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Abstract

Diffusion Policies have become a popular framework for robot visuomotor learning
due to their superiority in capturing multi-modal distributions. However, the typical
UNet and Transformer backbones for the policy network are computationally expen-
sive, making them prohibitive for deployment on real robot systems that require real-
time decision-making. In this paper, we address the challenge of efficient policy gener-
ation through a new architecture design. We explore the usage of structured state space
models (SSMs), specifically the Mamba architecture, in helping diffusion policy infer-
ence speed. We further accelerate the diffusion process by starting the sampling from
a Gaussian distribution around the previous action chunk. We validate our model on
Adroit, MetaWorld, and Dexart environments, and show that it has 95% fewer parame-
ters than the diffusion model with Unet backbone and consumes 85% less computation,
leading to 3.3x inference speedup yet achieves similar performance on long-horizon
tasks.

1 Introduction

Given large amounts of teleoperated data and human demonstration data, learning from demon-
stration is a very common method for robot visuomotor learning to avoid learning from scratch.
However, the execution plan for a robotics task can often have more than one solution, making
the demonstration dataset inherently multimodal. Diffusion models are renowned for capturing
multimodal distributions underlying image data and generating diverse images sampled from this
distribution in vision applications. (Chi et al., 2023) successfully used diffusion models for implicit
behavior cloning and achieved impressive performance on visuomotor control both in simulation
and real-world robot manipulation tasks. However, diffusion policies have high computation cost
due to the iterative sampling mechanism in diffusion models, causing them to suffer from infer-
ence latency. Since inference speed is critical for robotic tasks in order to make real-time control
decisions, (Chi et al., 2023) remedied this latency through receding horizon control to keep the
decision-making module on par with the robot execution frequency. A more efficient model with
low policy generation latency is an urgent necessity.

There have been various efforts to make diffusion models more efficient and scalable. (Peebles
& Xie, 2023) explore a new class of diffusion models using the transformer architecture Vaswani
et al. (2017) to replace the commonly used U-Net backbone. (Dasari et al., 2024) further validated
that without sufficient hyperparameter tuning, diffusion transformers usually suffer from unstable
training. Recently, structured state space sequence models (SSMs) have been proposed for modeling
long-range dependencies (Gu et al., 2021; Fu et al., 2022). These models can be interpreted as a
combination of RNNs and CNNs. They keep a latent state representation as a memory bank and
recurrently update it according to a state equation while using a kernel to convolve over the input
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sequence. (Gu & Dao, 2023) then designed an end-to-end neural network architecture, Mamba,
which was further modified for discrete modalities, allowing the model to selectively propagate
or forget information depending on the current input token. SSMs have linear time complexity
compared to the quadratic attention mechanism in transformer models, leading to faster inference.
Further, the authors designed a hardware-aware parallelized algorithm, making it suitable for time-
sensitive tasks like rapidly adaptive robot control, which has stringent requirements for real-time
long-horizon control and planning.

Thus, we propose FastDP, a diffusion policy model that adapts the end-to-end SSM architecture with
efficient attention modules for robotic behavior cloning, aiming at better performance and faster
inference speed. We also introduce historical actions as the sampling prior for the diffusion process,
further boosting the sampling speed. To summarize, our main contributions are:

1. We propose FastDP, a diffusion policy model with a state space backbone, which reduce the
computational complexity by 85% compared to UNet backbone.

2. We further accelerate the inference speed 1.7 times through starting the diffusion sampling from
a Gaussian distribution around the last chunk of actions instead of pure noise.

3. We prove that the architecture has robust performance on complex robot manipulation tasks.

2 Preliminaries

State Space Models. State space models (SSMs) are a classic in control theory for modeling
dynamic systems via state variables. Modern advances in deep learning have revived them for
sequence modeling, beginning with the Structured State Space Sequence (S4) model introduced by
(Gu et al., 2021), which leverages a diagonal plus low-rank parametrization to achieve an efficient
convolutional representation of long sequences. SSMs model continuous sequences as follows:

h'(t) = Ah(t) + Bz(t), y(t) = Ch(t).

