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ABSTRACT

Web agents for online shopping have shown great promise in automating user
interactions across e-commerce platforms. Benchmarks for assessing such agents
do not reflect the complexity of real-world shopping scenarios, as they often con-
sist of overly simple queries with deterministic paths, such as “Find iPhone 15.”
Real shopping scenarios are inherently more layered, involving multi-dimensional
product attributes, search filters, and user-specific sorting preferences. To address
this gap, we introduce DeepShop, a benchmark designed to evaluate web agents in
complex and realistic online shopping environments. DeepShop comprises three
key components. (1) Query diversity evolution: Starting from real user queries,
we generate diverse queries across five popular online shopping domains. (2)
Query complexity evolution: We further evolve these queries to increase com-
plexity, considering product attributes, search filters, and sorting preferences, and
classify them into three levels: easy, medium, and hard, based on the number of
evolutions. (3) Fine-grained and holistic evaluation: We propose an automated
evaluation framework that assesses agent performance in terms of fine-grained
aspects (product attributes, search filters, and sorting preferences) and reports the
overall success rate through holistic evaluation. We conduct a systematic evaluation
of retrieval-augmented generation (RAG) methods, web agents, and deep research
systems. Results show that RAG struggles with complex queries due to its lack
of web interaction, while other methods face significant challenges with filters
and sorting preferences, leading to low overall success rates. We also perform
cross-category, complexity-based evaluations and error analyses to support the
advancement of deep research shopping agents.

1 INTRODUCTION

Recent progress in web agents has enabled more complex automation of human interactions on
e-commerce platforms (Yao et al., 2022; Kim et al., 2023; Sumers et al., 2024), largely driven by the
integration of large language models (LLMs) that provide planning, memory, and web interaction
capabilities (He et al., 2024a; Sumers et al., 2024; Zheng et al., 2024). Despite these advances, web
agents still face significant challenges in completing complex user queries in dynamic, real-world
shopping environments (Nguyen et al., 2024; Zhang et al., 2024a). These complex user queries require
agents to perform deep research of e-commerce platforms—browsing product listings, applying
filters, and comparing items—to accommodate diverse and nuanced user preferences (Sondhi et al.,
2018; Chen et al., 2024b). This leads to our key research question: Can existing web agents effectively
fulfill diverse and complex user needs in realistic shopping scenarios?

To evaluate web shopping agents, recent studies have proposed benchmarks that test their ability
to complete user tasks via simulated or real website interactions. Most offline benchmarks, such
as Mind2Web (Deng et al., 2023), WebShop (Yao et al., 2022), and WebArena (Zhou et al., 2024),
are based on static environments constructed from pre-collected web snapshots or manually curated
HTML structures. While these benchmarks enable controlled evaluations, they fail to capture the
dynamic and unpredictable nature of real-world websites, which often feature noisy, frequently
updated, and interactive content (Wang et al., 2024; Ning et al., 2025).

Recently, several online benchmarks have emerged, including Mind2Web-Live (Pan et al., 2024) and
WebVoyager (He et al., 2024a), which enable agents to operate within real-time web environments.
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Find a queen-sized 
bedspread featuring a floral 
design in a calming blue hue        , 
ensuring it has a minimum 
customer rating of 4.5 stars from 
at least 300 reviews , and 
check for the lowest price         .

[Webshop] Find me anti aging 
eyes care with green tea for 
dark circles, fine lines.
[Mind2Web-Live] Add to my 
cart a women's T-shirt priced 
under 10 dollars in Uniqlo.
[WebVoyager] Search an Xbox 
Wireless controller with green 
color and rated above 4 stars.

DeepShop Baseline Query
Feedback

Action

Fine-grained & 
Holistic Evaluation

Complex query based
on user needs

Overly simplistic and 
lacks contextual details

Environment Agent

Success

Failure

Figure 1: DeepShop evaluates agents on realistic and complex shopping queries with fine-grained,
holistic metrics, while existing benchmarks use overly simple queries lacking contextual depth.

While recent efforts mark progress, they still fail to capture the complexity and diversity of real-
world shopping (Song et al., 2025; Xue et al., 2025), as most benchmark tasks remain simple and
deterministic (e.g., “find an iPhone 15”), unlike real queries that demand multi-attribute reasoning,
filtering, and personalized sorting (Nguyen et al., 2024; Zhang et al., 2024a).

To bridge this gap, we introduce DeepShop, a benchmark specifically designed to evaluate web agents
in complex online shopping scenarios. DeepShop is tailored to evaluate web shopping agents in
handling diverse and complex user queries, and includes a comprehensive evaluation framework. The
key components of DeepShop are as follows:

• Query diversity evolution: We begin with real-world user shopping queries and generate a wide
range of goals across five popular product categories (Books, Electronics, Home, Fashion and
Sports). This ensures that agents must generalize across varied user shopping intents.

• Query complexity evolution: We progressively enhance the complexity of each query by introduc-
ing combinations of product attributes (e.g., brand, color), search filters (e.g., ratings, availability),
and sorting preferences (e.g., lowest price first). These queries are categorized into easy, medium,
and hard levels, based on the number and type of components involved.

• Fine-grained and holistic evaluation: To enable meaningful comparisons across agents, we
design an automated evaluation pipeline that assesses performance on three axes—correct attribute
matching, correct use of filters, and proper execution of sorting preferences—alongside a holistic
success rate measuring task completion.

We conduct both fine-grained and holistic evaluations of various approaches, including simple
retrieval-augmented generation (RAG) methods, advanced web agents, and commercial deep research
systems. Results show that RAG methods, lacking web interaction, struggle with DeepShop queries;
web agents fail to handle filters and sorting well; and even deep research systems fall short on filtering,
leading to low overall success rates. We further analyze performance across product categories, query
complexities, and error types to guide future research. By introducing a benchmark that mirrors
real-world complexity, DeepShop provides a rich testbed for advancing agent planning, adaptability,
and generalization, bridging the gap between academic systems and real-world deployment.

The contributions of this paper are as follows:

• We present DeepShop, a comprehensive benchmark for evaluating web agents in complex online
shopping scenarios, featuring diverse queries across five product categories and varying complexity
levels. Our dataset is built through a multi-stage process that evolves real-world shopping intents
by expanding query diversity and complexity.

• We conduct extensive experiments comparing simple RAG methods, advanced web agents, and
commercial deep research systems using our fine-grained and holistic evaluation framework.

