
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEPSHOP: A BENCHMARK FOR DEEP RESEARCH
SHOPPING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Web agents for online shopping have shown great promise in automating user
interactions across e-commerce platforms. Benchmarks for assessing such agents
do not reflect the complexity of real-world shopping scenarios, as they often con-
sist of overly simple queries with deterministic paths, such as “Find iPhone 15.”
Real shopping scenarios are inherently more layered, involving multi-dimensional
product attributes, search filters, and user-specific sorting preferences. To address
this gap, we introduce DeepShop, a benchmark designed to evaluate web agents in
complex and realistic online shopping environments. DeepShop comprises three
key components. (1) Query diversity evolution: Starting from real user queries,
we generate diverse queries across five popular online shopping domains. (2)
Query complexity evolution: We further evolve these queries to increase com-
plexity, considering product attributes, search filters, and sorting preferences, and
classify them into three levels: easy, medium, and hard, based on the number of
evolutions. (3) Fine-grained and holistic evaluation: We propose an automated
evaluation framework that assesses agent performance in terms of fine-grained
aspects (product attributes, search filters, and sorting preferences) and reports the
overall success rate through holistic evaluation. We conduct a systematic evaluation
of retrieval-augmented generation (RAG) methods, web agents, and deep research
systems. Results show that RAG struggles with complex queries due to its lack
of web interaction, while other methods face significant challenges with filters
and sorting preferences, leading to low overall success rates. We also perform
cross-category, complexity-based evaluations and error analyses to support the
advancement of deep research shopping agents.

1 INTRODUCTION

Recent progress in web agents has enabled more complex automation of human interactions on
e-commerce platforms (Yao et al., 2022; Kim et al., 2023; Sumers et al., 2024), largely driven by the
integration of large language models (LLMs) that provide planning, memory, and web interaction
capabilities (He et al., 2024a; Sumers et al., 2024; Zheng et al., 2024). Despite these advances, web
agents still face significant challenges in completing complex user queries in dynamic, real-world
shopping environments (Nguyen et al., 2024; Zhang et al., 2024a). These complex user queries require
agents to perform deep research of e-commerce platforms—browsing product listings, applying
filters, and comparing items—to accommodate diverse and nuanced user preferences (Sondhi et al.,
2018; Chen et al., 2024b). This leads to our key research question: Can existing web agents effectively
fulfill diverse and complex user needs in realistic shopping scenarios?

To evaluate web shopping agents, recent studies have proposed benchmarks that test their ability
to complete user tasks via simulated or real website interactions. Most offline benchmarks, such
as Mind2Web (Deng et al., 2023), WebShop (Yao et al., 2022), and WebArena (Zhou et al., 2024),
are based on static environments constructed from pre-collected web snapshots or manually curated
HTML structures. While these benchmarks enable controlled evaluations, they fail to capture the
dynamic and unpredictable nature of real-world websites, which often feature noisy, frequently
updated, and interactive content (Wang et al., 2024; Ning et al., 2025).

Recently, several online benchmarks have emerged, including Mind2Web-Live (Pan et al., 2024) and
WebVoyager (He et al., 2024a), which enable agents to operate within real-time web environments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Find a queen-sized
bedspread featuring a floral
design in a calming blue hue ,
ensuring it has a minimum
customer rating of 4.5 stars from
at least 300 reviews , and
check for the lowest price .

[Webshop] Find me anti aging
eyes care with green tea for
dark circles, fine lines.
[Mind2Web-Live] Add to my
cart a women's T-shirt priced
under 10 dollars in Uniqlo.
[WebVoyager] Search an Xbox
Wireless controller with green
color and rated above 4 stars.

DeepShop Baseline Query
Feedback

Action

Fine-grained &
Holistic Evaluation

Complex query based
on user needs

Overly simplistic and
lacks contextual details

Environment Agent

Success

Failure

Figure 1: DeepShop evaluates agents on realistic and complex shopping queries with fine-grained,
holistic metrics, while existing benchmarks use overly simple queries lacking contextual depth.

While recent efforts mark progress, they still fail to capture the complexity and diversity of real-
world shopping (Song et al., 2025; Xue et al., 2025), as most benchmark tasks remain simple and
deterministic (e.g., “find an iPhone 15”), unlike real queries that demand multi-attribute reasoning,
filtering, and personalized sorting (Nguyen et al., 2024; Zhang et al., 2024a).

To bridge this gap, we introduce DeepShop, a benchmark specifically designed to evaluate web agents
in complex online shopping scenarios. DeepShop is tailored to evaluate web shopping agents in
handling diverse and complex user queries, and includes a comprehensive evaluation framework. The
key components of DeepShop are as follows:

• Query diversity evolution: We begin with real-world user shopping queries and generate a wide
range of goals across five popular product categories (Books, Electronics, Home, Fashion and
Sports). This ensures that agents must generalize across varied user shopping intents.

• Query complexity evolution: We progressively enhance the complexity of each query by introduc-
ing combinations of product attributes (e.g., brand, color), search filters (e.g., ratings, availability),
and sorting preferences (e.g., lowest price first). These queries are categorized into easy, medium,
and hard levels, based on the number and type of components involved.

• Fine-grained and holistic evaluation: To enable meaningful comparisons across agents, we
design an automated evaluation pipeline that assesses performance on three axes—correct attribute
matching, correct use of filters, and proper execution of sorting preferences—alongside a holistic
success rate measuring task completion.

We conduct both fine-grained and holistic evaluations of various approaches, including simple
retrieval-augmented generation (RAG) methods, advanced web agents, and commercial deep research
systems. Results show that RAG methods, lacking web interaction, struggle with DeepShop queries;
web agents fail to handle filters and sorting well; and even deep research systems fall short on filtering,
leading to low overall success rates. We further analyze performance across product categories, query
complexities, and error types to guide future research. By introducing a benchmark that mirrors
real-world complexity, DeepShop provides a rich testbed for advancing agent planning, adaptability,
and generalization, bridging the gap between academic systems and real-world deployment.

The contributions of this paper are as follows:

• We present DeepShop, a comprehensive benchmark for evaluating web agents in complex online
shopping scenarios, featuring diverse queries across five product categories and varying complexity
levels. Our dataset is built through a multi-stage process that evolves real-world shopping intents
by expanding query diversity and complexity.

• We conduct extensive experiments comparing simple RAG methods, advanced web agents, and
commercial deep research systems using our fine-grained and holistic evaluation framework.

• We provide detailed analyses across product categories, query complexity levels, and specific
error types, revealing critical limitations in current systems and offering insights to guide future
development of more effective deep research shopping agents.

2 RELATED WORK

Benchmarks for web agent evaluation. Existing benchmarks for web agent evaluation fall into two
categories: offline and online, as shown in Table 1. Offline benchmarks (e.g., Mind2Web (Deng et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of existing benchmarks and DeepShop. DeepShop is evaluated online across
diverse product categories, providing fine-grained assessment over product attributes, search filters,
and sorting preferences. Average token length is computed from 100 randomly sampled queries.