By applying zero-order hold method - holding the value of each discrete sample constant until the
next sample is taken, and with a step size A, the state matrix A and B are converted into an ap-
proximation matrix A = exp(AA)and B = (AA)~!(exp(AA) —1I)- AB, therefore the discrete
sequences can be modeled as

h(t) = Ah(t — 1) + Bz(t), y(t) = Ch(t).

In this recurrent representation, the state matrix A and B are dynamic. A convolution kernel K
is used to convert it into a convolutional representation, which can be computed very efficiently.
Follow up work Mamba (Gu & Dao, 2023) further improves upon S4 with selective scan algorithm
parallelizable on hardware.

Compared to the O(N2d) complexity of transformer models, SSMs can reduce the complexity to
O(1) at inference time, thus gaining popularity in fields where inference speed is crucial. However,
while previous work often compares SSMs with transformers, SSMs have been somewhat disjoint
from attention mechanisms until (Dao & Gu, 2024) showed the connection between the two — for
the SSM y = Mz, there is a lower-triangular mask L such that M = L o (CBT), which, if you
rename (C, B, z) — (Q, K, V), is exactly causal linear attention:

Y=(LoQK")V.

Essentially, state space models like Mamba Gu & Dao (2023) and other variants can be treated as a
kind of linear attention-based method, and are naturally faster than softmax attention-based models
like transformer.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a type of
generative model that can capture the data distribution g(x) from a dataset by learning an inverse
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process of the data gradually corrupted to pure noise. Diffusion models define (1) a forward noising
process that gradually injects Gaussian noise over T' discrete steps:

q(xe | xe1) = N (x4 V1= Brxi_1, i),

where {3:}7; € (0,1) is a noise schedule. The forward process is a fixed Markov chain, by
multiplying along the chain, the marginal over x; admits a closed-form:

q(x¢ | x0) = N (x¢; Var xo, (1 — ay)I),
where oy = 1 — By and oy = HZ:1 as. (2) areverse process learnt to denoise x; and recover the
original data x:

po(xe—1 | x¢) = N (x¢—1; po(xe,t), So(xe, 1)),

where 119(x¢,t) and 3y (x;, t) are the mean and covariance matrix at each step ¢. The model training
is cast as minimizing a variational bound which, through careful choice of parameterization, reduces
to a simple regression objective against known noise terms e€:

L= IEt,xo,e [HG - EO(Xtat>||2]a

where €y is the noise prediction network. In the conditional case, an extra conditioning variable c
can be added where the reverse process and the noise prediction network become pp(x:—1 | X¢, €)
and €p(x¢,t,¢).

3 Related Work

Diffusion Based Policy Learning. Given the advanced capability of capturing multi-modality,
diffusion-based methods have been popular for decision making. Decision Diffuser (Ajay et al.,
2022) diffuses over the states and trains an inverse dynamics model for action extraction, while Dif-
fuser (Janner et al., 2022) diffuses over both the states and actions. Diffusion Policy (DP)(Chi et al.,
2023) instead diffuses on actions conditioned on states and focuses on robot deployment details.
Building on top of these, Diff-Control (Liu et al., 2024) demonstrates that diffusion-based policies
can acquire statefulness through a Bayesian formulation facilitated by ControlNet. More recently,
to enhance visual generalization, the 3D Diffusion Policy (DP3) (Ze et al., 2024a) incorporates 3D
point-cloud representations, furthur improving performance.

A brief comparison of diffusion-based policy learning frameworks is listed in Table 1. Our work is
buit on top of the 3D diffusion policy but replace commonly used Unet and transformer architecture
in the diffusion models with SSMs.

Table 1: A comparison of diffusion-based policy learning frameworks

Method Diffusion Model Characteristics

Receptive field applied to

Diffuser pat, ..., 8t47—1, 0471 | 5¢)

(Janner et al., 2022)

ensure local consistency.

Decision diffuser D(Sta1s- -y Star—1 | Sty 9t) Inverse dynamics for future
(Ajay et al., 2022) action selection.

