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Abstract

The challenge of replicating research results has posed a significant impediment
to the field of molecular biology. The advent of modern intelligent systems has
led to notable progress in various domains. Consequently, we embarked on an
investigation of intelligent monitoring systems as a means of tackling the issue of
the reproducibility crisis. Specifically, we first curate a comprehensive multimodal
dataset, named ProBio, as an initial step towards this objective. This dataset
comprises fine-grained hierarchical annotations intended for studying activity un-
derstanding in Molecular Biology Lab (BioLab). Next, we devise two challenging
benchmarks, transparent solution tracking, and multimodal action recognition,
to emphasize the unique characteristics and difficulties associated with activity
understanding in BioLab settings. Finally, we provide a thorough experimental
evaluation of contemporary video understanding models and highlight their limita-
tions in this specialized domain to identify potential avenues for future research.
We hope ProBio with associated benchmarks may garner increased focus on
modern AI techniques in the realm of molecular biology.

1 Introduction

Despite notable progress in scientific research, the challenge of reproducing research findings has
surfaced as a significant obstacle. Baker (2016) suggests that a significant proportion of researchers,
exceeding 70%, have reported unsuccessful attempts to replicate experiments carried out by their
colleagues, primarily attributed to inadequate clarity of protocols (Ioannidis, 2005; Begley and Ellis,
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Figure 1: An overview of two challenging tasks identified and presented in ProBio. denotes a set
of cameras, and denotes intelligent monitoring models with access to BioLab protocols. Task (a): track
transparent solutions. Task (b): action understanding guided by protocols. Object IDs share the same color across
frames and in the texts.

2012). These protocols (i.e., procedural instructions) frequently exclude crucial factors, such as
temperature or pH, that can substantially impact the results. As a result, researchers rely heavily
on mentorship from seasoned experts when conducting experiments. The management of such ex-
periments necessitates a significant investment of time and resources, often unattainable for many
laboratories, particularly in Molecular Biology Labs (BioLabs), wherein replicating experiments is
more time-consuming and costly (Calne, 2016). Since modern intelligent systems have brought sig-
nificant advancements in various fields (Grosan and Abraham, 2011; Gretzel, 2011; Stephanopoulos
and Han, 1996; Tavakoli et al., 2020), there is a growing need to develop an AI assistant to tackle this
reproducibility crisis. Toward building such an AI assistant, we set off to curate a multimodal dataset
recorded in BioLabs with benchmarks of modern AI methods.

Due to the inherent characteristics of BioLab, constructing this multimodal dataset faces two grand
challenges. The first one is the lack of readily available protocols with sufficient details; existing
ones typically only provide high-level guidance (Latour, 1987; Cetina, 1999; López-Rubio and Ratti,
2021; Peterson and Panofsky, 2021), lacking details necessary for reproducing results step by step.
An example of process failure in cell culturing occurs when the culture medium is not inverted
correctly after the addition of yeast. Nevertheless, such crucial information is frequently regarded as a
standard practice in research and disregarded in written protocols. The heterogeneity of experimental
instructions exacerbates the complexity of this scenario, as different labs document identical tasks in
diverse manners contingent upon their respective resource availability (Braybrook, 2017). Therefore,
curating standardized protocols with sufficient details, coupled with videos of each instruction’s
execution, is essential for building an AI assistant for BioLab.

The second challenge pertains to comprehending domain-specific actions and objects at the intricate
level of granularity. From the computer vision perspective, this poses a challenging task for achieving
fine-grained understanding in contrast to typical scenarios like sports (Shao et al., 2020; Xu et al.,
2022) or instructional videos (Zhang et al., 2023; Tang et al., 2019; Miech et al., 2019; Das et al.,
2013; Zhou et al., 2018; Zhukov et al., 2019). The complexity of event understanding in BioLab is
primarily attributed to the specialized instruments and the ambiguity of actions involved. For instance,
experiments commonly involve liquid transfer between visually similar and transparent containers
(Liang et al., 2016, 2018), posing additional challenges in object detection and event parsing (Jia
et al., 2020; Huang et al., 2023). Moreover, actions that are perceptually similar may have divergent
semantic meanings across various experiments due to the strong dependence between actions and
experimental contexts (Stacy et al., 2022; Jiang et al., 2022, 2021; Chen et al., 2021). These visual
ambiguities (Fan et al., 2022; Zhu et al., 2020; Zhu, 2018) have been mostly left untouched in prior
arts (Murray et al., 2012; Shao et al., 2020; Goyal et al., 2017; Kay et al., 2017; Zhu et al., 2022;
Panda et al., 2017; Kanehira et al., 2018) and present an ideal and unique testbed for multimodal
video understanding (Wang et al., 2022b; Huang et al., 2023).

We present ProBio, the first protocol-guided multimodal dataset in BioLab to tackle the above
challenges. ProBio provides (i) a meticulously curated set of detailed and standardized protocols
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Table 1: A comparison between ProBio and existing activity understanding datasets. We use segments
to denote the number of object segmentation maps annotated, activity.cls to denote the number of protocols,
activity.num to denote the number of clips that align with protocols.

Domain Dataset Duration Segments Procedure Instruction HOI pairs Multi-view Hierarchy
Activity

cls num

EPIC-Kitchen (2020) 100h 90,000 ✓ ✓ ✗ ✗ ✗ 20,000 39,596
YouCook2 (2018) 175.6h 13,829 ✓ ✓ ✗ ✗ ✗ 89 2,000kitchen
LEMMA (2020) 10.1h 11,781 ✗ ✓ ✗ ✓ ✓ 15 324

daily

COIN (2019) 476.63h 46,354 ✓ ✓ ✗ ✗ ✓ 180 11,287
HowTo100M (2019) 134,472h 136M ✗ ✓ ✗ ✗ ✗ 12 23,611
HOMAGE (2021) 25.4h 1752 ✗ ✓ ✓ ✓ ✓ 453 24,600

IAW (2023) 183h 48,850 ✓ ✓ ✗ ✓ ✗ 14 420
FineGYM (2020) 708h - ✓ ✓ ✗ ✓ ✓ 15 4,883sport FineDiving (2022) 57.9h - ✓ ✗ ✗ ✓ ✓ 52 3,000

BioLab ProBio 180.6h 213,361 ✓ ✓ ✓ ✓ ✓ 79 3,724

with corresponding video recordings for each experiment and (ii) a natural and systematic evaluation
framework for fine-grained multimodal activity understanding; see Fig. 1. We construct ProBio
by selecting a set of 13 frequently conducted experiments and augmenting existing protocols by in-
corporating three-level hierarchical annotations. This configuration yields 3,724 practical-experiment
instructions and 37,537 Human-Object Interaction (HOI) annotations with an overall length of 180.6
hours; see Sec. 3. We design two tasks in ProBio: transparent solution tracking and multimodal
action recognition, assessing models’ capability to leverage both visual observations and protocols
to discern unique environmental states and actions. In light of the significant disparities observed
between human and model performance in action recognition, we devise diagnostic splits that stratify
experimental instruction into three categories based on difficulties (i.e., easy, medium, hard). We
hope ProBio and associated benchmarks will foster new insights to mitigate the reproducibility
crisis in BioLab and promote fine-grained multimodal video understanding in computer vision.

This paper makes three primary contributions:

• We introduce ProBio, the first protocol-guided dataset with dense hierarchical annotations in
BioLab to facilitate the standardization of protocols and the development of intelligent monitoring
systems for reducing the reproducibility crisis.

• We propose two challenging benchmarking tasks to measure models’ capability in leveraging
both visual observations and language protocols for fine-grained multimodal video understanding,
especially for ambiguous actions and environment states.

