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Abstract

The distribution shifts and the scarcity of la-
bels prevent graph learning methods, especially
graph neural networks (GNNs), from generaliz-
ing across domains. Compared to Unsupervised
Domain Adaptation (UDA) with embedding align-
ment, Unsupervised Graph Domain Adaptation
(UGDA) becomes more challenging in light of
the attribute and topology entanglement in the
representation. Beyond embedding alignment,
UGDA turns to topology alignment but is limited
by the ability of the employed topology model
and the estimation of pseudo labels. To allevi-
ate this issue, this paper proposed a Disentangled
Graph Spectral Domain adaptation (DGSDA) by
disentangling attribute and topology alignments
and directly aligning flexible graph spectral filters
beyond topology. Specifically, Bernstein polyno-
mial approximation, which mimics the behavior
of the function to be approximated to a remark-
able degree, is employed to capture complicated
topology characteristics and avoid the expensive
eigenvalue decomposition. Theoretical analysis
reveals the tight GDA bound of DGSDA and the
rationality of polynomial coefficient regulariza-
tion. Quantitative and qualitative experiments
justify the superiority of the proposed DGSDA.
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Figure 1. The proposed Disentangled Graph Spectral Domain
Adaptation (DGSDA). The disentanglement is between attribute
and model/topology alignments.

1. Introduction
Graphs are ubiquitous as a language for modeling complex
relational data in diverse fields, ranging from social net-
works to traffic to the sciences (Hu et al., 2020; Li et al.,
2022). Research on graphs has been conducted in many dis-
ciplines, including graph theory in mathematics (Bondy &
Murty, 2008), network science in physics (Barabási, 2013),
and graph representation learning in artificial intelligence
(Cui et al., 2019; Guan et al., 2024; Zhuo et al., 2023;
Fang et al., 2022). Unfortunately, their essential complex-
ity makes labeling graphs more difficult and requires more
domain knowledge than labeling images, text, and speech.
Although the quest for the foundation model has come a
long way in many fields (Bommasani et al., 2021), e.g., LM
in NLP and CV (Zhao et al., 2023), the distribution shifts
and scarcity of labels prevent graph learning methods, es-
pecially graph neural networks (GNNs), from generalizing
across domains, and impede the design of graph foundation
models (Li et al., 2024; Fan et al., 2024; Liu et al., 2024b).

Unsupervised graph learning methods have demonstrated
the potential to learn transferable representations without
relying on labeled data (Yang et al., 2025; Zhuo et al.,
2024). However, these methods often assume a single-
domain setting, overlooking cross-domain distribution shifts.
Unsupervised Domain Adaptation (UDA) transfers knowl-
edge from label-rich domains to unlabeled target domains
with distribution discrepancies. Embedding alignment is
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a widely adopted methodology in UDA (Liu et al., 2022),
and many alignment strategies have been proposed (Ganin
et al., 2016b; Shen et al., 2018). Unsupervised Graph Do-
main Adaptation (UGDA) introduces the UDA problem
to the graph domain (Liu et al., 2024b; Shi et al., 2024),
and embedding alignment strategies are employed to han-
dle distribution shifts (Zhang et al., 2019; Wu et al., 2020;
Pang et al., 2023). However, graph data contains two differ-
ent types of information, i.e., topology and node attributes,
both of which may suffer from distribution shifts (Liu et al.,
2024b; Shi et al., 2024; Fang et al., 2025). Thus, UGDA
becomes more challenging in light of the attribute and topol-
ogy entanglement in the representation compared to UDA
(Ma et al., 2019).

Beyond drawing on UDA, UGDA turns to topology shift and
alignment (Liu et al., 2023; 2024c), which is the problem
specific to UGDA. The topology alignment needs additional
topology structure models, such as Contextual Stochastic
Block Models (CSBM) (Deshpande et al., 2018), to effi-
ciently align topologies in source and target domains. Thus,
the expressive ability of topology structure models is criti-
cal for knowledge transfer among graph domains. Besides,
robust topology alignment often relies on accurate pseudo-
label estimation in the target domain. However, this is often
difficult as label prediction is the core task in UDA. In con-
clusion, the ability of the employed topology model and the
accurate estimation of pseudo-labels hinder the quality of
the topology alignment.

To alleviate this issue, this paper proposed a Disentangled
Graph Spectral Domain adaptation (DGSDA) as shown in
Fig. 1 by disentangling attribute and topology alignments
and directly aligning complicated graph spectral filters be-
yond topology. Firstly, DGSDA disentangles the UGDA
into attribute alignment, which has been widely investi-
gated in UDA, and topology alignment based on the aligned
node attribute. Secondly, based on the close relationship
between topology and GNNs, especially spectral ones, topol-
ogy alignment is converted to model alignment. The model
alignment possesses the advantages of (1) end-to-end mod-
eling, (2) parameter efficiency, and (3) benefit from a large
amount of flexible GNNs. Thirdly, BernNet (He et al.,
2021), which uses Bernstein polynomial approximation,
is adopted, and coefficients of the polynomial are aligned
between source and target domains.

The final objective function is the combination of the losses
for attribute alignment, model alignment, supervised error
in the source domain, and clustering regularization in the
target domain. Theoretical analysis demonstrates the tight
DA bound for the proposed DGSDA. The Lipschitz contin-
uous of Bernstein polynomial on mimicking the behavior
of the function to be approximated makes the spectral Lips-
chitz constant determined by the ground truth function to be

learned instead of the employed polynomial. Besides, the
analysis also justifies the polynomial coefficient regulariza-
tion in the model alignment loss.

The main contributions are summarized as follows:

• We introduce a novel UGDA pipeline by disentangling
attribute and topology alignments and replacing topol-
ogy alignment with model alignment.

• We propose a novel Disentangled Graph Spectral DA
(DGSDA) by directly aligning spectral filters. DGSDA
is end-to-end, parameter efficient, and possesses high
expressive ability.

• We present the tight DA bound for our DGSDA with
Bernstein polynomials and justify the alignment loss.

• We conduct experiments to show the proposed UGSDA
achieves a new SOTA.

2. Related Work
Traditional domain adaptation approaches use intermediate
representations to minimize domain discrepancy, which can
be categorized into two main streams: methods that mini-
mize pre-defined probability discrepancy metrics (Gretton
et al., 2012; Zellinger et al., 2017) and those that employ
adversarial learning techniques (Ganin et al., 2016a; Long
et al., 2018; Tzeng et al., 2017). However, these methods
are not appropriate for graph-structured data.

Recently, several approaches have been proposed to address
the unique challenges of UGDA (Zhang et al., 2021; Wang
et al., 2023; Shen et al., 2023; Cai et al., 2024; Huang et al.,
2024). Notable methods include DANE (Zhang et al., 2019),
which uses shared GCNs and a least square generative adver-
sarial network. ACDNE (Shen et al., 2020) employs feature
extractors and a domain classifier. UDAGCN (Wu et al.,
2020) and AdaGCN (Dai et al., 2022) integrates graph con-
volution with adversarial training for graph transfer learning.
CoCo (Yin et al., 2023) and DREAM (Yin et al., 2024) are
designed for the classification of graph-level domain adapta-
tion. These approaches inherit limitations from conventional
domain adaptation: they predominantly address feature-
level shifts while neglecting structural misalignment.

