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Abstract

Diffusion Policies have become a popular framework for robot visuomotor learning1
due to their superiority in capturing multi-modal distributions. However, the typical2
UNet and Transformer backbones for the policy network are computationally expen-3
sive, making them prohibitive for deployment on real robot systems that require real-4
time decision-making. In this paper, we address the challenge of efficient policy gener-5
ation through a new architecture design. We explore the usage of structured state space6
models (SSMs), specifically the Mamba architecture, in helping diffusion policy infer-7
ence speed. We further accelerate the diffusion process by starting the sampling from8
a Guassian distribution around the previous action chunk. We validate our model on9
Adroit, MetaWorld, and Dexart environments, and show that it has 95% fewer parame-10
ters than the diffusion model with Unet backbone and consumes 75% less computation,11
yet achieves similar performance on long-horizon tasks.12

1 Introduction13

Given large amounts of teleoperated data and human demonstration data, learning from demonstra-14
tion is a very common method for robot visuomotor learning to avoid learning from scratch. The15
execution plan of a robotics task can often have more than one solution, making the demonstration16
dataset inherently multimodal. Diffusion models are renowned for capturing multimodal distribu-17
tions underlying image data and generating diverse images sampled from this distribution. (Chi18
et al., 2023) used diffusion models for implicit behavior cloning and achieved impressive perfor-19
mance on visuomotor control both in simulation and real-world robot manipulation tasks. However,20
diffusion policies have high computation cost due to the iterative sampling mechanism in diffusion21
models, making them suffer from inference latency. Since inference speed is critical for robotic tasks22
in order to make real-time control decisions, (Chi et al., 2023) remedied this latency through reced-23
ing horizon control to keep the decision-making module on par with the robot execution frequency.24
A more efficient model with low policy generation latency is an urgent necessity.25

There have been various efforts to make diffusion models more efficient and scalable. (Peebles26
& Xie, 2023) explore a new class of diffusion models using transformer architecture to replace the27
commonly used U-Net backbone. (Dasari et al., 2024) further validated that without sufficient hyper-28
parameter tuning, diffusion transformer usually suffers from unstable training. Recently, structured29
state space sequence models (SSMs) have been proposed for modeling long-range dependencies (Gu30
et al., 2021; Fu et al., 2022). These models can be interpreted as a combination of RNNs and CNNs.31
They keep a latent state representation as a memory bank and recurrently update it according to a32
state equation while using a kernel to convolve over input sequence. (Gu & Dao, 2023) then de-33
signed an end-to-end neural network architecture Mamba, which was further modified for discrete34
modalities, allowing the model to selectively propagate or forget information depending on the cur-35
rent input token. SSMs have linear time complexity compared to the quadratic attention mechanism36
in transformer models, leading to faster inference. Further, the authors designed a hardware-aware37
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parallelized algorithm, making it suitable for time-sensitive tasks like rapidly adaptive robot control,38
which has stringent requirements for real-time long-horizon control and planning.39

Thus, we propose FastDP, a diffusion policy model that adapts the end-to-end SSM architecture with40
efficient attention modules for robotic behavior cloning, aiming at better performance and faster41
inference speed. We also introduce historical actions as the sampling prior for the diffusion process,42
further boosting the sampling speed. To summarize, our main contributions are:43

• We proposed FastDP, a diffusion policy model with state space backbones, and successfully de-44
creased the computational complexity by 75%.45

• We further accelerate the inference speed by starting the diffusion sampling from a Gaussian46
distribution around the last chunk of actions instead of pure noise.47

• We proved that the architecture has robost performance on complex robot manipulation tasks.48

2 Preliminaries49

State Space Models. State space models (SSMs) are classic in the control theory field for model-
ing dynamic systems via state variables. Modern advances in deep learning have rejuvenated them
for sequence modeling, beginning with the Structured State Space Sequence (S4) model introduced
by (Gu et al., 2021), which leverages a diagonal plus low-rank parametrization to achieve efficient
convolutional representations of long sequences. SSMs model continuous sequence as follows:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t).

