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Learning from Demonstration (LfD) is a framework that allows lay users to easily program robots. However, the efficiency of
robot learning and the robot’s ability to generalize to task variations hinge upon the quality and quantity of the provided
demonstrations. Our objective is to guide human teachers to provide more effective demonstrations, thus facilitating efficient
robot learning. To achieve this, we propose to use a measure of uncertainty, namely task-related information entropy, as a
criterion for suggesting informative demonstration examples to human teachers to improve their teaching skills. This approach
seeks to minimize the requisite number of demonstrations by enhancing their distribution throughout the workspace. In
a conducted experiment (N = 24), an augmented reality (AR)-based guidance system was employed to train novice users
to produce additional demonstrations from areas with the highest entropy within the workspace. These novice users were
trained for a few trials to teach the robot a generalizable task using a limited number of demonstrations. Subsequently, the
users’ performance after training was assessed first on the same task (retention) and then on a new task (transfer) without
guidance. The results indicate a substantial improvement in robot learning efficiency from the teacher’s demonstrations,
with an improvement of up to 198% observed on the novel task. Furthermore, the proposed approach was compared to a
state-of-the-art heuristic rule and found to improve robot learning efficiency by 210% compared to the heuristic rule. The
scripts used in this paper are available on GitHub.

1 INTRODUCTION

In Learning from Demonstration (LfD), robots acquire skills through examples provided by human demonstrators,
offering a promising avenue for robot learning from everyday users. LfD allows users to convey task information
naturally, contrasting with direct task programming [2, 5]. Such natural interactions are particularly advantageous
for novice users, who may lack the technical expertise required for programming through conventional interfaces
or a deep understanding of the underlying systems [18].

While L{D builds upon the successes of standard Machine Learning (ML) methods, which have been applied
successfully across a diverse array of applications [18], teaching robots through human demonstrations introduces
unique challenges. These include constraints such as limited human patience and the generation of low-quality
and inefficient data [4]. The size and diversity of the training data set will determine the speed and accuracy
of learning, including its generalization characteristics. Moreover, it has been shown that data modifications
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Fig. 1. System Overview: The system uses information entropy to guide users to the areas of highest uncertainty in Learning
from Demonstration (LfD). The model is initially trained with a single demonstration, then calculates the uncertainty across
the task space. The area with the highest uncertainty is suggested to the user for additional demonstrations. This process
repeats until the robot achieves certainty in executing the task across the entire task space.

often impact generalization more profoundly than modifications to the learning algorithm itself [22]. Thus, this
paper focuses on optimizing the input (i.e., demonstration data) to the learning algorithm, rather than altering
the algorithm itself.

Human teaching strategies are typically optimized for human learners and may not align perfectly with the
needs of machine learners [13]. Nevertheless, human teachers can adjust to a specific learner’s requirements [30].
To facilitate this adaptation, we formulate the problem as a machine teaching problem, aiming to identify the
smallest set of demonstrations necessary to achieve effective learning and generalization. To this end, we introduce
the concept of “teaching guidance”, which provides human teachers with targeted instructions to influence their
selection of examples, focusing on those that are most informative for the specific learner (e.g., a robot).

We aim to help novice teachers provide demonstrations efficiently by using information entropy as the
criterion for selecting demonstrations for robot learning and generalization through the following contributions:
i) introducing task-dependent information entropy into the LfD pipeline to define uncertainty across all task
space areas, as shown in Fig: 1; ii) proposing the integration of Augmented Reality (AR) with the entropy-based
guidance system as a training framework to help novice users better identify informative demonstrations; iii)
evaluating the proposed training framework in a user study; and iv) comparing robot learning efficiency using
our information entropy approach with a state-of-the-art heuristic rule [46].

2 RELATED WORK

Teaching robots through demonstration poses challenges for lay users as they may struggle to provide demon-
strations that are both useful [30, 44] and sufficient [19, 46]. Therefore, it is important to guide these users in
providing informative demonstrations that enable the robot to learn and generalize beyond the examples provided.
Generalization of the demonstrated trajectories is one of the most important challenges in LfD systems. The
provided demonstrations are merely samples from the entire task space and are used to train a learning model
to capture the underlying latent space, rather than simply replicating them. To achieve this generalization, it
is crucial to consider both the diversity [23] and the distribution [42] of the provided demonstrations over the
task space. In other words, demonstrations should be as diverse as possible to maximize coverage of the task
space while minimizing the number of demonstrations needed (i.e., achieving efficiency). While some researchers
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have taken an algorithmic perspective to improve overall learning efficiency in reinforcement learning [38, 53],
our main focus in this work is to propose a human-centered approach aimed at improving users’ teaching skills
through training and guidance, thereby enhancing robot learning efficiency.

2.1 Teaching Guidance and Users Training

While significant research has been conducted on policy-learning methods for LfD, much less attention has been
paid to the quality of teaching and strategies to improve it [5, 16]. Effective teaching, even when instructing
humans, is inherently challenging as it requires understanding the learner’s knowledge, employing suitable
teaching strategies, and adjusting based on feedback. Teaching robots presents an even greater challenge due to
the complexity of understanding and addressing the robot’s learning requirements.

Cakmak and Takayama [11] explored the use of instructional materials to guide novice teachers in teaching
robots through kinesthetic teaching and spoken dialogue interfaces. Ajaykumar et al. [1] proposed a curriculum-
based training program for novice users, focusing on teaching users how to manipulate robots. However, both the
instructional materials and the curriculum did not address the efficiency or quantity of demonstrations. Mohseni-
Kabir et al. [37] designed an interactive system for teaching hierarchical task structures, where participants were
given explicit instructions for teaching each task. While effective in controlled scenarios, such approaches are
impractical for scaling robotics to everyday use, as it is infeasible for experts to teach every end user how to
program robots for every desired task. Instead, our approach focuses on how users teach tasks to robots without
explicit guidance from roboticists. We emphasize enabling users to optimally select a set of demonstrations that
allows robots to learn and generalize tasks effectively.