• We provide detailed analyses across product categories, query complexity levels, and specific
error types, revealing critical limitations in current systems and offering insights to guide future
development of more effective deep research shopping agents.

2 RELATED WORK

Benchmarks for web agent evaluation. Existing benchmarks for web agent evaluation fall into two
categories: offline and online, as shown in Table 1. Offline benchmarks (e.g., Mind2Web (Deng et al.,
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Table 1: Comparison of existing benchmarks and DeepShop. DeepShop is evaluated online across
diverse product categories, providing fine-grained assessment over product attributes, search filters,
and sorting preferences. Average token length is computed from 100 randomly sampled queries.

Benchmark Avg. query
length

Env.
type

Product
category

Product
attribute

Search
filter

Sorting
preference

Task
success

Webshop (Yao et al., 2022) 18.2 Offline ✓ ✓ ✗ ✗ ✓
Mind2Web (Deng et al., 2023) 13.4 Offline ✗ ✗ ✗ ✗ ✓
Webarena (Zhou et al., 2024) 19.9 Offline ✗ ✗ ✗ ✗ ✓
VWebarena (Koh et al.) 21.4 Offline ✗ ✗ ✗ ✗ ✓
MMInA (Zhang et al., 2024c) 24.2 Offline ✗ ✗ ✗ ✗ ✓
ChatShop (Chen et al., 2024a) 20.4 Offline ✗ ✗ ✗ ✗ ✓

WebLINX (Lù et al., 2024) 6.2 Online ✗ ✗ ✗ ✗ ✓
Mind2Web-Live (Pan et al., 2024) 16.2 Online ✗ ✗ ✗ ✗ ✓
WebVoyager (He et al., 2024a) 29.5 Online ✗ ✗ ✗ ✗ ✓

DeepShop (Ours) 62.0 Online ✓ ✓ ✓ ✓ ✓

2023), WebShop (Yao et al., 2022), WebArena (Zhou et al., 2024), ChatShop (Chen et al., 2024a)) use
static snapshots or simulated environments, offering controlled conditions but failing to capture the
dynamic nature of real-world websites (Koh et al.; Jang et al., 2024). In contrast, online benchmarks
(e.g., WebVoyager (He et al., 2024a), Mind2Web-Live (Pan et al., 2024)) provide realistic real-time
settings but focus on general and simple tasks, leaving complex web shopping queries underexplored.
Even basic RAG systems with LLMs and Google Search can perform strongly on many current
benchmarks (Yoran et al., 2024; Mialon et al., 2024). To address this gap, DeepShop introduces a
benchmark targeting challenging online web shopping queries, constructed by query diversity and
complexity evolution. We also propose fine-grained evaluation metrics across product attributes,
search filters, and sorting preferences to offer a comprehensive assessment of agent performance.

Web agents for task automation. Recent progress in web agents has followed a clear trajec-
tory, evolving from text-based to multimodal systems. Early HTML-based agents, such as We-
bGPT (Nakano et al., 2021), MindAct (Deng et al., 2023), and Agent-E (Abuelsaad et al., 2024),
leverage LLMs to interpret language instructions and navigate web interfaces using DOM trees (Gur
et al., 2024; Lai et al., 2024). Building on this, multimodal, vision-based agents like SeeAct (Zheng
et al., 2024), WebVoyager (He et al., 2024a), and Browser Use (Müller & Žunič, 2024) integrate
visual grounding to handle complex layouts and interactive components (Shaw et al., 2023; Furuta
et al., 2024). Recent systems such as OpenAI Deep Research (OpenAI, 2025) and Gemini Deep
Research (Gemini, 2025) use advanced reasoning LLMs to tackle complex information-seeking
tasks. Despite these advances, most evaluations remain limited to generic benchmarks, leaving agent
performance on complex, real-world shopping scenarios underexplored. In this paper, we evaluate
simple RAG methods, text-based and multimodal web agents, and deep research systems in realistic
online shopping environments.

Query understanding in E-commerce. Online shopping platforms have become central to mod-
ern consumer behavior, making accurate query understanding critical for satisfying user experi-
ences (Hirsch et al., 2020; Zhang et al., 2020; Ren et al., 2024). However, many e-commerce queries
involve overwhelming product spaces and complex user preferences that are difficult to express with
simple keywords or filters (Sondhi et al., 2018). Traditional information retrieval (IR) systems often
struggle with such complexity (Tsagkias et al., 2020; Chen et al., 2024b), while conversational IR
systems, despite supporting multi-turn preference elicitation, remain constrained by training products
and cannot autonomously browse web content (Zhang et al., 2024b; Chen et al., 2024a). Recent
advances in web agents offer a promising alternative by autonomously interacting with e-commerce
sites, searching for relevant items, and mimicking human browsing behaviors (Yao et al., 2022; He
et al., 2024a). To advance this line of research, we introduce DeepShop, a benchmark designed to
evaluate web agents on complex e-commerce queries and drive progress in web shopping automation.

3 DEEPSHOP BENCHMARK

In this section, we present the DeepShop benchmark, a framework for evaluating web agents in
realistic online shopping environments for complex user queries. We begin by formulating the web
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Find iPhone 15.
Find the latest Apple iPhone 15, 
specifically the 256GB model in 
starlight color. 

Find Apple iPhone 15, ensuring it 
has a minimum customer rating 
of 4 stars. 

Find the latest Apple iPhone 15, 
rank with as a lowest price. 

Find yoga mats with a 
minimum customer rating of 
4.5 stars. 

Find Apple iPhone 15, specifically 
the 128GB model in black, sorted 
by the lowest price available. 

Find yoga mats.

Find Apple iPhone 15, ensuring it has a 
price ranking as the lowest among 
options with at least 4.5 stars, over 
300 customer reviews, and offers 
free delivery.

Find yoga mats with the 
highest user rating.

Find eco-friendly yoga mats, such 
as those made from natural 
rubber with a minimum customer 
rating of 4.5 stars.

Find yoga mats with at least 
a 4.5-star rating, over 500 
reviews.

Find for the Apple iPhone 15, specifically the 128GB model in 
black, sorted by the lowest price, with customer ratings 
above 4.5 stars and at least 1000 reviews, ensuring free 
delivery and return options.