• We provide an extensive experimental analysis of the proposed tasks to highlight the limitations of
existing multimodal video understanding models and point out future research directions.

2 Related work

Fine-grained activity datasets Action understanding has been a long-standing problem in computer
vision with successful attempts in data curation (Murray et al., 2012; Kay et al., 2017; Soomro et al.,
2012; Caba Heilbron et al., 2015; Monfort et al., 2019). To provide fine-grained activity annotations,
datasets (Goyal et al., 2017; Stein and McKenna, 2013; Damen et al., 2020; Jia et al., 2020; Rai et al.,
2021; Luo et al., 2022b; Grauman et al., 2022) come with HOI labels, object bounding boxes, hand
masks, etc. Tab. 1 compares ProBio with existing datasets.

The task of delineating intricate action hierarchies for daily activities is challenging. One line of work
justifies action hierarchy design by examining activities in sports (Shao et al., 2020; Xu et al., 2022)
and kitchens (Kuehne et al., 2014; Li et al., 2018; Damen et al., 2020). The annotations provided,
while detailed, may lack strong contextual information and may not be suitable for complex tasks
that demand nuanced multimodal understanding. Another line of work leverages furniture assembly
(Ben-Shabat et al., 2021; Sener et al., 2022; Zhang et al., 2023) as a means to highlight action
dependencies. Nonetheless, the practical applications of these tasks are limited.

Multimodal video understanding Complex video understanding tasks require leveraging context
in addition to direct visual inputs. Instructional videos (Zhou et al., 2018; Tang et al., 2019; Zhukov
et al., 2019; Miech et al., 2019), as the most readily available multimodal video learning source,
have been frequently utilized for various multimodal video understanding tasks, such as retrieval
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(Anne Hendricks et al., 2017; Wang et al., 2019), captioning (Zhou et al., 2018; Xu et al., 2016; Yu
et al., 2019), and question answering (Li et al., 2016; Lei et al., 2018; Grunde-McLaughlin et al.,
2021; Xiao et al., 2021; Yang et al., 2021; Jia et al., 2022). These datasets are oftentimes large in scale
and curated from internet videos with language primarily sourced from online encyclopedia platforms
or transcribed from subtitles. The quality of the language modality is considerably impeded by the
substantial human effort required to refine insufficient and inaccurate language descriptions (Miech
et al., 2019). In addition, the extensive scale of data necessitates the frequent utilization of pre-trained
models from other modalities, such as images, for the purpose of multimodal video understanding
(Wang et al., 2021; Zellers et al., 2021; Xu et al., 2021; Luo et al., 2022a). Nevertheless, adapting such
pre-trained models to specialized domains, such as BioLabs, presents a formidable challenge due to
the distinctive nature of objects and actions involved. To tackle these issues, ProBio provides
aligned video-protocol pairs, accompanied by detailed experimental instructions for every procedure.
Benchmarks on ProBio offer a comprehensive examination of existing models for multimodal
video comprehension in specific domains.

3 The ProBio Dataset

ProBio consists of 180.6 hours of multi-view recordings that encompass 13 common biology
experiments conducted in BioLab. This section introduces the collection (Sec. 3.1) and annotation
(Sec. 3.2) process of ProBio and describes the associated benchmarking tasks (Sec. 3.3).

3.1 Data collection

Biology protocol We have assembled a collection of standard protocols along with comprehen-
sive instructions, and videos guided by these protocols, all included in ProBio. We collect our
protocol database by first crawling publicly available protocols published in top-tier journals and
conferences. As these protocols often contain only high-level instructions, commonly referred to as
brief experiments (brf_exp), we construct an online annotation tool for seasoned researchers to
augment them with additional experimental instructions, commonly referred to as practical experi-
ments (prc_exp); of note, this augmentation could be different from experiments to experiments,
resulting in a one-to-many mapping from brief to practical experiments. After this augmentation, we
select 13 brief experiments with multiple practical experiments and instruct seasoned researchers in
BioLab to perform. Please refer to Appx. A.2 for additional details.

Monitoring video The video data is recorded in a laboratory that adheres to the international
standard for molecular biology (Nest.Bio Labs, 2023). A total of ten cameras are installed to oversee
all experimental procedures. To ensure the quality and clarity of the collected videos, we consult
with experienced biological researchers regarding the cameras’ viewpoints and positions. A total of
eight high-resolution RGB cameras are affixed above the operation tables and instruments. To capture
intricate HOIs in detail, two supplementary RGB-D cameras have been positioned in close proximity
to the primary operating table and sterility chamber. Over 700 hours of video are collected through a
24-hour monitoring process, which minimizes disruption to the researchers’ regular activities. The
raw videos undergo additional processing through two steps: (i) automatically filtering of no-action
frames using OpenPose (Cao et al., 2017) and YOLOv5 (Ultralytics, 2022), and (ii) manual removal
of frames depicting actions unrelated to the intended focus, such as conversing, note-taking, or texting.
A total of 180.6 hours hours video pertaining to the 13 selected brief experiments has been obtained.

3.2 Data annotation

In molecular biology experiments, it is common for routine operations to occur periodically. To
facilitate the annotation process, a representative and distinct subset of video clips is selected. This
subset consists of a total of 9.64 hours top-down view videos and 1.05 hours nearby-view videos,
marked with detailed action labels to provide clear, fine-grained information. During the process of
annotation, we consider (i) detailed HOIs in the form of HOI pairs for each frame and (ii) object
segmentation masks for each interacted object. To establish a connection between the fine-grained
annotations and the underlying biological experiment, supplementary annotations are furnished to
denote the precise location of each action within the brief and practical experiments. This process
establishes a hierarchical structure consisting of three levels, encompassing fine-grained action data
for multimodal video understanding and categorical information for future research on intelligent
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Procedure

Procedure in tasks

brf_exp: 1. Glue Production
prc_exp: 1.1 heat agarose
human-object: 1.1.1 open water bath
interaction       1.1.2 put agarose into water bath
                         1.1.3 shake agarose
                         1.1.4 take out agarose
prc_exp: 1.2 mix agarose
human-object: 1.2.1 shake agarose
interaction       1.2.2 spin agarose

brf_exp: 1. Vector Transformation
prc_exp: 1.1 calculate dosage
human-object: 1.1.1 set pipette
interaction       1.1.2 dosage
                         1.1.3 add vector into tube
                         1.1.4 repeat
prc_exp: 1.2 Buffer EB preparation
human-object: 1.2.1 extract Buffer EB from bottle
interaction       1.2.2 blow Buffer EB with pipette
                         1.2.3 add Buffer EB into tube
                         1.2.4 repeat

heat agarose mix agarose

open water bath

calculate dosage calculate dosage calculate dosage
calculate dosage

Buffer EB in bottle

Buffer EB in bottle

extract Buffer EB with pipette add Buffer EB

Action a

put agarose into 
water bath shake agarose take out agarose shake agarose tim

e
tim

e
tim

e

spin agarose

Glue ProductionBioLab Protocols

Action a

Solution a

Action a

BioLab Protocols

Figure 2: An example of BioLab protocols, data, and tasks. We show activities recorded (right) and their
corresponding protocols (left). HOI annotations are visualized in the top row. The bottom row gives an example
of how knowledge in protocols guides (i) the recognition of actions (in red) given matched actions (green) and
(ii) tracking the transparent solution status (blue).

monitoring systems. When exporting annotations, we translate them to a list of indexes to collect the
relations between humans and objects (e.g., [[“human_1,” “object_2”], “inject”] indicates “human_1”
and “object_2” has a relation of type “inject”). To improve the precision of our annotations, we
organized our dataset into 16 separate batches, with each batch comprising between 1,000 and 5,000
frames. After the annotation group finished labeling each batch, we engaged in 2 to 3 rounds of
thorough reviews with biological experts. These specialists helped us detect and rectify any errors
in the labels and their corresponding relationships. Any sections that were identified as inaccurate
underwent a process of correction and re-annotation.