Benchmark Avg. query
length

Env.
type

Product
category

Product
attribute

Search
filter

Sorting
preference

Task
success

Webshop (Yao et al., 2022) 18.2 Offline ✓ ✓ ✗ ✗ ✓
Mind2Web (Deng et al., 2023) 13.4 Offline ✗ ✗ ✗ ✗ ✓
Webarena (Zhou et al., 2024) 19.9 Offline ✗ ✗ ✗ ✗ ✓
VWebarena (Koh et al.) 21.4 Offline ✗ ✗ ✗ ✗ ✓
MMInA (Zhang et al., 2024c) 24.2 Offline ✗ ✗ ✗ ✗ ✓
ChatShop (Chen et al., 2024a) 20.4 Offline ✗ ✗ ✗ ✗ ✓

WebLINX (Lù et al., 2024) 6.2 Online ✗ ✗ ✗ ✗ ✓
Mind2Web-Live (Pan et al., 2024) 16.2 Online ✗ ✗ ✗ ✗ ✓
WebVoyager (He et al., 2024a) 29.5 Online ✗ ✗ ✗ ✗ ✓

DeepShop (Ours) 62.0 Online ✓ ✓ ✓ ✓ ✓

2023), WebShop (Yao et al., 2022), WebArena (Zhou et al., 2024), ChatShop (Chen et al., 2024a)) use
static snapshots or simulated environments, offering controlled conditions but failing to capture the
dynamic nature of real-world websites (Koh et al.; Jang et al., 2024). In contrast, online benchmarks
(e.g., WebVoyager (He et al., 2024a), Mind2Web-Live (Pan et al., 2024)) provide realistic real-time
settings but focus on general and simple tasks, leaving complex web shopping queries underexplored.
Even basic RAG systems with LLMs and Google Search can perform strongly on many current
benchmarks (Yoran et al., 2024; Mialon et al., 2024). To address this gap, DeepShop introduces a
benchmark targeting challenging online web shopping queries, constructed by query diversity and
complexity evolution. We also propose fine-grained evaluation metrics across product attributes,
search filters, and sorting preferences to offer a comprehensive assessment of agent performance.

Web agents for task automation. Recent progress in web agents has followed a clear trajec-
tory, evolving from text-based to multimodal systems. Early HTML-based agents, such as We-
bGPT (Nakano et al., 2021), MindAct (Deng et al., 2023), and Agent-E (Abuelsaad et al., 2024),
leverage LLMs to interpret language instructions and navigate web interfaces using DOM trees (Gur
et al., 2024; Lai et al., 2024). Building on this, multimodal, vision-based agents like SeeAct (Zheng
et al., 2024), WebVoyager (He et al., 2024a), and Browser Use (Müller & Žunič, 2024) integrate
visual grounding to handle complex layouts and interactive components (Shaw et al., 2023; Furuta
et al., 2024). Recent systems such as OpenAI Deep Research (OpenAI, 2025) and Gemini Deep
Research (Gemini, 2025) use advanced reasoning LLMs to tackle complex information-seeking
tasks. Despite these advances, most evaluations remain limited to generic benchmarks, leaving agent
performance on complex, real-world shopping scenarios underexplored. In this paper, we evaluate
simple RAG methods, text-based and multimodal web agents, and deep research systems in realistic
online shopping environments.

Query understanding in E-commerce. Online shopping platforms have become central to mod-
ern consumer behavior, making accurate query understanding critical for satisfying user experi-
ences (Hirsch et al., 2020; Zhang et al., 2020; Ren et al., 2024). However, many e-commerce queries
involve overwhelming product spaces and complex user preferences that are difficult to express with
simple keywords or filters (Sondhi et al., 2018). Traditional information retrieval (IR) systems often
struggle with such complexity (Tsagkias et al., 2020; Chen et al., 2024b), while conversational IR
systems, despite supporting multi-turn preference elicitation, remain constrained by training products
and cannot autonomously browse web content (Zhang et al., 2024b; Chen et al., 2024a). Recent
advances in web agents offer a promising alternative by autonomously interacting with e-commerce
sites, searching for relevant items, and mimicking human browsing behaviors (Yao et al., 2022; He
et al., 2024a). To advance this line of research, we introduce DeepShop, a benchmark designed to
evaluate web agents on complex e-commerce queries and drive progress in web shopping automation.

3 DEEPSHOP BENCHMARK

In this section, we present the DeepShop benchmark, a framework for evaluating web agents in
realistic online shopping environments for complex user queries. We begin by formulating the web

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Find iPhone 15.
Find the latest Apple iPhone 15,
specifically the 256GB model in
starlight color.

Find Apple iPhone 15, ensuring it
has a minimum customer rating
of 4 stars.

Find the latest Apple iPhone 15,
rank with as a lowest price.

Find yoga mats with a
minimum customer rating of
4.5 stars.

Find Apple iPhone 15, specifically
the 128GB model in black, sorted
by the lowest price available.

Find yoga mats.

Find Apple iPhone 15, ensuring it has a
price ranking as the lowest among
options with at least 4.5 stars, over
300 customer reviews, and offers
free delivery.

Find yoga mats with the
highest user rating.

Find eco-friendly yoga mats, such
as those made from natural
rubber with a minimum customer
rating of 4.5 stars.

Find yoga mats with at least
a 4.5-star rating, over 500
reviews.

Find for the Apple iPhone 15, specifically the 128GB model in
black, sorted by the lowest price, with customer ratings
above 4.5 stars and at least 1000 reviews, ensuring free
delivery and return options.

Attribute Evolution Filter Evolution

Sorting Evolution

Filter Evolution

Filter Evolution

Attribute Evolution

Filter Evolution Sorting Evolution

Filter Evolution

Attribute Evolution

Diversity Evolution

Figure 2: Running examples of diversity and complexity evolution in DeepShop. Complexity
evolution includes attribute evolution, filter evolution, and sorting evolution.

shopping tasks. Next, we describe the processes of query diversity and complexity evolution, which
are derived from real user seed queries, as shown in Figure 2. We then analyze key characteristics
of DeepShop to offer a deeper understanding of the dataset. Finally, we introduce a comprehensive
evaluation framework that incorporates both fine-grained and holistic metrics.

3.1 TASK FORMULATION

Following previous work (He et al., 2024a; Pan et al., 2024), we formulate the online web shopping
task as a partially observable Markov decision process (POMDP) (Kaelbling et al., 1998) defined by
a tuple (S,O,A, T), where S denotes the state space, O the observation space, A the action space,
and transition function T : S ×A → S . In this setting, at each time step t, given a user query q, the
web shopping agent receives an observation ot ∈ O that partially reflects the underlying state st ∈ S
of the web environment. The agent then takes an action at ∈ A, resulting in a new environment state
st+1 ∼ T (st, at) and an updated observation ot+1 ∈ O.

3.2 SEED DATA CURATION

To evaluate web agents under realistic user shopping intentions, we curate a seed dataset by selecting
a subset of web shopping queries from two real-world benchmarks: Mind2Web-Live (Pan et al., 2024)
and WebVoyager (He et al., 2024a). Specifically, we manually select 50 user queries and categorize
them into five representative shopping domains: Books (4), Electronics (14), Home (20), Fashion (5),
and Sports (7). We define each domain as follows:

• Books dbooks: Physical books, eBooks, and audiobooks across various genres.
• Electronics delectronics: Electronics and digital products such as smartphones, tablets, laptops,

headphones, and smart devices.
• Home dhome: Household items including furniture, appliances, cleaning tools, and daily necessities.
• Fashion dfashion: Apparel, footwear, and accessories for all genders and age groups.
• Sports dsports: Fitness and recreational equipment, sportswear, and training accessories.