By applying zero-order hold method for h discretization with a step size ∆, the state matrix A and B
are converted into an approximation matrix A = exp(∆A) and B = (∆A)−1(exp(∆A)−I)·∆B,
therefore the discrete sequences can be modeled as

h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t).

In this recurrent representation, the state matrix A and B are dynamic. A convolution kernel K is50
used to convert it into convolutional representation, which can be computed very efficiently. Follow-51
ing work Mamba(Gu & Dao, 2023) further improve S4 with selective scan algorithm parallelizable52
on hardware.53

Comparing to the O(N2d) complexity of transformer models, SSMs is able to reduce the complexity
to O(1) at inference time, thus have gain popularity in fields that inference speed is significant. But
even though researchers often compare the SSMs with transformers, SSMs have been somewhat
disjoint from attention mechanisms until (Dao & Gu, 2024) showed the connection between the two
that, for the SSM y = Mx, there is a lower-triangular mask L such that M = L ◦

(
CB⊤), which,

if you rename (C,B, x) → (Q,K, V ), is exactly causal linear attention:

Y =
(
L ◦QK⊤)V

So essentially, state space models like mamba and other variants can be treated as a kine of linear54
attention-based method, and are naturally faster than softmax attention-based models like trans-55
former.56

Diffusion Models Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a type of
generative model that can capture the data distribution q(x0) from a dataset through learning inverse
process of data gradually corrupted to pure noise. Diffusion models define (1) a forward noising
process that gradually injecting Gaussian noise over T discrete steps:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
,

where {βt}Tt=1 ∈ (0, 1) is a noise schedule. The forward process is a fixed Markov chain, by
multiplying along the chain, the marginal over xt admits a closed-form:

q(xt | x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
,
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where αt = 1 − βt and ᾱt =
∏t

s=1 αs. (2) a reverse process learnt to denoise xt and recover the
original data x0:

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), Σθ(xt, t)

)
.

where µθ(xt, t) and Σθ(xt, t) are the mean and covariance matrix at each step t. The model training
is cast as minimizing a variational bound which, through careful choice of parameterization, reduces
to a simple regression objective against known noise terms ϵ:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
.

where ϵθ is the noise prediction network. In the conditional case, an extra conditioning variable c57
can be added. Then the reverse process and the noise prediction network would be pθ(xt−1 | xt, c)58
and ϵθ(xt, t, c).59

3 Related Work60

Diffusion Based Policy Learning. Given the advanced capability of capturing multi-modality,61
diffusion-based methods have been popular in decision making field. Decision Diffuser Ajay et al.62
(2022) diffuse over the states and train an inverse dynamics model for action extraction, while Dif-63
fuser (Janner et al., 2022) diffuse over both the states and actions. Diffusion Policy (DP)(Chi et al.,64
2023) instead diffuses on actions conditioned on states and focus on robot deployment details. Build-65
ing on top of these, Diff-Control (Liu et al., 2024) demonstrates that diffusion-based policies can66
acquire statefulness through a Bayesian formulation facilitated by ControlNet. More recently, to67
enhance visual generalization, the 3D Diffusion Policy (DP3) (Ze et al., 2024) incorporate 3D point-68
cloud representations, furthur improves performance.69

A brief comparison of diffusion-based policy learning frameworks is listed in Table 1.

Table 1: A comparison of diffusion-based policy learning frameworks

Method Diffusion Model Characteristics

Diffuser
(Janner et al., 2022)

p(at, . . . , st+T−1, at+T−1 | st) receptive field applied to
ensure local consistency

Decision diffuser
(Ajay et al., 2022)

p(st+1, . . . , st+T−1 | st, gt) inverse dynamics for future
action selection

Diffusion policy
(Chi et al., 2023)

p(at, . . . , at+T−1 | st, . . . , st−T+1) deployed on real robots

3D diffusion policy
(Ze et al., 2024)

p(at, . . . , at+T−1 | st, . . . , st−T+1) introduce point cloud
modality

Diff-Control
(Liu et al., 2024)

p(at, . . . , st) use ControlNet(Zhang
et al.) as policy diffusion
backbone

70

Decision Making using State Space Models. Diffusion-based methods often suffer from low in-71
ference speed. In order to keep the model update speed up with the robot execution speed, diffusion72
policy works like (Chi et al., 2023) tend to exclude observation features from the denoising process73
and use extra tricks like receding horizon control etc. Since iterative sampling steps has the most74
impact on the inference speed, more computationally efficient network architecture become a hot75
research topic.76