We annotate a list of 48 objects and 21 action verbs in HOIs based on their significance confirmed by
seasoned biology researchers. A team of crowd-sourced labeling workers was recruited to annotate
the selected videos, following appropriate training in the annotation process. In total, we obtained
37,537 HOI annotations and 213,361 object segmentation maps for all object categories. To further
enhance comprehension of alterations of object status, supplementary labels for object status were
furnished over segmentation maps in the nearby-view video recordings. As transparent solutions and
containers are commonly employed in molecular biology experiments, additional solution annotations
primarily pertain to the transparent solution types inside containers such as tubes or pipettes, resulting
in additional 40,443 additional labels (e.g., [“tube_1,” “LB_solution”] for test tube with LB_solution).
Fig. 2 shows an example of annotations. The task of annotation entails establishing a correspondence
between the present state of videos and practical experiments (i.e., prc_exp) through the allocation
of action labels, thereby enabling the subsequent annotation of more detailed actions. Please refer to
Appx. A.2 for additional details on the annotation process.

3.3 Benchmark design

We devise two benchmarking tasks associated with ProBio, aimed at enhancing multimodal
video understanding. These two tasks are referred to as transparent solution status tracking (TransST)
and multimodal action recognition (MultiAR). We present the statistics of data and annotations
utilized in each task in Tab. 2 and explicate the settings of each task as outlined below.

Transparent solution tracking (TransST) Tracking and understanding object status in BioLabs
is challenging due to their visual ambiguity as visualized in Fig. 2. Multiple factors contribute to
this challenge: (i) most objects in biology experiments are small and difficult to detect and track,
(ii) containment relationships obscure visibility frequently, and (iii) most containers and liquid
solutions lack appearance cues, therefore determining status changes relies heavily on the accurate
understanding of protocols; tracking in BioLabs is a multimodal video understanding challenge that
demands fine-grained comprehension of both modalities.
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Table 2: Statistics of data and annotations used for TransST and MultiAR. segmap denotes segmentation
maps in each data split. brf_exp and prc_exp denote the brief and practical experiments. sol denotes
solutions. We use the suffix .cls to indicate the number of annotation categories for certain data categories and
the suffix .num to indicate the number of annotated instances in that data category.

ambiguity hours frame segmap brf_exp.cls prc_exp.cls hoi.cls hoi.num obj.cls obj.num action.cls action.num

MultiAR

easy 5.1 17485 75371 11 52 155 22965 36 22965 20 22965
medium 2.81 7890 33205 13 19 63 10651 13 10651 16 10651

hard 1.74 2492 8561 9 8 57 5866 11 5866 17 5866
total 9.64 26259 112937 13 79 245 37537 48 37537 21 37537

TransST
hours frame segmap brf_exp.cls brf_exp.num prc_exp.cls prc_exp.num obj. cls obj. num sol.cls sol. num

1.05 41725 100424 6 31 17 34 14 90888 12 40443

(a)

(b)

Medium
Easy

Hard

(c) Protocol-level ambiguity scores of all practical experiments.
Figure 3: (a) Despite the discrepancy between video lengths in TransST and MultiAR, we provide a comparable
number of segmentation maps as ground truths in TransST for solution tracking. (b) We split the videos in
MultiAR based on the ambiguity level of protocols, resulting in a 6:3:1 easy/medium/hard split. (c) One protocol
is defined as hard when its ambiguity score surpasses 0.7, easy when below 0.45, and medium otherwise.

We evaluate the models’ capability via TransST, leveraging all nearby-view videos with liquid
solution labels. Each tracking problem includes the bounding box of the target object (e.g., a tube)
and the category label of the liquid solution inside (e.g., double-distilled water). We further consider
two diagnostic settings, pure visual and protocol-guided, to confirm the significance of protocols.
Protocol-guided tracking leverages practical experiments as additional input to equip models with
information w.r.t. invisible solution status changes. Please refer to Sec. 4.1 and Appx. B.1 for details.

Multimodal action recognition (MultiAR) An intelligent monitoring system in BioLabs must rec-
ognize actions and identify the corresponding protocol to track the experimental progress. However,
establishing such a capability is challenging in BioLab: perceptually similar motions may have diver-
gent semantic interpretations, and the same sub-experiment protocols across different experiments
may refer to different meanings. However, current datasets have neglected the ambiguity present
within fine-grained actions (Murray et al., 2012; Shao et al., 2020; Goyal et al., 2017; Kay et al., 2017;
Zhu et al., 2022; Panda et al., 2017; Kanehira et al., 2018). Currently, there is no universally recog-
nized standard for quantifying the ambiguity present in various actions. Our experiment indicates that
the straightforward approach of using the similarity of human-object interactions hoi (e.g. Jaccard
coefficient) is insufficient for adequately capturing both object ambiguity and procedural ambiguity.
To address this, we propose a method for defining the ambiguity between two actions by employing
the bidirectional Levenshtein distance ratio, as illustrated in Equation (1). In this equation, P pAq and
P pBq signify the power sets of the given sets A or B of hoi. ratio here refers to the Levenshtein
distance ratio. Notably, the ambiguity (labeled as amb) between two practical experiments can exceed
a value of 1, indicating a significant similarity between the two procedures or experiments, referred
to as prc_exp. To measure the average ambiguity of each action, we then introduce a method for
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Table 3: Tracking results of all models in TransST. We visualize the best results in bold.
Categories Method PRE Ò NPRE Ò CLS Ò FPS Ò Param Ó

Vision-only

TransATOM (2021a) 27.54 32.20 29.36 26.0 7.54M
YOLOv5 (2022) + StrongSORT (2022) 47.71 49.49 42.43 27.9 86.19M
YOLOv7 (2022a) + StrongSORT (2022) 59.27 66.41 57.22 35.8 6.22M
SAM (2023) + DeAOT (2022) 91.07 96.94 45.83 2.3 641.27M

Protocol-guided YOLOv7 (2022a) + StrongSORT (2022) 60.25 67.11 61.94 35.4 6.22M
SAM (2023) + DeAOT (2022) 92.40 97.46 62.43 2.1 641.27M

calculating the average ambiguity for each action, expressed mathematically as 1
N

ř

ambPN

ambi:

amb “
1

P pAq
˚

ÿ

xPP pAq

max
yPP pBq

pratiopx, yqq `
1

P pBq
˚

ÿ

yPP pBq

max
xPP pAq

pratiopy, xqq. (1)

As depicted in Fig. 3, there is considerable overlap among most practical experiments, leading to
ambiguity when trying to distinguish them based solely on sequences of HOI. More comprehensive
visual results of this phenomenon are presented in Appx. B.2. Considering the common occurrence of
overlapping atomic actions, we focus on protocol-level ambiguity in MultiAR and leave perceptual-
level action ambiguity as a natural intermediary challenge for models. The MultiAR benchmark is a
protocol-level action recognition task with all annotated top-down view videos in ProBio. We
split all videos into three folds (i.e., easy, medium, and hard) to evaluate protocol-level ambiguity.
Over these splits, we devise four benchmarking settings: protocol-only, vision-only, vision with brief
experiment guidance, and vision with detailed protocol guidance. In the protocol-only setting, we
provide ground-truth HOI annotations (i.e., perfect perception) to models as a performance upper
bound. We add protocols of varied granularity to multimodal learning training in protocol-guided
scenarios. Vision-only models are tasked to recognize protocol-level activities during testing.