Beyond addressing feature distribution shifts, recent stud-
ies explore structural adaptation strategies for graph do-
main shifts. StruRW (Liu et al., 2023) develops an edge
reweighting mechanism that mitigates conditional neigh-
borhood distribution shifts across domains. Extending this
paradigm, PairAlign (Liu et al., 2024c) introduces a dual
adaptation framework that simultaneously recalibrates node
influence through adaptive edge weighting and counteracts
label distribution mismatch via classification loss reweight-
ing. JHGDA (Shi et al., 2023) designs a multi-level pooling
model to extracts hierarchical representations and compute
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domain discrepancies at different levels. KBL (Bi et al.,
2023) proposes an alternative paradigm via bridged-graph
knowledge transfer. These approaches fundamentally cou-
ple node representation learning with structural adaptation in
a joint optimization framework. This tight integration risks
entangling domain-invariant patterns with topology-specific
artifacts, potentially amplifying spurious correlations.

Beyond simply using GNNs as node embedding modules,
emerging research systematically investigates their intrinsic
properties for domain adaptation scenarios. SpecReg (You
et al., 2023) establishes theoretical connections between
optimal transport-based generalization bounds and GNN
spectral characteristics, revealing that the Lipschitz continu-
ity of graph filters fundamentally constrains cross-domain
risk. A2GNN (Liu et al., 2024a) finds that the propagation
operation plays a pivotal role and proposes a simple GNN
that stacks more propagation layers on the target branch.

3. Preliminaries
3.1. Notations

A graph can be represented as G = (V, E) where V and E
are the sets of nodes and edges. N = |V| and M = |E|
stand for the numbers of nodes and edges. The node attribute
matrix, denoted by X = {xi|vi ∈V} ∈ RN×F , contains
attribute vector xi for each node vi, where F represents
the dimensionality of the attributes. Adjacency matrix of
G is represented as A = [aij ] ∈ RN×N . aij = 1 holds
if there is an edge eij ∈ E connecting nodes vi and vj ,
and aij = 0 otherwise. N (vi) stands for the neighborhood
of node vi. D = [dii] ∈ RN×N denotes the degree matrix
with diagonal element dii =

∑
vj∈N (vi)

aij as the degree of

node vi. P = D
1
2AD

1
2 is the normalized adjacency matrix.

L̂ = D−A and L = I−D
1
2AD

1
2 represent the Laplacian

matrix and its symmetric normalized version, where I stands
for the identity matrix. Y ∈ RN×C represents the node
label matrix, where C denotes the number of classes.

3.2. Problem Definition

Given a labeled source graph GS = (VS , ES ,YS) and an
unlabeled target graph GT = (VT , ET ) with the data shift
that P(GS) ̸= P(GT ) or equivalently P(AS ,XS |YS) ̸=
P(AT ,XT |YT ). Superscripts .S and .T stand for the
source and target domains, respectively. Domain indica-
tor can be placed on P for simplicity, e.g. PU (A,X|Y) =
P(AU ,XU |Y) for U ∈ {S, T}. Unsupervised Graph Do-
main Adaptation (UGDA) is to seek a model g : GT → YT

which can be generalized to tasks on unlabeled target graph
GT . Model g : G → Y consists of a feature extractor
h : G → H and a classifier f : H → Y . Here, the node-
level classification task is mainly considered. Both the
labeled source graph GS and the unlabeled target graph GS

are employed to train the model g : GT → YT .

3.3. Spectral Graph Neural Networks

Let L = UΛUT denote the eigen-decomposition of the
symmetric normalized Laplacian matrix L, where U is the
matrix of eigenvectors and Λ = diag[λ1, ..., λN ] is the
matrix of eigenvalues. The spectral filter on the graph is

h(L)x = Uh(Λ)UTx = Udiag[h(λ1), ..., h(λN )]UTx,
(1)

where λi ∈ [0, 2] for i = 1, ..., N and x ∈ RN stands for
graph signal. Spectral graph neural networks aim to design
and learn the mapping function h(L), or equivalently h(λ).
Different polynomial approximations are employed to fit
h(λ), such as Chebyshev polynomials (Defferrard et al.,
2016; Kipf & Welling, 2017; He et al., 2022), Bernstein
polynomials (He et al., 2021), and Jacobi polynomial (Wang
& Zhang, 2022). Specformer (Bo et al., 2023) considers the
set relationships between eigenvalues with Transformer.

4. Method
This section presents the Disentangled Graph Spectral Do-
main Adaptation (DGSDA). Sections 4.1 and 4.2 elaborate
two components Distribution Shift Disentanglement and
Graph Spectral Domain Adaptation, respectively. Section
4.3 provides the overall objective function and algorithm
followed by the theoretical justification as in Section 4.4.

4.1. Distribution Shift Disentanglement

Unsupervised Graph Domain Adaptation (UGDA) aims to
align the embedding condition distributions PS(H|Y) =
PT (H|Y) to deal with the data shift PS(A,X|Y) ̸=
PT (A,X|Y) with the feature extractor h : G → H. Since
P(A,X|Y) = P(X|Y)P(A|X,Y), the graph DA process
can be disentangled into two steps: node attribute alignment
w.r.t. P(X|Y) and topology alignment w.r.t. P(A|X,Y).

Node attribute alignment. Fortunately, there is much
progress in the non-graph domain adaptation (Liu et al.,
2022). They achieve PS(HX |Y) = PT (HX |Y) under
scenarios of PS(X|Y) ̸= PT (X|Y) with hX : X → H,
where X stands for the collection of i.i.d. data and HX for
its representation. Thus, the node attribute can be aligned.

Topology alignment. Therefore, the graph data shift
can be simplified from PS(A,X|Y) ̸= PT (A,X|Y) to
PS(A|X,Y) ̸= PT (A|X,Y). Since the node attribute has
been aligned in embedding space, node attribute divergence
can be ignored and topology alignment can be further con-
verted to the data shift scenarios of

PS(A|HX ,Y) ̸= PT (A|HX ,Y). (2)

Section 4.2 proposes a flexible topology alignment scheme
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with aligned attribute embedding.

Benefiting from the above graph distribution shift disentan-
glement, the overall framework of the proposed Disentan-
gled Graph Spectral Domain Adaptation (DGSDA) is shown
in Fig. 1. Note that DGSDA does not require additional
final embedding alignment after topology alignment. Thus,
it overcomes the drawbacks of methods using entangled
node embedding alignment.

4.2. Graph Spectral Domain Adaptation

This section proposes a novel Graph Spectral Domain
Adaptation (GSDA) algorithm to achieve PS(H|Y) =
PT (H|Y) under data shift scenarios of PS(A|HX ,Y) ̸=
PT (A|HX ,Y). The following two subsections show why
and how to use GNNs alignment instead of topology one.

