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SleepMG: Multimodal Generalizable Sleep Staging with
Inter-modal Balance of Classification and Domain Discrimination

Anonymous Authors

ABSTRACT
Sleep staging is crucial for sleep tracking and health assessment.
Polysomnography (PSG), containing multiple modalities such as
electroencephalography, electrooculography, electromyography,
and electrocardiography, is the fundamental means of sleep stag-
ing. However, due to performance differences in both classification
and domain discrimination across modalities in PSG, existing do-
main generalization methods face a dilemma of modal imbalance.
To balance inter-modal differences and achieve highly accurate
cross-domain sleep staging, we propose SleepMG, aMultimodal
Generalizable Sleep staging method. SleepMG assesses the classifi-
cation and domain discrimination performances of each modality
and further defines the modal performance metrics by calculating
the variance between the performance score and the average per-
formance of each modality. Guided by these metrics, the gradients
of the classifier and domain discriminator are adaptively adjusted,
placing greater emphasis on poorly-balanced modalities while re-
ducing emphasis on well-balanced modalities. Experimental results
on public sleep staging datasets demonstrate that SleepMG outper-
forms state-of-the-art sleep staging methods, effectively balancing
multiple modalities as evidenced by the visual experiment of modal
imbalance degree. Our code will be released after formal publica-
tion.

CCS CONCEPTS
• Information systems→Multimedia information systems; •Com-
puting methodologies → Transfer learning; • Human-centered
computing → HCI design and evaluation methods.

KEYWORDS
Inter-modal balance, Polysomnography, Sleep staging, Domain gen-
eralization, Domain discrimination

1 INTRODUCTION
Sleep staging [54] is critical for health assessment and interven-
tion, providing critical information on sleep quality of subjects and
assisting in screening for brain and neurological health [5, 62, 12,
45]. Polysomnography (PSG) is multimodal physiological signals
collected synchronously from different positions of the subject dur-
ing sleep. PSG-based sleep staging [51, 25] can effectively monitor
sleep progress and assist in diagnosing diseases such as Parkinson’s
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Figure 1: Varied classification and domain discrimination
performances across different modalities of PSG.

and epilepsy. To ensure consistency, researchers mostly followed
the American Academy of Sleep Medicine (AASM) [4] standard,
classifying sleep into five stages for conducting studies. Initially,
researchers manually staged sleep from the perspective of signal
processing and medical knowledge based on the AASM standard.
With the rise of deep learning, researchers began to employ au-
tomatic feature learning [51, 13, 46] to solve the time-consuming
and labor-intensive problem in sleep staging. In sleep research,
Convolutional Neural Networks (CNNs) were employed to auto-
matically capture the spatial patterns in different sleep stages [48,
15] and distinctive features in different frequency bands [53], Re-
current Neural Networks (RNNs) [7, 49] and Long Short-Term
Memory Networks (LSTMs) [63, 40] were employed to learn the
dynamic patterns of signals [7, 49, 63] and capture the discrimi-
native features at different time points [40]. Graph Convolutional
Networks (GCNs) [20] were employed to model the association
patterns between EEG channels. Sequence-to-sequence models [36,
38] were employed to capture the temporal dependencies between
sequences and then learn distinguishing features in sleep staging
tasks. Furthermore, the attention mechanism [42, 65, 10] was intro-
duced to capture the differentiating features based on the relative
importance of different sleep epochs.

However, as depicted in Figure 1, modal differences exist when
multiple modalities of PSG jointly represent the sleep state. To ex-
plore the differences, modality-by-modality feature learning and
fusion methods [17, 19, 60] have been designed to capture the
differentiated features across modalities. Moreover, researchers
have developed attention-based fusion techniques [60, 8] to enable
multimodal models to focus on more important modalities. How-
ever, the attention mechanism amplifies the dominance of stronger
modalities, exacerbating the inherent imbalance [35, 11] among
them. This imbalance further hinders the model from fully utilizing
the potential of all modalities. To balance modalities and make
each modality as optimal as possible, Peng et al. [35] balanced two
modality-specific feature extractors according to the classification
performance of each modality. However, it is regrettable that they

https://doi.org/XXXXXXX.XXXXXXX
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Figure 2: The pipeline of SleepMG. First, we perform modality-specific feature extraction, followed by the computation of
modal performance metrics in classification and domain discrimination. These metrics are then utilized to adaptively influence
the gradient backpropagation of the globally shared classifier and domain discriminator. SleepMG quantifies and balances
inter-modal differences in two aspects, improving multimodal generalizable sleep staging.

compared the relative performance of two modalities, making it
suitable only for balancing between two modalities. Additionally,
balancing modality-specific feature extractors may interfere with
the model to decouple and learn modality-related information, a
more pronounced phenomenon in multimodal balancing scenarios.

Furthermore, PSG signals exhibit severe subject-dependency
and existing generalizable sleep staging methods aim to enhance
the cross-subject generalization capability of the model. The pre-
training and fine-tuning method [37, 50] in transfer learning was
introduced to do the subject personalized calibration. Unfortunately,
the method requires significant data and some labeled data from
the target subjects, posing inconvenience. As a result, the domain
generalization method [57] was integrated. For example, domain
adversarial methods [18, 29] were introduced to confuse the dis-
crimination of the domain (i.e., the subject) by backpropagating
the negative gradient of the domain discrimination loss, thereby
allowing the model to learn domain-invariant information that is
beneficial to unseen-domain generalization. Additionally, explicit
feature alignment methods [39, 50] were introduced to learn shared
feature representations across domains, improving the performance
of the model on new fields or unseen data. However, as depicted in
Figure 1, modal differences are not only reflected in classification
performance, [6, 27], but also in domain discrimination perfor-
mance [33, 24, 59]. The classification performance varies across
different modalities [41], and it differs even more within different
subject domains. The abovemethods enhance the cross-domain gen-
eralization of the model. However, none consider the inter-modal
difference of domain generalization capability [33, 59], which is
also crucial for sleep staging.

