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Abstract

Motivated by the recent discovery of a statistical and computational reduction from
contextual bandits to offline regression [36], we address the general (stochastic)
Contextual Markov Decision Process (CMDP) problem with horizon H (as known
as CMDP with H layers). In this paper, we introduce a reduction from CMDPs
to offline density estimation under the realizability assumption, i.e., a model class
M containing the true underlying CMDP is provided in advance. We develop an
efficient, statistically near-optimal algorithm requiring only O(H log T ) calls to an
offline density estimation algorithm (or oracle) across all T rounds of interaction.
This number can be further reduced to O(H log log T ) if T is known in advance.
Our results mark the first efficient and near-optimal reduction from CMDPs to
offline density estimation without imposing any structural assumptions on the
model class. A notable feature of our algorithm is the design of a layerwise
exploration-exploitation tradeoff tailored to address the layerwise structure of
CMDPs. Additionally, our algorithm is versatile and applicable to pure exploration
tasks in reward-free reinforcement learning.

1 Introduction

Markov Decision Processes (MDPs) model the long-term interaction between a learner and the
environment and are used in diverse areas such as inventory management, recommendation systems,
advertising, and healthcare [35, 37]. The Contextual MDP (CMDP) extends MDPs by incorporating
external factors, known as contexts, such as gender, age, location, or device in customer interactions,
or lab data and medical history in healthcare [19, 33]. In an H-layer CMDP, the learner receives an
instantaneous reward at each step over H steps and aims to maximize the cumulative reward (return).
For T rounds of interaction, the learner’s performance is measured by regret, which is the difference
between the total return obtained and that of an optimal policy.

In the special case of contextual bandits (one-layer CMDPs), a decade of research has led to algorithms
with optimal regret bounds and efficient implementations with access to an offline regression algorithm
(also termed as an offline regression oracle) [13, 2, 3, 15, 14, 36, 40]. Most notably, Simchi-Levi and
Xu [36] demonstrates an offline-oracle-based algorithm FALCON that achieves optimal regret for
general (stochastic) contextual bandits with access to an offline regression oracle (e.g., the Empirical
Risk Minimization (ERM) oracle). Moreover, the algorithm is efficient given the output of the offline
oracle (also referred to as offline oracle-efficient) and requires only O(log log T ) calls to the oracle
across all T rounds if T is known. These properties are highly desirable in practice since they reduce
the computational problem of contextual bandits to the classical problem of offline regression with
little overhead. However, to the best of our knowledge, no algorithm with these properties is available
in the literature for general (stochastic) CMDPs. So, in this paper, we study the following question:
Is there an offline-oracle-efficient algorithm that achieves the optimal regret for general (stochastic)
CMDPs with only O(H log log T ) number of oracle calls?

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Table 1: Algorithms’ performance with general finite model class M and i.i.d. contexts. The optimal
rate here refers to Õ(poly(H,S,A)

√
T log |M|). All algorithms assume realizability, so it is omitted

from the table. The reachability assumption and the varying representation assumption are very
stringent for tabular CMDP, for details we refer to Appendix B.

Algorithm Regret rate Computational complexity Assumption
E2D [16] Optimal O(T ) online oracle calls No

OMG-CMDP! [26] Optimal O(T ) online oracle calls No
RM-UCDD [24] Suboptimal O(T ) offline oracle calls Reachability
CMDP-VR [11] Optimal O(T ) offline oracle calls Varying Rep.

LOLIPOP (this work) Optimal O(log T ) offline oracle calls No

Several works have provided partial results for this question. Foster et al. [16] provides a general
reduction from interactive decision making to online density estimation and has CMDP as an
application. The proposed E2D algorithm achieves optimal regret but is online-oracle-efficient (as
opposed to offline-oracle-efficient) since it requires access to an online density estimation algorithm.
Foster et al. [18] provides a further reduction from online density estimation to offline density
estimation, with the caveat that the reduction itself is inefficient. A similar online-oracle-efficient
algorithm is developed by Levy et al. [26]. A separate thread of optimism-based algorithms for
CMDPs extending the UCCB algorithm for contextual bandits [40] is studied by Levy and Mansour
[24], Deng et al. [11] with either assumption on the reachability of the CMDP or the representation
structure of the CMDP (see Appendix B for more details). Last but not least, the algorithms proposed
by Foster et al. [16, 18], Levy and Mansour [24], Deng et al. [11] all require O(T ) number of oracle
calls to the online/offline oracle respectively.

In this work, we present an affirmative answer to the question by introducing the algorithm of
LOLIPOP (Algorithm 1). For S number of states, A number of actions, and a given model
class M where the underlying true model lies, the algorithm achieves the regret guarantee of
Õ(poly(H,S,A)

√
T log |M|). This regret guarantee is minimax optimal up to poly(H,S,A) factor

[24]. The LOLIPOP algorithm assumes access to a Maximum Likelihood Estimation (MLE) oracle
and is offline-oracle efficient. The results can be generalized to general offline density estimation
oracles. The most notable technical features are: (1) It generalizes the FALCON algorithm by Simchi-
Levi and Xu [36] to adapt to the multi-layer structure of a CMDP. More specifically, the FALCON al-
gorithm is divided into O(log log T ) epochs, each corresponding to an oracle call, a fixed randomized
policy. However, it is known for the MDPs that the learner has to switch its randomized policy at least
Ω̃(H) times to achieve sublinear regret [44]. Indeed, we further divide each epoch into H segments,
each with an oracle call, a new randomized policy for layerwise exploration-exploitation tradeoff.
(2) In each segment, the exploration-exploitation tradeoff is done through Inverse Gap Weighting
(IGW) on estimated regret for a set of explorative policies. The idea of running IGW on such a
policy cover is proposed by Foster et al. [16]. However, their policy cover is designed for H-layer
exploration-exploration tradeoff and only works with strong online estimation oracles. In contrast,
we refine the estimation of the occupancy measure layerwise by introducing the trusted occupancy
measures. This refinement enables our algorithm to work with offline oracles. (3) Many other policy
cover-based methods [12, 29, 30, 5] are developed for exploration tasks. Most notably, Mhammedi
et al. [29] clips the occupancy measures on states with low reachability. Our approach takes a step
forward to clip all transitions with low reachability to compute the trusted occupancy measures.