From a human social learning perspective, two critical observations about teaching guidance were highlighted
by Chernova and Thomaz [18]: (i) effective teachers maintain a mental model of learner understanding and (ii)
learners assist teachers by expressing their internal state through communicative acts, both verbal and non-
verbal. While these principles are central to human teaching, they are often overlooked in LfD systems, leaving
significant opportunities for improvement. For example, in an LfD user study, participants expressed a need for
transparency in the learner’s knowledge to better understand the robot’s learning progress [51]. Similarly, Huang
et al. [28] demonstrated how robots providing informative demonstrations to humans can enhance the human’s
understanding of robot objectives in autonomous driving tasks.

These insights inform the design of our training and guidance framework for lay users. Our proposed system
helps users understand the robot’s learning progress and the impact of demonstration quantity and distribution
on the robot’s performance. By doing so, the framework aims to minimize the time and effort required from
users while ensuring they provide a minimal yet effective set of demonstrations to achieve robust learning and
generalization.

2.2 Active Learning

Robots may become more proactive in their learning by requesting additional demonstrations [48] or seeking
clarification [12]. This is what is called “active learning” which makes robot learning adaptive by allowing the
robot to request guidance when facing uncertainties or novel situations. Unlike passive LfD, this approach is
valuable in cases with limited initial demonstrations, helping the robot learn correct actions in real-time and
reducing unsafe or suboptimal decisions [49]. However, this approach places a burden on the user to be available
for further queries, which may be impractical.

Efforts to reduce this burden have included minimizing human involvement, as demonstrated in [41, 54, 57],
who propose optimizing human time, effort and attention as a cost function. At each step, the robot must
decide whether to query the user or rely on its autonomous controller. However, these systems depend on the
availability of an autonomous controller to replace human input in certain scenarios, which may be impractical or
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infeasible for some tasks. Dass et al. [21] proposed automating parts of the data collection and asking for human
help only in ambiguous scenarios. Others tried to make the queries user-friendly to make it easier for users to
respond [6]. Trinh et al. [55] introduced a self-assessment mechanism, where robots evaluate the sufficiency
of the demonstrations they receive rather than relying on human feedback. DAgger, introduced by Ross et al.
[42], combats the distributional shift and unseen state generalization issues prevalent in behavioral cloning
by supplementing demonstrations with expert-labelled actions in newly encountered states, thus improving
robustness. Subsequent work, such as that by Zhang and Cho [56], builds on DAgger with methods to reduce the
number of expert labels required during training. Similarly, Chen et al. [17] propose an approach to streamline
reinforcement learning (RL) by enabling the RL agent to actively query for demonstrations during training. Other
methods, such as those by Dai et al. [20] and Tao et al. [52], leverage expert demonstrations.and curriculum
learning to enhance demonstration efficiency in RL. All these strategies assume access to expert demonstration
data or that the demonstrator is an expert, aiming to reduce the need for expert intervention during training. In
contrast, this paper proposes a framework for training non-expert users to provide effective demonstrations,
allowing robots to learn efficiently from users without prior expertise. Our framework operates without any
expert in the loop or reliance on expert demonstrations.

Others have proposed incremental learning approaches that enable robots to learn and refine their skills from
human demonstrations without requiring expert demonstrations or interventions [29, 50]. Mehta et al. [36]
introduced a framework, StROL, to ensure the stability and robustness of robots learning online from human input,
addressing challenges such as variability in feedback and task instability. Calinon and Billard [15] introduced
an incremental approach in which users teach robots gestures by demonstrating tasks recorded with a motion
tracking system. The robot then performs the task, and users refine robot’s skills through kinesthetic teaching.
This approach relies on the teacher to determine the location of the next demonstration after observing the robot’s
performance in various locations. However, this can be particularly challenging for novice teachers, who may
struggle to identify the locations for robot evaluation-and decide where to provide subsequent demonstrations.

To address this challenge, Sena and Howard [46] proposed heuristic rules for determining demonstration
locations in the task space. These rules include: (i) starting with one demonstration from any location in the task
space, (ii) continuing to provide demonstrations within 4 cm of the first demonstration until it is surrounded by
successful test points, and (iii) adding further demonstrations within 4 cm of successful test points in areas with
the highest number of failed test points. While these rules are effective for their specific experimental setup, they
are difficult to generalize to other tasks. To overcome these limitations and create a more general framework, we
propose using uncertainty measure (information entropy) to guide users in providing efficient demonstrations.
This approach aims to simplify the teaching process for novice users, making it more efficient and adaptable
across different tasks.

2.3 Machine Teaching

A closely related field of research that considers optimal teaching of machine learning systems is machine
teaching, which aims to design the optimal training data to drive the learning algorithm to a target model [58].
Two prominent methods within this field are the “teaching dimension model”, which represents the minimum
number of instances a teacher must reveal to uniquely identify any target concept [25], and the “curriculum
learning principle”, which presents training examples in a structured sequence, progressing from simple to
complex concepts [3]. These approaches open avenues for exploring optimal teaching strategies specifically for
robots. For instance, Khan et al. [30] compared the teaching dimension model and curriculum learning principle in
teaching a simple 1D classification problem, while Cakmak and Lopes [10] studied optimal teaching in sequential
decision tasks. Building on this foundation, Brown and Niekum [9] reformulated inverse reinforcement learning
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(IRL) as a machine teaching problem, aiming to identify the smallest set of demonstrations required to effectively
convey the reward structure of a task.

A critical component of machine teaching is selecting the most informative data points to maximize learning
efficiency. In robotics, this is analogous to identifying the most impactful demonstrations in the task space.
Selecting these demonstrations is conceptually similar to choosing exploration areas in reinforcement learning
(RL) [33] or defining the query that will maximize the information gained about the user’s preference in active
preference learning [7]. Maximizing information entropy is a popular approach that has been used in both
reinforcement learning and preference learning [34]. Typically, information entropy is used to characterize the
performance of an agent through the definition of a reward function, where the next action is chosen based on
the observed entropy maxima. Bryik et al. [6] utilize the information entropy to select the queries that achieve a
balance between information gain and the ability for the user to answer the question confidently. Haarnoja et al.
[26] proposed a soft actor-critic policy that aims to maximize expected reward while also maximizing entropy.
That is, to succeed at the task while acting as randomly as possible to increase information gain. In robot learning
from demonstration problems, the efficiency of user-provided demonstrations is a key factor in determining how
quickly and effectively the task will be learned by the robotic agent.