To tackle these challenges, we introduce SleepMG, a novel mul-
timodal generalizable sleep staging method through classification

and domain discrimination balancing. SleepMG first quantifies and
balances the modal differences in classification and domain discrim-
ination. SleepMG integrates domain adversarial learning into the
multimodal feature learning framework and explicitly distinguishes
the classification and domain discrimination performances of each
modality through a globally shared classifier and discriminator
separately. Guided by modal performance metrics, the gradients
of model of the classifier and domain discriminator are adaptively
adjusted, balancing the emphasis of the model on well and poorly-
balanced modalities. SleepMG achieves modality-balanced and im-
proves the multimodal generalizable sleep staging.

To summarize, our contributions are as follows:

• We construct a multimodal generalizable sleep staging model
and first introduce metrics to assess the classification and
domain discrimination performances of multiple modalities.

• By leveraging modal performance metrics, the gradients of
the classifier and domain discriminator are adjusted adap-
tively, increasing greater emphasis on poorly-balancedmodal-
ities while reducing emphasis on well-balanced ones. This
adaptive adjustment achieves balance across multiple modal-
ities in two critical aspects.

• Extensive experiments on public datasets show that our
proposed SleepMG achieves state-of-the-art sleep staging
results, demonstrating its effectiveness in achieving multi-
modal balance and cross-domain generalization.

2 RELATEDWORK
This section reviews the related work from two perspectives: sleep
staging and generalizable sleep staging.
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2.1 Automatic Sleep Staging
Sleep staging is crucial in assessing sleep quality and identifying
potential neurological disorders [45]. Various methods have been
developed to classify sleep stages based on PSG. Early studies relied
on manual sleep staging, where experts manually classified sleep
stages based on signal processing techniques and medical knowl-
edge, following the AASM standard [3]. The AASM standard cate-
gorizes sleep into three main stages: the Wake stage, the Non-Rapid
Eye Movement (NREM) stage, and the Rapid Eye Movement (REM)
stage. The NREM stage is further divided into three sub-stages:
N1, N2, and N3. These stages correspond to different degrees of
sleep, resulting in five distinct categories. This manual approach
is time-consuming and labor-intensive, prompting researchers to
turn to deep learning techniques for automated sleep staging. Re-
searchers utilized CNN [48, 15] to capture local spatial information
in PSG data. Additionally, researchers have utilized RNNs [7, 63]
and LSTM [48, 44] models to capture the sequential dependencies
and temporal dynamics in PSG data. To model the correlations
between different channels in PSG data, Jia et al. [20] introduced
GCN-based GraphSleepNet, which represents PSG data as a graph
to capture complex relationships. To handle the multi-level nature
of PSG data, Phan et al. [36, 38] proposed sequence-to-sequence
models to capture temporal dependencies across sleep epochs.

PSG includes multiple modalities collected from subjects, such
as electroencephalography (EEG) [9, 14, 28, 22], electrooculogra-
phy (EOG) [21], electromyography (EMG) [58], and electrocardiog-
raphy (ECG) [32]. To explore the difference and consistency across
modalities, researchers have designed modality-specific feature
learning [52] modules and corresponding fusion modules [61]. Xi-
ang et al. [58] designed a spatial encoder to capture the high-level
shared semantic information between EEG and EMG. Considering
the differences of importance across modalities, attention mecha-
nisms have been incorporated into sleep staging models to help
the model focus on more important modalities or parts. Zheng et
al. [60] also used the attention mechanism to help learn the interde-
pendencies across modalities. However, there are differences across
modalities, and attention-based fusion can exacerbate the inter-
modal imbalance, resulting in insufficient learning of each modal
and limiting the classification capability of multimodal models.

2.2 Generalizable Sleep Staging
PSG, as a physiological signal, is highly subject-dependent [34],
and the data distribution across subjects varies significantly. In
this paper, we explore methods to enhance the out-of-distribution
generalization of sleep staging models, aiming to construct a gen-
eral automated sleep staging model that can be applied across
subjects (i.e., domains). We refer to this model as a generalizable
sleep staging model [30, 26, 43]. To achieve this, researchers have
introduced transfer learning methods. A common approach is the
pretraining-finetuning method [26, 56]. Wang et al. [56] trained on
a large sleep dataset, MASS, to learn general sleep-related represen-
tations, and then fine-tuned on a smaller sleep dataset, sleep-edf
sub-dataset. While this method has demonstrated effectiveness, it
is not without its drawbacks. The pretraining phase requires a large
dataset and substantial computational resources. The finetuning

phase requires a small amount of labeled data, impractical in cross-
domain application scenarios such as healthcare. Banluesombatkul
et al. [1] used meta-learning for pretraining, which improved data
dependency and task generalization to some extent. However, the
method increased the computational cost during the pretraining
phase. The finetuning phase still requires a small amount of labeled
data, making cross-domain generalization unachievable. Tang et
al. [50] addressed domain adaptation by explicitly aligning the fea-
ture distributions between the source and target domains, removing
the reliance on labels in the target domain. However, it still requires
data from the target domain and does not solve the cross-domain
generalization problem.

To overcome these limitations, researchers integrated the domain
generalization method. For example, some researchers incorporated
domain adversarial learning [18, 29] into their model. The domain
discriminator in domain adversarial played a crucial role in en-
hancing the cross-domain generalization performance of the model
by intentionally confusing the capability of the model to identify
different domains. The domain adversarial method has achieved
considerable generalization performance. However, there is no spe-
cific domain adversarial technique for multimodal sleep staging.
Moreover, differences exist across modalities, not only in terms
of classification capability but also in domain generalization capa-
bility. Quantifying and balancing these two types of inter-modal
differences is necessary.