3.3 SHOPPING QUERY DIVERSITY EVOLUTION

Existing web shopping datasets (Yao et al., 2022; He et al., 2024a; Pan et al., 2024; Deng et al., 2023;
Koh et al.; Jang et al., 2024) often overlook fine-grained product categories, limiting their overall
diversity. To address this limitation, inspired by Xu et al. (2023), we generate entirely new queries
based on the original query and a randomly selected product category through the following diversity

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

evolution process:
q∗i = Diversity(qi, d), (1)

where Diversity(·) is implemented by prompting GPT4-o models, qi ∈ Doriginal is a seed query, and
d ∈ {dbooks, delectronics, dhome, dfashion, dsports} denotes a randomly selected product category. Finally,
we construct the web shopping diversity evolution dataset Ddiversity by combining the seed dataset
with all generated queries: Ddiversity = Doriginal ∪ {q∗i }Ni=1, where N is the number of seed queries.

3.4 SHOPPING QUERY COMPLEXITY EVOLUTION

To increase the complexity of web shopping queries, we propose a web shopping complexity evolution
strategy. Specifically, we focus on three key augmentation directions: (1) Product attributes, referring
to concrete product characteristics users may specify to express detailed intent; (2) Search filters,
representing categorical or numerical constraints commonly used on e-commerce platforms; and (3)
Sorting preferences, indicating desired result orderings, such as price or popularity. Specifically, we
perform iterative complexity evolution to progressively enhance query complexity. In each iteration t,
one of the three strategies is randomly selected to evolve the query qi,t from the previous step:

qi,t+1 = Complexity(qi,t, c), (2)

where Complexity(·) is implemented by prompting GPT4-o, qi,t denotes the i-th query in t-th
complexity evolution, i ∈ [1, |Ddiversity|], t ∈ [1, T], qi,0 denotes the i-th query from Ddiversity, and
c ∈ {cattr, cfilter, csort} is the randomly selected strategy. The three complexity evolution strategies are
summarized as follows:

• Attribute evolution cattr: Enhance the query by incorporating concrete product attributes, such as
brand, model, price range, color, size, weight, or unique features of products.

• Filter evolution cfilter: Enhance the query by adding specific search filter commonly available on
e-commerce platforms. These include constraints like minimum customer rating (e.g., 4.5 stars),
minimum number of reviews (e.g., 500+), shipping options (e.g., free delivery), release timeframe
(e.g., new arrivals in the past 30 days), return policies, or warranty information.

• Sorting evolution csort: Enhance the query by appending a sorting preference, directing the system
to find top-ranked products according to criteria like lowest price, highest user rating, newest
arrival, or best seller ranking.

By iteratively applying the above strategies, our method mimics the natural evolution of user queries,
generating a hierarchical set of increasingly complex queries. Starting from diverse queries in
Ddiversity, we apply T = 5 rounds of complexity evolution, resulting in a total of 600 queries.

3.5 DATASET ANALYSIS

Analysis of query diversity evolution. Existing benchmarks for online web shop-
ping often exhibit skewed distributions across product categories, introducing evalua-
tion bias and limiting the generalizability of agent performance, as shown in Figure 3.

Books Electronics Home Fashion Sports0

5

10

15

20

25

30

35

Co
un

t

Seed data
DeepShop

Figure 3: Product category distribution
after query diversity evolution.

To mitigate this, we construct a balanced subset of 150
queries from our 600-query pool, systematically select-
ing 30 queries each from five major categories: Books,
Electronics, Home, Fashion, and Sports. Following pre-
vious work (He et al., 2024a;b), we manually verify each
generated task and, if necessary, revise it to ensure high
quality and confirm that the answers are available on the
corresponding website. While this uniform category dis-
tribution does not necessarily reflect real-world query fre-
quency, it provides a controlled and equitable test bed for
evaluating cross-domain generalization. The DeepShop
benchmark significantly reduces the category imbalance
present in the seed data, enabling more controlled and
equitable comparisons. This balanced design helps isolate
category-related performance effects, offering a clearer
assessment of an agent’s ability to generalize beyond narrow domain specialization.

Analysis of query complexity evolution. The complexity evolution strategy progressively enhances
query complexity by incorporating additional product attributes, search filters, or sorting preferences.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Iterations

2.4

2.6

2.8

3.0
Co

un
t

Iterative evolution
DeepShop hard
DeepShop
Seed data

(a) Product attribute evolution.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

Co
un

t

Iterative evolution
DeepShop hard
DeepShop
Seed data

(b) Search filter evolution.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
un

t

Iterative evolution
DeepShop hard
DeepShop
Seed data

(c) Sorting preference evolution.
Figure 4: Analysis of query complexity evolution.

We perform a fine-grained analysis of query evolution across these three dimensions. Regarding
product attributes, as depicted in Figure 4(a), the average number of product attributes per query
exhibits a steady increase throughout the iterations. Ultimately, the average number of product
attributes in DeepShop surpasses the seed data by 0.52, while the hard subset contains an additional
0.66 attributes on average. In terms of search filters, Figure 4(b) illustrates a consistent increase in
the average number of filters per query across iterations. At the final iteration, DeepShop queries
include, on average, 1.95 more filters than the seed queries, with the hard subset further increasing
this difference to 2.88 filters on average. Similarly, the evolution of sorting preferences, illustrated in
Figure 4(c), shows an upward trajectory. The final average sorting preferences per query exceed the
seed data by 0.37, and this increment is further pronounced in the hard subset, where queries contain
an additional 0.66 sorting preferences on average.

More detailed analysis of task complexity distribution across domains is provided in Appendix B.

3.6 EVALUATION METRICS

To comprehensively evaluate web agents within the DeepShop environment, we adopt a two-stage
evaluation protocol that includes both fine-grained evaluation and holistic task success evaluation.

Fine-grained evaluation. Given the cost and scalability challenges of human evaluation, following
previous work (He et al., 2024a; Xue et al., 2025), we use GPT-4o for automatic evaluation. We
first decompose each query into product attribute qattr, search filter qfilter and sorting preference qsort
subqueries. For each web agent trajectory, we prompt GPT-4o to assess whether the final results
align with the requirements specified in each subquery. Specifically, we prompt GPT-4o with the user
subquery, screenshots, and the final answer of web agents and prompt GPT-4o to provide a binary
decision (“Success” or “Not Success”) for each subquery. This fine-grained evaluation enables us
to capture partial success cases and diagnose failure modes more precisely than holistic binary task
success alone. Note that if a particular subquery is not present in the original query (i.e., None), we
skip the evaluation for that aspect and do not include it in the calculation.

Holistic evaluation. To calculate the overall task success, we rely on the above fine-grained evaluation
outcomes, specifically the success scores for product attribute, search filter, and sorting preference.
The holistic evaluation aggregates these components by rule-based checking, for each dimension,
whether the query explicitly specifies a requirement. If a particular aspect (e.g., attribute, filter,
or sorting) is present in the query, its corresponding success score is considered; otherwise, the
system treats it as automatically satisfied. The final holistic task success is determined only if all
required components are successfully satisfied: the system must meet all attribute, filter, and sorting
requirements that are explicitly part of the query. For deep research systems, since intermediate
execution screenshots are unavailable, fine-grained and holistic evaluations are conducted manually.