Building on these ideas, we formulate the problem of selecting the most efficient set of demonstrations for
a robot to learn from as a machine teaching problem. By leveraging information entropy, we aim to minimize
teaching costs and alleviate the teaching burden on users, especially novices. Furthermore, we integrate the
proposed entropy-based approach into an augmented reality (AR) guidance system. This system directs users to
areas of high uncertainty in the task space, ensuring that additional demonstrations provide maximum benefit
for the robot’s learning and generalization.

3 OBJECTIVES

The objective of this research is to enhance human teaching skills to provide efficient demonstrations to robots.
Therefore, we propose using information entropy as the criterion for suggesting to the human demonstrator the
most informative demonstrations from which the robot can learn. The research questions we aim to address are
as follows:

(1) Does information entropy improve robot learning efficiency by guiding demonstration selection?

(2) Does an entropy-based guidance system enhance users’ performance in teaching robots through demon-
stration?

(3) How much visual information should the guidance system provide to improve the user’s teaching
efficiency?

To address the first question, we compared an entropy-based guidance system with a heuristic guidance
system as proposed in [46] (described in Section 2). To tackle the second question, we incorporated the proposed
entropy-based guidance system into a training framework for novice users to assess whether their teaching skills
improved—specifically in terms of the number and distribution of provided demonstrations—after training. For
the third question, we conducted a user study comparing two visual guidance systems: 1) single point suggestion
and 2) heatmap representation of the task space’s entropy values. This comparison aims to determine how the
amount of visual information provided affects the users’ teaching efficiency.

4 PROPOSED APPROACH

In the field of LfD, determining the most effective demonstration set for a robot is a critical challenge that directly
impacts learning efficiency, generalization, and adaptability to new tasks. This problem can be formulated as
a machine teaching problem, where the objective is to identify the optimal training set that enables a robot
to approximate a target policy with the fewest possible demonstrations. To address this, we propose using
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Fig. 2. Overview of the user study procedure. (1) Baseline: The user provides asimany demonstrations as they think would
be sufficient for the robot to learn the task. (2) Training: The user is guided to the uncertain areas for three trials. (3)
Retention test: The user is evaluated on the same task without guidance. (4) Transfer test: The user teaches the robot to
move from a specific starting point to a wider goal zone without guidance.

(4) Transfer test (3) Retention test
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uncertainty measures to guide the selection of the most informative demonstrations, enabling efficient and
scalable robot learning.

4.1 Formulating the Machine Teaching Problem
Following the machine teaching framework [59], our objective is to find a demonstration set D that allows the

learner (the robot) to approximate a target policy 0* as closely as possible. The machine teaching problem can be
framed as a bilevel optimization problem as follows:

min |4 - 0" *+7|D|, (1)
D,0

where |é —0*|* quantifies the divergence between the learner’s policy 6 and the target policy 0%, and 1 is a weighting
parameter that balances the trade-off between the teaching cost |D| (the cardinality of the demonstration set)
and learning accuracy. The learner’s optimization task, defined as the inner problem, is to minimize the empirical
loss:

6 = argmin Z L(x,y,0) + 16/, )
0O (x,y)eD

where L(x,y, 0) represents the empirical loss between the true outcome y and the model output 0(x), and A is
the regularization parameter penalizing model complexity.
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The outer optimization in equation 1 is the teacher’s problem. The teacher aims to bring the learner model
0 close to the target model 6* while also using a small teaching set (|D|). The inner optimization described by
equation 2 is the learner’s machine learning problem [59]. The machine teaching problem can be reformulated as
follows:

min TeachingRisk(é) +n TeachingCost(D) (3)
D6

st. 6= MachineLearning(D) 4)

where TeachingRisk(é) is defined to quantify the teacher’s dissatisfaction with the learner’s current model. The
target model 8" may be incorporated into the teaching risk function, but the formulation does not explicitly
require a target parameter 6*. In this paper, we adapt the concept of teaching risk to focus‘on the learner’s
generalizability across a predefined task space. Additionally, the TeachingCost is defined as the cardinality of
the provided demonstrations as in [9]. By simultaneously minimizing both teaching cost and teaching risk, our
approach optimizes the efficiency of the robot’s learning process.

4.2 Incorporating Entropy to Optimize Demonstrations

To optimize the teaching cost, we propose using information entropy [47] as a measure of uncertainty to guide
the demonstration selection process. Entropy enables the identification of regions where the robot is uncertain
about its ability to achieve success. These high-uncertainty regions-are prioritized for additional demonstrations,
reducing the total number of demonstrations required while improving generalization. Mathematically, entropy
is defined by the Shannon formula as follows:

n
H(®) = " p(g:)logp(p:) (5)
i=1
where p(¢;) is the estimated probability of a specific outcome ¢; from a set of possible outcomes {1, ¢, . .., ¢n}.
High entropy values (e.g., when p(¢) ~ 0.5) indicate maximum uncertainty, making these regions prime candidates
for additional demonstrations.

Uncertainty in robot learning arises from multiple sources, including task model dynamics, variability in
learning algorithms, and inconsistencies in robot sensing and control. Each of these sources contributes to the
robot’s overall uncertainty in achieving task success. In the proposed approach, information entropy is used to
quantify this aggregated uncertainty and identify high-uncertainty regions where additional demonstrations can
improve learning efficiency. The probability p(¢;), representing the likelihood of each outcome, can be estimated
using empirical success rates; model-based methods like regression or Gaussian Processes, or heuristic-based
scoring derived from task-specific features.

4.3 Application to Task-Specific Success Criteria

In this paper, we address uncertainty arising from task dynamics and learning algorithms by defining task-specific
success criteria and evaluating performance across multiple rollouts for stochastic learning policies or a single
rollout for deterministic policies. This approach is applicable to any task with well-defined success criteria across
the workspace. Here, we focus on a task where a robot learns to navigate a constrained workspace, a scenario
common in domestic, industrial, and exploration settings. Such tasks typically involve reaching a goal location
while avoiding obstacles and remaining within a defined workspace. Success for these tasks is defined by the
following criteria:

(1) The robot’s end effector reaches the target location.
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(2) No collisions occur with obstacles in the environment.
(3) The robot remains within the defined workspace boundary throughout the trajectory.