3 PRELIMINARY
The training set is D𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 ) | 𝑖 ∈ {1, . . . , 𝐼 }} and the
testing set is D𝑡𝑒𝑠𝑡 = {𝑥 𝑗 | 𝑗 ∈ {1, . . . , 𝐽 }}. For generalizable sleep
staging, the training data D𝑡𝑟𝑎𝑖𝑛 and testing data D𝑡𝑒𝑠𝑡 are from
different subjects. 𝑥𝑖 =

[
𝑥𝑒
𝑖
, 𝑥𝑜

𝑖
, 𝑥𝑚

𝑖
, 𝑥𝑐

𝑖

]
and 𝑥 𝑗 =

[
𝑥𝑒
𝑗
, 𝑥𝑜

𝑗
, 𝑥𝑚
𝑗
, 𝑥𝑐

𝑗

]
are PSG signals containing synchronized EEG, EOG, EMG, and ECG,
and each epoch lasts 30 seconds. 𝑥𝑖 and 𝑥 𝑗 are the 𝑖-th and 𝑗-th
samples of training and testing set, respectively. 𝑦𝑖 ∈ {1, 2, . . . , 𝐾𝑦}
is the corresponding sleep category and 𝐾𝑦 is the total number of
categories. 𝑑𝑖 ∈ {1, 2, . . . , 𝐾𝑑 − 1} is the domain of 𝑥𝑖 and 𝐾𝑑 − 1 is
the number of domain in training set. 𝐼 and 𝐽 are the sample sizes
of the training and testing set, respectively.𝐶𝑈 = 𝐶𝑒 +𝐶𝑜 +𝐶𝑚 +𝐶𝑐
is the total number of PSG channels (containing EEG, EOG, EMG
and ECG).𝑈 is the number of modalities,𝐶𝑒 ,𝐶𝑜 ,𝐶𝑚 and𝐶𝑐 are the
channel numbers of different modalities.

Sleep staging problem is defined as𝑦𝑖 = argmax
𝑘𝑦

[
𝐺𝑦 (𝐺 𝑓 (𝑥𝑖 ))

]
𝑘𝑦

,

where 𝐺 𝑓 = [𝐺𝑒
𝑓
,𝐺𝑜
𝑓
,𝐺𝑚
𝑓
,𝐺𝑐
𝑓
] denote modality-specific feature

extractors for EEG, EOG, EMG, ECG, respectively, and the pa-
rameter of 𝐺 𝑓 denoted as 𝜃 𝑓 =

[
𝜃 𝑓 ,𝑒 , 𝜃 𝑓 ,𝑜 , 𝜃 𝑓 ,𝑚, 𝜃 𝑓 ,𝑐

]
, 𝐺𝑦 denotes

the label classifier. 𝑦𝑖 denotes the predicted category and 𝑘𝑦 de-
notes the index of category. 𝑓𝑖 =

[
𝑓 𝑒
𝑖
, 𝑓 𝑜
𝑖
, 𝑓𝑚
𝑖
, 𝑓 𝑐
𝑖

]
= 𝐺 𝑓 (𝑥𝑖 ) =[

𝐺𝑒
𝑓
(𝑥𝑒
𝑖
), 𝐺𝑜

𝑓
(𝑥𝑜
𝑖
), 𝐺𝑚

𝑓
(𝑥𝑚
𝑖
), 𝐺𝑐

𝑓
(𝑥𝑐
𝑖
)
]
denotes the multimodal fu-

sion feature. 𝑓 𝑒
𝑖
, 𝑓 𝑜
𝑖
, 𝑓𝑚
𝑖

and 𝑓 𝑐
𝑖
represent the features extracted

from 𝑥𝑒
𝑖
, 𝑥𝑜

𝑖
, 𝑥𝑚

𝑖
and 𝑥𝑐

𝑖
, respectively. We combine the multimodal

feature learning model with the domain adversarial method to cre-
ate the naive multimodal generalizable sleep staging. The predicted
domain in domain discrimination is 𝑑𝑖 = argmax

𝑘𝑑

[
𝐺𝑑 (𝐺 𝑓 (𝑥𝑖 ))

]
𝑘𝑑
,
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Figure 3: To calculate the classification and domain discrimi-
nation performance metrics for each modality, we employ
zero-padding to align the features of each modality with the
multimodal fusion feature and feed them to the globally
shared classifier and domain discriminator.

where 𝐺𝑑 denotes the domain discriminator and 𝑘𝑑 denotes the
index of domain.

To simplify the symbol expression, we use 𝑎 ∈ {𝑦, 𝑑} to rep-
resent the symbol related to the category and domain. Specially,
𝐾𝑎 ∈ {𝐾𝑦 , 𝐾𝑑 } denote the number of category and domain, 𝑘𝑎 ∈
{𝑘𝑦, 𝑘𝑑 } denote the label index of category and domain, 𝑝𝑎

𝑖
∈

{𝑦𝑖 , 𝑑𝑖 } denote the truly label of category and domain, 𝑝𝑎
𝑖
∈ {𝑦𝑖 , 𝑑𝑖 }

denote the predicted label of category and domain,𝐺𝑎 ∈ {𝐺𝑦 ,𝐺𝑑 }
denote the classifier and domain discriminator and 𝜃𝑎 ∈ {𝜃𝑦, 𝜃𝑑 }
denote their model parameters. Since the model structure of𝐺𝑎 is a
simple fully connected layer, 𝜃𝑎 can be split into modality-specific
𝜃𝑎,𝑢 . In addition, 𝑢 ∈ {𝑒, 𝑜, 𝑚, 𝑐} denotes the modality-related
symbol. 𝑝𝑎,𝑢

𝑖
∈ {𝑝𝑎,𝑒

𝑖
, 𝑝

𝑎,𝑜
𝑖
, 𝑝

𝑎,𝑚
𝑖

, 𝑝
𝑎,𝑐
𝑖

} denote the predicted cate-
gory and domain labels of different modalities from the same 𝑥𝑖 . 𝑓 𝑢𝑖
denotes the modality-specific feature. 𝜃 𝑓 ,𝑢 denotes the parameter
of the modality-specific feature extractor 𝐺𝑢

𝑓
and 𝜃𝑎,𝑢 denotes the

parameter of the modality-specific part of 𝐺𝑎 .