Diffusion policy plag,...,at47-1 | St,--.,8t—r+1) Deployed on real robots.
(Chi et al., 2023)

3D diffusion policy p(aty ... ae4r—1 | Sty St—r41) Introduce point cloud
(Ze et al., 2024a) modality.

Diff-Control plag, ..., 8¢t) Use ControlNet(Zhang

(Liu et al., 2024)

et al.) as policy diffusion
backbone.
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Decision Making using State Space Models. Diffusion-based methods often suffer from slow
inference. In order to meetrobot execution speed requirements, diffusion policy works like (Chi
et al., 2023) tend to exclude observation features from the denoising process and use extra tricks
like receding horizon control. Since the number of iterative sampling steps has the most impact
on inference speed, developing more computationally efficient network architectures is a fruitful
research direction.

Recently, there are an emerging number of works that start to use state-space models for decision
making, either through imitation learning or reinforcement learning. (Jia et al., 2024) presented
Mamba Imitation Learning (MAIL), using Mamba to mitigate the representation overfitting prob-
lem that transformers often suffer from. The authors explored encoder-only and encoder-decoder
architecture and further verified the capability of MAIL in leveraging multi-modal inputs. Mamba
policy(Cao et al., 2024a) also replaces the convolution block in Unet with Mamba in the imitation
learning framework and showed improvement in inference speed. In the offline RL setting, Mamba
decision maker(Cao et al., 2024b), Decision Mamba(Lyv et al., 2024) and Decision Mamba-Hybrid
(DM-H)(Huang et al., 2024) use Mamba to gather features at different granularity or hierarchically
generate subgoals.

A brief comparison of policy learning frameworks that uses state space models is listed in Table
2. Our work has similar architecture but focusing on the introduction of warm up tricks to further
increase the inference speed.

Table 2: A comparison of state space model accelerated policy learning frameworks

Method Setting SSM input Characteristics

MAIL IL sand a Compare between encoder-

(Jiaet al., 2024) only and encoder-decoder
structures.

Mamba policy IL a Retain Unet structure, re-

(Cao et al., 2024a) place the convolution blocks
with Mamba.

Mamba decision maker Offline RL s,aandr Similar structure as deci-

(Cao et al., 2024b) sion transformer, but replace

transformer with local and
global ssm branches to ex-
tract multi-scale features.

Decision mamba Offline RL s,aandr Concurrent work as Mamba
(Lv et al., 2024) decision maker.

Decision mamba (DM-H) Offline RL  s,a and terminal d Hybrid model where Mamba
(Huang et al., 2024) is used to generate subgoals,

transformer is used to gener-
ate actions.
FastDP(ours) 1L a

4 Methods

4.1 Action Sequence Prediction

Considering the common misalignment problem of model update frequency and robot execution
frequency, we implement action sequence prediction with a multi-step horizon instead of single
next-time step prediction. This could improve the smoothness of the robot policy and would espe-
cially benefit tasks that require long-horizon planning. We use three horizon parameters, 7}, as the
observation horizon, T}, as the prediction horizon, and 7T, as the action horizon. At time step t, the
policy takes as input 7, historical observations, that is, time step t — T}, 4+ 1 to £. The policy predicts
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an action sequence of length T}, that is, step ¢ to ¢ + T,, — 1, among which the first T}, actions are
executed before the next replanning.

4.2 Architecture Design

We use the DP3 Encoder, a lightweight MLP network designed in (Ze et al., 2024b) to process
the point cloud inputs. It consists a three-layer MLP, a max-pooling function serve as an order-
equivariant operation, and a final projection layer to project the point cloud features into a compact
vector. After that, the concatenation of the robot state and point cloud representation forms the state
feature used for the diffusion policy conditioning. Actions are first passed through an encoder, then
Feature-wise Linear Modulation (FILM)(Perez et al., 2018) is used to pass-in the conditioning input,
where linear layer learns the affind transformation paramters a and b from the coniditoning input,
which would element-wisely applied on to each entry of the action features. FiLM layer carries out a
simple, feature-wise affine transformation on a neural network’s intermediate features, and has been
proved to be efficient in adaptive conditioning.The fused action features are passed into the Mamba
state space model and 1D convolutional layer to predict action sequence 7}, steps ahead. The entire
network architecture is illustrated in Fig. 1.