4.2.1. GNNS ALIGNMENT

Note that the relationship between i.i.d. date feature x and
feature extractor hX : X → H is very different from that
between graph topology A and graph learning function
h : G → H. On the one hand, the feature of i.i.d. data x only
acts as the input to a model hX . On the other hand, graph
topology, represented as adjacency matrix A, is closely
related to the graph learning scheme, such as the propagation
scheme in GNNs. Taking spectral GNN as an example,
graph topology determines the spectral space to filter data
with the eigenvectors of its Laplacian matrix as U in Eq.
(1). Therefore, different from existing methods (Liu et al.,
2023; 2024c), which perform topology structures alignment
and apply GNNs on the aligned topology, this paper directly
aligns the parameterized GNNs across divergent domains
shown in Eq. (2):

GNNS
θ (A,HX)

align⇐⇒ GNNT
θ (A,HX), (3)

where θ is the parameters related to the graph topology in
GNN. The alignment of GNN is equivalent to the parameter
alignment. It possesses the following three advantages:

• End-to-end model alignment is optimal compared to
the topology alignment. Model alignment is equivalent
to jointly aligning the topology and selecting proper
GNNs. On the contrary, topology alignment also re-
quires choosing additional GNNs.

• Model alignment, i.e., parameter alignment, may be ef-
ficient. Compared to the number of edges, which need
to be aligned and adjusted, that of model parameters is
often much smaller and independent of the graph size.

• Compared to topology structure models, a larger num-
ber of GNNs exist. There are many flexible GNNs
designed for different kinds of graphs ranging from
homophilous to heterophilic ones. On the contrary, the
topology structure model is rare.

4.2.2. SPECTRAL FILTER ALIGNMENT

Benefiting from the above advantages, a highly expressive
GNN is required to act as the backbone for GNN alignment.
Here, spectral GNN is employed for its ability to capture and
model diverse characteristics of graph signals, such as low-
passing, high-passing, and bandit-passing. Unfortunately,
as shown in Eq. (1), vanilla spectral GNNs are computa-
tionally expensive due to the eigenvalue decomposition of
the Laplacian matrix. Here, BernNet (He et al., 2021) is
adopted for its simplicity, efficiency, and theoretical support
for learning arbitrary graph spectral filters.

BernNet implements h(λ) in Eq. (1) with K-order Bern-
stein polynomial approximation on t ∈ [0, 1] as

hK(t) :=

K∑
k=0

θk · bKk (t) =

K∑
k=0

f

(
k

K

)(
K

k

)
(1− t)K−ktk,

(4)
where bKk (t) =

(
K
k

)
(1− t)K−ktk is the k-th Bernstein base,

and θk = f( k
K ) is the function value at k/K, which acts

as the coefficient of bKk (t). Thus, by deflating the input to
[0, 1], the spectral GNN for signal x in Eq. (1) becomes

z = BK(A)x = Udiag[hK(λ1/2), ..., hK(λn/2)]U
⊤x

=

K∑
k=0

θk
1

2K

(
K

k

)
(2I− L)K−kLkx, (5)

where x represents a general graph signal. Since the model
alignment is based on the aligned node attributes embedding
HX as shown in Eq. (2), the graph signal in the proposed
DGSDA is the aligned node attribute, i.e., the row of HX .

It is proved that BernNet possesses many good properties
(He et al., 2021). Firstly, for an arbitrary continuous filter
function h : [0, 2] → [0, 1], the z in Eq. (5) can approx-
imate h(L)x as K → ∞. Secondly, BernNet does NOT
need expensive eigenvalue decomposition and is thus ef-
ficient. Thirdly, BernNet exactly realizes existing filters,
which are commonly used in GNNs by specifying θk’s, such
as Linear/Impulse low-pass filters, Linear/Impulse high-pass
filters, and Impulse band-pass filters. Intuitively, the bases
(2I − L) = I + A and L correspond to smoothing and
sharpening operations, respectively.

According to Eq. (3), the hK(t)’s in Eq. (4) from source
and target should be aligned. To this end, its parameters
θk’s, which denote the responses to different frequencies,
need to be aligned as the following loss term.

Lalign =

K∑
k=0

∣∣∣θSk − θTk

∣∣∣+ K∑
k=0

(∣∣∣θSk ∣∣∣+ ∣∣∣θTk ∣∣∣) , (6)

where θSk and θTk are the coefficients for source and target
domains, respectively. The second term is to regularize the
model parameters for adaptation as justified in Section 4.4.
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4.3. Objective Function and Algorithm

As shown in Fig. 1, the overall Disentangled Graph Spectral
Domain Adaptation (DGSDA) consists of four components:
source domain encoder, target domain encoder, node at-
tribute alignment, and model alignment. Thus, the overall
objective function is as follows

L = Lsource + αLalign + βLmmd + γLtarget, (7)

where Lsource (Eq. (11)), Lalign (Eq. (6)), Lmmd (Eq.
(12)) and Ltarget (Eq. (13)) correspond to source domain
classification loss, spectral alignment loss, maximum mean
discrepancy loss, and target domain unsupervised loss. α,
β, and γ are hyper-parameters to balance these terms. Refer
to the Appendix A for a detailed description of each item in
the formula.

4.4. Theoretical Analysis

This section provides the domain adaptation (DA) bound of
the proposed DGSDA by following the DA bound frame-
work for graph-structured data in (You et al., 2023), which
extends the DA bound for i.i.d. data in (Redko et al., 2017).
For clarity, the definition of Lipschitz continuous is as fol-
lows.
Definition 4.1. Given two metric spaces (X , dX) and
(Y, dY ), where dX denotes the metric on the set X and
dY is the metric on set Y , a function f : X → Y is called
Lipschitz continuous of µ order, denoted as f ∈ LIPC,µ, if
there exists a real constant C ≥ 0 and 0 < µ ≤ 1 such that,
for all x1 and x2 in X ,

dY (f(x1), f(x2)) ≤ CdX(x1, x2)
µ. (8)

Any such C is referred to as a Lipschitz constant for the
function f , and f may also be referred to as C-Lipschitz for
the case of the order µ = 1.

With the definition of Lipschitz continuous, the DA bound
for graph data can be generally expressed as follows.
Theorem 4.2. (You et al., 2023) Let’s assume that the
learned discriminator f is Cf -Lipschitz continuous where
the Lipschitz norm ∥f∥Lip = maxZ1,Z2

|f(X1)−f(Z2)|
ρ(Z1,Z2)

=

Cf holds for some distance function ρ, and the graph fea-
ture extractor h (also referred to as GNN) is Ch-Lipschitz
that ∥h∥Lip = maxG1,G2

∥h(G1)−h(G2)∥2

η(G1,G2)
= Ch for some

graph distance measure η. Let F := {g : G → Y} be the set
of bounded real-valued functions with the pseudo-dimension
Pdim(F) = d that g = f ◦h ∈ F , with probability at least
1− δ the following inequality holds:

ϵT (g, ĝ) ≤ ϵ̂S(g, ĝ)

+

√
4d

NS
ln

(
eNS

d

)
+

1

NS
ln

(
1

δ

)
+ 2CfChW1

(
PS(G),PT (G)

)
+ ω, (9)

where the (empirical) source and target risks are
ϵ̂S(g, ĝ) = 1

NS

∑NS

n=1 |g(Gn) − ĝ(Gn)| and ϵT (g, ĝ) =
EPT (G) {g(G)− ĝ(G)}, respectively, where ĝ : G → Y is
the labeling function for graphs and

ω = min
∥f∥Lip≤Cf ,∥h∥Lip≤Ch

{
ϵT (g, ĝ) + ϵ̂S(g, ĝ)

}
. (10)

Unfortunately, it isn’t easy to instantiate the GNN Lipschitz
constant, since the distance metric η(G1, G2) often requires
computationally expensive graph matching. As in (You
et al., 2023), the numerator, i.e. ∥g(G1)− g(G2)∥2, which
is related to the GNN stability, is estimated. Recall that
K-order Bernstein polynomial in Eq. (5) is employed as
the graph encoder. One important property of Bernstein
polynomials is that they mimic the behavior of the function
to be approximated to a remarkable degree. The following
theorem formally demonstrates this attractive property.