4 THE PROPOSED SLEEPMG
The pipeline of SleepMG is shown in Figure 2.We introduce SleepMG
from three aspects: 1) Naive multimodal generalizable sleep stag-
ing (NaiveMG), the backbone of SleepMG. 2) Modal performance
metrics of classification and domain discrimination. 3)Metric-guided
adaptive modality balancing and generalizable sleep staging.

4.1 Naive Multimodal Generalizable Sleep
Staging Method

To realize SleepMG,we first conduct the naive integration ofmodality-
specific feature learning and domain adversarial methods, named
the Naive Multimodal Generalizable method (NaiveMG). Specifi-
cally, NaiveMG employs FeatureNet [18], a dual-scale CNN model
to establish each modality-specific feature extractor. These feature
extractors capture the unique characteristics of each modality. In ad-
dition, NaiveMG fuses extracted features and classifies sleep stages
using the simple fully connected classifier 𝐺𝑦 . To further enhance
cross-domain generalization, we set domain discriminator𝐺𝑑 with
the same simple fully connected to confuse the identification of
the model about domains by back-propagating negative gradients.

By incorporating the above techniques, NaiveMG significantly en-
hances the cross-domain generalization capability of multimodal
sleep staging models, enabling more accurate and reliable sleep
stage classification across domains. The classification loss L𝑦 and
domain discrimination loss L𝑑 are both calculated using the cross-
entropy loss function. Details are as follows:

L𝑎 = −1
𝐼

𝐼∑︁
𝑖=1

𝐾𝑎∑︁
𝑘𝑎=1

1𝑝𝑎
𝑖
=𝑘𝑎 log( [𝐺𝑎 (𝑓𝑖 )]𝑘𝑎 ) (1)

where𝐺𝑎 (𝑓𝑖 ) = [𝐺𝑎 (𝑓𝑖 ) [1] ,𝐺𝑎 (𝑓𝑖 ) [2] , . . . ,𝐺𝑎 (𝑓𝑖 ) [𝐾𝑎]] represents
the list of softmax predicted output, 𝑖 ∈ {1, 2, . . . , 𝐼 } represents the
total number of training samples, 1 represents an indicator function
that returns 1 if the inputs are equal and returns 0 otherwise.

All model parameters are optimized by minimizing L. Since L𝑑
undergoes a gradient reversal in gradient backpropagation, the final
optimization process is to minimize L𝑦 and maximize L𝑑 . The sum
of loss L is as follows:

L = L𝑦 − L𝑑 (2)

Utilizing NaiveMG as the backbone, SleepMG further quantifies
inter-modal differences in classification and domain discrimination.

4.2 Multimodal Performance Metric
Figure 3 depicts the details of assessing the modal performance
metrics of the classification and domain discrimination.

4.2.1 Evaluation of Multiple Modalities with Shared Model. To be-
gin, we employ zero-padding on the modality-specific feature 𝑓 𝑢

𝑖

to match the desired fused length, denoted as
∼
𝑓 𝑢
𝑖
. Subsequently,

these padded features
∼
𝑓 𝑢
𝑖

are fed into the globally shared classi-
fier 𝐺𝑦 and domain discriminator 𝐺𝑑 , respectively, to obtain their
modality-specific prediction results 𝑝𝑎,𝑢

𝑖
:

𝑝
𝑎,𝑢
𝑖

= argmax
𝑘𝑎

[
𝐺𝑎 (

∼
𝑓 𝑢𝑖 )

]
𝑘𝑎

(3)

where 𝐺𝑎 (
∼
𝑓 𝑢
𝑖
) =

[
𝐺𝑎 (

∼
𝑓 𝑢
𝑖
) [1] ,𝐺𝑎 (

∼
𝑓 𝑢
𝑖
) [2] , . . . ,𝐺𝑎 (

∼
𝑓 𝑢
𝑖
) [𝐾𝑎]

]
rep-

resents the list of softmax predicted output of the modality 𝑢,
∼
𝑓 𝑢
𝑖

represents the feature of single modality 𝑢 that has been zero-
padded to match the length of multimodal fusion feature 𝑓𝑖 .

4.2.2 Two Performance Values of Each Modality. Following [35],
we calculate the sum of correctly predicted category probabilities
from the softmax output as two performance values at the 𝑡 time
step of each modality. The classification and domain discrimination
performance values of each modality are as follows:

𝑣
𝑎,𝑢
𝑡 =

1
𝐼

𝐼∑︁
𝑖=1

𝐾𝑎∑︁
𝑘𝑎=1

1𝑝𝑎,𝑢
𝑖

=𝑘𝑎

[
𝐺𝑎 (

∼
𝑓 𝑢𝑖 )

]
𝑘𝑎

(4)

where 𝑡 is the time step, and 1 is the equality function that returns
1 if the inputs are equal and returns 0 otherwise.

4.2.3 Two Performance Metrics of Each Modality. According to
two sets of performance values 𝑣𝑎,𝑢𝑡 ∈ {𝑣𝑦,𝑢𝑡 , 𝑣

𝑑,𝑢
𝑡 }, we calculate

the performance score 𝑠𝑎,𝑢𝑡 ∈ {𝑠𝑦,𝑢𝑡 , 𝑠
𝑑,𝑢
𝑡 } of each modality at 𝑡

moment and finally define the modal performance metrics 𝜌𝑎,𝑢𝑡 ∈
{𝜌𝑦,𝑢𝑡 , 𝜌

𝑑,𝑢
𝑡 } based on the variance of the difference between 𝑠𝑎,𝑢𝑡 and
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the average ratio 1
𝑈

of each modality. The smaller 𝜌𝑎,𝑢𝑡 means the
more balanced modality in classification or domain discrimination:

𝑠
𝑎,𝑢
𝑡 =

𝑣
𝑎,𝑢
𝑡∑𝑈

𝑢=1 𝑣
𝑎,𝑢
𝑡

(5)

𝜌
𝑎,𝑢
𝑡 = 𝑡𝑎𝑛ℎ

(
(𝑠𝑎,𝑢𝑡 − 1

𝑈
)2∑𝑈

𝑢=1 (𝑠
𝑎,𝑢
𝑡 − 1

𝑈
)2

)
(6)

where 𝑡𝑎𝑛ℎ is the active function for smooth, and the sum scaling
method is employed for normalization.