4.3 Historical Action Warm Up

Given that robot actions are usually continuous, the current action is often similar to recent, previ-
ous actions. Therefore, it is not efficient to keep the robot execution timestep and diffusion timestep
orthogonal by starting the sampling from pure noise to generate the next action sequence. We in-
troduce a historical action chunk as the diffusion process prior, and start the reverse process by
sampling from a narrow Gaussian distribution around the action chunk. Since the distribution dis-
tance between neighboring action sequences is likely smaller than the distance between an action
sequence and pure Gaussian noise, the diffusion model can maintain high task performance while
using fewer diffusion steps.
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Figure 1: FastDP Network Architecture Overview

5 Experiments

We conduct experiments on multiple offline datasets, including Adroit (Rajeswaran et al., 2017),
MetaWorld (Yu et al., 2020), and DexArt (Bao et al., 2023), some example tasks are illustrated in
Fig. 2. We use the expert policy provided by (Ze et al., 2024a) to generate 10 episodes for each of
the tasks and environments, which serves as the ground truth for imitation learning.

Baselines. The main focus of this work is to explore techniques that can increase the inference
speed of the model and make diffusion-based policies more deployable to real robots. We use the
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Figure 2: Visualization examples of manipulation Tasks, including Adorit Hammer, MetaWorld
Stick-Push, and DexArt Laptop and many more.

diffusion policy (DP) and the 3D diffusion policy (DP3) as baselines. We aim for fewer model pa-
rameters and faster inference, while keeping the task success rates on par with these SOTA methods.

Implementation. In order to draw a fair comparison, we keep the training parameters consistent
with those in DP3. We use Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020), since it
introduces a deterministic, non-Markovian process that allows for fewer sampling steps. The number
of timesteps is set to 100 during training, and 10 during inference for the DDIM noise scheduler.
The model is trained for a total of 3000 epochs with batch size of 128, linear layer hidden dimension
of 128, and state space model dimension of 128. For historical action warm up, we use the action
chunk of time ¢ — T}, to t — 1, and a standard deviation of 0.1 for the Gaussian distribution. We take
T,=2,T,=8and T, = 4.

Evaluation metric. We run each experiment with three training seeds. For each seed, we evaluate
20 episodes every 200 training epochs and then compute the average of the highest 5 success rates.
The mean and standard deviation of the success rates across 3 seeds are reported.

Further, we use the number of model parameters to measure the complexity. We use Giga Multiply-
Add Operations per Second (GMACs) and Wall-clock time to compare the inference speed. Wall-
clock time is reported using the average over 10 samples. All experiments are evaluated using a
single NVIDIA RTX A5500 GPU.

5.1 Results

As illustrated in Table 3, SSMs can greatly reduce computation complexity, given that the com-
putation of the backbone architecture is calculated each time step in the diffusion process, SSMs
help reduce computational complexity by around 75%. While our model has significantly fewer
parameters as shown in Table 4, the policy performance does not degrade but on par with other
state-of-the-art diffusion models.

5.2 Number of diffusion steps

Since the warm-up variant of FastDP begins the diffusion process near the previous action sequence,
the distribution difference between the initial samples and the goal action sequence is inherently
smaller, leading to a natural thought to reduce the number of diffusion steps at inference time for
further speed improvement. Therefore, we experiment FastDP w/ warmup using different number
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Table 3: A comparison of the computational complexity of different backbones. Numbers are re-
ported on Adriot Hammer task with prediction horizon 7}, = 8. While Unet and FastDP w/o warmup
are using 10 inference steps FastDP w/warmup is using 5 inference steps and have significant smaller
computation latency.