Theorem 4.3. if f ∈ LIPC,µ, then its K-order Bernstein
polynomial approximation hK(t) for all K ≥ 1 defined in
Eq. (4) with θk = f( k

K ) belong to LIPC,µ also.

The proof is given in Appendix B.1. With the above the-
orem, ∥g(G1) − g(G2)∥2 can be estimated as follows.
Given ∀G1, G2 with size N and L1 = U1Λ1U

⊤
1 ,L2 =

U2Λ2U
⊤
2 , the eigenvalue decomposition for Laplacian

matrices L1 and L2 that Λ1 = diag ([λ1,1, . . . , λ1,N ]),
Λ2 = diag ([λ2,1, . . . , λ2,N ]) with eigenvalues sorted in
the descending order. The proposed DGSDA is constructed
by composing a graph filter BK(A) in Eq. (5) and non-
linear mapping that g (G1) = σ (BK (A1)X1W) =

σ
(
U1hK (Λ1)U

⊤
1 X1W

)
where hK =

K∑
k=0

θk · bKk (t)

is the polynomial function in Eq. (4) that BK (A1) =
K∑

k=0

θk
1
2K

(
K
k

)
(2I− L1)

K−kLk
1 , W ∈ RD×D′

is the learn-

able weight matrix, and the pointwise nonlinearity holds as
|σ(b)− σ(a)| ≤ |b− a|,∀a, b ∈ R.

Theorem 4.4. Suppose the Bernstein polynomial hK ap-
proximate the ground truth one f̄ with θk = f̄( k

K ) and
∥X∥op ≤ 1 and ∥W∥op ≤ 1 where ∥ · ∥op stands for oper-
ator norm, the following inequality holds:

∥g (G1)− g (G2) ∥2
≤ Cλ

(
1 + τ

√
N
)∥∥A1 −P∗A2P

∗ T
∥∥
F

+O
(∥∥A1 −P∗A2P

∗ T
∥∥2
F

)
+max {|hK (Λ2)|} ∥X1 −P∗X2∥F ,

where τ = (∥U1 −U2∥F + 1)
2 − 1 stands for the

eigenvector misalignment which can be bounded, P∗ =
argminP∈Π

{
∥X1 −PX2∥F +

∥∥A1 −PA2P
∗ T

∥∥
F

}
,Π

is the set of permutation matrices,
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O
(∥∥A1 −P∗A2P

∗ T
∥∥2
F

)
is the remainder term with

bounded multipliers, and Cλ is the Lipschitz constant of f̄
that ∀λi, λj ,

∣∣f̄ (λi)− f̄ (λj)
∣∣ ≤ Cλ |λi − λj |.

The proof is given in Appendix B.2. Note that Theo-
rem 4.4 is different from the Lemma 1 in (You et al.,
2023). In Lemma 1 in (You et al., 2023), the Lipschitz
constant Cλ is determined by the basic polynomial function,
i.e., ∀λi, λj , |BK (λi)−BK (λj)| ≤ Cλ |λi − λj | where
BK (λ) =

∑∞
k=0 skλ

k is the common polynomials. In
Theorem 4.4, the Lipschitz constant Cλ is determined by
the ground truth function f̄ , since the attractive property of
Bernstein polynomial in Theorem 4.3.

Theorem 4.5. Let’s define the matching dis-
tance between G1, G2 as η (G1, G2) =
minP∈Π

{
∥X1 −PX2∥F +

∥∥A1 −PA2P
∗ T

∥∥
F

}
.

Suppose that the edge perturbation is bounded that
∀G1, G2,

∥∥A1 −P∗A2P
∗ T

∥∥
F

≤ ε with the optimal
permutation P∗, and there exists an eigenvalue λ∗ ∈ R
to achieve the maximum |hK (λ∗)| < ∞. The Lipschitz
constant of the proposed DGSDA can be estimated as

Cf = max {CλK1 + εK2, |hK (λ∗)|} ,

where K1,K2 is the supremes of
(
1 + τ

√
N
)

and the re-
mainder multiplier in Theorem 4.4.

The proof is given in Appendix B.3. According to Eq. (9)
the gap between the target and source errors is bounded with
two terms:

• Term W1

(
PS(G),PT (G)

)
which captures the distri-

bution divergence between the source and target multi-
plied by Lipschitz constants Cf ;

• Term ω in Eq. (10) which models the discriminative
capability of model to capture invariant knowledge
restricted by Lipschitz constants.

Thus, varying the Lipschitz constant may balance between
domain-divergence and discriminability to vary the DA
bound. To tighten the DA bound in Eq. (9) can be imple-
mented by regularizing the Lipschitz constant Cf . Recall
that Cλ is determined by the ground truth function to ap-
proximate instead of the polynomial, and thus Cλ is fixed.
Therefore, only |hK (λ∗)| need to be regularized. To this
end, the absolute values of Bernstein polynomial coeffi-
cients, i.e., |θk|’s are regularized as shown in the second
terms in Eq. (6).

5. Experiments
5.1. Experimental Setup

Datasets. The experiment utilizes three types of bench-
mark datasets: Citation networks (ArnetMiner: ACMv9 (A),

Citationv1 (C) and DBLPv7 (D)), social interactions (Blog-
Catalog and Twitch-DE/EN), and transportation systems
(Airport: Brazil (B), Europe (E) and USA (U)). Refer to
Appendix C for dataset details.

Baselines. The baselines for comparison can be divided into
three categories. (1) Source-only methods, including vanilla
GCN (Kipf & Welling, 2017) and GAT (Velickovic et al.,
2018). These methods are trained only on the source graph
and directly applied to target graph for evaluation. (2) GDA
methods using node embedding, containing DANE (Zhang
et al., 2019), UDAGCN (Wu et al., 2020) and AdaCGN (Dai
et al., 2022). These methods use node embedding to solve
the graph domain adaptation problem. (3) GDA methods
tailored for graph structure shift, including StruRw (Liu
et al., 2023), JHGDA (Shi et al., 2023), KBL (Bi et al.,
2023) and PairAlign (Liu et al., 2024c). (4) Graph domain
method tailored for propagation: A2GNN (Liu et al., 2024a).
These models are analyzed in the Related works.