Attribute Evolution Filter Evolution

Sorting Evolution

Filter Evolution

Filter Evolution

Attribute Evolution

Filter Evolution Sorting Evolution

Filter Evolution

Attribute Evolution

Diversity Evolution

Figure 2: Running examples of diversity and complexity evolution in DeepShop. Complexity
evolution includes attribute evolution, filter evolution, and sorting evolution.

shopping tasks. Next, we describe the processes of query diversity and complexity evolution, which
are derived from real user seed queries, as shown in Figure 2. We then analyze key characteristics
of DeepShop to offer a deeper understanding of the dataset. Finally, we introduce a comprehensive
evaluation framework that incorporates both fine-grained and holistic metrics.

3.1 TASK FORMULATION

Following previous work (He et al., 2024a; Pan et al., 2024), we formulate the online web shopping
task as a partially observable Markov decision process (POMDP) (Kaelbling et al., 1998) defined by
a tuple (S,O,A, T ), where S denotes the state space, O the observation space, A the action space,
and transition function T : S ×A → S . In this setting, at each time step t, given a user query q, the
web shopping agent receives an observation ot ∈ O that partially reflects the underlying state st ∈ S
of the web environment. The agent then takes an action at ∈ A, resulting in a new environment state
st+1 ∼ T (st, at) and an updated observation ot+1 ∈ O.

3.2 SEED DATA CURATION

To evaluate web agents under realistic user shopping intentions, we curate a seed dataset by selecting
a subset of web shopping queries from two real-world benchmarks: Mind2Web-Live (Pan et al., 2024)
and WebVoyager (He et al., 2024a). Specifically, we manually select 50 user queries and categorize
them into five representative shopping domains: Books (4), Electronics (14), Home (20), Fashion (5),
and Sports (7). We define each domain as follows:

• Books dbooks: Physical books, eBooks, and audiobooks across various genres.
• Electronics delectronics: Electronics and digital products such as smartphones, tablets, laptops,

headphones, and smart devices.
• Home dhome: Household items including furniture, appliances, cleaning tools, and daily necessities.
• Fashion dfashion: Apparel, footwear, and accessories for all genders and age groups.
• Sports dsports: Fitness and recreational equipment, sportswear, and training accessories.

3.3 SHOPPING QUERY DIVERSITY EVOLUTION

Existing web shopping datasets (Yao et al., 2022; He et al., 2024a; Pan et al., 2024; Deng et al., 2023;
Koh et al.; Jang et al., 2024) often overlook fine-grained product categories, limiting their overall
diversity. To address this limitation, inspired by Xu et al. (2023), we generate entirely new queries
based on the original query and a randomly selected product category through the following diversity
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evolution process:
q∗i = Diversity(qi, d), (1)

where Diversity(·) is implemented by prompting GPT4-o models, qi ∈ Doriginal is a seed query, and
d ∈ {dbooks, delectronics, dhome, dfashion, dsports} denotes a randomly selected product category. Finally,
we construct the web shopping diversity evolution dataset Ddiversity by combining the seed dataset
with all generated queries: Ddiversity = Doriginal ∪ {q∗i }Ni=1, where N is the number of seed queries.

3.4 SHOPPING QUERY COMPLEXITY EVOLUTION

To increase the complexity of web shopping queries, we propose a web shopping complexity evolution
strategy. Specifically, we focus on three key augmentation directions: (1) Product attributes, referring
to concrete product characteristics users may specify to express detailed intent; (2) Search filters,
representing categorical or numerical constraints commonly used on e-commerce platforms; and (3)
Sorting preferences, indicating desired result orderings, such as price or popularity. Specifically, we
perform iterative complexity evolution to progressively enhance query complexity. In each iteration t,
one of the three strategies is randomly selected to evolve the query qi,t from the previous step:

qi,t+1 = Complexity(qi,t, c), (2)

where Complexity(·) is implemented by prompting GPT4-o, qi,t denotes the i-th query in t-th
complexity evolution, i ∈ [1, |Ddiversity|], t ∈ [1, T ], qi,0 denotes the i-th query from Ddiversity, and
c ∈ {cattr, cfilter, csort} is the randomly selected strategy. The three complexity evolution strategies are
summarized as follows:

• Attribute evolution cattr: Enhance the query by incorporating concrete product attributes, such as
brand, model, price range, color, size, weight, or unique features of products.

• Filter evolution cfilter: Enhance the query by adding specific search filter commonly available on
e-commerce platforms. These include constraints like minimum customer rating (e.g., 4.5 stars),
minimum number of reviews (e.g., 500+), shipping options (e.g., free delivery), release timeframe
(e.g., new arrivals in the past 30 days), return policies, or warranty information.

• Sorting evolution csort: Enhance the query by appending a sorting preference, directing the system
to find top-ranked products according to criteria like lowest price, highest user rating, newest
arrival, or best seller ranking.

By iteratively applying the above strategies, our method mimics the natural evolution of user queries,
generating a hierarchical set of increasingly complex queries. Starting from diverse queries in
Ddiversity, we apply T = 5 rounds of complexity evolution, resulting in a total of 600 queries.

3.5 DATASET ANALYSIS

Analysis of query diversity evolution. Existing benchmarks for online web shop-
ping often exhibit skewed distributions across product categories, introducing evalua-
tion bias and limiting the generalizability of agent performance, as shown in Figure 3.

Books Electronics Home Fashion Sports0

5

10

15

20

25

30

35

Co
un

t

Seed data
DeepShop

Figure 3: Product category distribution
after query diversity evolution.

To mitigate this, we construct a balanced subset of 150
queries from our 600-query pool, systematically select-
ing 30 queries each from five major categories: Books,
Electronics, Home, Fashion, and Sports. Following pre-
vious work (He et al., 2024a;b), we manually verify each
generated task and, if necessary, revise it to ensure high
quality and confirm that the answers are available on the
corresponding website. While this uniform category dis-
tribution does not necessarily reflect real-world query fre-
quency, it provides a controlled and equitable test bed for
evaluating cross-domain generalization. The DeepShop
benchmark significantly reduces the category imbalance
present in the seed data, enabling more controlled and
equitable comparisons. This balanced design helps isolate
category-related performance effects, offering a clearer
assessment of an agent’s ability to generalize beyond narrow domain specialization.

Analysis of query complexity evolution. The complexity evolution strategy progressively enhances
query complexity by incorporating additional product attributes, search filters, or sorting preferences.
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(a) Product attribute evolution.
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(b) Search filter evolution.
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(c) Sorting preference evolution.
Figure 4: Analysis of query complexity evolution.