4.3 Metric-Guided Modality-Balanced Model
Construction

We backpropagate the gradients 𝑔𝑓 ,𝑢𝑡 of the feature extractors nor-
mally, computed as 𝜕L𝑦

𝜕𝜃
𝑓 ,𝑢

𝑡

− 𝜕L𝑑

𝜕𝜃
𝑓 ,𝑢

𝑡

. While the gradients 𝑔𝑎,𝑢𝑡 , which

are the modality-specific parts from 𝜕L𝑎

𝜕𝜃𝑎𝑡
, are guided by scalar

𝜌
𝑎,𝑢
𝑡 to balance the classification and domain discrimination across

modalities:
∼
𝑔
𝑎,𝑢
𝑡 = 𝜌

𝑎,𝑢
𝑡 · 𝑔𝑎,𝑢𝑡 (7)

We utilized the Adam optimizer for all models. Initially, we set the
first-moment estimation𝑚𝑎,𝑢𝑡 and the second-moment estimation
𝑣
𝑎,𝑢
𝑡 of the gradient to zero at time zero. Subsequently, we update
𝑚
𝑎,𝑢
𝑡 and 𝑣𝑎,𝑢𝑡 at time 𝑡 based on estimation values of the previous

time and the gradient 𝑔𝑎,𝑢𝑡 of modality-specific parts of 𝐺𝑎 :

𝑚
𝑎,𝑢
𝑡 = 𝛽1 ·𝑚𝑎,𝑢𝑡−1 + (1 − 𝛽1) · ∼

𝑔
𝑎,𝑢
𝑡 (8)

𝑣
𝑎,𝑢
𝑡 = 𝛽2 · 𝑣𝑎,𝑢𝑡−1 + (1 − 𝛽2) · ( ∼

𝑔
𝑎,𝑢
𝑡 )2 (9)

where𝑔𝑎,𝑢𝑡 denote the gradient ofmodality-specific parts of𝜃𝑎𝑡 .𝑚
𝑎,𝑢
𝑡 ,

𝑣
𝑎,𝑢
𝑡 denote the first-moment and second-moment estimations of
∼
𝑔
𝑎,𝑢
𝑡 , respectively. 𝛽1 and 𝛽2 denote the attenuation factors. ( ∼

𝑔
𝑎,𝑢
𝑡 )2

denotes the square of the gradient ∼
𝑔
𝑎,𝑢
𝑡 .

Then further revise the first-moment and second-moment esti-
mations to prevent them from being initially biased toward zero:

�̂�
𝑎,𝑢
𝑡 =

𝑚
𝑎,𝑢
𝑡

1 − 𝛽1
(10)

𝑣
𝑎,𝑢
𝑡 =

𝑣
𝑎,𝑢
𝑡

1 − 𝛽2
(11)

where �̂�𝑎,𝑢𝑡 and 𝑣𝑎,𝑢𝑡 are revised𝑚𝑎,𝑢𝑡 and 𝑣𝑎,𝑢𝑡 .
The parameters 𝜃𝑎,𝑢𝑡 of modality-specific parts of𝐺𝑎 are updated

according to modal performance metrics 𝜌𝑎,𝑢𝑡 :

𝜃
𝑎,𝑢
𝑡+1 = 𝜃

𝑎,𝑢
𝑡 −

©«
�̂�
𝑎,𝑢
𝑡√︃

𝑣
𝑎,𝑢
𝑡 + 𝜖1

ª®®¬ · 𝜂 (12)

where 𝑡 represents the time step, 𝜂 represents the learning rate, 𝜖1
represents a small constant to prevent division by zero.

By setting a larger 𝜌𝑎,𝑢𝑡 for the gradient 𝑔𝑎,𝑢𝑡 of models 𝜃𝑎,𝑢𝑡 with
poorly-balanced modality in classification and domain discrimi-
nation performance and a smaller 𝜌𝑎,𝑢𝑡 for the gradient 𝑔𝑎,𝑢𝑡 with
well-balanced modality, we achieve a multimodal generalizable
sleep staging model that is modality-balanced. Notably, Since the
gradients backpropagated through the domain discriminator un-
dergo the same reversal, the balance degree of modalities remains
unaffected.

4.4 Method Implement
The core of SleepMG is elucidated in Algorithm 1. SleepMG aims
to calculate the performance of multiple modalities’ classification
and domain discrimination, ensuring the inter-modal balance in
both classification and domain discrimination and achieving multi-
modal generalizable sleep staging. The backbone is naiveMG, which
includes multimodal feature learning and domain adversarial meth-
ods. Multimodal PSG is first processed through modality-specific
feature extractors𝐺𝑢

𝑓
to extract features and fuse. Subsequently, do-

main adversarial methods are integrated to improve cross-domain
generalization. The model is optimized by minimizing classification
loss L𝑦 and maximizing domain discrimination loss L𝑑 . By the
early convergence stage, we assess the classification and domain
discrimination capabilities of each modality by zero-padding their
features and utilizing the shared classifier and discriminator. Addi-
tionally, the parameters 𝜃 𝑓 ,𝑢𝑡 of 𝐺𝑢

𝑓
are updated with minimizing

L as usual. Furthermore, we calculate modal performance met-
rics of classification and domain discrimination, leveraging these
metrics to influence the gradient update of parameters 𝜃𝑎𝑡 of 𝐺𝑎
with minimizing L. To achieve modality balance, the gradients
backpropagated by modality-specific parts 𝜃𝑎,𝑢𝑡 that correspond to
the poorly-balanced modalities are relatively enhanced with large
𝜌
𝑎,𝑢
𝑡 , while those that correspond to the well-balanced modalities
are relatively reduced with small 𝜌𝑎,𝑢𝑡 . The balanced multimodal
generalizable sleep staging model is obtained when all the models
converge.