Configurations. For reproducibility, the detailed settings
of the experiments are described below. All experiments
are performed on Nvidia GeForce RTX 3090 (24GB). Our
proposed model DGSDA1 is implemented with PyTorch
(Paszke et al., 2017) and PyTorch Geometric library (Fey &
Lenssen, 2019). To be fair, we use the source code provided
by the authors for each baseline and fine-tune the hyperpa-
rameters to achieve optimal values. In all the experiments,
we use the Adam optimizer. We run all models five times on
each dataset, and the mean accuracy is used as the metric.

Hyperparameters. For hyperparameter settings, The node
representation dimension is selected from {128, 256}. The
learning rate is tuned from {0.01, 0.005, 0.001, 0.0005},
weight decay is tuned from {0.0005, 0.005, 0.01} and K is
selected from {5, 8, 10, 15}.

5.2. Result Analysis

Citation Network. The experimental results on citation
networks are presented in Tab. 1. From these results, two
key observations can be made. First, models tailored for
graph structure shifts consistently outperform models that
align only node representations on all datasets. This indi-
cates the significance of graph structure in graph domain
adaptation, which fits the observations that the cross-domain
differences often manifest in both citation patterns (struc-
ture) and textual features (attribute). More importantly,
the proposed DGSDA achieves superior performances over
baseline models, particularly, models tailored for graph
structure shifts, across all citation networks. To be specific,
DGSDA achieves performance improvements of 6.33% over
the second-best baseline JHGDA on the (D→C) datasets.
This reveals that the decoupled modeling allows mutually

1Our code is available at https://github.com/Hechriver/DGSDA
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Table 1. Node classification performance on citation network. The metric is mean accuracy (%) and standard deviation. The best and the
second best results are highlighted in bold and underlined, respectively.

METHOD A → C C → A A → D D → A C → D D → C

GCN 76.13±0.51 68.52±0.33 68.80±0.22 62.42±0.40 72.97±0.17 72.53±0.25
GAT 74.45±0.41 68.15±0.41 69.43±0.76 62.11±0.70 72.52±0.38 71.65±0.62

DANE 65.80±0.13 65.39±0.43 63.98±0.28 60.28±0.78 65.98±0.36 71.29±0.44
UDAGCN 72.06±0.15 70.28±0.17 70.93±0.53 63.42±0.67 73.03±0.19 71.15±0.11
ADAGCN 74.28±0.28 67.89±0.34 67.83±0.85 60.52±0.82 72.83±0.89 71.98±0.64

STRURW 77.35±0.16 71.23±0.16 73.51±0.28 65.19±0.16 74.33±0.21 74.28±0.16
JHGDA 77.28±0.53 73.72±0.28 73.13±0.28 69.80±0.21 74.25±0.43 76.59±0.34
KBL 78.21±0.36 71.49±0.16 69.28±0.37 63.45±0.28 74.96±0.25 73.92±0.14
PAIRALIGN 73.76±0.13 70.25±0.27 69.18±0.17 62.88±0.67 72.59±0.19 72.35±0.36

A2GNN 80.68±0.98 75.12±0.54 76.13±0.39 73.48±0.38 76.15±0.73 79.89±0.36

DGSDA 83.57±0.22 75.54±0.28 76.90±0.51 74.07±0.56 78.38±0.28 82.92±0.15

Table 2. Node classification performance on social network. The
metric is mean accuracy (%) and standard deviation. The best and
the second best results are in bold and underlined, respectively.

METHOD DE→EN EN→DE B1→B2 B2→B1

GCN 54.42±0.89 61.00±0.30 40.66±4.98 40.15±3.46
GAT 54.56±0.01 59.32±0.28 28.55±5.67 24.48±5.57

DANE 51.84±0.16 51.69±0.36 32.17±2.08 31.86±0.33
UDAGCN 58.23±0.61 58.61±0.28 33.51±2.38 34.16±2.18
ADAGCN 57.18±0.89 58.01±0.67 41.03±1.23 37.69±4.18

STRURW 58.27±0.18 62.57±0.39 48.19±0.95 41.53±0.96
JHGDA 56.50±0.41 63.17±0.11 20.89±2.26 23.86±4.18
KBL 58.89±0.38 60.54±0.16 35.63±2.89 34.89±1.28
PAIRALIGN 56.56±0.28 58.75±2.27 39.83±8.61 45.18±3.67

A2GNN 56.52±0.38 61.51±0.83 24.58±2.53 33.16±2.18

DGSDA 59.81±0.18 62.86±0.22 65.64±1.98 63.99±4.34

non-disruptive alignment processes for citation networks,
where attributes and structures represent complementary se-
mantic hierarchies. The disentanglement strategy inherently
respects their distinct roles in cross-domain transfer.

Social Network. Similar conclusions regarding perfor-
mance advantages can be drawn from the experiment re-
sults on social networks. It can be observed from Tab. 2
that the proposed DGSDA has performance advantages on
three of the four datasets, which demonstrates its effective-
ness and universality. It is worth noting that on the Blog
dataset, DGSDA achieves a performance gain of over 17%
compared to the second-best baselines. This is mainly at-
tributed to the adaptivity of the learnable spectral filters used
in DGSDA to graphs with different homophily.

Traffic Network. The experimental results on the airport
traffic network datasets are shown in Tab. 3. It can be ob-
served that the proposed DGSDA outperforms the baselines
on domain adaptation tasks between Brazil and USA, as
well as between Europe and USA, which highlights the su-
periority of DGSDA. While DGSDA demonstrates strong
performance in many scenarios, the domain adaptation task
between Brazil and Europe presents unique challenges. It
can be partially attributed to the limited scale of both do-

mains, resulting in the model overly adapting to the dom-
inant hub and failing to generalize to the whole structure.
Anyway, DGSDA still performs better than vanilla GNN-
based methods and methods only using node embedding
(i.e., UDAGCN, and DANE).

5.3. Effectiveness Study

To validate the Bernstein polynomial-based topological
alignment mechanism, the frequency response curves of
the source and target domain filters are visualized as shown
in Fig. 2. The x-axis denotes normalized graph signal fre-
quency λ (λ=0 for low-frequency, λ=2 for high-frequency
components), and the y-axis represents filter gain h(λ).
Red/blue colors indicate target/source domains, with solid
lines denoting filters jointly optimized under our method
and dashed lines showing single-domain baselines.

From Fig. 2, the following three key observations can
be made: (1) Independently trained single-domain filters
(dashed lines) exhibit consistent trend patterns, revealing
structural similarities in underlying spectral distributions
across domains. This provides the prerequisite for feasible
spectral alignment. (2) The jointly optimized filters (solid
lines) demonstrate nearly identical response curves, verify-
ing our method’s capability to align cross-domain spectral
distributions. (3) Optimized filter responses lie between
single-domain baselines while being closer to the target
distribution. This suggests that our model preserves infor-
mation from the source domain while adaptively adjusting
to target spectral characteristics, achieving bidirectional
alignment rather than unilateral transfer.