We perform a fine-grained analysis of query evolution across these three dimensions. Regarding
product attributes, as depicted in Figure 4(a), the average number of product attributes per query
exhibits a steady increase throughout the iterations. Ultimately, the average number of product
attributes in DeepShop surpasses the seed data by 0.52, while the hard subset contains an additional
0.66 attributes on average. In terms of search filters, Figure 4(b) illustrates a consistent increase in
the average number of filters per query across iterations. At the final iteration, DeepShop queries
include, on average, 1.95 more filters than the seed queries, with the hard subset further increasing
this difference to 2.88 filters on average. Similarly, the evolution of sorting preferences, illustrated in
Figure 4(c), shows an upward trajectory. The final average sorting preferences per query exceed the
seed data by 0.37, and this increment is further pronounced in the hard subset, where queries contain
an additional 0.66 sorting preferences on average.

More detailed analysis of task complexity distribution across domains is provided in Appendix B.

3.6 EVALUATION METRICS

To comprehensively evaluate web agents within the DeepShop environment, we adopt a two-stage
evaluation protocol that includes both fine-grained evaluation and holistic task success evaluation.

Fine-grained evaluation. Given the cost and scalability challenges of human evaluation, following
previous work (He et al., 2024a; Xue et al., 2025), we use GPT-4o for automatic evaluation. We
first decompose each query into product attribute qattr, search filter qfilter and sorting preference qsort
subqueries. For each web agent trajectory, we prompt GPT-4o to assess whether the final results
align with the requirements specified in each subquery. Specifically, we prompt GPT-4o with the user
subquery, screenshots, and the final answer of web agents and prompt GPT-4o to provide a binary
decision (“Success” or “Not Success”) for each subquery. This fine-grained evaluation enables us
to capture partial success cases and diagnose failure modes more precisely than holistic binary task
success alone. Note that if a particular subquery is not present in the original query (i.e., None), we
skip the evaluation for that aspect and do not include it in the calculation.

Holistic evaluation. To calculate the overall task success, we rely on the above fine-grained evaluation
outcomes, specifically the success scores for product attribute, search filter, and sorting preference.
The holistic evaluation aggregates these components by rule-based checking, for each dimension,
whether the query explicitly specifies a requirement. If a particular aspect (e.g., attribute, filter,
or sorting) is present in the query, its corresponding success score is considered; otherwise, the
system treats it as automatically satisfied. The final holistic task success is determined only if all
required components are successfully satisfied: the system must meet all attribute, filter, and sorting
requirements that are explicitly part of the query. For deep research systems, since intermediate
execution screenshots are unavailable, fine-grained and holistic evaluations are conducted manually.

Agreement rate between LLM evaluation and human judge. Following previous work (He et al.,
2024a; Xue et al., 2025), we calculate the agreement of human and GPT-4o judgments to measure the
reliability of GPT-4o evaluations. Specifically, human annotators are shown the full interaction trace
of the agent, including screenshots and actions, and are asked to judge whether the agent successfully
fulfilled the user’s request. Finally, the agreement rates between human and GPT-4o judges for the
product attributes, search filters and sorting preferences, and overall task success are 84%, 80%, 82%,
and 86%, respectively. It indicates the effectiveness and reliability of GPT-4o evaluation.

More details of the evaluation are provided in Appendix C.
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4 EXPERIMENTS

4.1 RESEARCH QUESTIONS

We aim to answer the following research questions in our experiments: RQ1: How do simple RAG
methods, web agents and deep research systems perform on the DeepShop benchmark in terms of
fine-grained and holistic evaluation metrics? RQ2: How do existing methods perform across different
product categories (Books, Electronics, Home, Fashion and Sports) in online shopping tasks? RQ3:
How does the performance of web agents vary across different levels of query complexity, from seed
queries to evolved complex queries with multiple attributes, filters and sorting preferences?

4.2 BASELINES

We evaluate web agents against three baseline categories:

• Simple RAG: Combines GPT-4o with Google Search by submitting the query, retrieving the
top-ranked page, and generating a response based on webpage screenshots.

• Web agents: Agent-E (Abuelsaad et al., 2024) uses a hierarchical planner-actor framework with
DOM tree distillation. SeeAct (Zheng et al., 2024) and WebVoyager (He et al., 2024a) use LLM
multimodality, combining visual perception with action planning. Browser Use (Müller & Žunič,
2024) integrates visual understanding and HTML extraction for robust interaction.

• Deep research systems: Gemini Deep Research (Gemini, 2025) decomposes queries and gener-
ates cited multi-step reports using Gemini’s extended reasoning. OpenAI Deep Research (OpenAI,
2025) autonomously browses, analyzes, and synthesizes web information into citation-rich outputs,
emulating human research workflows.

More details on the baselines and implementation are provided in Appendix D and Appendix E.

5 EXPERIMENTAL RESULTS AND ANALYSIS

Table 2: Main results across product attributes, search filters, sorting preferences, and overall task
success rates. Underlined indicates the best performance in web agents, and bold highlights the best
performance in deep research systems.

Method Product attribute Search filter Sorting preference Task success

Simple RAG
GPT-4o + Google Search 7.33 5.97 4.55 7.33

Web agents
Agent-E 12.67 9.70 3.41 6.67
SeeAct 52.00 22.39 20.45 10.67
WebVoyager 40.67 38.00 23.86 16.00
Browser Use 36.00 34.33 30.68 32.00

Deep research systems
Gemini Deep Research 53.33 44.00 52.94 30.00
OpenAI Deep Research 60.00 46.15 58.82 30.00

5.1 PERFORMANCE ANALYSIS OF WEB AGENTS (RQ1)

We present the experimental results for the simple RAG baseline, web agents and deep research
systems in Table 2. For each baseline, we evaluate the success rate of three fine-grained aspects,
product attributes, search filters, and sorting preferences, as well as the holistic task success rate.
Based on these results, we have three main observations:

• Simple RAG methods fail to solve DeepShop due to the lack of website interaction capabili-
ties. We observe that simple RAG methods perform poorly across both fine-grained and holistic
evaluations, with all success rates below 8%. In particular, these methods struggle with search
filters (score: 5.97) and sorting preferences (score: 4.55), as such requirements cannot be satisfied
through retrieval alone but instead demand active interaction with website elements (e.g., buttons).
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(b) Performance across query complexity evolution.
Figure 5: Detailed analysis of performance across different product categories and query complexity.

This highlights the inherent complexity of DeepShop queries and underscores the need for agents
capable of dynamic web interaction.