Recently, there are emerging number of works that start to use state space models for decision mak-77
ing, either through imitation learning or reinforcement learning. (Jia et al., 2024) presented Mamba78
Imitation Learning (MAIL), using Mamba to mitigate the representation overfitting problem Trans-79
former often suffers from. The authors explored encoder-only and encoder-decoder architecture and80
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further verified the capability of MAIL in leveraging multi-modal inputs. Mamba Policy(Cao et al.,81
2024a) also replace the convolution block in Unet with Mamba in the imitation learning framework82
and showed inference speed improvement. In the offline RL setting, Mamba decision maker(Cao83
et al., 2024b), Decision Mamba(Lv et al., 2024) and ecision mamba (DM-H)(Huang et al., 2024)84
use mamba to gather features at different granularity or hierarchically generate subgoals.85

A brief comparison of policy learning frameworks that uses state space models is listed in Table 2.86

Table 2: A comparison of state space model accelerated policy learning frameworks

Method Setting SSM input Characteristics

MAIL
(Jia et al., 2024)

IL s and a compare between encoder-
only and encoder-decoder
structures

Mamba policy
(Cao et al., 2024a)

IL a retain Unet structure, replace
the convolution blocks with
Mamba

Mamba decision maker
(Cao et al., 2024b)

Offline R s, a and r Similar structure as deci-
sion transformer, but replace
transformer with local and
global ssm branches to ex-
tract multi-scale features

Decision mamba
(Lv et al., 2024)

Offline RL s,a and r concurrent work as Mamba
decision maker

Decision mamba (DM-H)
(Huang et al., 2024)

Offline RL s,a and terminal d hybrid model where Mamba
is used to generate subgoals,
transformer is used to gener-
ate actions

4 Methods87

4.1 Action Sequence Prediction88

Considering the common misalignment problem of model update frequency and robot execution fre-89
quency, we implemented action sequence prediction with a horizon instead of single next time step90
prediction. This could improve the robot policy execution smoothness and would especially benefit91
tasks that require long-horizon planning. We use three horizon parameters, To as the observation92
horizon, Tp as the prediction horizon, and Ta as the action horizon. At time step t, the policy takes93
as input To historical observations, that is, time step t − To + 1 to t. The policy predicts an action94
sequence of length Tp, that is, step t to t + Tp − 1, among which the first Ta actions are executed95
before the next replanning.96

4.2 Architecture Design97

We use PointNet to process the point cloud input. Then the concatenation of the robot state and point98
cloud representation forms the state feature used for the diffusion policy conditioning. Actions are99
first passed through an encoder, then Feature-wise Linear Modulation (FiLM)(Perez et al., 2018)100
is used to pass-in the conditioning input, the fused action features are passed into the Mamba state101
space model and 1D convolutional layer to predict action sequence Tp steps ahead. The entire102
nework architecture is illustrated in Fig. 1.103
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4.3 Historical Action Warm Up104

Given that robot actions are usually continuous, the current action would usually be not too far from105
the historical actions not long time ago. Therefore, it is not efficient to keep the robot execution106
timestep and diffusion timestep orthogonal, and start the sampling from pure noise to generate the107
next action sequence. We introduce a historical action chunk as the diffusion process prior, and108
start the the reverse process by sampling from a narrow Gaussian distribution around the action109
chunk. Since the distribution distance between neighboring action sequence is likely smaller than110
the distance between action sequence and pure Gaussian noise, the diffusion model can maintain111
high task performance while using fewer diffusion step.112