5.4. Ablation Study

This experiment aims to evaluate the contribution of each
constraint. In Fig. 3, Base denotes the variant model using
only source cross-entropy loss Lsource. DGSDA−A and
DGSDA − AM represent the variant model that sequen-
tially increases Lalign and Lmmd, respectively. It can be
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Table 3. Node classification performance on traffic network. The metric is mean accuracy (%) and standard deviation. The best and the
second best results are highlighted in bold and underlined, respectively.

METHOD B → U U → B E → U U → E B → E E → B

GCN 43.28±3.18 49.49±0.48 45.01±0.98 47.32±0.89 44.21±2.05 55.88±3.39
GAT 42.69±5.98 50.81±3.87 40.92±4.48 38.10±2.21 34.79±2.29 42.14±4.56

DANE 41.78±1.29 40.44±1.01 32.38±2.36 33.87±0.29 33.03±0.29 41.98±0.28
UDAGCN 34.49±2.18 36.78±2.86 41.26±0.78 41.06±0.18 43.23±1.72 42.33±1.81
ADAGCN 44.04±3.18 55.32±3.18 47.89±3.18 46.89±2.36 50.06±1.21 60.28±3.28

STRURW 52.01±3.21 60.01±0.69 48.89±3.67 52.31±1.08 53.23±0.13 62.10±1.27
JHGDA 51.46±3.85 60.74±3.24 49.03±2.96 50.83±3.36 54.39±5.76 70.12±6.78
KBL 36.69±1.63 35.27±0.75 44.28±0.63 45.36±0.29 46.89±0.96 53.03±0.34
PAIRALIGN 41.76±1.93 57.86±2.13 44.38±0.69 45.68±1.09 44.89±0.18 53.13±0.21

A2GNN 51.18±1.38 54.47±2.67 47.63±2.18 50.47±1.96 50.33±3.20 59.98±1.93

DGSDA 53.18±0.81 61.07±1.60 49.73±0.20 51.23±0.19 49.92±0.96 61.37±4.33

(a) A→C (b) C→A (c) A→D (d) D→A
Figure 2. Spectral alignment verification via Bernstein polynomial filters. Red/blue colors indicate target/source domains, with solid lines
denoting filters jointly optimized under DGSDA and dashed lines showing single-domain baselines.

Figure 3. Ablation studies on citation networks.

observed that as additional constraints are incorporated, the
performance of the models steadily improves. This trend
underscores that the enhanced performance is a result of
the synergistic effect of all the constraints. Moreover, it
is particularly noteworthy that the introduction of the pro-
posed model alignment loss significantly boosts the model’s
performance, thereby highlighting its effectiveness.

5.5. Hyperparameter Analysis

These experiments are performed to offer an intuitive under-
standing for selecting hyper-parameters (including polyno-
mial order K and attribute alignment weight β).

Polynomial Order K. It can be observed from Fig. 4 that
DGSDA exhibits stable performances with respect to the
hyperparameter K in the range K ≥ 5, with variations re-
maining within 2%. This indicates that the learnable spectral
filter has expressive spectral patterns at this stage, enabling
it to effectively adapt to these domain transformations.
Moreover, this illustrates that DGSDA is not sensitive to

Figure 4. The sensitivity of polynomial order K.

Figure 5. The sensitivity of attribute alignment weight β.

this hyperparameter K.

Attribute alignment weight β. From the observations
in Fig. 5, it is clear that DGSDA achieve approximately
consistent performances across a range of parameter choices.
This suggests that DGSDA is not sensitive to the parameter
β. Therefore, we need not pay excessive attention to the
specific values of the above two parameters. See Appendix
C for a full analysis of the remaining hyperparameters.

8
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6. Conclusions
Unsupervised Graph Domain Adaptation (UGDA) faces
inherent challenges due to entangled attribute-topology dis-
tribution shifts and reliance on fragile pseudo-labels. This
work presents Disentangled Graph Spectral Domain Adap-
tation (DGSDA), which addresses these limitations through
spectral filter alignment and distribution shift decoupling.
By disentangling attribute embeddings from topology via
Bernstein polynomial-based spectral filters, DGSDA cir-
cumvents error-prone topology alignment and pseudo-label
estimation. The theoretical analysis further establishes that
regularizing polynomial coefficients tightens the domain
adaptation bound by constraining the Lipschitz continuity
of spectral filters. Extensive experiments on various graphs
demonstrate the superior performance of DGSDA.
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A. Objective Function Details.
In this section, detailed description about the objective function in Eq. (7) are provided. Each of the loss terms in the overall
objective function focuses on different objectives.

Source domain classification losses. The Lsource term constitutes the fundamental supervised learning component of our
framework. Formulated as a cross-entropy loss over labeled source domain data, it directly optimizes the model’s prediction
accuracy through:

Lsource = − 1

NS

NS∑
i=1

C∑
c=1

yi,c log pi,c (11)

Spectral alignment losses. Lalign focuses on aligning spectral coefficients between the source and target domains, which is
provided in Eq. (6).

Maximum mean discrepancy loss. Maximum mean discrepancy (MMD) is widely-used for non-graph DA (Gretton et al.,
2012), aiming to align feature representations to reduce distribution differences. Here is the specific formula.
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(12)

Target domain unsupervised loss. It promotes model adaptation to the target domain through unsupervised learning:

Ltarget = − 1

NT

NT∑
i=1

ŷi log ŷi (13)

where ŷi denotes the predicted labels in target domain.

B. Proofs for Theorems
B.1. Proof for Theorem 4.3

Theorem 4.3 if f ∈ LipAµ,then for all n ≥ 1, Bn(f) ∈ LipAµ also.

Proof.Let x1 ≤ x2 be any two points of [0, 1]. We need to show that

|Bn(f ;x2)−Bn(f ;x1)| ⩽ A(x2 − x1)
µ,

given that f satisfies Eq. (8). From Eq. (4),

Bn (f ;x2) =

n∑
j=0

(
n

j

)
(1− x2)

n−j
f

(
j

n

)
(x1 + (x2 − x1))

j

=

n∑
j=0

(
n

j

)
(1− x2)

n−j
f

(
j

n

){
j∑

k=0

(
j

k

)
xk
1 (x2 − x1)

j−k

}

=

n∑
j=0

j∑
k=0

n!xk
1 (x2 − x1)

j−k
(1− x2)

n−j

k!(j − k)!(n− j)!
f

(
j

n

)

On inverting the order of summation and writing k + l = j,then

Bn (f ;x2) =

n∑
k=0

n−k∑
l=0

n!

k!l!(n− k − l)!
xk
1 (x2 − x1)

l × (1− x2)
n−k−l

f

(
k + l

n

)
. (14)

12
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We now construct a similar double sum for Bn (f ;x1). Again, from Eq. (4), we have

Bn (f ;x1) =

n∑
k=0

(
n

k

)
xk
1f

(
k

n

)
((x2 − x1) + (1− x2))

n−k

=

n∑
k=0

(
n

k

)
xk
1f

(
k

n

){
n−k∑
l=0

(
n− k

l

)
(x2 − x1)

l
(1− x2)

n−k

}

=

n∑
k=0

n−k∑
l=0

n!

k!l!(n− k − l)!
xk
1 (x2 − x1)

l

× (1− x2)
n−k−l

f

(
k

n

)
(15)

On subtracting Eq. (15) from Eq. (14), we have

| Bn(f ; x2)−Bn (f ;x1) |

=

∣∣∣∣∣
n∑

k=0

n−k∑
l=0

n!

k!l!(n− k − l)!
xk
1 (x2 − x1)

l
(1− x2)

n−k−l

×
{
f

(
k + l

n

)
− f

(
k

n

)}∣∣∣∣
⩽A

n∑
k=0

n−k∑
l=0

n!

k!l!(n− k − l)!
xk
1 (x2 − x1)

l
(1− x2)

n−k−l

(
l

n

)µ

on using Eq. (8),

= A

n∑
l=0

(x2 − x1)
l
n!

l!(n− l)!