• Web agents outperform simple RAG by using website interaction, but still struggle with
DeepShop’s fine-grained requirements. Web agents dynamically interact with site content,
enabling more effective product discovery than simple RAG. We observe progressive gains in
overall task success: from HTML-based Agent-E (score: 6.67) to vision-based SeeAct (score:
10.67) and WebVoyager (score: 16.00), peaking with Browser Use (score: 32.00), which integrates
HTML and visual inputs. Notably, SeeAct excels in product attributes, WebVoyager in search filters,
and Browser Use in sorting preferences. However, satisfying all three dimensions simultaneously
remains difficult, underscoring the challenge DeepShop poses for web agents.

• Deep research systems use multi-step reasoning to enhance fine-grained performance on
DeepShop, but overall success remains limited. Gemini and OpenAI deep research systems
excel in product attribute and sorting preference evaluations, outperforming web agents on these
aspects. They struggle with search filters, as many require deep exploration and confirmation on
product detail pages. Despite achieving higher fine-grained success, their holistic task success
rates (30% each) remain low, underscoring the difficulty of satisfying all DeepShop requirements
simultaneously and highlighting the benchmark’s challenge for powerful deep research systems.

5.2 PERFORMANCE ACROSS DIFFERENT PRODUCT CATEGORIES (RQ2)
Figure 5(a) shows a performance analysis across product categories. Agent performance varies
notably across product categories. The simple RAG method performs relatively well in Home,
benefiting from rich textual titles retrievable via Google Search, but drops to 0% success in Fashion
and Sports, where visual cues dominate. HTML-based Agent-E consistently underperforms, par-
ticularly in Sports, due to its inability to process visual content. Vision-based agents like SeeAct
and WebVoyager improve performance across domains, while the hybrid Browser Use achieves the
best cross-domain results by combining HTML and vision inputs. Deep research systems show
relatively stable trends across categories but face major challenges in Fashion and Sports, where
Gemini scores 0% in Sports and OpenAI fails entirely in both. These failures highlight the need for
robust multimodal reasoning to handle visually driven product categories effectively.

5.3 PERFORMANCE ACROSS QUERY COMPLEXITY EVOLUTION (RQ3)
We analyze baseline performance across increasing query complexity, as shown in Figure 5(b). Our
results reveal a clear negative correlation between query complexity and agent performance.
Tasks are grouped into easy (0–1 complexity evolution), medium (2–3), and hard (4–5). The simple
RAG method achieves success rates of 16% on easy and 6.00% on medium queries but drops to 0%
on hard tasks, showing that Google Search alone cannot handle complex user needs. Web agents
also exhibit sharp declines, with average accuracy falling from 28.5% (easy) to 17% (medium), then
further dropping by 7 percentage points on hard tasks. Notably, deep research systems perform better
than web agents on the hard subset, highlighting the importance of strong reasoning capabilities—yet
even the top-performing OpenAI system reaches only 20% success rate.

5.4 ERROR ANALYSIS AND FUTURE IMPROVEMENT GUIDANCE

We conduct a detailed error analysis to identify the primary failure modes of web agents and deep
research systems during task execution. Understanding these issues is critical for designing more
robust and effective shopping agents. We categorize the observed errors as follows:
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• Web agents are limited by grounding ability. HTML content and webpage screenshots provide
complementary signals. Agents relying solely on HTML often overlook visual details—such as
product color or layout cues—that are crucial for correct decisions. Conversely, vision-based
agents using set-of-mark prompts struggle with segmentation accuracy: interactive buttons are
frequently misclassified, and regions like customer reviews remain unsegmented, preventing the
use of rating filters. Additionally, small filtering and sorting widgets are often ignored, degrading
task performance. Future work may explore multimodal fusion techniques that combine HTML
structure with visual context to enable stronger grounding (Gou et al., 2024).

• Web agents often lack state assessment and replanning capabilities. Agents frequently issue
overly specific search queries and, upon retrieval failure, fail to backtrack or reformulate broader
alternatives. Similarly, after navigating to product detail pages and finding unmet requirements,
they rarely reconsider or explore other options. This lack of dynamic replanning leads to suboptimal
decisions. Moreover, due to limited awareness of webpage state transitions, agents tend to repeat
ineffective actions, such as clicking the same unresponsive element multiple times, instead of
adjusting their strategy. Future research could fine-tune agents on realistic web environments to
enhance their ability to reason over search failures, and adapt plans dynamically (Liu et al., 2025).

• Web agents are constrained by a limited action space. Web agents operate within a restricted set
of browser actions, which prevents interaction with dynamic UI components found on shopping
platforms. E.g., a web agent fails to filter products within a specific range because it cannot
drag the price slider. More broadly, agents struggle to operate dropdowns, sliders, and nested
menus—essential actions for precise filtering and sorting. Future work could expand the agent’s
action set with shopping-specific operations and deeper browser integration (Xue et al., 2025).

• Web agents lack the ability to learn from execution. Current agents show little ability to
generalize across tasks. Experiences gained during one interaction—e.g., which strategies led
to success or failure—are not transferred to future scenarios. Agents repeatedly make the same
mistakes and fail to exploit previously effective strategies. Enabling execution-time learning
and memory would allow agents to abstract successful patterns, track failure cases, and refine
their decision-making over time. Future research may explore task-level memory, outcome-based
self-reflection, and lifelong learning (Wang et al., 2025; Zheng et al., 2025).

• Deep research systems are prone to hallucination errors. OpenAI’s deep research systems
often oversimplify complex queries, neglecting constraints and returning confident yet inaccurate
recommendations. For instance, they may assert that a matching product exists even when it does
not. Although Gemini more frequently acknowledges failure and suggests approximate alternatives,
both systems frequently return incomplete or incorrect links—redirecting to irrelevant websites
or generic navigation pages rather than specific product detail views. These hallucinations reduce
trust and usability. Future work could apply preference alignment and fact-checking techniques to
reduce hallucination rates and improve the precision of retrieved links (Song et al., 2025).

More details of our error analysis are provided in Appendix F.