Algorithm 1 The whole process of SleepMG method

Input: The training set D𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 ) |𝑖 ∈ {1, . . . , 𝐼 }}, the
testing set D𝑡𝑒𝑠𝑡 = {𝑥 𝑗 | 𝑗 ∈ {1, . . . , 𝐽 }}.

Output: The sleep staging result of testing data 𝑦 𝑗 .
1: Initialize model parameters 𝜃 𝑓 ,𝑢

𝑡=0 of the modality-specific fea-
ture extractor 𝐺𝑢

𝑓
and 𝜃𝑎,𝑢

𝑡=0 of modality-specific parts of 𝐺𝑎(i.e.,
classifier and domain discriminator);

2: repeat
% Metric Definition

3: Extract the multimodal feature of 𝑥𝑖 with 𝐺 𝑓 : 𝑓𝑖 = 𝐺 𝑓 (𝑥𝑖 );
4: Zero-pad 𝑓 𝑢

𝑖
to obtain

∼
𝑓 𝑢
𝑖
and calculate two performance

values of each modality 𝑣𝑎,𝑢𝑡 with Eq. (4);
5: Calculate two performance metrics 𝜌𝑎,𝑢𝑡 of each modality

based on 𝑣𝑎,𝑢𝑡 with Eq. (5) and (6);
% Model Training

6: Calculate total loss L with Eq. (2);
7: Update model parameters 𝜃 𝑓 ,𝑢𝑡 normally, while update 𝜃𝑎,𝑢𝑡

under the guidance of 𝜌𝑎,𝑢𝑡 using Eq. (12) to minimize L;
8: until Iterate until model convergence
9: Sleep staging prediction: 𝑦 𝑗 = 𝐺𝑦 (𝑓𝑗 )

5 EXPERIMENTS
All experiments are implemented with Python 3.8.5 and Pytorch
1.7.1. We conduct them on a computer server with 640GB RAM and
two NVIDIA RTX A5000 GPUs with 24GB VRAM each.
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5.1 Dataset and Data Processing
We evaluate SleepMG on two public datasets: ISRUC-S3 [23], and
MASS-SS3 [31]. For a fair comparison, we remove the Movement
and Unknown stages and merge the N3 and N4 stages into a single
N3 stage, resulting in five categories of Wake, N1, N2, N3, and REM
sleep stages according to the AASM standard. Each PSG recording
is downsampled to 100 Hz and divided into 30-second epochs.

ISRUC-S3 collects PSG from 10 subjects (one male and nine
female) over 8 hours in a single night, containing 8589 sleep epochs.
We select ten of the 12 channels and remove the leg EMG far
from the brain. It comprises four modalities: six-channel EEG, two-
channel EOG, one-channel chin EMG, and ECG.

MASS-SS3 collects PSG from 62 subjects (28 male and 34 female)
over 8 hours in a single night, containing 59304 sleep epochs. We
select the same 10 channels with four modalities as ISRUC-S3.

5.2 Experiment Settings and Implementation
In the experiment, we utilize FeatureNet [16, 18] as the backbone
of NaiveMG and SleepMG. We employ the leave-one-subject-out
method to divide the dataset into five domains with different sub-
jects and perform five-fold cross-validation to split the data into
training and testing sets. From the training set, we further allocate
20% as a validation set. The best model based on the validation
set is saved and evaluated on the cross-domain testing set. The
final reported results represent the overall evaluation of the entire
dataset. We employ the Adam optimizer for model optimization
with a learning rate of 0.001, attenuation factors 𝛽1 of 0.5 and 𝛽2
of 0.999. The batch size for data processing is 256, and the training
process is conducted over 50 epochs. The gradient reversal ratio
employed in domain-adversarial training for the ISRUC-S3 and
MASS-SS3 datasets is 0.1 and 1, respectively.

We employ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑀𝑎𝑐𝑟𝑜 𝐹1, 𝐾𝑎𝑝𝑝𝑎, and 𝐹1 for each cate-
gory as the evaluationmetrics of the experimental results.𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
measures the proportion of correctly classified sleep epochs. The
𝐹1 score for each category evaluates precision and recall, compre-
hensively evaluating the performance of the model.𝑀𝑎𝑐𝑟𝑜 𝐹1 score
calculates the average F1 score across all sleep stage categories, pro-
viding insight into the capability of themodel to performwell across
categories without favoring a specific category. 𝐾𝑎𝑝𝑝𝑎 measures
the agreement between the prediction of the model and the ground
truth, accounting for chance. It assesses inter-rater agreement by
considering both observed and expected accuracy.

5.3 Baseline Methods and Settings
We select eight classical and state-of-the-art sleep staging methods
as baseline methods from four perspectives: four conventional sleep
staging [18, 48, 64, 10] method, one generalizable sleep staging [50]
method is based on transfer learning to improve cross-domain sleep
staging, two multimodal sleep staging [17, 60] methods involve
modality-specific feature extractors, and one balance method [35]
is special-designed for multimodal fusion and balance.

• FeatureNet [18]: The conventional method uses a dual-scale
CNN structure with varying kernel sizes and channel config-
urations. The first set of kernels consists of sizes {50, 8, 8, 8}
and corresponding channels {32, 64, 64, 64}. The second set

of kernels consists of sizes {64, 8, 6, 6, 4} and corresponding
channels {64, 64, 64, 64}.

• DeepSleepNet [48]: The conventional method employs the
CNN-BiLSTMmodel. CNNs captures local temporal patterns
and spatial relationships, while the BiLSTM component cap-
tures long-term temporal dependencies.