4 Experiments

In this section, we evaluate and analyze the performance of models on tasks associated with
ProBio. Particularly, we provide details of the experimental setup, evaluation metrics, and

result analysis for TransST and MultiAR. Fundamentally, we aim to address the following questions:

• How challenging is the fine-grained understanding of objects and actions in BioLab?
• How crucial are the protocols in tasks associated with ProBio?
• What is missing in existing models when adapted to the specialized BioLab environment?

4.1 TransST

Setup As mentioned in Sec. 3.3, we consider two settings in TransST: visual tracking and protocol-
guided tracking. The training, validation, and testing sets are divided in a 6:3:1 ratio, respectively,
across all videos captured from nearby perspectives. In visual tracking, we select a number of
leading-edge models to serve as our baseline comparisons, including TransATOM (Xie et al., 2020),
StrongSORT with different detection backbones (Broström, 2022; Wang et al., 2022a), and Segment-
and-Track-Anything (Cheng et al., 2023) based on SAM (Kirillov et al., 2023). Since SAM (Sequential
Attention Model) is initially trained on general images, we adopt the strategy suggested in Chen
et al. (2023) and integrate a five-layer convolutional SAM adapter. This approach is intended to adapt
the SAM weights for effective application within the BioLab setting. Regarding protocol-guided
tracking, our preliminary experiments indicate that narrowing down the category of liquid solution
types to only categories mentioned in the protocols is more effective than learning-based designs
(e.g., fusing protocol features with tracking features). Please refer to Appx. B.1 for details.

Evaluation metrics Following Fan et al. (2019, 2021a), we measure the tracking quality by the
precision (PRE) and normalized precision (NPRE) with an intersection-over-union (IoU) over 0.45.
In addition, we evaluate the prediction of the solution status within the tracked bounding box with
classification accuracy (CLS). To provide a comprehensive analysis of models, we report the memory
and time overhead of all methods in transparent solution tracking.
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Figure 4: Examples of success and failure cases in two tasks. Top: Tracking results of SAM-adapter+DeAoT
with protocol-guidance in TransRT. We visualize correct tracking predictions in green boxes and failure cases
in red boxes. We observe that most failure cases could be attributed to the perceptual difficulty of transparent
objects or occlusion. Bottom: Protocol-level action recognition results of ActionClip+SAM with protocol
guidance in MultiAR. We visualize correct predictions in green and wrong ones in red. Of note, most incorrectly
identified actions have similar HOIs.

Results and analysis We report transparent solution tracking results in Tab. 3 and visualize
qualitative results in Fig. 4. Specifically, we summarize our major findings as follows:

• Visual tracking in TransST is challenging. As shown in Tab. 3, the performance of traditional
(e.g., StrongSORT) tracking models with only visual inputs is significantly lower than the near-
perfect performance they present in common tracking scenarios (e.g., driving). We have achieved
higher detection efficiency while maintaining computational speed, resulting in an optimal trade-off.
In TransST, solutions and containers often have transparent appearances and similar shapes that
are visually difficult to distinguish. The frequent occlusion further complicates this because of
containment relationship changes in biology experiments. All these facts add difficulty to the visual
tracking problem in BioLab environments.

• More robust object detectors benefit tracking in TransST. We observe a consistent performance
improvement when adopting more robust object detectors (e.g., SAM). As these models are often
pre-trained on large-scale object detection and segmentation datasets, we believe they are beneficial
for mitigating the discrepancy between objects in daily life and specialized domains. However,
limited by their memory and computation overhead, these models are still unsuitable for real-time
monitoring. This urges the need for lightweight adaptations of existing pre-trained models for
specialized downstream domains.

• Understanding protocols is crucial in TransST. As explained in Sec. 3.3, tracking the status
of transparent liquid within containers is difficult as there are no direct visual features indicating
the transition of liquid status. This makes label prediction for the tracked solution extremely
challenging without protocol information. Our results on the classification accuracy reflect this fact,
showing that event with the simplest heuristic of answer filtering, adding experimental protocols can
significantly improve label prediction for all models. However, this improvement is still marginal.
This implies that current models still fall short of reasoning about solution types. This promotes
future research on multimodal methods for inferring visually unobservable object status changes.

4.2 MultiAR

Setup As discussed in Sec. 3.3, we evaluate performance under four distinct settings: protocol-
only, vision-only, vision with brief experiment guidance, and vision with detailed protocol guidance.
Similar to experiments in Sec. 4.1, we randomly split video data at each ambiguity level into
train/validation/test with a 6:3:1 ratio. We evaluate the performance of BERT (Devlin et al., 2018)
and SBERT (Reimers and Gurevych, 2019) in the protocol-only setting. For the vision-only scenario,
we propose finetuning state-of-the-art (SOTA) video recognition models for the MultiAR task. This
includes I3D (Carreira and Zisserman, 2017), SlowFast (Feichtenhofer et al., 2019), and Multiscale
Vision Transformers (MViT) (Fan et al., 2021b; Li et al., 2022). For settings with detailed protocol
guidance, we select strong baselines, including ActionCLIP (Wang et al., 2021), EVL (Lin et al.,
2022), and Vita-CLIP (Wasim et al., 2023). We feed additional protocol information into these models
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Table 4: Experiment results of MultiAR in ProBio. We highlight the best results in bold.

categories method easy mid hard

top1 top5 avg. ∆ top1 top5 avg. ∆ top1 top5 avg. ∆

Human
oracle

w protocol 98.99 – – 0 94.34 – – 0 93.94 – – 0
w/o protocol 64.64 – – -34.35 56.60 – – -37.74 51.51 – – -42.43

Protocol-only BERT 2018 56.19 67.00 59.14 -42.8 46.11 71.33 54.72 -48.23 33.72 47.55 37.23 -60.22
SBERT 2019 82.39 98.14 89.97 -16.6 69.28 98.07 86.28 -25.06 65.03 87.7 77.21 -28.91

Vision-only

I3D 2017 41.16 78.78 67.23 -57.83 29.76 63.93 58.88 -64.58 11.16 33.79 23.79 -82.78
SlowFast 2019 50.03 89.97 70.07 -48.96 42.16 67.64 59.72 -52.18 15.00 42.22 33.08 -78.94
MViT 2021b 47.72 89.02 69.92 -51.27 39.92 64.84 54.29 -54.42 13.34 38.01 28.14 -80.6

MViTv2 2022 55.28 91.35 79.92 -43.71 45.25 69.74 61.24 -49.09 21.37 46.77 38.94 -72.57

Protocol-guided
(brief)

Vita-CLIP 2023 69.54 73.65 70.22 -29.45 50.30 75.44 71.92 -44.04 21.75 37.43 25.66 -72.19
EVL 2022 72.64 89.74 80.74 -26.35 55.23 90.74 81.76 -39.11 36.62 47.75 39.97 -57.32

ActionCLIP 2021 71.79 88.26 81.17 -27.2 53.75 86.22 77.21 -40.59 37.55 70.29 57.64 -56.39
ActionCLIP 2021 + SAM 2023 75.27 95.67 86.05 -23.72 61.77 92.45 84.24 -32.57 44.54 76.62 69.22 -49.4

Protocol-guided
(detailed)

Vita-CLIP 2023 67.25 74.48 70.57 -31.74 51.76 79.02 66.49 -42.58 41.25 67.82 53.33 -52.69
EVL 2022 73.44 88.75 81.46 -25.55 53.34 91.27 69.74 -41 39.64 63.34 52.05 -54.3

ActionCLIP 2021 73.93 93.67 82.23 -25.06 59.42 84.27 80.01 -34.92 40.7 71.11 57.67 -53.24
ActionCLIP 2021 + SAM 2023 76.75 97.94 85.79 -22.24 62.79 91.24 84.40 -31.55 46.75 79.97 67.64 -47.19

during training. Considering that the text encoders utilized in these models are typically trained on
text from general domains, we substitute them with SentenceBERT, which has been specifically
fine-tuned in the protocol-only setting. In light of experimental findings in Sec. 4.1, we also explore
the use of strong object segmentation models (e.g., SAM) for the multimodal understanding problem
in MultiAR by adding an additional object branch into current models. We provide more model
design and implementation details in Appx. B.2.