Agreement rate between LLM evaluation and human judge. Following previous work (He et al.,
2024a; Xue et al., 2025), we calculate the agreement of human and GPT-4o judgments to measure the
reliability of GPT-4o evaluations. Specifically, human annotators are shown the full interaction trace
of the agent, including screenshots and actions, and are asked to judge whether the agent successfully
fulfilled the user’s request. Finally, the agreement rates between human and GPT-4o judges for the
product attributes, search filters and sorting preferences, and overall task success are 84%, 80%, 82%,
and 86%, respectively. It indicates the effectiveness and reliability of GPT-4o evaluation.

More details of the evaluation are provided in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 RESEARCH QUESTIONS

We aim to answer the following research questions in our experiments: RQ1: How do simple RAG
methods, web agents and deep research systems perform on the DeepShop benchmark in terms of
fine-grained and holistic evaluation metrics? RQ2: How do existing methods perform across different
product categories (Books, Electronics, Home, Fashion and Sports) in online shopping tasks? RQ3:
How does the performance of web agents vary across different levels of query complexity, from seed
queries to evolved complex queries with multiple attributes, filters and sorting preferences?

4.2 BASELINES

We evaluate web agents against three baseline categories:

• Simple RAG: Combines GPT-4o with Google Search by submitting the query, retrieving the
top-ranked page, and generating a response based on webpage screenshots.

• Web agents: Agent-E (Abuelsaad et al., 2024) uses a hierarchical planner-actor framework with
DOM tree distillation. SeeAct (Zheng et al., 2024) and WebVoyager (He et al., 2024a) use LLM
multimodality, combining visual perception with action planning. Browser Use (Müller & Žunič,
2024) integrates visual understanding and HTML extraction for robust interaction.

• Deep research systems: Gemini Deep Research (Gemini, 2025) decomposes queries and gener-
ates cited multi-step reports using Gemini’s extended reasoning. OpenAI Deep Research (OpenAI,
2025) autonomously browses, analyzes, and synthesizes web information into citation-rich outputs,
emulating human research workflows.

More details on the baselines and implementation are provided in Appendix D and Appendix E.

5 EXPERIMENTAL RESULTS AND ANALYSIS

Table 2: Main results across product attributes, search filters, sorting preferences, and overall task
success rates. Underlined indicates the best performance in web agents, and bold highlights the best
performance in deep research systems.

Method Product attribute Search filter Sorting preference Task success

Simple RAG
GPT-4o + Google Search 7.33 5.97 4.55 7.33

Web agents
Agent-E 12.67 9.70 3.41 6.67
SeeAct 52.00 22.39 20.45 10.67
WebVoyager 40.67 38.00 23.86 16.00
Browser Use 36.00 34.33 30.68 32.00

Deep research systems
Gemini Deep Research 53.33 44.00 52.94 30.00
OpenAI Deep Research 60.00 46.15 58.82 30.00

5.1 PERFORMANCE ANALYSIS OF WEB AGENTS (RQ1)

We present the experimental results for the simple RAG baseline, web agents and deep research
systems in Table 2. For each baseline, we evaluate the success rate of three fine-grained aspects,
product attributes, search filters, and sorting preferences, as well as the holistic task success rate.
Based on these results, we have three main observations:

• Simple RAG methods fail to solve DeepShop due to the lack of website interaction capabili-
ties. We observe that simple RAG methods perform poorly across both fine-grained and holistic
evaluations, with all success rates below 8%. In particular, these methods struggle with search
filters (score: 5.97) and sorting preferences (score: 4.55), as such requirements cannot be satisfied
through retrieval alone but instead demand active interaction with website elements (e.g., buttons).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Simple
RAG

Agent-E SeeAct WebVoyager Browser
Use

Gemini
Deep

Research

OpenAI
Deep

Research

0

10

20

30

40

50

60

Ta
sk

 S
uc

ce
ss

 R
at

e

Books
Electronics
Home
Fashion
Sports

(a) Performance across different product categories.

Simple
RAG

Agent-E SeeAct WebVoyager Browser
Use

Gemini
Deep

Research

OpenAI
Deep

Research

0

10

20

30

40

50

60

Ta
sk

 S
uc

ce
ss

 R
at

e

Easy
Medium
Hard

(b) Performance across query complexity evolution.
Figure 5: Detailed analysis of performance across different product categories and query complexity.

This highlights the inherent complexity of DeepShop queries and underscores the need for agents
capable of dynamic web interaction.

• Web agents outperform simple RAG by using website interaction, but still struggle with
DeepShop’s fine-grained requirements. Web agents dynamically interact with site content,
enabling more effective product discovery than simple RAG. We observe progressive gains in
overall task success: from HTML-based Agent-E (score: 6.67) to vision-based SeeAct (score:
10.67) and WebVoyager (score: 16.00), peaking with Browser Use (score: 32.00), which integrates
HTML and visual inputs. Notably, SeeAct excels in product attributes, WebVoyager in search filters,
and Browser Use in sorting preferences. However, satisfying all three dimensions simultaneously
remains difficult, underscoring the challenge DeepShop poses for web agents.

• Deep research systems use multi-step reasoning to enhance fine-grained performance on
DeepShop, but overall success remains limited. Gemini and OpenAI deep research systems
excel in product attribute and sorting preference evaluations, outperforming web agents on these
aspects. They struggle with search filters, as many require deep exploration and confirmation on
product detail pages. Despite achieving higher fine-grained success, their holistic task success
rates (30% each) remain low, underscoring the difficulty of satisfying all DeepShop requirements
simultaneously and highlighting the benchmark’s challenge for powerful deep research systems.

5.2 PERFORMANCE ACROSS DIFFERENT PRODUCT CATEGORIES (RQ2)
Figure 5(a) shows a performance analysis across product categories. Agent performance varies
notably across product categories. The simple RAG method performs relatively well in Home,
benefiting from rich textual titles retrievable via Google Search, but drops to 0% success in Fashion
and Sports, where visual cues dominate. HTML-based Agent-E consistently underperforms, par-
ticularly in Sports, due to its inability to process visual content. Vision-based agents like SeeAct
and WebVoyager improve performance across domains, while the hybrid Browser Use achieves the
best cross-domain results by combining HTML and vision inputs. Deep research systems show
relatively stable trends across categories but face major challenges in Fashion and Sports, where
Gemini scores 0% in Sports and OpenAI fails entirely in both. These failures highlight the need for
robust multimodal reasoning to handle visually driven product categories effectively.

5.3 PERFORMANCE ACROSS QUERY COMPLEXITY EVOLUTION (RQ3)
We analyze baseline performance across increasing query complexity, as shown in Figure 5(b). Our
results reveal a clear negative correlation between query complexity and agent performance.
Tasks are grouped into easy (0–1 complexity evolution), medium (2–3), and hard (4–5). The simple
RAG method achieves success rates of 16% on easy and 6.00% on medium queries but drops to 0%
on hard tasks, showing that Google Search alone cannot handle complex user needs. Web agents
also exhibit sharp declines, with average accuracy falling from 28.5% (easy) to 17% (medium), then
further dropping by 7 percentage points on hard tasks. Notably, deep research systems perform better
than web agents on the hard subset, highlighting the importance of strong reasoning capabilities—yet
even the top-performing OpenAI system reaches only 20% success rate.