• MaskSleepNet [64]: The conventional method combines dual-
scale CNNs for feature extraction, squeeze and excitation
block for optimizing feature weights, and multi-head atten-
tion for capturing temporal information.

• AttnSleep [10]: The conventional method integrates a multi-
resolution CNN model, adaptive feature recalibration for
learning interdependencies among features, and multi-head
attention for capturing temporal dependencies.

• DAN [50]: The generalizablemethod is based onCNN-BiGRU
and leverages the MMD alignment to learn domain-invariant
representation.

• SleepPrintNet [17]: Themultimodalmethod involvesmodality-
specific feature learning based on the 1D convolutionalmodel.
In addition to learning temporal features across all PSG
modalities, the EEGmodality specifically focuses on spectral-
spatial feature learning.

• MMASleepNet [60]: The multimodal method incorporates
modality-specific feature learning through 1D convolutional
models and squeeze-and-excitation, along with feature fu-
sion utilizing transformer encoder models.

• OGM-GE [35]: The balance method was originally an audio-
visual dual-modality balancing method, which improved
the model by balancing the classification performance of
two modalities and modulating the gradient of the feature
extractor. To be fair, we employ FeatureNet as its backbone.

5.4 Comparative Experiment Results
To demonstrate the advantage of SleepMG in sleep staging, we
compared SleepMG with a total of eight methods, including four
conventional methods, one generalizable method, two multimodal
methods, and one multimodal balance method. The experimental
results in Table 1 show that SleepMG consistently outperforms
other methods on both datasets. On the ISRUC-S3 dataset, the
second-best 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 method is the NaiveGS method, DAN, and
SleepMG achieves an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 improvement of nearly two per-
centage points compared to it and approximately 3.6% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
improvement compared to the backbone method, FeatureNet. These
results indicate the effectiveness of transfer learning methods in
enhancing cross-domain sleep staging performance, and SleepMG
demonstrates superior performance by balancing modalities in clas-
sification and domain discrimination. On the MASS-SS3 dataset, the
second-best method is the modal balancing method (OGM-GE), and
SleepMG further improves by approximately 1.0% compared to it,
highlighting the importance of modality balancing and the greater
role of SleepMG in balancing the two performances of modalities.

5.5 Imbalance Degrees Visualization Results
As illustrated in Figure 4, to further validate our progress in achiev-
ing modality balance, we visualized the changes of modal imbal-
ance degree during training on the ISRUC-S3 dataset. The modal
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Table 1: The performance comparison of state-of-the-art methods and SleepMG on two public datasets. The bold and underline
items denote the best and second-best results, respectively.

Dataset Method Overall results F1 for each category
Accuracy Macro F1 Kappa Wake N1 N2 N3 REM

ISRUC-S3

FeatureNet [18] 0.7513 0.7275 0.6803 0.8456 0.4841 0.7409 0.8531 0.7136
DeepSleepNet [48] 0.7456 0.7393 0.6758 0.8782 0.5306 0.7040 0.8277 0.7560
MaskSleepNet [64] 0.6571 0.6297 0.5637 0.6516 0.4751 0.6903 0.8390 0.4925
AttnSleep [10] 0.7611 0.7404 0.6932 0.8537 0.5041 0.7558 0.8649 0.7234

DAN[50] 0.7687 0.7442 0.7008 0.8461 0.4484 0.7711 0.8752 0.7802
SleepPrintNet [17] 0.7591 0.7435 0.6889 0.8305 0.5162 0.7565 0.8530 0.7614
MMASleepNet [60] 0.7552 0.6847 0.6831 0.8588 0.2041 0.7573 0.8590 0.7442

OGM-GE [35] 0.7610 0.7472 0.6947 0.8709 0.5415 0.7207 0.8386 0.7644
SleepMG 0.7868 0.7745 0.7264 0.8833 0.5691 0.7613 0.8641 0.7950

MASS-SS3

FeatureNet [18] 0.8533 0.8019 0.7827 0.8968 0.5120 0.8964 0.8395 0.8649
DeepSleepNet [48] 0.8531 0.7984 0.7807 0.8853 0.5083 0.9017 0.8380 0.8585
MaskSleepNet [64] 0.8296 0.7679 0.7490 0.8573 0.4325 0.8818 0.8138 0.8541
AttnSleep [10] 0.8510 0.7960 0.7796 0.8918 0.4836 0.8940 0.8488 0.8618
DAN [50] 0.8231 0.7380 0.7326 0.8432 0.3323 0.8806 0.8150 0.8192

SleepPrintNet [17] 0.8459 0.7871 0.7702 0.8816 0.4674 0.8859 0.8420 0.8584
MMASleepNet [60] 0.8405 0.7820 0.7598 0.9001 0.5055 0.8822 0.7390 0.8831

OGM-GE [35] 0.8570 0.8033 0.7881 0.8906 0.5131 0.9004 0.8407 0.8715
SleepMG 0.8660 0.8169 0.8015 0.9005 0.5462 0.9037 0.8493 0.8847

imbalance degrees of classification and domain discrimination per-
formances are measured with

∑𝑈
𝑢=1 (𝑠

𝑎,𝑢
𝑡 − 1

𝑈
)2, the sum of squared

mean relative differences [2, 47]. The lower the modal imbalance
degree, the more balanced each modality will be. It can be observed
that the SleepMG method exhibits lower modal imbalance in both
classification and domain discrimination, indicating a better bal-
ance. Additionally, we visualized the changes in test accuracy in
Figure 5, revealing a significant improvement in cross-domain sleep
staging on the test set when the modalities are more balanced.
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Figure 4: The change of the modal imbalance degrees of (a)
Classification and (b) Domain discrimination during training
on the ISRUC-S3 dataset.