The proposed entropy-based approach is designed to be broadly applicable across tasks where success criteria
can be explicitly defined over a workspace. In this paper, we demonstrate the method using a robot navigation
task in a constrained 2D workspace—a setting common in domestic, industrial, and exploratory applications.
While the current evaluation focuses on a simple goal-reaching task, the formulation itself is not limited to this
domain. By defining appropriate task-specific success features, the same approach can be extended to more
complex tasks such as object manipulation, multi-step planning, or dynamic environments.

In this framework, uncertainty is addressed through measurable criteria derived from the robot’s ability to
complete the task successfully. These criteria are used to estimate the probability of success in each region of
the task space and compute entropy as a measure of uncertainty. Although the learning algorithm used in our
implementation is a deterministic model (TP-GMM), the entropy-based strategy is agnostic to the underlying
policy representation and can be applied with other LfD methods, including behavioral cloning or reinforcement
learning-based imitation methods.

For our navigation task, we define success based on the following interpretable and generalizable criteria:

Fig. 1 illustrates an example task using the proposed entropy-based approach. In this example, a user demon-
strates to the robot how to retrieve items from a shelf. The objective is to minimize the number of demonstrations
while achieving effective generalization across the shelf area. After an initial demonstration, the robot learns a
model of the task, and the workspace is discretized into small regions. The robot’s performance is then evaluated
in each region based on the success criteria defined above. Given the binary nature of the generated trajectory
(success or failure) in each region, entropy for each region is calculated as follows:

H(r) = —p(r)log p(r) — (1 —p(r))log(1 - p(r)) (6)
where p(r) denotes the estimated probability of success within region r, while 1 — p(r)denotes the estimated
probability of failure within region r. This probability of success p(r) for each region is calculated as a weighted
sum of task-specific features, averaged over the number of rollouts:

SN wlx
p= === Y wi=1, )

where w represents the weights assigned to each task-specific feature x, and N,,,s denotes the total number of
rollouts. The definition of success features and desired trajectory characteristics is task-dependent. The weight
vector allows prioritization of certain features based on their relative importance to the task. For the navigation
task in this study, the estimated probability of success is computed using the success criteria defined above as
follows:

Z]r:lzl(wl ' (1 - dgoalinorm) + W2 Npeollision_norm + W3 - ninsidefnorm) (8)
Nruns ’

where dyoal_norm is the normalized distance from the trajectory endpoint to the goal, nncoutision_norm is the

normalized number of trajectory points that are not in collision with obstacles, and n;,sige_norm is the normalized

number of trajectory points that are within the defined workspace boundaries. N;,;,s is the number of rollouts.

Each feature is normalized by its minimum and maximum observed value across all trajectories to ensure

consistent scaling. The weights wy, w,, and w3 are experimentally set to w; = 0.3, wy, = 0.4, and w3 = 0.3,

p(r) =

reflecting a comparable level of significance of all task success features for this specific task.
To ensure efficient learning, regions with the highest entropy are prioritized for additional demonstrations. The
next region to receive a demonstration is selected by identifying the region with the maximum entropy value:
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Tnext = arg max H(r). 9)

r€Regions
This iterative process continues until the entropy across all regions is sufficiently low, signifying the robot’s
confidence in consistently performing the task throughout the workspace. Notably, the proposed entropy-based
approach is independent of the user’s expertise level. If initial demonstrations are of low quality, the system
can prompt users to provide additional demonstrations to support effective learning and robust generalization.
Moreover, the entropy metric is computed independently of the underlying learning algorithm and task complexity.

4.4 Visual Guidance Using Augmented Reality (AR)

To guide users to areas of high uncertainty, we utilize a Microsoft HoloLens AR headset [31]. The headset
visualizes entropy values within the task space, giving users intuitive feedback on the robot’s learning progress.
Providing the user with more insight into the learning process may lead to more effective teaching. However,
providing too much information may overwhelm and hinder the user, especially one that is untrained. To find an
adequate amount of information to be presented in the visual interface about the robot’s learning progress, we
proposed two visualization schemes (Fig. 2-2) as follows:

e Heatmap Visualization: Displays entropy values across the task space as a color-coded heatmap.
e Single-Point Visualization: Highlights only the most uncertain point where additional demonstration
is needed.

Using AR for guidance makes the system applicable to both 2D and 3D tasks, enhancing situational awareness
by overlaying feedback directly on the task, unlike the computer screen-based feedback in [46].

4.5 Task Learning

For task learning, we used the Task Parameterized Gaussian Mixture Model (TP-GMM) [14]. TP-GMMs have
been extensively used for LfD [39, 40], and they show good generalization using a limited set of demonstrations.
TP-GMMs model a task with parameters that are defined by a sequence of coordinate frames. In a D dimensional
space, each task parameter/coordinate frame is given by an A € RP*P matrix indicating its orientation and a
b € RP vector indicating its origin, relative to the global frame. A K-component mixture model is fitted to the
data in each local frame of reference. Each GMM is described by (JTk, ,ul(cj ), ,(Cj ) ) referring to the prior probabilities,
mean, and covariance matrices for each component k in frame j, respectively.

To use the local models for trajectory generation, they must be projected back into the global frame of reference
and then combined into one global model. Continuous trajectories can then be generated from the global mixture
model using Gaussian Mixture Regression (GMR); Calinon [14] provides further details. A Bayesian Information
Criterion (BIC) was used to define the optimal number of K-Gaussian components to fit the demonstrations.

In our experimental task, we used the same hyperparameters for the TP-GMM model to ensure deterministic
outcomes. This enabled us to evaluate the model with a single rollout, simplifying the computational process.
Since the system was evaluated with users in an online setting, minimizing computational time was essential to
maintain responsiveness and usability.

5 EVALUATION

To evaluate the proposed entropy system, a preliminary experiment in simulation comparing the proposed
approach and one of the state-of-the-art heuristic guidance rules is presented. It aims to study the impact of the
proposed approach on robot learning efficiency. After that, a user study is presented to explore the contribution
of the proposed approach to improving human teaching skills.
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Fig. 3. Experimental setup used in the user study.