5.4 ERROR ANALYSIS AND FUTURE IMPROVEMENT GUIDANCE

We conduct a detailed error analysis to identify the primary failure modes of web agents and deep
research systems during task execution. Understanding these issues is critical for designing more
robust and effective shopping agents. We categorize the observed errors as follows:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• Web agents are limited by grounding ability. HTML content and webpage screenshots provide
complementary signals. Agents relying solely on HTML often overlook visual details—such as
product color or layout cues—that are crucial for correct decisions. Conversely, vision-based
agents using set-of-mark prompts struggle with segmentation accuracy: interactive buttons are
frequently misclassified, and regions like customer reviews remain unsegmented, preventing the
use of rating filters. Additionally, small filtering and sorting widgets are often ignored, degrading
task performance. Future work may explore multimodal fusion techniques that combine HTML
structure with visual context to enable stronger grounding (Gou et al., 2024).

• Web agents often lack state assessment and replanning capabilities. Agents frequently issue
overly specific search queries and, upon retrieval failure, fail to backtrack or reformulate broader
alternatives. Similarly, after navigating to product detail pages and finding unmet requirements,
they rarely reconsider or explore other options. This lack of dynamic replanning leads to suboptimal
decisions. Moreover, due to limited awareness of webpage state transitions, agents tend to repeat
ineffective actions, such as clicking the same unresponsive element multiple times, instead of
adjusting their strategy. Future research could fine-tune agents on realistic web environments to
enhance their ability to reason over search failures, and adapt plans dynamically (Liu et al., 2025).

• Web agents are constrained by a limited action space. Web agents operate within a restricted set
of browser actions, which prevents interaction with dynamic UI components found on shopping
platforms. E.g., a web agent fails to filter products within a specific range because it cannot
drag the price slider. More broadly, agents struggle to operate dropdowns, sliders, and nested
menus—essential actions for precise filtering and sorting. Future work could expand the agent’s
action set with shopping-specific operations and deeper browser integration (Xue et al., 2025).

• Web agents lack the ability to learn from execution. Current agents show little ability to
generalize across tasks. Experiences gained during one interaction—e.g., which strategies led
to success or failure—are not transferred to future scenarios. Agents repeatedly make the same
mistakes and fail to exploit previously effective strategies. Enabling execution-time learning
and memory would allow agents to abstract successful patterns, track failure cases, and refine
their decision-making over time. Future research may explore task-level memory, outcome-based
self-reflection, and lifelong learning (Wang et al., 2025; Zheng et al., 2025).

• Deep research systems are prone to hallucination errors. OpenAI’s deep research systems
often oversimplify complex queries, neglecting constraints and returning confident yet inaccurate
recommendations. For instance, they may assert that a matching product exists even when it does
not. Although Gemini more frequently acknowledges failure and suggests approximate alternatives,
both systems frequently return incomplete or incorrect links—redirecting to irrelevant websites
or generic navigation pages rather than specific product detail views. These hallucinations reduce
trust and usability. Future work could apply preference alignment and fact-checking techniques to
reduce hallucination rates and improve the precision of retrieved links (Song et al., 2025).

More details of our error analysis are provided in Appendix F.

6 CONCLUSIONS

In this paper, we introduce DeepShop, a benchmark aimed at evaluating web agents in realistic
and complex online shopping environments. While existing benchmarks often rely on simplistic
and deterministic queries, DeepShop bridges this gap by incorporating real-world user intents and
progressively evolving both the diversity and complexity of queries. Our benchmark covers five major
e-commerce domains and evaluates agent performance across key dimensions, including product
attributes, search filters, and sorting preferences. To enable a comprehensive assessment, we propose
a fine-grained and holistic evaluation framework. Experimental results on recent web agents reveal
significant performance drops on complex queries, highlighting the need for more robust agent design.
Overall, DeepShop provides a challenging and realistic testbed for advancing the development of
intelligent, user-centered web shopping agents.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, the source code for our evaluation scripts and dataset
evolution, along with the DeepShop dataset, is available at https://anonymous.4open.science/
r/DeepShop-E4DF. These resources allow researchers to replicate our experiments and verify the
results reported in this paper.

9

https://anonymous.4open.science/r/DeepShop-E4DF
https://anonymous.4open.science/r/DeepShop-E4DF

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.
Agent-e: From autonomous web navigation to foundational design principles in agentic systems.
arXiv preprint arXiv:2407.13032, 2024.

Sanxing Chen, Sam Wiseman, and Bhuwan Dhingra. Chatshop: Interactive information seeking with
language agents. arXiv preprint arXiv:2404.09911, 2024a.

Zhiyu Chen, Jason Ingyu Choi, Besnik Fetahu, and Shervin Malmasi. Identifying high consideration
e-commerce search queries. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing: EMNLP 2024 - Industry Track, Miami, Florida, USA, November
12-16, 2024, pp. 563–572. Association for Computational Linguistics, 2024b.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024.

Gemini. Try deep research and Gemini 2.0 flash experimental. Gemini Blog, 2025. URL https:
//blog.google/products/gemini/google-gemini-deep-research/.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024a.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
Lan, and Dong Yu. OpenWebVoyager: Building multimodal web agents via iterative real-world
exploration, feedback and optimization. arXiv preprint arXiv:2410.19609, 2024b.

Sharon Hirsch, Ido Guy, Alexander Nus, Arnon Dagan, and Oren Kurland. Query reformulation in
e-commerce search. In Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pp.
1319–1328. ACM, 2020.

Lawrence Jang, Yinheng Li, Charles Ding, Justin Lin, Paul Pu Liang, Dan Zhao, Rogerio Bonatti,
and Kazuhito Koishida. VideoWebArena: Evaluating long context multimodal agents with video
understanding web tasks. arXiv preprint arXiv:2410.19100, 2024.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks. In
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 881–905.

10

https://blog.google/products/gemini/google-gemini-deep-research/
https://blog.google/products/gemini/google-gemini-deep-research/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. AutoWebGLM: A large language model-
based web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024, pp. 5295–5306.
ACM, 2024.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. InfiGUI-R1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025.

Xing Han Lù, Zdenek Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Magnus Müller and Gregor Žunič. Browser use = state of the art web agent, 2024. URL https:
//browser-use.com/posts/sota-technical-report.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. WebGPT:
Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2021.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda
Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie,
Sungchul Kim, Ruiyi Zhang, Tong Yu, Md. Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur,
Seunghyun Yoon, Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou,
Ryan A. Rossi, and Franck Dernoncourt. GUI agents: A survey. arXiv preprint arXiv:2412.13501,
2024.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong Wei,
Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation ai agents
for web automation with large foundation models. arXiv preprint arXiv:2503.23350, 2025.

OpenAI. Introducing deep research. OpenAI Blog, 2025. URL https://openai.com/index/
introducing-deep-research/.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi
Shang, Shuyan Zhou, Tongshuang Wu, et al. WebCanvas: Benchmarking web agents in online
environments. arXiv preprint arXiv:2406.12373, 2024.

Zhaochun Ren, Xiangnan He, Dawei Yin, and Maarten de Rijke. Information discovery in e-
commerce. Found. Trends Inf. Retr., 18(4-5):417–690, 2024.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to UI actions: Learning to follow
instructions via graphical user interfaces. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Parikshit Sondhi, Mohit Sharma, Pranam Kolari, and ChengXiang Zhai. A taxonomy of queries for
e-commerce search. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pp. 1245–1248.
ACM, 2018.