5.6 Ablation Experiment Results
As is shown in Table 2, to further demonstrate the contribution of
each module in SleepMG, we compared the effects of multimodal
and generalizable modules of NaiveMG (✓✓ in Table 2). We employ
FeatureNet [18] as the backbone (×× in Table 2).The multimodal
module performs modality-specific feature extraction followed by
direct concatenation fusion. The generalizable module enhances
model generalization by employing the domain adversarial learning
method. The experimental results of sleep staging on two datasets
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Figure 5: The change of the test accuracy per epoch on the
ISRUC-S3 dataset with FeatureNet and SleepMG.

show that the generalization method provides a little improve-
ment, while the multimodal module exhibits a more noticeable
effect compared to the generalizable module alone. Furthermore,
the combination of multimodal and generalizable modules leads to
a significant improvement.

To explore effective feature fusion methods for multimodal sleep
staging, we employ FeatureNet to extract single-modal features
and fuse them with direct concatenation, self-attention weight-
ing, and modality balancing approaches, respectively. From the
experimental results in Table 3, it can be seen that self-attention
performed worse than direct concatenation. Conversely, the modal-
ity balancing method performed well on both datasets. This sug-
gests self-attention focuses more on well-performing modalities,
exacerbating modality imbalances and harming classification. Fur-
thermore, contrary to the attention-based approach, the balancing
method assigns greater weight to poorly performing modalities,
positively contributing to classification accuracy.
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Table 2: Ablation study of M(ultimodal) and G(eneralizable)
modules of NaiveMG(✓✓) on two public datasets. The bold
and underline items denote the best and second-best results,
respectively.

Dataset M G Overall results
Accuracy Macro F1 Kappa

ISRUC-S3

× × 0.7513 0.7275 0.6803
× ✓ 0.7545 0.7323 0.6844
✓ × 0.7610 0.7487 0.6927
✓ ✓ 0.7711 0.7592 0.7067

MASS-SS3

× × 0.8533 0.8019 0.7827
× ✓ 0.8544 0.8017 0.7841
✓ × 0.8570 0.8058 0.7869
✓ ✓ 0.8571 0.8068 0.7876

Table 3: Ablation study of FeatureNet with different multi-
modal feature fusion methods on two public datasets. The
bold and underline items denote the best and second-best
results, respectively.

Dataset Concat Method Overall results
Accuracy Macro F1 Kappa

ISRUC-S3
Direct-concat 0.7610 0.7487 0.6927
Self-attention 0.7550 0.7490 0.6885

Balance 0.7738 0.7587 0.7089

MASS-SS3
Direct-concat 0.8570 0.8058 0.7869
Self-attention 0.8558 0.8060 0.7858

Balance 0.8603 0.8121 0.7936

Table 4: Ablation study of NaiveMG(× × ×) with balanc-
ing different components on public datasets. The bold and
underline items denote the best and second-best results, re-
spectively.

Dataset 𝐺𝑢
𝑓 𝐺𝑢𝑦 𝐺𝑢

𝑑

Overall results
Accuracy Macro F1 Kappa

ISRUC-S3

× × × 0.7711 0.7592 0.7067
✓ × × 0.7680 0.7590 0.7034
× ✓ × 0.7793 0.7647 0.7168
× × ✓ 0.7728 0.7600 0.7085
× ✓ ✓ 0.7868 0.7745 0.7264

MASS-SS3

× × × 0.8571 0.8068 0.7876
✓ × × 0.8582 0.8071 0.7890
× ✓ × 0.8620 0.8117 0.7951
× × ✓ 0.8634 0.8126 0.7975
× ✓ ✓ 0.8660 0.8169 0.8015

As shown in Table 4, we compared the effects of balancing differ-
ent components of NaiveMG (××× in Table 4). The results indicate
that balancing the modality-specific feature extractor has mini-
mal or no effect, while the fine-grained inter-modal balance of the

modality-specific parts of classifier 𝐺𝑦 and domain discriminator
𝐺𝑑 has positive effects. In multimodal feature learning, focusing
solely on achieving modality balance may significantly weaken the
model’s ability to extract modality-related information. In domain
adversarial learning, classification capability and domain discrimi-
nation capability are often seen as opposing objectives. However,
both imbalances across modalities can negatively affect the perfor-
mance of the model. For example, if there is a significant difference
in domain discrimination capability between different modalities,
the model may learn irrelevant information about the participants
that is modality-dependent or modality-specific, which can limit
the capability of the model to generalize across domains. This inter-
modal imbalance can be detrimental to performance. In summary,
these two inter-modal imbalances can negatively affect model per-
formance. The fine-grained inter-modal balance of the classification
and domain discrimination capabilities is crucial to mitigate these
negative effects and improve overall performance in sleep staging.

5.7 Feature Visualization Analysis
For more interpretable analysis, we exploit the t-SNE [55] to visu-
alize the feature embeddings of Feature and SleepMG methods. As
shown in Figure 6, SleepMG exhibits more distinct classification
boundaries than the FeatureNet method. For example, in SleepMG,
the cluster representing the deep sleep stage N3 is fewer in number
and more tightly grouped, while the cluster representing the N2
stage (indicated by green) clearly separates the blue N3 stage from
other stages. The light sleep stage N1, which is the most challeng-
ing to differentiate, exhibits a tightly grouped yellow cluster in
SleepMG, displaying clearer boundaries.
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(a) FeatureNet

-60 60
-60

60
Wake
N1
N2
N3
REM

(b) SleepMG

Figure 6: The visualization of the t-SNE embeddings on the
ISRUC-S3 dataset with (a) FeatureNet and (b) SleepMG.

6 CONCLUSION
This paper introduces SleepMG, a novel Multimodal Generaliz-
able Sleep Staging method. Besides the naive integration of multi-
modal feature learning models and domain generalization methods,
SleepMG quantitatively assesses and adaptively balances the classi-
fication and domain discrimination capabilities of multiple modali-
ties, addressing the issues of inter-modal imbalances. Experimental
results demonstrate that SleepMG outperforms state-of-the-art per-
formance in cross-domain sleep staging and achieves inter-modal
balances.
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