Evaluation metrics In all experiments, we report the recognition performance with the top-1,
top-5, and mean accuracy. Additionally, we conduct human evaluations and provide the average
performance of 10 experienced biology researchers with and without protocols. We report the
difference (∆) between the performance of each method and the human oracle to visualize the gap on
all ambiguity levels in MultiAR.

Results and analysis We present model performance results of the MultiAR task in Tab. 4 and
provide qualitative results in Fig. 4. In summary, we identify the following major findings:

• Actions are visually ambiguous in MultiAR. As shown in Tab. 4, both human and vision-only
models suffer from perceptual-level ambiguity in actions. Without protocol information, we observe
a 40% human performance drop in recognizing the correct protocol being executed. This indicates
that humans largely depend on protocols to distinguish visually similar actions. This is also reflected
by the low performance of SOTA video recognition models on the hard split with pure vision input.

• Recognition in MultiAR demands a detailed understanding of protocols. In contrast to other
multimodal video understanding benchmarks, leveraging pre-trained language models is insuffi-
cient for MultiAR due to the specialized domain. As shown in the protocol-only setting of Tab. 4,
fine-tuning a pre-trained BERT model results in low overall performance. Meanwhile, we observe a
significant improvement in SBERT with better modeling of protocol contexts. This suggests poten-
tial improvements from more powerful language models that can capture fine-grained experimental
contexts illustrated within protocols.

• Contextual information is crucial for multimodal understanding in MultiAR. As shown in
Tab. 4, the stark contrast between protocol-guided models and pure vision-based models verifies
the importance of contextual information in video action recognition, regardless of the protocol
granularity. Although we only provide protocols during training, this suggests that it is critical
for models to align visual perceptions with fine-grained protocols. Meanwhile, improving the
granularity of protocol guidance generally improves model performance, especially on the hard
split of MultiAR. This reveals the potential of more fine-grained multimodal interaction designs in
models for improving protocol-level action recognition in MultiAR.

• Solving protocol-level ambiguities is a bottleneck for multimodal video understanding in
MultiAR. Across the three ambiguity levels, we observe a significantly lower performance of
most models in the MultiAR hard split. Intuitively, with perceptual-level ambiguity in recognizing
actions, identifying protocols depends on matching typical and recognizable actions between visual
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inputs and protocols. Protocol-level ambiguities aggravate this condition by adding variety in the
protocols that could be matched. Nonetheless, as humans can accurately identify the protocol being
executed in videos when provided with protocols, we argue that it is essential to mitigate this
performance gap with better multimodal video understanding and reasoning designs.

5 Conclusion

What is ProBio? We curate ProBio, the first protocol-guided dataset, which includes com-
prehensive hierarchical annotations in BioLab. Our dataset aims to promote protocol standardization
and the development of intelligent monitoring systems to address the reproducibility crisis in biology
science. We’ve collected 180.6h of videos within an internationally recognized molecular biology
laboratory and meticulously annotated all the instruments and solutions as 213,361 segmentation
maps. Additionally, we provided annotations for the conditions and enclosures of 48 transparent
objects and the state of 12 solutions in 1.05h nearby-view videos. We further restructure all 9.64h
videos from a top-down view into three hierarchical levels: i.e., 13 brf_exp, 3,724 prc_exp, and
37,537 hoi. This arrangement allows for fine-grained multimodal data and categorical information
insight for future research on intelligent monitoring systems.

What can we do with ProBio? Based on the fine-grained multimodal dataset, we devise two
benchmarking tasks associated with ProBio, aimed at enhancing multimodal video understanding.
These two tasks are referred to as transparent solution status tracking (TransST) and multimodal action
recognition (MultiAR). In TransST, we provide the transparent object’s bounding box and the <liquid
category, object id> paired labels. We further discuss the difference between pure-vision tracking
and protocol-guided tracking to explore the contribution of procedure information in fundamental
tasks. In MultiAR, perceptually similar motions may have divergent semantic interpretations, and
the same sub-experiment protocols across different experiments may refer to different meanings. We
quantify the definition of ambiguity and establish multimodal and protocol-guided action recognition
to enhance the importance of fine-grained contextual information. Our experiments consistently
highlight the value of such contextual information in both TransST and MultiAR tasks. Furthermore,
this dataset paves the way for other tasks like video segmentation, task prediction, and procedural
reasoning.

What will ProBio contribute? ProBio is the pioneering multimodal dataset captured
within a molecular biology lab, aiming to enhance video comprehension by providing contextual
information for visual data. The newly introduced protocol not only enhances the model’s ability to
process sequences over time but also incorporates the idea of “procedure.” This helps our model to
effectively handle action interpretations that may be ambiguous. For building a proficient monitoring
system, a model skilled in understanding multimodal videos is crucial. Especially in a sterile biology
lab, such a system becomes a superior tool to ensure that researchers follow the prescribed standards
and procedures. The failure to reproduce experiments is frequently attributed to unintentional mis-
takes committed by experimenters. Within the 13 experimental categories in ProBio, a notable
quantity of operational actions are not executed as intended, and errors have been identified. The
implementation of a monitoring system that possesses advanced video comprehension skills holds
the promise of rapidly notifying experimenters of their anomalies, thereby enhancing the overall
reproducibility of experiments. Consequently, this serves as a deterrent against the squandering of
several months’ worth of work and significant financial resources amounting to tens of thousands of
dollars.

Limitation and future work Currently, we considered two distinct tasks associated with
ProBio. However, these two tasks do not adequately reflect the myriad challenges present

in today’s biological laboratory environments, nor do they showcase the broad applicability and
potential of our dataset. In an upcoming version of ProBio, we plan to add new tasks like
video-text retrieval, video segmentation, task prediction, and procedural reasoning, along with more
comprehensive annotations. Regarding the model structure, we have not closely aligned the proce-
dure information with the video feature, indicating the potential for further improvement in action
recognition accuracy. Our efforts will concentrate on models, aiming to extend their capabilities to
recognize and interpret actions with higher levels of detail and complexity.
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A Data

In this section, we introduce our dataset construction process, covering both data collection and
annotation. We will provide insights into our data sources, collection methods, and annotation tools.
We present in detail as follows:

A.1 Data collection

Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? Yes, we did. Before the annotation and human study process,
compensation was prearranged and discussed with the participating individuals. A labor fee of 100
RMB per 30 minutes will be remunerated to them, with any duration less than 30 minutes being
considered as half an hour. The aggregate labor charges for all individuals involved sum up to 5,000
RMB.

A.1.1 Biology protocol

To ensure the precision and comprehensiveness of biological protocol data, the initial step involves
the retrieval of a substantial number of protocols from highly regarded journals and conferences such
as Cells (MDPI, 2011), Jove (JOVE, 2006), and Protocol Exchange (NATURE, 2000) for the period
spanning 2022 and prior years. The aforementioned protocols represent the forefront of experimental
guidelines within the realm of biology and serve as a highly appropriate foundation for establishing
a standardized protocol for biological experimentation. The microscopic realm is the setting for
certain biological experiments, including brain neuroscience and genetic sequencing, which are
not discernible to the unaided eye. In light of this, we have identified 12,381 experiments that are
amenable to oversight via a monitoring system.