Architecture Unet FastDP w/o warmup (ours) FastDP w/ warmup (ours)
Model param # 35.51M 1.80M 1.95M
Computation (GMACs) 49.18 12.34 7.24
Wall-clock time(milliseconds) 52.66 27.32 15.91

Table 4: A comparison of FastDP with other baselines in simulation. All models takes prediction
horizon of T}, = 8, 100 steps at diffusion training time, and 10 steps at inference time, except for
FastDP w/ warmup taking 5 steps at inference time.

Env Task DP DP3 FastDP w/o warmup FastDP w/ warmup
Adroit Hammer 48+ 17 100+£0 85+ 2 871
Door 50+5 62+4 56 + 11 56 =7
Pen 24+4 43+ 6 47+ 6 54+ 2
MetaWorld  Assembly 15+1 9+1 79 + 16 100£0
Disassemble 43 +7 69+4 847 85 +9
Stick-Push 63 +3 97+ 4 100+ 0 95+ 8
DexArt Laptop 69+4 83+1 83 +4 69+ 1
Faucet 23+8 63+2 40+ 2 34+2
Average 41.9 77.0 71.8 72.5

of diffusion steps at inference time, and the results are shown in Table. 5. As we can see, the model
performance is very robust when we reduce the diffusion steps from 10 to 5 and even 3 during the
inference time. Therefore, FastDP w/ warmup can achieve much faster inference speed than the w/o
warmup version.

Table 5: A study of performance robustness with various diffusion steps during inference after using
historical action warm up. The prediction horizon is set to 7}, = 8. The result shows that there is

minor degradation on task success rate when reducing the inference diffusion steps from 10 to 5 and
3.

Env Task steps =3  steps=5  steps=10

Adroit Hammer 832 87+1 88 £2
Door 57+5 56 £ 7 ST 7
Pen 49 +4 5442 5143

MetaWorld ~ Assembly 1000 1000 99+1
Disassemble 87 + 6 85+9 82+9
Stick-Push 99 +1 95+8 100+0
DexArt Laptop 67+ 2 69+1 71+0
Faucet 36+3 34+2 36 + 2

Average 72.3 72.5 73.0
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5.3 Long-horizon Performance

Given that state-space models have principled mechanisms for modeling long-range dependencies,
we expect that diffusion policy models with Mamba backbone would show more robust performance
on long-horizon tasks than the ones with Unet backbone. Therefore, we tested different scale of
prediction horizon T}, = 8, T;, = 16 and T}, = 32, the results are shown in Table. 6.

Table 6: A study of performance robustness of FastDP on long-horizon tasks. To validate the benefit
of the state space model backbone, we run FastDP w/o warmup with 10 diffusion steps for inference
at a predicition horizon of 8, 16 and 32. The results show that FastDP are good at long-horizon
imitation learning.

Env Task T,=8 T,=16 1T,=32
Adroit Hammer 85+ 2 81 +2 72+4
Door 5 +11 55+4 56 +4
Pen 47+ 6 50 + 3 49+6

MetaWorld  Assembly 79+16 96=£3 9+1
Disassemble 84 +7 84+5 86 + 2
Stick-Push 100£0 100£0 100+0

DexArt Laptop 84 +4 59+5 12+7
Faucet 40+ 2 35=+1 33+3
Average 71.9 70.0 63.4

6 Limitation and future work

There are various new state space models and linear attention models emerging, including but not
limited to the introduction of delta rule, gated mechanism, structured attention matrix designs. (Yang
et al., 2024bsa; Liu et al.). In the future, we could analyze the benefit of each module and better
understand how these models contribute to balancing between long-horizon memory and forgetting
unimportant information, as well as improving inference speed. Meanwhile, state space models
are closely related to classic control theories, naturally leading to a broad area where stability and
sensitivity of the dynamics can be utilized as model constraints to better adapt the policy to the robot
system, like Block et al. (2023). We leave these for future exploration.

7 Conclusion

State space models, as the backbone of diffusion policy, can greatly accelerate the inference speed,
comparing to Unet and transformer-based policy models. Using historical action chunk as the diffu-
sion sampling prior can further reduce the diffusion steps. FastDP shows that the reduction of model
complexity did not leads to significant performance drop, making these new architecture greatly
suitable for real robot deployment.
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