Yixiao Song, Katherine Thai, Chau Minh Pham, Yapei Chang, Mazin Nadaf, and Mohit Iyyer.
BEARCUBS: A benchmark for computer-using web agents. arXiv preprint arXiv:2503.07919,
2025.

11

https://browser-use.com/posts/sota-technical-report
https://browser-use.com/posts/sota-technical-report
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architec-
tures for language agents. Trans. Mach. Learn. Res., 2024, 2024.

Manos Tsagkias, Tracy Holloway King, Surya Kallumadi, Vanessa Murdock, and Maarten de Rijke.
Challenges and research opportunities in ecommerce search and recommendations. SIGIR Forum,
54(1):2:1–2:23, 2020.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun
Shao, Yasheng Wang, and Ruiming Tang. GUI agents with foundation models: A comprehensive
survey. CoRR, abs/2411.04890, 2024.

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing programmatic skills
for agentic tasks. arXiv preprint arXiv:2504.06821, 2025.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. WizardLM: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
An illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382,
2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan Berant.
Assistantbench: Can web agents solve realistic and time-consuming tasks? In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami,
FL, USA, November 12-16, 2024, pp. 8938–8968. Association for Computational Linguistics,
2024.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language
model-brained GUI agents: A survey. arXiv preprint arXiv:2411.18279, 2024a.

Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao, Weipeng Yan,
and Wenyun Yang. Towards personalized and semantic retrieval: An end-to-end solution for
e-commerce search via embedding learning. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, pp. 2407–2416. ACM, 2020.

Xiaoyu Zhang, Ruobing Xie, Yougang Lyu, Xin Xin, Pengjie Ren, Mingfei Liang, Bo Zhang, Zhanhui
Kang, Maarten de Rijke, and Zhaochun Ren. Towards empathetic conversational recommender
systems. arXiv preprint arXiv:2409.10527, 2024b.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. MMInA: Benchmarking multihop multi-
modal internet agents. arXiv preprint arXiv:2404.09992, 2024c.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. SkillWeaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LLMS

In this work, LLMs are used in two ways. First, they are used exclusively as a general-purpose tool
for language refinement and manuscript polishing. Second, LLMs are employed as evaluators, and
their usage in this role is described in detail in the paper. We conducted experiments to ensure the
reliability of LLM-based evaluation. LLMs did not contribute to the conceptualization, experimental
design, data analysis, or interpretation of the results in this work. All scientific content, findings, and
conclusions presented in this paper are the sole responsibility of the authors. No text generated by
LLMs affects the originality or intellectual contribution of the work.

B DETAILS OF TASK COMPLEXITY DISTRIBUTION ANALYSIS

To further validate that complexity evolution introduces consistent task difficulty across different
domains in the DeepShop benchmark, we conduct a detailed analysis of overall task complexity
distribution across domains.

For the overall task complexity distribution, we calculate the mean and standard deviation of the
total number of product attributes, search filters, and sorting preferences. As shown in the table 3,
DeepShop exhibits a higher average number of constraints and lower standard deviations across
domains compared to the seed datasets. These results suggest that DeepShop presents greater overall
task difficulty while maintaining improved cross-domain consistency.

Table 3: Overall task complexity distribution across domains.

Domain Electronic Fashion Sports Books Home Avg. Std

Seed data 3.43 3.60 3.29 4.25 3.50 3.61 0.33
DeepShop 6.22 6.30 6.32 6.26 6.11 6.24 0.07

C DETAILS OF EVALUATION

C.1 GPT-4O FOR EVALUATION

This section details the GPT-4o prompt used for fine-grained evaluation. As shown in Figure 6, we
adapt the prompt from prior work (He et al., 2024a) to assess whether the web agent satisfies the
requirements related to product attributes, search filters, and sorting preferences. For each trajectory,
GPT-4o receives the subqueries, the agent’s action history, and a maximum of 15 screenshots, and is
prompted to determine whether the task was successfully completed.

C.2 HUMAN EVALUATION

To validate the reliability of GPT-4o-based evaluation, we conduct a human evaluation on 50 randomly
sampled trajectories from WebVoyager. Following previous work (He et al., 2024a; Xue et al., 2025),
we hire human annotators with at least an undergraduate degree, and each sampled trajectory is
independently evaluated by a minimum of two annotators. In cases of disagreement, a third annotator
is consulted, and the final judgment is determined by majority vote. The evaluation is conducted
based on the full execution trace of the agent, including the task description, operation history, and
screenshots, as shown in Figure 7. Each human annotator labels the success of each subgoal—product
attributes, search filters, and sorting preferences—as well as the overall task completion. The average
Cohen’s kappa among human annotators is 0.82, indicating substantial inter-annotator agreement.
We then compute the agreement rate between human and GPT-4o assessments.

Additionally, since deep research systems do not expose intermediate screenshots or action histories,
human annotators are allowed to access the Amazon website to verify whether the returned links
satisfy the specified requirements. Due to limited use of the deep research systems, we evaluated
its performance on 30 randomly sampled queries. To ensure consistency, we evaluate the accuracy
based on the first recommended item when multiple products are returned.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[System prompt]
As an evaluator, you will be presented with three primary components to assist you in your
role:

1. Web Task Instruction: A clear and precise natural language directive that specifies an
online shopping activity to be executed. The instruction may involve locating products that
meet certain attribute requirements (e.g., color, size, brand), applying specific search filters
(e.g., price range, customer ratings, availability), or fulfilling user-defined sorting preferences
(e.g., lowest price, newest arrivals, best sellers). Tasks may also include verifying product
details, comparing offers, or checking for shipping and return policies, depending on the
scenario.

2. Result Screenshots: This is a visual representation of the screen showing the result or
intermediate state of performing a web task. It serves as visual proof of the actions taken in
response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the web task.
It serves as textual result in response to the instruction.

-- You DO NOT NEED to interact with web pages or perform actions such as conducting
searches on websites.
-- You SHOULD NOT make assumptions based on information not presented in the
screenshot when comparing it to the instructions.
-- Your primary responsibility is to conduct a thorough assessment of the web task instruction
against the outcome depicted in the screenshot and in the response, evaluating whether the
actions taken align with the given instructions.
-- NOTE that the instruction may involve more than one task, for example, locating the
garage and summarizing the review. Failing to complete either task, such as not providing a
summary, should be considered unsuccessful.
-- NOTE that the screenshot is authentic, but the response provided by LLM is generated at
the end of web browsing, and there may be discrepancies between the text and the
screenshots.
-- Note the difference: 1) Result response may contradict the screenshot, then the content of
the screenshot prevails, 2) The content in the Result response is not mentioned on the
screenshot, choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a
definitive verdict on whether the task has been successfully accomplished, either as
'SUCCESS' or 'NOT SUCCESS’.

[User prompt]
TASK:
{subquery}

Result Response:
{answer}

15 screenshots at the end:
{screenshots}

Figure 6: Prompts for GPT-4o evaluation

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You will be presented with a web shopping task.
For each task, you will receive three subqueries, along with the web agent's action history
and corresponding screenshots. Your goal is to evaluate the agent’s performance across
three specific dimensions: product attributes, search filters, and sorting preferences.
Please note: if a subquery is labeled as None, you do not need to assess that particular
aspect.