The experimental protocols procured from high-ranking academic journals are notably succinct, with
most protocols offering mere guidance without practical operational steps (Ioannidis, 2005; Begley
and Ellis, 2012). Hence, they are denoted as brief experiments, commonly abbreviated as brf_exp.
To render these succinct and theoretical procedures feasible, it is imperative to deconstruct them and
augment them with comprehensive instructions. For instance, we can expand the “PCR preparation”
to [“adding dd water into the solution,” “placing the PCR in an ice bath”, etc. ] by breaking it down
into a series of steps. These expanded protocols are commonly referred to as practical experiments
and can be denoted as prc_exp. Doctoral students in biology from renowned institutions, including
Harvard, Peking University, and Tsinghua University, were employed to perform annotation tasks.
The annotation results were thoroughly verified through multiple rounds of mutual checks to ensure
accuracy and completeness. As a result, the protocols that were previously only instructive can now
be executed.

An online annotation tool has been developed to streamline the annotation process for annotators
across the globe and facilitate real-time multiple rounds of mutual checks. We track the information
of annotators and modifiers through IDs, aiming to improve the efficiency and standardization of the
annotation process. The instructions for using the annotation interface and tools are shown in Fig. A1.

A.1.2 Monitoring video

To gather a comprehensive video collection, we have partnered with an internationally recognized
biological laboratory that adheres to standard protocols Nest.Bio Labs (2023). This collaboration
enables us to capture the various activities involved in conducting biology experiments. This category
of laboratory adheres to an international standard that mandates uniformity in both the interior and
exterior appearance and design across laboratories worldwide. Unified regulations dictate the number,
color, and size of workstations, the height of the ceiling, and the dimensions of the rooms. This offers
a superb opportunity to broaden the global impact and augment the applicability of our ProBio.

Under the supervision of experienced researchers, we conducted the process of laboratory selection
and camera setup. The selected molecular biology laboratory comprises seven primary experimental
stations, a refrigeration unit, and a sterile enclosure. To ensure comprehensive coverage of all
operations and instruments, we deployed ten high-resolution cameras strategically positioned from a
top-down perspective to minimize occlusion. Every experimental table, refrigerator, and chamber is
furnished with a specialized camera for documentation. An additional camera has been installed with
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a specific focus on the frequently utilized water bath during experimental procedures, to guarantee
that no procedural details are impeded or overlooked during the water bath process. Furthermore,
we positioned a single RGB-D camera in proximity to the experimental table and sterile chamber to
record operations with a higher level of detail and a closer perspective. Following the completion
of the setup, a continuous and uninterrupted silent recording plan was implemented for the ongoing
experimental operations, to minimize any potential impact on the experimenters. The raw video
footage collected for this study exceeded a total of 700 hours. Subsequently, the dataset was generated
via post-processing techniques and annotation procedures.

A.2 Data annotation

Before annotation, we use the semi-automated method to remove irrelevant video clips, such as
clips with no human, clips with unrelated actions, etc. In the semi-automated filtering process, we
apply YOLOv5 (Ultralytics, 2022) and OpenPose (Cao et al., 2017) to crop key video clips with
related experiment instructions and operations. We then manually remove frames depicting actions
unrelated to the intended focus, such as conversing, note-taking, or texting. To ensure the efficiency
of pre-processing, we carefully check each clip of our filtered videos. Finally, we obtain a total of
180.6h videos.

A.2.1 Alignment

In the process of data collection, a total of 12,381 brief experiments were acquired, along with their
respective practical experiments, following necessary adjustments and completion. We also obtained
a collection of raw videos spanning 180.6h; however, no connection was established between this
dataset and the aforementioned data type. To establish the correlation between the aforementioned
modalities, a team of master’s and doctoral students from prestigious academic institutions such as
Peking University, Tsinghua University, and Peking Union Medical College Hospital were recruited to
conduct alignment annotation. The task of annotation entails establishing a correspondence between
the present state of videos and practical experiments (i.e., prc_exp) through the allocation of action
labels, thereby enabling the subsequent annotation of more detailed actions. An offline video action
annotation tool has been developed to enhance the annotation process for annotators located in various
regions. The tool, depicted in Fig. A2, enables the application of diverse labels through the use of
keyboard shortcuts, thereby enhancing the efficiency of the annotation process. In the course of
annotating alignments, we have ascertained that the periodic occurrence of routine operations is a
common phenomenon. Consequently, we opted to engage in a collaboration with expert experimenters
to carefully choose a subset of video frames from the existing footage for further detailed annotations.

A.2.2 Fine-grained annotation

Then, we employ a team of annotators and provide a two-day professional training on all BioLab
instruments, solutions, and operations. After the training, we divide the current video into multiple
batches of 30-50 minutes each and deliver them iteratively to the annotation team. Before each batch
delivery, we provide corresponding annotation guidelines, including the IDs of the experimental
personnel, the items involved in the operation, and their respective labels. We create the dataset
through real-time acceptance of online annotations. After completing 12 batches of annotations, we
have annotated 213,361 segmentation maps for 10.69h and summarized two characteristics in our
dataset: (i) Many operations involve the combination of multiple transparent solutions to yield a new
transparent solution. In experimental settings, it is customary to employ transparent and uncolored
apparatus and solutions. (ii) Similar movements represent entirely different jobs and lead to divergent
purposes, which is called ambiguity.

Solution status Given the two main characteristics of this dataset, while also considering the
huge number of segmentation maps, we divide the dataset into two major parts. We first annotate
1.05h videos to learn more about transparent objects and solutions. Following consultation with
experienced experimenters, we collect 48 object categories and 12 solution categories. Instance masks
and bounding boxes are employed in video annotation to denote the positions and identities of objects.
We further track the location of solutions used throughout the experiments to track the status and
progress of experiments. This information is annotated by providing additional labels over container
object annotations (e.g., [“tube_1,” “LB_solution”] for test tube with LB_solution). While exporting
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annotations, we use a list of labels to represent the relations between the reagent and objects (e.g.,
[“tube_1,” “LB_solution”]).

Hierarchical structure As for the second part, we focus on the ambiguity in the rest of 9.64h videos.
There will be a high similarity between current practical experiments. To differentiate these ambiguous
actions, we have decided to further refine them at the granularity of human-object interaction pairs
in the prc_exp. We have divided our ProBio dataset into a three-level hierarchical structure,
as shown in Fig. A3. At the top level, we use brief experiment (bf_exp) to define the overall
goal of an experiment, which is only documented in the paper and works in theory, e.g., “yeast
transformation” and “PCR preparation.” Next, we use practical experiment (prc_exp) to represent
practical experiments in protocols which are composed of several HOIs, e.g., “measure OD” and
“add YPD_medium into vector.” Finally, we use HOI pairs to define atomic operations (act) in
experiments. In total, we obtain 13 bf_exp, 3,724 prc_exp, and 37,537 act categories. We use a
triplet for HOI annotation (e.g., [“human_1,” [“tube_2,” “hold”]]) to represent the human subject id,
interacting object, and the action verb. While exporting annotations, we translate this annotation to a
list of indexes to collect the relations between humans and objects (e.g., [[“human_1,” “object_2”],
“inject”]). Finally, We instruct experimenters to conduct an additional round of verification to ensure
the accuracy of labels, and the relationship of prc_exp and hoi are shown in Fig. A4.

B Experiment

B.1 Transparent solution tracking (TansST)

Typically, the solution observed in BioLab exhibits characteristics of being both transparent and
colorless. Since the liquid can be transferred between different containers such as beakers, petri dishes,
and test tubes, the geometric shape of the liquid changes according to the shape of the container it is
housed. Hence, the monitoring of the solution is an arduous and potentially unattainable undertaking.
The successful execution of experiments in biology laboratories is largely dependent on the transfer
and fusion of solutions, making the tracking of solutions a crucial and fundamental task in the
development of a monitoring system. In our ProBio dataset, we obtained pairs of containers
and solutions based on the experiment’s protocol and annotated them, facilitating the tracking of
the solutions. During the process of using various baselines for solution tracking, we have also
discovered that narrowing down the category of liquid solution types to only categories mentioned
in the protocols is more effective than learning-based designs (e.g., fusing protocol features with
tracking features).