(
l

n

)µ
{

n−l∑
k=0

(
n− l

k

)
xk
1 (1− x2)

n−k−l

}

= A

n∑
l=0

(
n

l

)
(x2 − x1)

l

(
l

n

)µ

(x1 + 1− x2)
n−l

= ABn (x
µ;x2 − x1) , by Eq.(4),

⩽ A (x2 − x1)
µ

Thus we see that Bn(f) ∈ LipAµ, where A is the Lipschitz constant of f so that the theorem is proved.

B.2. Proof for Theorem 4.4

Theorem 4.4. Suppose the Bernstein polynomial hK approximate the ground truth one f̄ with θk = f̄( k
K ) and ∥X∥op ≤ 1

and ∥W∥op ≤ 1 where ∥ · ∥op stands for operator norm, the following inequality holds:

∥g (G1)− g (G2)∥2 ≤ Cλ

(
1 + τ

√
N
)
∥A1 −P∗A2P

∗ T∥F

+O
(∥∥A1 −P∗A2P

∗ T
∥∥2
F

)
+max {|hK (Λ2)|} ∥X1 −P∗X2∥F ,

where τ = (∥U1 −U2∥F + 1)
2 − 1 stands for the eigenvector misalignment which can be bounded, P∗ =

argminP∈Π

{
∥X1 −PX2∥F +

∥∥A1 −PA2P
∗ T

∥∥
F

}
,Π is the set of permutation matrices, O

(∥∥A1 −P∗A2P
∗ T

∥∥2
F

)
is the remainder term with bounded multipliers, and Cλ is the Lipschitz constant of f̄ that ∀λi, λj ,

∣∣f̄ (λi)− f̄ (λj)
∣∣ ≤

Cλ |λi − λj |.

13
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Proof. Denote the optimal permutation matrix for G1, G2 as P∗, we compute the difference of the GNN outputs:

∥g (G1)− g (G2)∥2
= ∥σ (BK (A1)X1W)− σ (BK (A2)X2W)∥2
(a)
=

∥∥σ (BK (A1)X1W)− σ
(
BK

(
P∗A2P

∗T)P∗X2W
)∥∥

2

(b)

≤
∥∥BK (A1)X1W −BK

(
P∗A2P

∗T)P∗X2W
∥∥
F

(c)

≤ ∥W∥op
(∥∥BK (A1)X1 −BK

(
P∗A2P

∗T)X1 +BK

(
P∗A2P

∗T)X1 −BK

(
P∗A2P

∗T)P∗X2

∥∥
F

)
(d)

≤ ∥W∥op ∥X1∥op
∥∥BK (A1)−BK

(
P∗A2P

∗T)∥∥
F
+ ∥W∥op

∥∥BK

(
P∗A2P

∗ T
)∥∥

op
∥X1 −P∗X2∥F

(e)

≤
∥∥BK (A1)−BK

(
P∗A2P

∗ T
)∥∥

F
+max (|hK (Λ2)|) ∥X1 −P∗X2∥F

(f)

≤ Cλ

(
1 + τ

√
N
)∥∥A1 −P∗A2P

∗T∥∥
F
+O

(∥∥A1 −P∗A2P
∗T∥∥2

F

)
+max (|hK (Λ2)|) ∥X1 −P∗X2∥F ,

where (a) is due to the permutation invariance property of graph filters; (b) is achieved with the triangle inequality
and the assumption |σ(b) − σ(a)| ≤ |b − a| ,∀a, b ∈ R; (c) and (d) use the fact that for any two matrices A,B,
∥AB∥F ≤ min(∥A∥op ∥B∥F , ∥A∥F ∥B∥op), and (c) further applies the triangle inequality; (e) adopts the assumption
∥X∥op ≤ 1 and ∥W∥op ≤ 1 which in practice can be guaranteed with normalization, and easily extended to the case
with∥X∥op ≤ K, ∥W∥op ≤ K,∀K > 0, and because BK(P∗A2P

∗T) = (P∗U2)hK(Λ2)(P
∗U2)

T can be diagonalized,
its operator norms equal the spectral radius; (f) is the direct outcome borrowed from (Gama et al., 2020) Theorem 1.
In common case, Cλ is the Lipschitz constant of BK that ∀λi, λj , |BK (λi)−BK (λj)| ≤ Cλ |λi − λj |. According
to Theorem 4.3, Bernstein polynomial possesses the same Lipschitz constant as the function to be approximated, i.e.,
f̄ . Therefore, the Cλ is the Lipschitz constant of f̄ that f̄ that ∀λi, λj ,

∣∣f̄ (λi)− f̄ (λj)
∣∣ ≤ Cλ |λi − λj |. The proof is

completed.

B.3. Proof for Theorem 4.5

Theorem 4.5. Let’s define the matching distance between G1, G2 as η (G1, G2) =
minP∈Π

{
∥X1 −PX2∥F +

∥∥A1 −PA2P
∗ T

∥∥
F

}
. Suppose that the edge perturbation is bounded that

∀G1, G2,
∥∥A1 −P∗A2P

∗ T
∥∥
F

≤ ε with the optimal permutation P∗, and there exists an eigenvalue λ∗ ∈ R to
achieve the maximum |hK (λ∗)| < ∞. The Lipschitz constant of the proposed DGSDA can be estimated as

Cf = max {CλK1 + εK2, |hK (λ∗)|} ,

where K1,K2 is the supremes of
(
1 + τ

√
N
)

and the remainder multiplier in Theorem 4.4.

Proof. To calculate the Lipschitz constant Cf w.r.t the matching distance, based upon Lemma 1, we assure the following
inequality:

∥g (G1)− g (G2)∥2 ≤Cλ

(
1 + τ

√
NG

)∥∥A1 −P∗A2P
∗T∥∥

F
+O

(∥∥A1 −P∗A2P
∗T∥∥2

F

)
+ |hK (λ∗)| ∥X1 −P∗X2∥F ,

≤Cfη (G1, G2) ,

the latter inequality of which can be rewritten as:(
Cλ

(
1 + τ

√
N
)∥∥A1 −P∗A2P

∗T
∥∥
F
+O

(∥∥A1 −P∗A2P
∗T
∥∥2
F

)
− Cf

∥∥A1 −P∗A2P
∗T
∥∥
F

)
+(|hK (λ∗)| − Cf ) ∥X1 −P∗X2∥F ≤ 0

which is necessary for:

Cλ

(
1 + τ

√
N
)∥∥A1 −P∗A2P

∗T
∥∥
F
+O

(∥∥A1 −P∗A2P
∗T
∥∥2
F

)
− Cf

∥∥A1 −P∗A2P
∗T
∥∥
F
≤ 0

(|hK (λ∗)| − Cf ) ∥X1 −P∗X2∥F ≤ 0
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which is equivalent to:
Cf ≥ CλK1 + εK2

Cf ≥ |hK (λ∗)|

The bounding of K1,K2 follows (Gama et al., 2020) Theorem 1 and the first minimum solution can be calculated from the
quadratic function w.r.t. the edge matching distance

∥∥A1 −P∗A2P
∗T)

∥∥
F
. Let Cf takes the larger value between them, we

complete the proof.