Figure 1: FastDP Network Architecture Overview

5 Experiments113

We conduct experiments on multiple datasets, including Adroit(Rajeswaran et al., 2017), Meta-114
World(Yu et al., 2020), and DexArt(Bao et al., 2023), some example tasks are illustrated in Fig. 2.115
We use the expert policy provided by (Ze et al., 2024) to generate 10 episodes for each of the tasks116
and environments, which serves as the ground truth for imitation learning.117

Figure 2: Visualization examples of manipulation Tasks, including Adorit Hammer, MetaWorld
Stick-Push, and DexArt Laptop and many more.
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Baselines The main focus of this work is to explore techniques that can increase the inference118
speed of the model and make diffusion-based policies more deployable to real robots. We use119
the diffusion policy(DP) and the 3D diffusion policy(DP3) as baselines. We aim for fewer model120
parameters and faster inference, while keeping the task success rates on par with the SOTAs.121

Implementation In order to make fair comparison, we keep the training parameters consistent122
with those in DP3. Denoising Diffusion Implicit Models (DDIM) approach (Song et al., 2020) is123
used, since it introduces a deterministic, non-Markovian process that allows for fewer sampling124
steps. The number of timestep is set to 100 during training, and 10 during inference for the DDIM125
noise scheduler. The model is trained for a total of 3000 epochs with batch size of 128, linear layer126
hidden dimension of 128, and state space model dimension of 128. For historical action warm up,127
we use the action chunk of time t − Tp to t − 1, and a standard deviation of 0.1 for the Gaussian128
distribution. We take To = 2, Tp = 8 and Ta = 4.129

Evaluation metric We run each experiment with three training seeds. For each seed, we evaluate130
20 episodes every 200 training epochs and then compute the average of the highest 5 success rates.131
The mean and stand deviation of the success rates across 3 seeds are reported.132

5.1 Results133

As illustrated in Table 3, SSMs can greatly reduce computation complexity, given that the compu-134
tation of the backbone architecture is calculated each time step in the diffusion process, SSMs help135
reduce computational complexity by around 75%. While our model has significantly fewer parame-136
ter, as Table 4 shows, the policy performance does not degrade but on par with other state-of-the-art137
diffusion models.138

Table 3: A comparison of the computational complexity of different backbones

Architecture Unet FastDP (ours)

Model param # 35.51M 1.80M
Computation (GMACs) 49.18 12.34

Table 4: Comparison of FastDP with other baselines in simulation.

Env Task DP DP3 FastDP /o warmup FastDP w/ warmup

Adroit Hammer 48± 17 100± 0 85± 2 88± 2
Door 50± 5 62± 4 56± 11 57± 7
Pen 24± 4 43± 6 47± 6 51± 3

MetaWorld Assembly 15± 1 99± 1 79± 16 100± 0
Disassemble 43± 7 69± 4 84± 7 77± 8
Stick-Push 63± 3 97± 4 100± 0 99± 0

DexArt Laptop 69± 4 83± 1 84± 4 88± 1
Faucet 23± 8 63± 2 40± 2 43± 3

6 Limitation and future work139

There are various new state space models and linear attention models merging, including butnot limit140
to the introduction of delta rule, gated mechanism, structured attention matrix designs etc. (Yang141
et al., 2024b;a; Liu et al.). In the future, we could analyze the benefit of each module and better142
understand that how these models contribute to balancing between long-horizon memory and for-143
getting unimportant information, as well as speed up the inference. Meanwhile, state space models144
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are closely related to classic control theories, naturally leading to a board area where stability and145
sensitivity of the dynamic can be utilized as model constraints to better adapt the policy to the robot146
system, like Block et al. (2023). We leave these for future exploration.147

7 Conclusion148

State space models, as the backbone of diffusion policy, can greatly accelerate the inference speed,149
comparing to Unet and transformer-based policy models. Using historical action chunk as the diffu-150
sion sampling prior can further reduce the diffusion steps. FastDP shows that the reduction of model151
complexity did not leads to significant performance drop, making these new architecture greatly152
suitable for real robot deployment.153
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