B.1.1 Implementation details

In this section, we provide details on model implementation, hyperparameters selection, and environ-
ment setup. We present the details for each selected model as follows:

Vision-only

• TransATOM Following the TransATOM (Fan et al., 2021a) benchmark, we first train the transpar-
ent solution segmentation network (Xie et al., 2020) with the TransST subset of our ProBio
and the easy subset of Trans10K (Fan et al., 2021a) dataset on 1 NVIDIA 3090 GPU for 40 epochs.
We set the initial learning rate to 0.02, batch size to 8, and extracted visual features using ResNet18.
In order to remain consistent with the original text, we also choose the ATOM (Danelljan et al.,
2019) as the tracker.

• YOLOv5 + StrongSORT Based on StrongSORT (Broström, 2022; Wang et al., 2022a), we change
different detection backbones and gain final tracking results. We first finetune the yolov5n model
with the TransST subset of our ProBio on 1 NVIDIA 3090 GPU for 20 epochs, we have set
the initial learning rate to 1 ˆ 10´5, batch size to 128, and the IOU threshold as 0.45. Then, we
track the detected object-solution pairs with a confidence threshold of 0.25.

• YOLOv7 + StrongSORT Similar to the baseline YOLOv5 + StrongSORT, we first finetune yolov7-
tiny model with the TransST subset of our ProBio on 1 NVIDIA 3090 GPU for 20 epochs,
we have set the initial learning rate to 1 ˆ10´5, batch size to 128, and the IOU threshold as 0.45.
Then, we track the detected object-solution pairs with a confidence threshold of 0.25.
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• SAM + DeAOT Inspired by Chen et al. (2023), we train a SAM-adapter based on vit_h pre-trained
weights and AdamW optimizer with the TransST subset of our ProBio dataset. We have set
the learning rate to 2 ˆ10´4, batch size to 2. The adapter consists of two MLPs and an activate
function GELU (Hendrycks and Gimpel, 2016) within two MLPs (Liu et al., 2023). We further
passed the output of the adapter through a classification network, which has five Conv2d layers with
input patch sizes of 24. We set the patch_size as 16, window_size as 14, input image resolution as
1024ˆ1024, and train on 4 NVIDIA A100 GPUs for 20 epochs. For models with large parameter
sizes like this, training adapters have shown good performance on our ProBio dataset. Then,
we track the detected object-solution pairs with DeAOT (Yang and Yang, 2022), choosing the
model R50-DeAOT-L.

Protocol-guided

• YOLOv7 + StrongSORT Similiar to the vision-only method, we first select object-solution pairs
that have occurred based on the protocol of this experiment, including prf_exp and prc_exp,
and compile them into a list. Then, we finetune the yolov7-tiny model with the filtered list on 1
NVIDIA 3090 GPU for 15 epochs, we have set the initial learning rate to 1 ˆ10´5, batch size
to 128, and the IOU threshold as 0.45. Then, we track the detected object-solution pairs with a
confidence threshold of 0.25.

• SAM + DeAOT Using the same approach as protocol-guided baseline YOLOv7 + StrongSORT,
we first filter the desired object-solution pairs through a protocol and compile them into a list.
Afterward, we perform model finetuning and subsequent tracking as baseline SAM + DeAOT.

B.2 Multimodal action recognition (MultiAR)

As evidenced in Appx. A.2.2, motions that are perceptually similar may possess distinct semantic
interpretations, and practical experiments conducted across varying protocols may pertain to dissimilar
meanings. To demonstrate the protocol-level ambiguity between two protocols in an intuitive manner,
we perform a calculation of the overlap of all downstream HOI annotations. Based on the computed
ambiguity metric, the complete dataset has been categorized into three distinct levels of complexity:
easy, medium, and hard. Given that each level encompasses distinct practical experiments prc_exp,
we conducted separate experiments at each level and subsequently derived conclusions. Subsequently,
each of them will be explicated individually.

B.2.1 Ambiguity

With the increased granularity of action refinement, the inherent ambiguity of actions becomes
apparent. However, current datasets have neglected the ambiguity present within fine-grained actions
(Murray et al., 2012; Shao et al., 2020; Goyal et al., 2017; Kay et al., 2017; Zhu et al., 2022; Panda
et al., 2017; Kanehira et al., 2018). Furthermore, there is currently no widely accepted metric for
measuring ambiguity in actions. We find that the simplicity of using the similarity of human-object
interactions hoi (e.g., Jaccard coefficient) to describe both the object ambiguity and procedure
ambiguity is inadequate. Therefore, we define ambiguity between two actions with the bidirectional
Levenshtein distance ratio, as shown in Equation (1). In Equation (1), P(A) and P(B) represent
the power set of the given A or B set of hoi, while ratio denotes the Levenshtein distance ratio.
The ambiguity (i.e., amb) between two practical experiments can exceed 1, which represents a
high similarity between the two prc_exp (shown in Fig. A5). Afterward, to measure the average
ambiguity of each action, we define it by taking the average value (i.e., 1
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B.2.2 Model Structure

To enhance the proficiency of the model, it is imperative to employ the technique of variable
manipulation to isolate the specific components that necessitate refinement. Initially, a comparison
is made between the conversion of human-object interactions into descriptive text and pure vision.
It is concluded that the visual modality presents a greater potential for enhancement. Subsequently,
the model is enhanced through the incorporation of an alignment module and an object-centric mask
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module, resulting in a notable enhancement of the multimodal model’s performance. Ultimately,
we substitute the concise instructions with hands-on experiments that furnish extensive insights
for more intricate guidance. Fig. A6 depicts the particular operations, whereby spatial information
about objects is incorporated via graph neural network (GNN) (Scarselli et al., 2008), and practical
experimental information is incorporated via SentenceBERT (Reimers and Gurevych, 2019). The
calculation of similarity is performed consistently, and subsequently, the ultimate prediction outcome
is generated.

B.2.3 Implementation details

In this section, we provide details on model implementation, hyperparameters selection, and environ-
ment setup. We present the details for each selected model as follows:

human study To assess the viability of the two proposed benchmarks and establish the maximum
attainable experimental performance, a human study was conducted with the participation of ten
master’s students hailing from UC Berkeley, Peking University, and Tsinghua University. The study
was bifurcated into two parts: with protocol and without protocol. The study involved the extraction
of data from video recordings at varying levels of difficulty, namely easy, medium, and hard. The
amount of data extracted was equivalent to 0.05 times the total of each level, and a list of 79 practical
experiments was provided for the participants to choose from. The experimental data about the
section labeled as without protocol had already been prepared. For the with protocol part, additional
information about the brief experiment to which the video belonged was provided to the participants
to provide direction. All participants in the experiment were remunerated according to the criteria
mentioned in Appx. A.1.

Protocol-only First, we process the detection results of human-object interaction in the video into
textual form as input for subsequent steps. We then use protocol-guided techniques to predict the
actions in the target video. This method helps reduce the influence of detection errors in the video
and achieve the highest performance achievable at the current stage.

• BERT We use the pre-trained BERT model and implementation provided by Hugging Face (Devlin,
2018). We use the Adam optimizer Kingma and Ba (2014) and apply cross-entropy loss. We set the
initial learning rate to 0.02, dropout as 0.5, batch size to 8, and train with our descriptive text on 1
NVIDIA 3090 GPU for 20 epochs.