6 CONCLUSIONS

In this paper, we introduce DeepShop, a benchmark aimed at evaluating web agents in realistic
and complex online shopping environments. While existing benchmarks often rely on simplistic
and deterministic queries, DeepShop bridges this gap by incorporating real-world user intents and
progressively evolving both the diversity and complexity of queries. Our benchmark covers five major
e-commerce domains and evaluates agent performance across key dimensions, including product
attributes, search filters, and sorting preferences. To enable a comprehensive assessment, we propose
a fine-grained and holistic evaluation framework. Experimental results on recent web agents reveal
significant performance drops on complex queries, highlighting the need for more robust agent design.
Overall, DeepShop provides a challenging and realistic testbed for advancing the development of
intelligent, user-centered web shopping agents.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, the source code for our evaluation scripts and dataset
evolution, along with the DeepShop dataset, is available at https://anonymous.4open.science/
r/DeepShop-E4DF. These resources allow researchers to replicate our experiments and verify the
results reported in this paper.
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APPENDIX

A USE OF LLMS

In this work, LLMs are used in two ways. First, they are used exclusively as a general-purpose tool
for language refinement and manuscript polishing. Second, LLMs are employed as evaluators, and
their usage in this role is described in detail in the paper. We conducted experiments to ensure the
reliability of LLM-based evaluation. LLMs did not contribute to the conceptualization, experimental
design, data analysis, or interpretation of the results in this work. All scientific content, findings, and
conclusions presented in this paper are the sole responsibility of the authors. No text generated by
LLMs affects the originality or intellectual contribution of the work.

B DETAILS OF TASK COMPLEXITY DISTRIBUTION ANALYSIS

To further validate that complexity evolution introduces consistent task difficulty across different
domains in the DeepShop benchmark, we conduct a detailed analysis of overall task complexity
distribution across domains.

For the overall task complexity distribution, we calculate the mean and standard deviation of the
total number of product attributes, search filters, and sorting preferences. As shown in the table 3,
DeepShop exhibits a higher average number of constraints and lower standard deviations across
domains compared to the seed datasets. These results suggest that DeepShop presents greater overall
task difficulty while maintaining improved cross-domain consistency.

Table 3: Overall task complexity distribution across domains.

Domain Electronic Fashion Sports Books Home Avg. Std

Seed data 3.43 3.60 3.29 4.25 3.50 3.61 0.33
DeepShop 6.22 6.30 6.32 6.26 6.11 6.24 0.07

C DETAILS OF EVALUATION

C.1 GPT-4O FOR EVALUATION

This section details the GPT-4o prompt used for fine-grained evaluation. As shown in Figure 6, we
adapt the prompt from prior work (He et al., 2024a) to assess whether the web agent satisfies the
requirements related to product attributes, search filters, and sorting preferences. For each trajectory,
GPT-4o receives the subqueries, the agent’s action history, and a maximum of 15 screenshots, and is
prompted to determine whether the task was successfully completed.

C.2 HUMAN EVALUATION

To validate the reliability of GPT-4o-based evaluation, we conduct a human evaluation on 50 randomly
sampled trajectories from WebVoyager. Following previous work (He et al., 2024a; Xue et al., 2025),
we hire human annotators with at least an undergraduate degree, and each sampled trajectory is
independently evaluated by a minimum of two annotators. In cases of disagreement, a third annotator
is consulted, and the final judgment is determined by majority vote. The evaluation is conducted
based on the full execution trace of the agent, including the task description, operation history, and
screenshots, as shown in Figure 7. Each human annotator labels the success of each subgoal—product
attributes, search filters, and sorting preferences—as well as the overall task completion. The average
Cohen’s kappa among human annotators is 0.82, indicating substantial inter-annotator agreement.
We then compute the agreement rate between human and GPT-4o assessments.

Additionally, since deep research systems do not expose intermediate screenshots or action histories,
human annotators are allowed to access the Amazon website to verify whether the returned links
satisfy the specified requirements. Due to limited use of the deep research systems, we evaluated
its performance on 30 randomly sampled queries. To ensure consistency, we evaluate the accuracy
based on the first recommended item when multiple products are returned.
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[System prompt]
As an evaluator, you will be presented with three primary components to assist you in your 
role:

1. Web Task Instruction: A clear and precise natural language directive that specifies an 
online shopping activity to be executed. The instruction may involve locating products that 
meet certain attribute requirements (e.g., color, size, brand), applying specific search filters 
(e.g., price range, customer ratings, availability), or fulfilling user-defined sorting preferences 
(e.g., lowest price, newest arrivals, best sellers). Tasks may also include verifying product 
details, comparing offers, or checking for shipping and return policies, depending on the 
scenario.

2. Result Screenshots: This is a visual representation of the screen showing the result or 
intermediate state of performing a web task. It serves as visual proof of the actions taken in 
response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the web task. 
It serves as textual result in response to the instruction.

-- You DO NOT NEED to interact with web pages or perform actions such as conducting 
searches on websites.
-- You SHOULD NOT make assumptions based on information not presented in the 
screenshot when comparing it to the instructions.
-- Your primary responsibility is to conduct a thorough assessment of the web task instruction 
against the outcome depicted in the screenshot and in the response, evaluating whether the 
actions taken align with the given instructions.
-- NOTE that the instruction may involve more than one task, for example, locating the 
garage and summarizing the review. Failing to complete either task, such as not providing a 
summary, should be considered unsuccessful.
-- NOTE that the screenshot is authentic, but the response provided by LLM is generated at 
the end of web browsing, and there may be discrepancies between the text and the 
screenshots.
-- Note the difference: 1) Result response may contradict the screenshot, then the content of 
the screenshot prevails, 2) The content in the Result response is not mentioned on the 
screenshot, choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a 
definitive verdict on whether the task has been successfully accomplished, either as 
'SUCCESS' or 'NOT SUCCESS’.

[User prompt]
TASK:
{subquery}

Result Response:
{answer}

15 screenshots at the end:
{screenshots}

Figure 6: Prompts for GPT-4o evaluation

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You will be presented with a web shopping task.
For each task, you will receive three subqueries, along with the web agent's action history 
and corresponding screenshots. Your goal is to evaluate the agent’s performance across 
three specific dimensions: product attributes, search filters, and sorting preferences.
Please note: if a subquery is labeled as None, you do not need to assess that particular 
aspect.

Definitions of the three subqueries are as follows:
1. Product attributes, referring to concrete product characteristics users may specify to 
express detailed intent
2. Search filters, representing categorical or numerical constraints commonly used on e-
commerce platforms
3. Sorting preferences, indicating desired result orderings, such as price or popularity.

Task:
{Query}

Product Attribute Requirement:
{Subquery1}

Search Filter Requirement:
{Subquery2}

Sorting Preference Requirement:
{Subquery3}

Agent Action History:
{Action}

Screenshots:
{Screenshots}

Figure 7: Instructions for human evaluation.