Definitions of the three subqueries are as follows:
1. Product attributes, referring to concrete product characteristics users may specify to
express detailed intent
2. Search filters, representing categorical or numerical constraints commonly used on e-
commerce platforms
3. Sorting preferences, indicating desired result orderings, such as price or popularity.

Task:
{Query}

Product Attribute Requirement:
{Subquery1}

Search Filter Requirement:
{Subquery2}

Sorting Preference Requirement:
{Subquery3}

Agent Action History:
{Action}

Screenshots:
{Screenshots}

Figure 7: Instructions for human evaluation.

C.3 SIGNIFICANCE TEST BETWEEN WEB AGENTS

We conducted paired t-tests to compare the overall task success rates between Browser Use and
four baseline models: Simple RAG, Agent-E, SeeAct, and WebVoyager. The results reveal
that Browser Use significantly outperforms Simple RAG and web agent baselines (p < 0.05),
supporting the claim that direct interaction with the online web environment can substantially improve
agent performance over static retrieval methods such as Simple RAG. Furthermore, the comparison
highlights fundamental limitations in grounding capabilities across different agent types. HTML-
based agents like Agent-E lack access to visual context, often missing essential cues such as product
color or spatial layout. On the other hand, vision-based agents such as SeeAct and WebVoyager rely
on set-of-mark prompting, which suffers from segmentation errors: interactive elements are frequently
misclassified, and key sections—like customer review areas—remain unsegmented, making it difficult
to apply filters like rating thresholds.

D DETAILS OF BASELINES

• Simple RAG method: We implement a simple retrieval-augmented generation (RAG) baseline by
combining GPT-4o with Google Search. The user query is first submitted to Google Search, and
the top-ranked webpage is selected. GPT-4o (version 2024-08-06) then generates a final response
conditioned on the screenshot of the retrieved page. We use the Serper API1 to programmatically
access Google search results.

• Web agents: For fair comparison, all web agents are instantiated using GPT-4o (version 2024-08-
06) as the underlying language model. Agent-E (Abuelsaad et al., 2024) is an HTML-based agent
that adopts a hierarchical planner-actor architecture, augmented with flexible DOM tree distillation
and a denoising mechanism to improve decision accuracy.2 SeeAct (Zheng et al., 2024) exploits
the multi-modal capabilities of large language models (LLMs), integrating visual perception with

1https://serper.dev/
2https://github.com/EmergenceAI/Agent-E

15

https://serper.dev/
https://github.com/EmergenceAI/Agent-E

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

structured web-based interactions.3 WebVoyager (He et al., 2024a) also leverages multi-modal
reasoning and introduces a set-of-mark prompting scheme that guides the agent to first generate
intermediate thoughts before selecting final actions.4 Browser Use (Müller & Žunič, 2024) is
an open-source web agent framework that combines visual understanding with HTML structure
parsing to support robust web navigation and interaction.5

• Deep research systems: Since we cannot strictly constrain deep research systems to operate
on specific shopping websites, we include explicit site constraints in the prompt to guide the
search process. The prompt format used for these systems is illustrated in Figure 8. Gemini
Deep Research (Gemini, 2025) is an AI assistant integrated into Google’s Gemini Advanced
platform. We evaluate the Gemini 2.0 Flash model with deep research capabilities.6 OpenAI
Deep Research (OpenAI, 2025) is an agentic system powered by OpenAI’s reasoning models. We
evaluate the o3 model with deep research enabled.7

Prompt:
Your task is to help find relevant products on Amazon website
(https://www.amazon.com/?language=en_US¤cy=USD) based on the following question:
{Query}

Please strictly follow the rules:
1. Do not contact the user for further information. Provide answers directly without asking any
questions or seeking clarification.
2. Include Amazon product links for all recommended items.

Figure 8: Prompts for deep research systems.

E DETAILS OF IMPLEMENTATION

E.1 PROMPTS FOR QUERY DIVERSITY AND COMPLEXITY EVOLUTION

Details for the prompts used in Diversity(·), and Complexity(·) are provided. Figures 9, 10, and
11 display the prompts for query diversity, complexity evolution and detailed complexity evolution
strategy, respectively.

E.2 IMPLEMENTATION DETAILS

We evaluate open-source agents—Agent-E, SeeAct, WebVoyager, and Browser Use—within real-
time web environments. Agent-E, SeeAct, and Browser Use are executed via Playwright, while
WebVoyager leverages Selenium. To control computation cost and prevent excessive exploration, we
limit each agent to a maximum of 15 steps per task. All agents are powered by gpt-4o-2024-08-06
as the underlying language model. For automatic evaluation, we also adopt gpt-4o-2024-08-06
as evaluators, with temperature set to 0 to reduce response variance and enhance reproducibility.
The agents differ in their perception mechanisms: Agent-E and SeeAct utilize full-page screenshots,
whereas WebVoyager and Browser Use operate on the visible viewport only.

F DETAILS OF ERROR ANALYSIS

• Web agents are limited by grounding ability. As shown in Figure 12, agents struggle to accurately
ground interface elements. For example, button 39 related to user rating was not properly segmented,
preventing the agent from selecting a specific rating range. Buttons 31–37 and 41–44 were rendered
too densely and overlapped, making interaction difficult. Additionally, the sorting button on
the right was incorrectly split into two buttons 16 and 17, which may confuse the agent during
execution.

3https://github.com/OSU-NLP-Group/SeeAct
4https://github.com/MinorJerry/WebVoyager
5https://github.com/browser-use/browser-use
6https://blog.google/products/gemini/google-gemini-deep-research/
7https://openai.com/index/introducing-deep-research/

16

https://github.com/OSU-NLP-Group/SeeAct
https://github.com/MinorJerry/WebVoyager
https://github.com/browser-use/browser-use
https://blog.google/products/gemini/google-gemini-deep-research/
https://openai.com/index/introducing-deep-research/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

I want you act as a Prompt Creator.
Your goal is to draw inspiration from the #Given Prompt# to create a brand new prompt.
This new prompt should be in the web shopping domain but tailored for different specific
products in the {Randomly selected product category} amazon product field.
The LENGTH and complexity of the #Created Prompt# should be similar to that of the
#Given Prompt#.
The #Created Prompt# must be reasonable and must be understood and responded by
humans.
'#Given Prompt#', '#Created Prompt#', 'given prompt' and 'created prompt' are not allowed to
appear in #Created Prompt#

#Given Prompt#:
{Original query}

#Created Prompt#:

Figure 9: Prompts for query diversity evolution.

I want you act as a Prompt Rewriter for web shopping.
Your objective is to rewrite a given prompt into a more complex version to make those web
shopping agents a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by
humans.
You should complicate the given prompt using the following method:
{Randomly selected evolution strategy}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten
Prompt# can only add 10 to 20 words into #The Given Prompt#.
'#The Given Prompt#', '#Rewritten Prompt#', 'given prompt' and 'rewritten prompt' are not
allowed to appear in #Rewritten Prompt#

#Given Prompt#:
{Original query}

#Created Prompt#:

Figure 10: Prompts for query complexity evolution.

Product attribute evolution:
Enhance #The Given Prompt# by integrating detailed product attributes that detail user
needs. Please specifies concrete values for one product attribute (e.g., brand, model, price
range, color, size, weight, or unique features) based on your knowledge about this product,
ensure that these exact details are incorporated into the query instead of using generic
placeholder terms.