5.1 Experimental Task

Fig. 3 represents the experimental task, in which a Kuka ITWA LBR14 robot is taught to navigate a 2D maze
by drawing a trajectory on the whiteboard from a starting zone, to a target point. Similar success criteria as
in Section 4 are used. The robot should avoid collisions with the obstacles in the workspace and it should not
go outside the workspace specified by a two-dimensional bounding rectangle (45 cm by 72 cm) drawn on the
whiteboard. The starting zone is defined by a 45 cm by 15cm rectangle. In the experiment, the starting zone is
discretized to a 4 x 14 test grid with 56 circles separated by 0.5 cm. This task was designed to resemble a general
robot navigation scenario in a constrained workspace. Its complexity was intentionally balanced to ensure it was
neither too simple—requiring no training for users to grasp how to teach it to the robot—nor too challenging for
the targeted novice users.

Participants use the joystick to teach the robot to navigate through the maze. The teaching process is finished
if the robot can generatea “successful” trajectory for 90% of the points in the starting zone to the goal position.
The success criteria of the trajectories are similar to what is defined in the example task in Section 4. Microsoft
Hololens is used to overlay a geometrically accurate starting zone on the real environment, offering user feedback
on the robot’s progress and guiding efficient demonstration, as shown in Fig. 2.

A modified version of this task was used in the transfer test for evaluating the user’s performance in new tasks.
The training task was flipped; the goal point became a starting point and the starting zone became the goal zone.
This goal zone was shortened to a 4 x 8 test grid, as shown in Fig. 2.

5.2 Performance Metrics
5.2.1 Quantitative measures.

(1) Task Completion Time: We measured the total time, ¢, required by the user to complete the experiment
task.

(2) Number of Demonstrations: We measured the number of demonstrations |D| that achieve at least 90%
coverage of the starting zone.
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Fig. 4. The average number of demonstrations and robot learning efficiency for both the entropy rule and the heuristic rule
with planner and expert demonstrations.

(3) Teaching Efficacy: Efficacy refers to the ability to perform a task to a satisfactory or expected degree.
Here, we used the teaching efficacy defined in [46], which is the ratio between the successful points,|I|,

and the total number of tested points, |I|, (€ = %)
(4) Teaching Efficiency: Efficiency in any given application is often context-dependent; however, typically
it is desirable to minimize the total number of demonstrations required because this is correlated with
both the time spent teaching and the space needed to store data. Here, we used the teaching efficiency
defined in [46], which is the efficacy normalized by the number of the provided demonstrations, |D]|,
€

= @ (10)

n

5.2.2 Qualitative measures.

(1) NASA Task Load Index (NASA-TLX): This questionnaire [27] is composed of six questions asking the
participants to rate their perceived task load in six different aspects on a 21-point scale.

(2) System Usability Scale (SUS). This scale evaluates the usability of the proposed training system. The
SUS [8] questionnaire includes ten questions asking the participant to rate different aspects of the system’s
usability on a 10-point scale. An overall score is then calculated.

5.3 Preliminary Experiment: Guidance Rule in Simulation

In this experiment our goal is to compare the entropy-based guidance rule with the heuristic guidance rule
proposed in [46] (described in Section 2). Various factors influence robot learning and generalization, including
the quality, quantity, and distribution of provided demonstrations. Here, we specifically focus on the guidance
rule that governs the “number” and “distribution” of provided demonstrations, while keeping all other factors
constant. To ensure consistent demonstration quality, we employed the motion planner RRT-Connect [32] to
generate demonstrations for both guidance rules. Trajectories were generated from all points within the starting
zone to the goal point and saved for the experiment. Additionally, to simulate a real-case scenario involving
human demonstrations, we collected expert demonstrations, performed by one of the paper’s authors, for all
points within the starting zone of the experimental task shown in Fig. 3.

For the comparison study, for each guidance rule, we developed a Python script to guide the robot’s learning
process. The experimental setup was simulated with RViz, the standard tool for visualization and interaction
with robot applications implemented in ROS. The script initially proposes a point in the starting zone, and its
corresponding saved trajectory (either from the motion planner or expert demonstrations) is retrieved. Then,
the TP-GMM model is trained by this trajectory and tested with all points in the starting zone to identify the
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Fig. 5. Performance metrics for comparing heatmap and single-point groups in baseline, retention, and transfer tests.

successful and failed trajectories. Using the guidance rule; the script selects the next point in the starting zone
for the next demonstration. These steps are repeated until the learning model generates successful trajectories
for 90% or more of the points in the starting zone. The same procedure is repeated 56 times for both guidance
rules until every point in the task space has been tested asthe initial point. Finally, the two guidance rules are
compared with respect to the number of demonstrations needed to generate successful trajectories for 90% or
more of the starting zone.

5.3.1 Hypotheses.

The experimental hypotheses are chosen to test whether robot learning efficiency, Equation 10, improves using
the proposed approach compared to the heuristic rule. The alternative hypothesis is formally defined as:

o H1(a): For robot learning using planner demonstrations, learning efficiency using the entropy guidance
rule is significantly higher than learning efficiency using the heuristic rule.

e H1(b): For robot learning using human expert-generated demonstrations, learning efficiency using the
entropy guidance ruleis significantly higher than learning efficiency using the heuristic rule.

5.3.2 Results.
Fig. 4 shows the mean and 95% confidence interval of the number of demonstrations and robot learning efficiency
in 56 trials using the heuristic rule and entropy rule with both expert and planner demonstrations. Overall,
using the entropy rule achieves a higher robot learning efficiency than the heuristic rule, for both planner
and expert demonstrations. A 2x2 Bayesian ANOVA was conducted to investigate the impact of a) guidance
rule, and b) demonstration type on robot learning efficiency. Both the guidance rule (BF;y = 7.43 X 10'%) and
demonstration type (BFjy = 2.82 x 10'%) show a large effect on robot learning efficiency. In addition, robot
learning efficiency using either guidance rule strongly depends on the demonstration type (the quality of the
provided demonstrations) (BF;y = 184.11). These results support H1(a) and H1(b).