C.3 SIGNIFICANCE TEST BETWEEN WEB AGENTS

We conducted paired t-tests to compare the overall task success rates between Browser Use and
four baseline models: Simple RAG, Agent-E, SeeAct, and WebVoyager. The results reveal
that Browser Use significantly outperforms Simple RAG and web agent baselines (p < 0.05),
supporting the claim that direct interaction with the online web environment can substantially improve
agent performance over static retrieval methods such as Simple RAG. Furthermore, the comparison
highlights fundamental limitations in grounding capabilities across different agent types. HTML-
based agents like Agent-E lack access to visual context, often missing essential cues such as product
color or spatial layout. On the other hand, vision-based agents such as SeeAct and WebVoyager rely
on set-of-mark prompting, which suffers from segmentation errors: interactive elements are frequently
misclassified, and key sections—like customer review areas—remain unsegmented, making it difficult
to apply filters like rating thresholds.

D DETAILS OF BASELINES

• Simple RAG method: We implement a simple retrieval-augmented generation (RAG) baseline by
combining GPT-4o with Google Search. The user query is first submitted to Google Search, and
the top-ranked webpage is selected. GPT-4o (version 2024-08-06) then generates a final response
conditioned on the screenshot of the retrieved page. We use the Serper API1 to programmatically
access Google search results.

• Web agents: For fair comparison, all web agents are instantiated using GPT-4o (version 2024-08-
06) as the underlying language model. Agent-E (Abuelsaad et al., 2024) is an HTML-based agent
that adopts a hierarchical planner-actor architecture, augmented with flexible DOM tree distillation
and a denoising mechanism to improve decision accuracy.2 SeeAct (Zheng et al., 2024) exploits
the multi-modal capabilities of large language models (LLMs), integrating visual perception with

1https://serper.dev/
2https://github.com/EmergenceAI/Agent-E
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structured web-based interactions.3 WebVoyager (He et al., 2024a) also leverages multi-modal
reasoning and introduces a set-of-mark prompting scheme that guides the agent to first generate
intermediate thoughts before selecting final actions.4 Browser Use (Müller & Žunič, 2024) is
an open-source web agent framework that combines visual understanding with HTML structure
parsing to support robust web navigation and interaction.5

• Deep research systems: Since we cannot strictly constrain deep research systems to operate
on specific shopping websites, we include explicit site constraints in the prompt to guide the
search process. The prompt format used for these systems is illustrated in Figure 8. Gemini
Deep Research (Gemini, 2025) is an AI assistant integrated into Google’s Gemini Advanced
platform. We evaluate the Gemini 2.0 Flash model with deep research capabilities.6 OpenAI
Deep Research (OpenAI, 2025) is an agentic system powered by OpenAI’s reasoning models. We
evaluate the o3 model with deep research enabled.7

Prompt:                                                                                                         
Your task is to help find relevant products on Amazon website 
(https://www.amazon.com/?language=en_US&currency=USD) based on the following question:
{Query}

Please strictly follow the rules: 
1. Do not contact the user for further information. Provide answers directly without asking any 
questions or seeking clarification.
2. Include Amazon product links for all recommended items.

Figure 8: Prompts for deep research systems.

E DETAILS OF IMPLEMENTATION

E.1 PROMPTS FOR QUERY DIVERSITY AND COMPLEXITY EVOLUTION

Details for the prompts used in Diversity(·), and Complexity(·) are provided. Figures 9, 10, and
11 display the prompts for query diversity, complexity evolution and detailed complexity evolution
strategy, respectively.

E.2 IMPLEMENTATION DETAILS

We evaluate open-source agents—Agent-E, SeeAct, WebVoyager, and Browser Use—within real-
time web environments. Agent-E, SeeAct, and Browser Use are executed via Playwright, while
WebVoyager leverages Selenium. To control computation cost and prevent excessive exploration, we
limit each agent to a maximum of 15 steps per task. All agents are powered by gpt-4o-2024-08-06
as the underlying language model. For automatic evaluation, we also adopt gpt-4o-2024-08-06
as evaluators, with temperature set to 0 to reduce response variance and enhance reproducibility.
The agents differ in their perception mechanisms: Agent-E and SeeAct utilize full-page screenshots,
whereas WebVoyager and Browser Use operate on the visible viewport only.

F DETAILS OF ERROR ANALYSIS

• Web agents are limited by grounding ability. As shown in Figure 12, agents struggle to accurately
ground interface elements. For example, button 39 related to user rating was not properly segmented,
preventing the agent from selecting a specific rating range. Buttons 31–37 and 41–44 were rendered
too densely and overlapped, making interaction difficult. Additionally, the sorting button on
the right was incorrectly split into two buttons 16 and 17, which may confuse the agent during
execution.

3https://github.com/OSU-NLP-Group/SeeAct
4https://github.com/MinorJerry/WebVoyager
5https://github.com/browser-use/browser-use
6https://blog.google/products/gemini/google-gemini-deep-research/
7https://openai.com/index/introducing-deep-research/
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I want you act as a Prompt Creator.
Your goal is to draw inspiration from the #Given Prompt# to create a brand new prompt.
This new prompt should be in the web shopping domain but tailored for different specific 
products in the {Randomly selected product category} amazon product field.
The LENGTH and complexity of the #Created Prompt# should be similar to that of the 
#Given Prompt#.
The #Created Prompt# must be reasonable and must be understood and responded by 
humans.
'#Given Prompt#', '#Created Prompt#', 'given prompt' and 'created prompt' are not allowed to 
appear in #Created Prompt#

#Given Prompt#:
{Original query}

#Created Prompt#:

Figure 9: Prompts for query diversity evolution.

I want you act as a Prompt Rewriter for web shopping.
Your objective is to rewrite a given prompt into a more complex version to make those web 
shopping agents a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by 
humans.
You should complicate the given prompt using the following method:
{Randomly selected evolution strategy} 
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten 
Prompt# can only add 10 to 20 words into #The Given Prompt#. 
'#The Given Prompt#', '#Rewritten Prompt#', 'given prompt' and 'rewritten prompt' are not 
allowed to appear in #Rewritten Prompt#

#Given Prompt#:
{Original query}

#Created Prompt#:

Figure 10: Prompts for query complexity evolution.

Product attribute evolution:
Enhance #The Given Prompt# by integrating detailed product attributes that detail user 
needs. Please specifies concrete values for one product attribute (e.g., brand, model, price 
range, color, size, weight, or unique features) based on your knowledge about this product, 
ensure that these exact details are incorporated into the query instead of using generic 
placeholder terms.