Search filter evolution:
Enhance #The Given Prompt# by integrating detailed product constraints that capture user
needs. Please specifies concrete values for constraints—such as a minimum customer
rating (e.g., above 4.0 or 4.5 stars), a minimum number of customer reviews (e.g., 100, 300,
500, or 1000), shipping options like free delivery, new arrival time frames (e.g., released in
the last 30 or 90 days), return policies (e.g., free returns), or warranty information (e.g.,
includes a 1-year warranty) based on your knowledge about amazon website, ensure that
these exact values are used in the query rather than generic terms.

Sorting preference evolution:
Enhance #The Given Prompt# by integrating a specific product filtering requirement for web
shopping. Find the top product based on one of the following criteria: lowest price, highest
user rating, newest arrival, or best seller ranking.

Figure 11: Prompts for complexity evolution strategies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Limited grounding ability of web agents.

• Web agents often lack state assessment and replanning capabilities. As illustrated in Figure 13,
when the agent enters a product detail page to verify a 1-year warranty, it fails to reassess its state
upon realizing that the requirement is unmet. Instead of returning to the search results page, the
agent continues to scroll within the current page, inefficiently attempting to locate an alternative
product.

Action: Scroll down

Action: Click [16]

Action: Scroll down

Do not satisfy
the 1-year
warrant

Keep exploring
on the current
page instead
of going back

Figure 13: Illustration of web agent’s failure to reassess and replan.

• Web agents are limited by action space. As shown in Figure 14, the agent attempts to filter
cameras within the $100–$300 price range but fails to do so due to its inability to interact with
dynamic UI elements such as price sliders. Instead, it clicks the adjacent "Go" button without
adjusting the slider values, resulting in ineffective filtering. This highlights a fundamental limitation
of current agents: the constrained action space prevents them from performing fine-grained
interactions required in realistic web environments.

• Web agents lack the ability to learn from execution. As illustrated in Figure 15, we present
screenshots of the web agent across four different tasks. A consistent failure pattern emerges:
the agent repeatedly misuses the retriever to query filtering or sorting constraints, despite these
functionalities being accessible only via the designated filter or sorter UI components. Due
to the retriever’s inability to interpret such structural intents, it often returns irrelevant results

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Action: Click [27]

Clicked the 'Go' button in the price block but failed to filter
prices to the $100–$300 range.

Figure 14: Illustration of the web agent’s failure to apply the price filter during task execution.

Figure 15: Illustration of the web agent’s failure to learn from execution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

contaminated by noise. This repetition across tasks highlights the agent’s lack of execution-time
learning, preventing it from abstracting past mistakes and adapting its behavior accordingly.

• Deep research systems are limited by hallucination errors. As shown in Figure 16, the task
requires identifying a Women’s Vintage Floral Maxi Dress in Navy Blue, Size: Medium, and
explaining the return policy if free returns are available. However, as shown in Figure 17, the first
link returned by the OpenAI deep research system points to a product only available in Large and
XX-Large sizes. Despite this mismatch, the system hallucinates that the size requirement is met.
Moreover, Link2 and Link3 direct to non-Amazon websites, which violates the task constraint. In
an attempt to explain the return policy, the system incorrectly extracts return information from these
external sites. These issues reveal that when facing complex and fine-grained shopping queries,
the OpenAI deep research system frequently exhibits hallucinations—both in satisfying attribute
constraints and in sourcing policy information from inappropriate domains.

Task:
Locate the Return Policy for Women's Vintage Floral Maxi Dress on Amazon. Color: Navy Blue, Size: Medium. If free returns are
available, please explain the return process for this item.

OPENAI deep research system answer:
Understood. I will search Amazon for listings of a Women's Vintage Floral Maxi Dress in Navy Blue, size Medium, and identify the
return policy for each listing. I will focus on whether free returns are available and explain the return process for the item. I’ll share the
direct Amazon links for all relevant listings I find.

Research completed in 11m:

Return Policy for Women's Vintage Floral Maxi Dress on Amazon
Free Return Policies for Navy Blue Vintage Floral Maxi Dresses (Medium)
When shopping on Amazon for a women’s vintage floral maxi dress in Navy Blue (size Medium), it’s important to check if the item
offers Free Returns. Below are a few popular listings that match this description, along with their return policy details:
Floerns Women’s Sleeveless Halter Neck Vintage Floral Print Maxi Dress (Navy Blue)
Product: Floerns Women’s Sleeveless Halter Neck Vintage Floral Print Maxi Dress
Color: “A Navy Flower”,
Size: Medium.
Link: Amazon Product Page – Floerns Halter Neck Floral Maxi
Free Returns: Yes. This Floerns dress is Prime-eligible and marked with “FREE Returns”, meaning you can return it at no cost if it
doesn’t fit or meet your expectations [Link1]. Amazon provides at least one prepaid return shipping option for eligible items, so
returning this dress is hassle-free.
Return Process: You have 30 days from delivery to initiate a return via your Amazon account. Simply go to Your Orders, select this
dress, and choose “Return or Replace Items.”
Because it’s eligible for free returns, Amazon will offer a prepaid shipping label or QR code for drop-off [Link2]. You can then package
the dress (in new, unworn condition with tags) and drop it off at an approved location (e.g. UPS Store, Whole Foods, Kohl’s, etc.)
without paying return shipping [Link3]. Once the item is received, you’ll get a full refund to your original payment method.

[Link1]: https://www.amazon.com/Floerns-Womens-Sleeveless-Halter-
Vintage/dp/B0C3HQLBBQ#:~:text=,least%20one%20free%20return
[Link2]: https://www.smoking-er.com/store/rosemary-
pellet#:~:text=,preferred%20free%20shipping%20option%20Drop%C2%A0off%C2%A0and%C2%A0leave
[Link3]: https://www.smoking-er.com/store/rosemary-
pellet#:~:text=,preferred%20free%20shipping%20option%20Drop%C2%A0off%C2%A0and%C2%A0leave

Figure 16: Illustration of hallucination errors in the OpenAI deep research system. The system returns
three links for the query, including two that point to non-Amazon websites, and incorrectly assumes
the returned products match the specified size and platform constraints.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The available sizes are Large
and XX-Large, whereas the
task explicitly requires Size
Medium.

Figure 17: Detailed view of the first returned product link. Although the task specifies size Medium,
the linked product only offers Large and XX-Large options.

21

	Introduction
	Related Work
	DeepShop Benchmark
	Task Formulation
	Seed Data Curation
	Shopping Query Diversity Evolution
	Shopping Query Complexity Evolution
	Dataset Analysis
	Evaluation Metrics

	Experiments
	Research Questions
	Baselines

	Experimental Results and Analysis
	Performance Analysis of Web Agents (RQ1)
	Performance across Different Product Categories (RQ2)
	Performance Across Query Complexity Evolution (RQ3)
	Error Analysis and Future Improvement Guidance

	Conclusions
	Use of LLMs
	Details of Task Complexity Distribution Analysis
	Details of Evaluation
	GPT-4o for Evaluation
	Human Evaluation
	Significance Test between Web Agents

	Details of Baselines
	Details of Implementation
	Prompts for Query Diversity and Complexity Evolution
	Implementation Details

	Details of Error Analysis