Interestingly, a slight decrease in the demonstration’s quality (i.e., from the planner to the expert demonstrations)
causes a drastic decrease in the robot learning efficiency by 200% using the heuristic rule, while using the proposed
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entropy rule the efficiency decreased by only 33.9%. This shows the importance of the guidance rule in robot
learning from demonstrations and its contribution to the robot learning efficiency which cannot be compensated
only by improving the demonstration quality. Thus, it is important to guide the users in providing an efficient set
of demonstrations from which the robot can learn.

5.4 User Study Experiment

From the simulation experiment results, we found that the entropy guidance rule significantly improves robot
learning efficiency. Therefore, we utilized this rule in a training framework for users to guide them to provide an
efficient set of demonstrations for the robot. Fig. 2 shows an overview of the user study procedure as follows:

(1) Baseline: The user provides as many demonstrations as they think would be sufficient for the robot to
generate successful trajectories from any point in the starting zone to the goal position. The provided
demonstrations are used to train a TP-GMM model and evaluate the performance which is provided
back to the user via the Hololens as visualized feedback. The blue circles represent successfully learnt
trajectories while the red circles represent failed learnt trajectories. The baseline phase represents the
initial interaction of the users with the robot.

(2) Training: The user provides an initial demonstration, and then the learning model is evaluated across the
starting zone. The entropy is calculated in each area and visualized through the HoloLens as a heatmap
or single-point, according to the training group. The user provides an additional demonstration in the
highest entropy point and the entropy visualization is updated, and so on. This continues until the robot
learns successful trajectories for 90% or more of the starting zone. Each user was trained for three trials.

(3) Retention Test: This step is similar to the baseline to evaluate the performance after training.

(4) Transfer Test: The user teaches the robot to move from a specific starting point to a goal zone without
guidance, described in Section 5.1.

The users were asked to fill in the NASA-TLX questionnaire [27] after their baseline and retention tests to see
the effect of the training on their perceived task load. They were also asked to fill in the SUS questionnaire [8]
after the training to get their subjective evaluation of the proposed training system. Lastly, a semi-structured
interview was conducted before and after training to inquire about users’ reasoning behind their selection of the
number of provided demonstrations and their respective placements. These interviews were conducted with the
intention of delving into users’ mental models of robot learning before and after training.

5.4.1 Hypotheses.
The experimental hypotheses are chosen to test whether the user’s teaching skills measured through robot
learning efficiency are significantly improved using the proposed approach. They are defined as:

e H2: Robot learning efficiency will be significantly improved after training the human teacher using the
proposed approach (over both groups).

o H3: The heatmap visualization group will achieve a significantly higher improvement in robot learning
efficiency than the single-point visualization group on the retention test (i.e., same training task).

e H4: The heatmap visualization group will achieve a robot learning efficiency that is significantly higher
than the single-point visualization group on the transfer test (i.e., on a novel task).

The user study is a between-participants design, so each participant is assigned to one group: either the heatmap
group or the single-point group. A priori power analysis was conducted using G*Power version 3.1.9.7 [24]
to determine the minimum sample size required to test the study hypotheses. Results indicated the required
sample size to achieve 80% power for detecting a medium effect size (Cohen’s f = 0.3), and a type I error rate
a = 0.05,is N = 24, or 12 participants per condition. Accordingly, the results reported below are for a population
of 24 participants (14 male, 10 female; ages p = 24, o = 4). We recruited participants for our user study through
advertisements posted on the University of British Columbia (UBC) campus and social media. Prior to conducting
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the study, we obtained research ethics approval from UBC’s Behavioural Research Ethics Board (application ID
H20-03740-A001). We obtained informed consent from each participant before commencing the experiment.
54.2 Results.

Quantitative Measures

Fig. 5 depicts the mean and 95% confidence interval for all performance metrics across baseline, retention,
and transfer tests for both the heatmap and single-point groups. Overall, there is a noticeable improvement in
all performance metrics during the retention and transfer tests when compared to the baseline performance.
Efficiency improved by 140% and 164% from the baseline to the retention for both heatmap and single-point
groups, respectively, and by 146% and 198% from the baseline to the transfer test for both heatmap and single-point
groups, respectively. Interestingly, users’ performance improved more in the transfer test thanin the retention
test compared to their baseline performance. Given that the efficiency metric encapsulates both the number of
demonstrations and efficacy, the statistical analysis was centred on efficiency.

Bayesian mixed analysis of variance (ANOVA) showed a strong impact of the training on efficiency when
comparing the baseline to the retention test (BFj, = 1387.16); supporting H2. The same analysis showed
inconclusive results on the impact of the visualization type on efficiency (BF;o = 0.4); no support for H3 and H4.
Furthermore, the Bayesian independent samples t-test showed inconclusive results on the comparison between
the transfer test efficiency in both heatmap and single point groups (BFjy = 0.60). This result highlights the
effectiveness of the proposed entropy-based guidance system, irrespective of how the entropy information is
visually presented to the user.

We also investigated the distribution of the demonstrations over the task space across the baseline, retention
and transfer tests. This shows the different strategies users adopted to distribute their demonstrations over the
task space. Fig. 6 shows a heatmap representing the number and locations of the provided demonstrations across
different stages of the experiment for both heatmap and single-point groups. The number of the provided demon-
strations notably decreased from the baseline to the two tests. The median number of baseline demonstrations
was 6 and 7, respectively, for the heatmap and single-point groups, decreasing to a median of 4 in the retention
and transfer tests for both groups. Compared to the baseline which has a higher number of demonstrations from
points in the interior of the start zone, the retention and transfer test demonstrations are concentrated at the
corners. This highlights the change in users’ strategy for selecting the number and locations of demonstrations.

The proposed approach implicitly addresses the issue of low-quality demonstrations from novice users. If a
user provides low-quality demonstrations, the system will request additional demonstrations to improve task
learning and generalization. For instance, Fig. 7 illustrates the pattern of robot learning efficacy for each provided
demonstration from three different users along with the distribution of the demonstrations over the starting zone.
The first user provided high-quality demonstrations, so only three demonstrations were sufficient for the learning
model to generalize across the entire task space. The second user provided mixed-quality demonstrations, hence
a higher number of demonstrations was required to achieve generalization across the task space, with an efficacy
of 96%. The third user provided low-quality demonstrations, thus the learning model only generalized across 43%
of the task space with six demonstrations. Here, we used task learning performance as a measure of quality, as
proposed in our previous paper [44].