C. Experiments Details.
C.1. Dataset Details

In this section, detailed description about the datasets used in our experiments are provided.

Table 4. Dataset Statistics.

DATASET #NODES #EDGES #LABELS #HOMO

ACMV9 9360 31112 5 0.7998
CITATIONV1 8935 30196 5 0.8598
DBLPV7 5484 16234 5 0.8189

BLOG1 2300 66942 6 0.3991
BLOG2 2896 107672 6 0.4002

ENGLAND 7126 35324 2 0.5560
GERMANY 9498 153138 2 0.6322

BRAZIL 131 2148 4 0.4683
EUROPE 399 11990 4 0.4048
USA 1190 27198 4 0.6978

ArnetMiner These datasets are three citation networks obtain from ArnetMiner (Dai et al., 2022): ACMv9 (A), Citationv1
(C), DBLPv7 (D). Nodes are papers, while edges represent citations between papers. The objective is to classify all
papers into five distinct research domains: Artificial Intelligence, Computer Vision, Databases, Information Security, and
Networking.

Blog These datasets are derived from the BlogCatalog dataset (Shen et al., 2020). In these datasets, each node symbolizes a
blogger, while the edges denote the friendships among bloggers. The objective is to forecast the group affiliations of these
bloggers.

Twitch These datasets are Twitch gamer networks from six regions (Liu et al., 2024a): Germany (DE), England (EN), Spain
(ES), France (FR), Portugal (PT), and Russia (RU). Nodes are users, while connections signify friendships among them. In
this situation, users are divided into two groups depending on whether they use explicit language. Among these datasets, we
pay more attention to the two largest datasts, Germany dataset (DE) and England datasets (EN).

Airport These datasets are airport traffic networks from three countries (Ribeiro et al., 2017): Brazil (B), Europe (E) and
USA (U). Within these datasets, nodes stand for airports, and edges indicate flight links between the airports. The labels
classify airports based on their activity levels, measured in the number of flights or passengers.

C.2. Detailed Hyperparameters.

C.2.1. HYPERPARAMETER α AND γ

This section provides additional insights into hyperparameters α and γ. As shown in Fig. 6, α demonstrates strong robustness
with less than 1% fluctuation across weight initialization schemes. For γ, empirical studies reveal 0.05 achieves optimal
performance, so experiments consequently adopt this fixed value.

C.2.2. HYPERPARAMETER K

This section extends the analysis of K (Bernstein polynomial order) to low-homophily social networks. Experimental
results reveal two patterns: (1) Heterophilic graphs require substantially larger K (e.g., K≥15 vs. K≥5 for homophilic
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Figure 6. The sensitivity of α. Figure 7. The sensitivity of K.

graphs) to reach saturation accuracy, potentially due to complex neighborhood patterns demanding higher-order filtering; (2)
Performance stabilizes when K≥15, indicating sufficient signal modeling capacity at this threshold.

D. More Experiments.
D.1. Pseudo-labels verification.

This section verifies the feasibility of using predicted pseudo-labels on the target domain. A variant model named
DGSDA+PL is introduced, which combines pseudo-labels of the target domain. The compared results reveal that pseudo-
labels consistently lead to performance degradation in all domain adaptation scenarios, demonstrating the infeasibility of the
mentioned scheme.

Table 5. Pseudo-labels experiment on citation network. The metric is mean accuracy (%) and standard deviation.

A → C C → A A → D D → A C → D D → C

DGSDA 83.57±0.22 75.54±0.28 76.90±0.51 74.07±0.56 78.38±0.28 82.92±0.15
DGSDA+PL 81.23±2.52 74.40±2.22 75.36±2.37 71.36±1.33 77.03±1.04 79.45±1.49

This is primarily due to the low reliability of the pseudo-labels generated in the early stages of training, which can cause error
accumulation in learning processes, and the noise amplification effect in graph neural networks, where erroneous pseudo-
labels propagate through message-passing mechanisms. This is also the reason why the proposed method outperforms
topology alignment with pseudo-labels.

D.2. Disentanglement effectiveness validation.

To clarify the sources of performance improvement, this experiment introduced a variant of DGSDA that uses Bernstein
polynomials and directly aligns node representations instead of separately aligning attributes and topology. As demonstrated
in Tab. 6, this variant consistently underperforms compared to the full DGSDA model, which suggests that the explicit
disentanglement of attributes and topology plays a crucial role in enhancing model effectiveness.

Table 6. Disentanglement experiment on citation network. The metric is mean accuracy (%) and standard deviation.

A → C C → A A → D D → A C → D D → C

DGSDA 83.57±0.22 75.54±0.28 76.90±0.51 74.07±0.56 78.38±0.28 82.92±0.15
VARIANT MODEL 81.01±0.32 73.25±0.22 73.15±0.19 72.03±0.24 76.32±0.17 80.25±0.21

D.3. Topology pattern capture capability study.

This section verifies that DGSDA is able to capture the correct topological patterns even in unsupervised scenarios. In the
experiment, the supervised variant of DGSDA employs the supervised loss from 10% labeled data in the target domain,
replacing the unsupervised loss: the spectral alignment loss and the entropy loss. The results are shown in Tab. 6.

The results indicate that the unsupervised DGSDA achieves comparable performance to the supervised version, highlighting
the effectiveness of the unsupervised losses. This can be attributed to two key factors. First, by regularizing the coefficients of
Bernstein polynomials (in Eq. (4)), the method explicitly aligns the spectral filters across different domains. This alignment
enables the target filters to inherit topology-aware patterns from the source domain, even without labels. Second, the entropy
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Table 7. Topology pattern capture capability experiment on citation network. The metric is mean accuracy (%) and standard deviation.

A → C C → A A → D D → A C → D D → C

DGSDA 83.57±0.22 75.54±0.28 76.90±0.51 74.07±0.56 78.38±0.28 82.92±0.15
DGSDA(SUPERVISED) 83.20±0.52 76.37±2.75 79.49±0.56 77.10±0.83 80.16±0.65 83.03±0.48

(a) A→C (b) A→D (c) C→D

(d) C→A (e) D→A (f) D→C

Figure 8. Comparison of filter curves in unsupervised and supervised scenarios.

loss sharpens cluster assignments, which implicitly encourages the model to learn more discriminative topological features.

Moreover, from the observations in Fig. 8, the learned filter curves are similar in both scenarios, which also suggests that the
target domain parameters capture consistent topological patterns in the unsupervised scenario as well.
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