Search filter evolution:
Enhance #The Given Prompt# by integrating detailed product constraints that capture user 
needs. Please specifies concrete values for constraints—such as a minimum customer 
rating (e.g., above 4.0 or 4.5 stars), a minimum number of customer reviews (e.g., 100, 300, 
500, or 1000), shipping options like free delivery, new arrival time frames (e.g., released in 
the last 30 or 90 days), return policies (e.g., free returns), or warranty information (e.g., 
includes a 1-year warranty) based on your knowledge about amazon website, ensure that 
these exact values are used in the query rather than generic terms.

Sorting preference evolution:
Enhance #The Given Prompt# by integrating a specific product filtering requirement for web 
shopping. Find the top product based on one of the following criteria: lowest price, highest 
user rating, newest arrival, or best seller ranking.

Figure 11: Prompts for complexity evolution strategies.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Limited grounding ability of web agents.

• Web agents often lack state assessment and replanning capabilities. As illustrated in Figure 13,
when the agent enters a product detail page to verify a 1-year warranty, it fails to reassess its state
upon realizing that the requirement is unmet. Instead of returning to the search results page, the
agent continues to scroll within the current page, inefficiently attempting to locate an alternative
product.

Action: Scroll down

Action: Click [16]

Action: Scroll down

Do not satisfy 
the 1-year 
warrant

Keep exploring 
on the current 
page instead 
of going back

Figure 13: Illustration of web agent’s failure to reassess and replan.

• Web agents are limited by action space. As shown in Figure 14, the agent attempts to filter
cameras within the $100–$300 price range but fails to do so due to its inability to interact with
dynamic UI elements such as price sliders. Instead, it clicks the adjacent "Go" button without
adjusting the slider values, resulting in ineffective filtering. This highlights a fundamental limitation
of current agents: the constrained action space prevents them from performing fine-grained
interactions required in realistic web environments.

• Web agents lack the ability to learn from execution. As illustrated in Figure 15, we present
screenshots of the web agent across four different tasks. A consistent failure pattern emerges:
the agent repeatedly misuses the retriever to query filtering or sorting constraints, despite these
functionalities being accessible only via the designated filter or sorter UI components. Due
to the retriever’s inability to interpret such structural intents, it often returns irrelevant results
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Action: Click [27]

Clicked the 'Go' button in the price block but failed to filter 
prices to the $100–$300 range.

Figure 14: Illustration of the web agent’s failure to apply the price filter during task execution.

Figure 15: Illustration of the web agent’s failure to learn from execution.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

contaminated by noise. This repetition across tasks highlights the agent’s lack of execution-time
learning, preventing it from abstracting past mistakes and adapting its behavior accordingly.

• Deep research systems are limited by hallucination errors. As shown in Figure 16, the task
requires identifying a Women’s Vintage Floral Maxi Dress in Navy Blue, Size: Medium, and
explaining the return policy if free returns are available. However, as shown in Figure 17, the first
link returned by the OpenAI deep research system points to a product only available in Large and
XX-Large sizes. Despite this mismatch, the system hallucinates that the size requirement is met.
Moreover, Link2 and Link3 direct to non-Amazon websites, which violates the task constraint. In
an attempt to explain the return policy, the system incorrectly extracts return information from these
external sites. These issues reveal that when facing complex and fine-grained shopping queries,
the OpenAI deep research system frequently exhibits hallucinations—both in satisfying attribute
constraints and in sourcing policy information from inappropriate domains.

Task:
Locate the Return Policy for Women's Vintage Floral Maxi Dress on Amazon. Color: Navy Blue, Size: Medium. If free returns are
available, please explain the return process for this item.

OPENAI deep research system answer:
Understood. I will search Amazon for listings of a Women's Vintage Floral Maxi Dress in Navy Blue, size Medium, and identify the
return policy for each listing. I will focus on whether free returns are available and explain the return process for the item. I’ll share the 
direct Amazon links for all relevant listings I find.

Research completed in 11m:

Return Policy for Women's Vintage Floral Maxi Dress on Amazon
Free Return Policies for Navy Blue Vintage Floral Maxi Dresses (Medium)
When shopping on Amazon for a women’s vintage floral maxi dress in Navy Blue (size Medium), it’s important to check if the item 
offers Free Returns. Below are a few popular listings that match this description, along with their return policy details:
Floerns Women’s Sleeveless Halter Neck Vintage Floral Print Maxi Dress (Navy Blue)
Product: Floerns Women’s Sleeveless Halter Neck Vintage Floral Print Maxi Dress
Color: “A Navy Flower”,
Size: Medium.
Link: Amazon Product Page – Floerns Halter Neck Floral Maxi
Free Returns: Yes. This Floerns dress is Prime-eligible and marked with “FREE Returns”, meaning you can return it at no cost if it 
doesn’t fit or meet your expectations [Link1]. Amazon provides at least one prepaid return shipping option for eligible items, so 
returning this dress is hassle-free.
Return Process: You have 30 days from delivery to initiate a return via your Amazon account. Simply go to Your Orders, select this 
dress, and choose “Return or Replace Items.” 
Because it’s eligible for free returns, Amazon will offer a prepaid shipping label or QR code for drop-off [Link2]. You can then package 
the dress (in new, unworn condition with tags) and drop it off at an approved location (e.g. UPS Store, Whole Foods, Kohl’s, etc.) 
without paying return shipping [Link3]. Once the item is received, you’ll get a full refund to your original payment method.

[Link1]: https://www.amazon.com/Floerns-Womens-Sleeveless-Halter-
Vintage/dp/B0C3HQLBBQ#:~:text=,least%20one%20free%20return
[Link2]: https://www.smoking-er.com/store/rosemary-
pellet#:~:text=,preferred%20free%20shipping%20option%20Drop%C2%A0off%C2%A0and%C2%A0leave
[Link3]: https://www.smoking-er.com/store/rosemary-
pellet#:~:text=,preferred%20free%20shipping%20option%20Drop%C2%A0off%C2%A0and%C2%A0leave

Figure 16: Illustration of hallucination errors in the OpenAI deep research system. The system returns
three links for the query, including two that point to non-Amazon websites, and incorrectly assumes
the returned products match the specified size and platform constraints.
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The available sizes are Large 
and XX-Large, whereas the 
task explicitly requires Size 
Medium.

Figure 17: Detailed view of the first returned product link. Although the task specifies size Medium,
the linked product only offers Large and XX-Large options.
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