Qualitative Measures
Perceived Task Load: Fig. 8 illustrates the box plots for both the heatmap and single-point groups following the
baseline and retention tests. It shows that both effort and frustration have decreased after training in the heatmap
group while only the effort decreased in the single-point group. In contrast to the quantitative measures, users’
perceived performance after training was lower than before training in both groups. In general, the task load
metrics statistically indicate no significant difference before and after the training. This suggests that the training
did not have an adverse impact on users’ perceived task load or lead to overwhelming experiences.

ACM Trans. Hum.-Robot Interact.



How Can Everyday Users Efficiently Teach Robots by Demonstration? « 15

Baseline Retention Test Transfer Test
1 2 0 3 1 0 1 0 1 n 10
2 1 1 0 0 0 1 1 2 1 0o 2
2 0 1 0 0 : HEl : o 0 1 o "
1 0 0 1 0 0 0 0 o |2 0o 1
2 “ 0 2 0 0 0 0 0 0 0 2
1 0 0 2 0 0 0 0 2 1 2 0 6
1 2 0 0 0 0 0 1 1 1 1
“ 1 2 1 0 2 1 2 0 1 n .
0 1 2 0 0 0 1 0
0 1 2 1 1 0 0 0
5 0 0 2 1 1 0 0 2
4 2 0 0 0 0 0 2
(a) Heatmap group
Baseline Retention Test Transfer Test
0 3 9 3 4 2 1
1 2 2 1 1 0 2 S - SEERN - § B
0 1 0 1 0 0 0 1 L B 40 1
1 1 1 1 0 0 0 0 47 o 0 o "
0 2 0 1 0 2 0. N oo W 0
2 1 2 0 0 0 0 1 0 0 1
1 1 1 0 0 1 0 0 o 1 0o 0 6
El o 2 0 0 0 0 o 1 2 o
1 El o 1 1 0 L 1IN 1 1
1 1 0 2‘ 0 0 o 0 n n 4
1 0 - 0 N 0 0 0
1 0 0 1 1 0 0 2
0 2 0 1 0 1 2

(b) Single-point group

Fig. 6. The number and distribution of the demonstrations in the starting zone for the baseline, retention, and transfer tests
for both the (a) heatmap group and (b) single-point group. Users provided a high number of demonstrations and distributed
them across the starting zone in the baseline. After training, they provided a lower number of demonstrations focused on the
corners.

System Usability: The usability score for the heatmap group is (M = 75.21;95%CI, 64.99t085.42), while in
the single point group (M = 62.71;95%CI, 55.89t069.53). According to the global benchmark for SUS created
by Sauro and Lewis through surveying 446 studies spanning different types of systems, the mean given score
is 68 + 12.5 [45]. When comparing this global benchmark mean score with the scores obtained from the two
training groups, the observed differences were inconclusive (Bayesian one-sample t-test BFyy = 0.75, BFjy = 0.89,
respectively). This suggests that both training approaches are usable from the user’s perspective.
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Fig. 7. An example of high-, mixed-, and low-quality demonstrations, illustrating their relationship to learning efficacy and
their distribution across the task space.

Interviews: Participants employed diverse strategies when determining the number and placements of
demonstrations during the baseline phase. Among the 24 participants, 19 opted to establish a grid of points,
strategically encompassing both the corners and intermediary positions. As articulated by one participant: “Well,
overall, I just wanted to get-the corners and then a few different points along the diagonals in between. I just felt like
it kind of covers the majority of the grid”, which is reflected in Fig. 6. In contrast, two other participants opted
for a completely random selection of demonstrations, favoring a higher count of demonstrations (18 and 23) to
ensure comprehensive coverage of the starting area. Another participant thought that providing a dense set of
points would allow the robot to learn the distance between the points in the starting zone and generalize well to
other areas. Another participant provided three demonstrations that formed a triangle. They thought that the
two points forming the base of the triangle would specify the width for the learning algorithm to interpolate in,
while the third point would specify the height for the algorithm.

After training, the participants approached the task differently and efficiently thought about the number and
distribution of the provided demonstrations. Almost all participants provided an average number of demon-
strations in retention equal to the average number of demonstrations they provided in the training, regardless
of the training condition. As one participant said, “After the second training trial, I realized that I don’t need a
really large number of points as long as I pick the four corners of the rectangular area”. In addition, there was an
agreement from several participants in the heatmap group that visualizing the generalization area of each point
in the training was very helpful in deciding the location of the next demonstration in the retention test. Some
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Fig. 8. Participants response to NASA-TLX [27] questions after baseline and retention test. There is no significant difference
before and after the training.

participants counted the number of generalized points around one demonstration in the training and tried to
distance the demonstrations in the retention by that number of points.

6 DISCUSSION

This study demonstrated that a few trials of interactive training and guidance for lay users significantly improved
their teaching skills, which in turn enhanced robot learning and generalization efficiency. Notably, this learning
and generalization occurred online, using demonstrations from teachers with no prior knowledge of robotics or
machine learning algorithms. By using the proposed training framework, users develop an understanding of
what demonstrations the robot requires tolearn efficiently, without necessarily understanding how the learning
process occurs. Thus, the overarching goal of this work is realized by decreasing the teaching cost through
guiding users to provide a small number of demonstrations that achieve wider generalization.

From the preliminary experiment results and statistical analysis, there is support for H1(a) and H1(b). Robot
learning efficiency using the information entropy rule was significantly higher than using the heuristic rule
with both expert demonstrations and motion planner demonstrations. Furthermore, using the same task as
in [46] but with a larger scale, we found a failure case for the heuristic rule: it happens in 61% of the total
experiment trials. This failure case happens whenever all the surrounding points are demonstrated and the
learning algorithm performs poorly in learning and generalization. This failure case is expected to be even worse
with novices who tend to provide low-quality demonstrations [2] that are negatively affecting robot learning and
generalization [44].