• SBERT Similar to BERT, we use the pre-trained SentenceBERT model and implementation
provided by Hugging Face (Chiusano, 2019). Based on the current descriptive text, we connect the
hoi using prompts to create a practical experiment with a sequence of operations. For example,

“First, we open the tube. Second, we take the pipette, etc.” The generated sentences are then used
as training inputs for the model. We use the Adam optimizer Kingma and Ba (2014) and apply
cosine similarity loss. We set the initial learning rate to 2 ˆ10´5, batch size to 8, and train with our
descriptive text on 1 NVIDIA 3090 GPU for 20 epochs.

Vision-only

• I3D Follow (Carreira and Zisserman, 2017), ResNet50 is selected as the backbone and the frames
and sampling rate are set to 8. The input video undergoes a resizing process to achieve dimensions
of 224 ˆ 224. The Adam optimizer Kingma and Ba (2014) is employed with a weight decay of 1
ˆ10´4 and a uniform batch size of 64. The present model exhibits uniform settings across three
distinct categories and undergoes training through the utilization of a single NVIDIA A100 GPU,
throughout 100 epochs.

• SlowFast Follow (Feichtenhofer et al., 2019), we also choose ResNet50 as the backbone and both
the frames and sampling rate are set to 8. The input video undergoes a resizing process to achieve
dimensions of 224 ˆ 224. The Adam optimizer Kingma and Ba (2014) is employed with a weight
decay of 1 ˆ10´4 and a uniform batch size of 64. The present model exhibits uniform settings
across three distinct categories and undergoes training through the utilization of a single NVIDIA
A100 GPU, throughout 100 epochs.

• MVIT Follow (Fan et al., 2021b), we choose MViT as the backbone and set the frames as 16,
and the sampling rate as 4. The input video undergoes a resizing process to achieve dimensions
of 224 ˆ 224. The AdamW optimizer Loshchilov and Hutter (2019) is employed with a weight
decay of 5 ˆ10´2 and a uniform batch size of 16. We apply soft cross entropy as the loss function.
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The present model exhibits uniform settings across three distinct categories and undergoes training
through the utilization of a single NVIDIA A100 GPU, throughout 100 epochs.

• MVITv2 Follow (Li et al., 2022), we choose MViT as the backbone and set the frames as 16,
and the sampling rate as 4. The input video undergoes a resizing process to achieve dimensions
of 224 ˆ 224. The AdamW optimizer Loshchilov and Hutter (2019) is employed with a weight
decay of 5 ˆ10´2 and a uniform batch size of 4. We apply soft cross entropy as the loss function.
The present model exhibits uniform settings across three distinct categories and undergoes training
through the utilization of a single NVIDIA A100 GPU, throughout 100 epochs.

Protocol-guided (brief)

• Vita-CLIP Follow (Wasim et al., 2023), we finetune the pretrained CLIP model with our
ProBio dataset on 4 NVIDIA A100 GPUs for 50 epochs. The Adam optimizer Kingma

and Ba (2014) is employed with a weight decay of 5 ˆ10´2 and a uniform batch size of 64. We set
the initial learning rate to 4 ˆ10´4, and the frames and sampling rate as 8.

• EVL Follow (Lin et al., 2022), we finetune the pretrained CLIP model with our ProBio dataset
on 4 NVIDIA A100 GPUs for 50 epochs. The Adam optimizer Kingma and Ba (2014) is employed
with a weight decay of 5 ˆ10´2 and a uniform batch size of 64. We set the initial learning rate to 4
ˆ10´4, the frames as 32, and the sampling rate as 8.

• ActionCLIP Follow (Lin et al., 2022), we finetune the pretrained ViT-B model with our ProBio
dataset on 1 NVIDIA 3090 GPU for 40 epochs. The AdamW optimizer Loshchilov and Hutter
(2019) is employed with a weight decay of 2 ˆ10´1 and a uniform batch size of 4. We set the
initial learning rate to 5 ˆ10´6, the frames as 32, and the sampling rate as 8.

• ActionCLIP + SAM We have the same vision branch and similarity calculation module as baseline
ActionCLIP. Furthermore, we encode the object information with the graph neural network (GNN).
The encoder contains two parts: temporal and spatial, each composed of MLPs with different layers,
and ultimately outputs object features of 256 dimensions. After that, it is concatenated with the
image feature and inputted into the subsequent loss calculation and backpropagation module.

Protocol-guided (detailed) The input caption of the model was modified by replacing its text
modality with a practical experiment (prc_exp) connected by prompts. This modified input was
then passed to the encoder as a text sequence. Subsequently, the text encoder in the model was
substituted with SentenceBERT. The training input and associated particulars about this segment of
the model have been expounded upon in great detail within this passage (refer to Appx. B.2.3). The
following is a list solely comprised of hyperparameters:

• Vita-CLIP The Adam optimizer Kingma and Ba (2014) is employed with a weight decay of 5
ˆ10´2 and a uniform batch size of 64. We set the initial learning rate to 4 ˆ10´4, and the frames
and sampling rate as 8.

• EVL The Adam optimizer Kingma and Ba (2014) is employed with a weight decay of 5 ˆ10´2

and a uniform batch size of 64. We set the initial learning rate to 4 ˆ10´4,the frames as 32, and the
sampling rate as 8.

• ActionCLIP The AdamW optimizer Loshchilov and Hutter (2019) is employed with a weight
decay of 2 ˆ10´1 and a uniform batch size of 4. We set the initial learning rate to 5 ˆ10´6, the
frames as 32, and the sampling rate as 8.

• ActionCLIP + SAM The AdamW optimizer Loshchilov and Hutter (2019) is employed with a
weight decay of 2 ˆ10´1 and a uniform batch size of 4. We set the initial learning rate to 5 ˆ10´6,
the frames as 32, and the sampling rate as 8.

C Ethical review

Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? Yes, we did. We captured the daily experimental operations of
the researchers through ten cameras fixed on the ceiling, filming in a 24-hour uninterrupted silent
mode. We obtained consent from all personnel involved in the experiment and applied blur to the
recorded faces to ensure the confidentiality of personal information. During the data recording period,
no specific actions were required from the participants, and we submitted a complete set of materials
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to the Institutional Review Board (IRB), including the list of subjects, experimental details, duration,
and all relevant materials.

C.1 Responsibility & data license

We bear all responsibility in case of violation of rights and our dataset is under the license of CC
BY-NC-SA (Attribution-NonCommercial-ShareAlike).

D Future work

Currently, regarding the two benchmarks proposed in this article, we have demonstrated the effective-
ness of detailed protocol-guided for complex video understanding through experiments. Our plans
for model structure, data annotation, and task enhancement are outlined. Furthermore, expanding
the applicability of our dataset is a priority for us. To this end, we aim to develop a monitoring
system using our current multimodal dataset. This system is designed to reduce the occurrence of
experimental errors by experimenters, improve the repeatability and correctness of experiments,
curtail expenses, and augment efficacy.
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Figure A1: (a) The home page. The logged user needs to choose the target protocols and whether to view or edit.
(b) The annotation page. Protocol details are shown on the top of the page, and annotators need to complete the
annotation process through multiple clicks, dragging, and input operations.

A8



(a)

(b) (c)

Figure A2: (a) The main page of our tool. (b) The main interface for playing videos at variable speeds. (c) List
of prc_exp of the chosen brf_exp.
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Figure A5: Visualization of the ambiguity between any two actions.

A12



(a) Previous multi-modal model
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(b) Ours multi-modal model 
Figure A6: Structure of our action recognition module
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Figure A7: Visualization of the TransST results.

Figure A8: Visualization of the MultiAR results.
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