameters,
while the latter was used to assess the final
performance of the model on an unseen
dataset.

Figure 1: Average test accuracy for each model

On the Figure 1, we compare performances
of the four BERT models. As explained
before, the larger the pre-trained model, the
longer it takes time to run and the better
we expect accuracy. We observe that it is
true for Bert-tiny and Bert-small for whom
performances increase a lot but for the two
others models, accuracy does not increase
much whereas time to run these code increase
much more. For Bert medium, the use of the
MLP decoder increases the average accuracy
of the model. However, the accuracy gains
are generally not significant in our different
models for this specific task

Figure 2: Running average time for each model

We indeed observe on the Figure 2 that
the time increase between each model is
quite linear, which mean that the increase in
performance justify the use of Bert-mini rather
than Bert-tiny but not the use of Bert-medium
instead of Bert-small. Moreover, we observe
that for a given size of model, MLP takes
more time to run than BERT.

5.2 Performances comparison

Figure 3: Performance comparison between DA
and E/S datasets

When we look at the difference in perfor-
mance between the two groups of datasets (DA,



E/S) in Figure 3, we observe that E/S group
performs better for all models but that the
larger the model the smaller is the spread be-
tween the two groups.

6 Conclusion and discussion

In this analysis, we are comparing the accuracy
of four small BERT transformers as a solution
to reduce the computational requirements
while maintaining similar levels of performance.
Based on our findings, it seems that there is
no significant difference in accuracy between
the small BERT transformers we tested, but
there is a significant difference in training time.
The accuracy differences are not proportional
enough to the time differences that a larger
transformer implies. Our results also show
that using an MLP decoder instead of a
linear decoder does not have a significant
positive impact on model accuracy for this
task. Overall, our results show that increasing
the size of small transformers does not offer
sufficient accuracy compared to the time cost
involved.

However, there are limitations to consider
when fine-tuning small BERT transformers
for intent classification in dialog acts. First,
(Chapuis et al., 2020) find that contrary to
us, the accuracy is better for DA compared to
E/S. As the spread decreases when the model
increases we can make the assumption that
when using the full BERT model, the spead
is in the other side. Moreover, these models
may suffer from bias or lack of generalizability
to other domains or languages due to training
data limitations. In addition, they may
struggle with longer sequences and may not
be suitable for real-time applications due to
their computational requirements. Overall,
their effectiveness is dependent on training
data, dialog complexity, and computational
resources.

There are several areas of future research
that could be explored to enhance the use
of small BERT transformers in natural
language processing tasks. One idea would
be to add multimodality to current systems
(Colombo et al., 2021b; Garcia* et al., 2019).
Another promising avenue is to investigate the

effectiveness of small BERT transformers in
tasks beyond intent classification in dialog acts.
Additionally, the potential of using ensemble
models that combine multiple small BERT
transformers to improve model performance
should be explored. Another area of focus
for future research could be to develop more
efficient training methods or architectures
for small transformers that can reduce their
computational requirements while maintaining
high levels of accuracy.

Furthermore, it is essential to consider the
out of distribution generalization of small
BERT transformers (Colombo et al., 2022; Dar-
rin et al., 2023). While these models have
shown impressive results in intent classifica-
tion, their effectiveness on data that differs
significantly from the training data is unclear.
Therefore, future research should investigate
the performance of small BERT transformers
on out of distribution data, which could lead to
the development of more robust and versatile
models.
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gan Funtowicz, et al. 2019. Huggingface’s trans-
formers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771.

Sanghyun Yi, Rahul Goel, Chandra Khatri,
Alessandra Cervone, Tagyoung Chung, Behnam
Hedayatnia, Anu Venkatesh, Raefer Gabriel,
and Dilek Hakkani-Tur. 2019. Towards coherent
and engaging spoken dialog response generation
using automatic conversation evaluators. arXiv
preprint arXiv:1904.13015.

https://doi.org/10.3115/1075671.1075677
https://doi.org/10.3115/1075671.1075677