The proposed entropy-based approach has the potential for generalization to a wide range of tasks where
success criteria can be defined across a task workspace. In complex scenarios such as object manipulation, multi-
agent coordination, or dynamic obstacle avoidance, entropy can quantify uncertainty arising from task-specific
factors like grasp stability, coordination reliability, or environmental dynamics. By defining measurable success
criteria for each task, entropy identifies high-uncertainty regions where additional demonstrations are most
informative. For instance, in object manipulation, entropy can prioritize demonstrations in regions where stable
grasps are uncertain due to variations in object geometry or surface friction. Similarly, in dynamic obstacle
avoidance, entropy can guide attention to areas with high variability in obstacle motion patterns. This flexibility
makes the entropy-based approach a valuable tool for optimizing demonstration selection in diverse and complex
robotic tasks, reducing teaching costs while improving generalization. While the entropy-based strategy is
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theoretically applicable to any LfD algorithm that produces success/failure outcomes, further empirical validation
is needed to confirm its robustness across different learning models and task domains.

Furthermore, to ensure scalability in more complex tasks, an exhaustive evaluation of all possible starting
regions is not necessary. Efficient heuristic-based or sampling techniques can be employed to identify representa-
tive high-uncertainty regions, significantly reducing computational overhead. By concentrating demonstrations
in these targeted areas, the proposed approach achieves scalability without compromising its generalization
benefits, even across larger or more intricate task spaces.

The user study design effectively captures users’ initial performance with the robot before any training. By
providing feedback on their performance, the need for training is emphasized. During the training phase, users
receive feedback on the robot’s generalization performance after each demonstration. This helps them understand
how the distribution of their demonstrations influences the robot’s learning. Evaluating the robot’s overall
performance across the entire task space helps avoid the biases that can arise from assessing only a subset of
tasks, as noted in [46]. Because each user completes three training trials, they may become more familiar with
the robot’s learning process and the way its policy evolves. As a result, it can be difficult to fully separate this
learning effect from the impact of the proposed guidance framework without additional experiments or analysis.
In future work, incorporating control groups or exploring different feedback modalities could help disentangle
these effects and provide a clearer understanding of the guidance framework’s contribution to improved teaching
performance.

From the user study results and statistical analysis, there is support for H2 but no support for H3 or H4. Both
training groups showed a significant improvement in learning efficiency from the baseline to the retention and
transfer tests. This underscores the importance of training novice users before teaching the robot, consistent
with prior work [11, 16]. Additionally, this study shows the benefit of the proposed entropy guidance system
regardless of the visualization used in training. Notably, both training groups achieved similar performance in
retention and transfer tests. This is because most participants had a preconception of creating a grid of points to
cover the starting zone to help the robot learn better, as shown in Fig. 6. Subsequently, post-training, participants
recognized the feasibility of achieving high efficiency with a reduced number of demonstrations, contrary to their
initial assumptions. As shown in Fig. 5, the efficacy before and after training is similar. This finding contrasts with
previous work [46], which found that most participants tend to underestimate the number of demonstrations
required to teach the robot effectively.

Regarding the usability of the guidance system, the heatmap group reported a higher SUS score than the
single-point group, while both training groups showed an inconclusive difference with the global mean score.
We posit that this is because participants in the heatmap condition had access to a larger amount of information
during training than the single-point group. The heatmap visualization provided feedback on robot learning
progress and an efficient way for deciding their next demonstration. Only one participant commented that they
wished to have a highlight of the highest uncertainty point in the heatmap. This is because they sometimes found
the colors in the heatmap were very close to each other, making it hard to define the highest uncertainty point.
Participants in the single-point group did not have access to the robot’s learning progress and therefore had to
depend on the demonstration point suggestions to find a pattern on how to efficiently teach the robot.

A surprising observation emerged concerning users’ perceived performance post-training. Despite a significant
quantitative improvement in performance, 8 out of the 24 participants reported a decline in perceived performance
compared to before training. This discrepancy was investigated by analyzing their interview data related to
their approach to determining the number and locations of demonstrations. These participants experienced
significant shifts in their strategies after training, which impacted their confidence and perception of performance.
For instance, one participant provided 16 demonstrations in the baseline. After training, they provided four
demonstrations in the retention test and remarked in the interview, T just used four points, although I'm not
sure I covered 90%, I don’t know.” Others changed their strategies from dense point sets to a more distributed
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approach, albeit with skepticism. These findings suggest the potential need for adaptive training tailored to
individual participants’ requirements, especially for those with strong pre-training strategy convictions, aligning
with previous research [44].

Another interesting observation is that one participant without prior knowledge of robotics realized the impor-
tance of the demonstration’s quality in conjunction with the number and location of the provided demonstrations
for robot learning and generalization [35]. They tried different starting points in the training and then realized
that providing smooth demonstrations without abrupt corners allows the robot to learn and generalize faster
with a smaller number of demonstrations, as shown in Fig. 7. However, it is challenging to extrapolate that all
participants would naturally arrive at this realization without proper training, as in [43]. This underscores the
necessity for an instructional framework to guide participants in offering demonstrations of both high quality
and optimal efficiency, echoing the emphasis of previous research [2].

7 CONCLUSION AND FUTURE WORK

Toward our goal of achieving efficient robot learning and generalization, we proposed using information entropy
as a criterion for guiding human teachers to provide the next demonstration that achieves the highest efficiency.
This proposed approach reduces the teaching dimension by suggesting the minimum number of demonstrations
that achieve the highest learning efficiency. The approach was validated in two experiments to explore its
contribution to both efficient robot learning and generalization, as well as improving novices’ teaching skills. We
found that the proposed approach significantly improves robot learning efficiency compared to the state-of-the-art
heuristic rule. Moreover, information entropy was integrated into two training schemes and tested in a user study.
The results show a significant improvement in robot learning efficiency after training in both groups.

We believe that the results of this paper open up several directions for future research. The significant
improvement in efficiency by merely guiding users to strategically distribute the demonstrations suggests that
guiding users to provide high-quality demonstrations;as in [43], along with their good distribution, could further
boost learning efficiency. It would also be interesting to test the proposed approach in facilities with real users
without controlling the conditions. For instance, users would have the freedom to decide how long they need
guidance to ensure they provide the most beneficial demonstrations to the robot.
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