Besides all the above novelties, the LOLIPOP algorithm is versatile and applicable to the pure
exploration task of reward-free reinforcement learning for CMDPs. Concretely, it obtains near-
optimal sample complexity of O

(
H7S4A3 log(|M|/δ)/ε2

)
with only O(H) number of oracle calls.

Both the sample complexity bound and computational efficiency result for reward-free learning for
stochastic CMDPs are new to the best of our knowledge.

2 Preliminaries

We defer the standard notation and related works to Appendices A and B.
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2.1 Problem Setup
A Contextual Makovian Decision Process (CMDP) is defined by the tuple (C,M =
{M(c)}c∈C ,S,A, s1), where C is the contextual space, S is the state space, A is the action space and
s1 ∈ S is a fixed starting state independent of the context. We focus on tabular CMDPs which assumes
S = |S|, A = |A| < ∞. For any context c ∈ C, M(c) = {Ph

M (c), Rh
M (c)}Hh=1 consists of H-layers

of probability transition kernel {Ph
M (c)}Hh=1 and reward distributions {Rh

M (c)}Hh=1, where Ph
M (c)

and Rh
M (c) are specified by Ph

M (· | s, a; c) ∈ ∆(S) and Rh
M (s, a; c) ∈ ∆([0, 1]) for all h ∈ [H] and

s, a ∈ S ×A. For simplicity, we also denote M = {Ph
M , Rh

M}Hh=1, where Ph
M = {Ph

M (c)}c∈C and
Rh

M = {Rh
M (c)}c∈C . Let ΠRNS denote the set of all randomized, non-stationary policies, where any

π = (π1, . . . , πH) ∈ ΠRNS has πh : S → ∆(A) for any h ∈ [H]. We use T to denote the total
number of rounds, H to denote the horizon (the total number of layers). Let M⋆ = {Ph

⋆ , R
h
⋆}h∈[H]

be the underlying true CMDP the learner interact with. The interactive protocal proceeds in T rounds,
where for each round t, the t-th trajectory is generated as:
• A context ct is draw i.i.d. from an unknown distribution D and s1t = s1.
• The learner chooses the policy πt based on the context.
• For h = 1, . . . ,H:

• The action is drawn from the randomized policy aht ∼ πh
t (s

h
t ).

• The reward and the next state is drawn respectively from the reward distribution and the
transition kernel, i.e., rht ∼ Rh

⋆(s
h
t , a

h
t ; ct) and sh+1

t ∼ Ph
⋆ (· | sht , aht ; ct).

Without lose of generality, throughout the paper, we assume that the total reward 0 ≤
∑H

h=1 r
h ≤ 1

almost surely. For any model M , context c and policy π, we use M(π, c) to denote the distribution of
the trajectory c1, π1, s

1
1, a

1
1, r

1
1, . . . , s

H
1 , aH1 , rH1 given M⋆ = M , c1 = c, and π1 = π. Also denote

the probability and the expectation under M(π, c) to be PM,π,c(·) and EM,π,c[·] respectively. Given
any policy π, state s and action a, we define the action value function Qh

⋆(s, a;π, c) at layer h and
the value function V h

⋆ (s;π, c) at layer h under context c and policy π as

Qh
⋆(s, a;π, c) =

∑H
j=h EM⋆,π,c[rj1 | sh1 , ah1 = s, a] and V h

⋆ (s;π, c) = maxa∈A Qh
⋆(s, a;π, c).

We denote the optimal policy under context c as π⋆,c and abbreviate its value function as V h
⋆ (·; c). For

h = 1, we further simply the notation by denoting V 1
⋆ (c) = V 1

⋆ (s
1; c) and V 1

⋆ (π, c) = V 1
⋆ (s

1;π, c).
The regret of policy π under context c and the total regret1 of the learner are defined as

reg(π, c) = V 1
⋆ (c)− V 1

⋆ (π, c) and Reg(T ) :=
∑T

t=1 Et[reg(πt, ct)],

where Et[·] is the conditional expectation given the interaction up to round t.

Assumption 2.1 (Realizability). The learner is given a model class M where the true underlying
model M⋆ lies, that is, M⋆ ∈ M.

2.2 Offline Densitiy Estimation Oracles
For any model class M, a general offline density estimation oracle associated with M, denoted by
OffDEM, is defined as an algorithm that generates a predictor M̂ based on the input data and M. In
this paper, we measure the performance of the predictor in terms of the squared Hellinger distance,
which is defined for any two distributions P and Q for any common dominating measure ν2 by

D2
H(P,Q) := 1

2

∫ (√
dP
dν −

√
dQ
dν

)2

dν,

Using squared Hellinger distance for reinforcement learning is popularized by Foster et al. [16], and
we adopt such a divergence for our purpose as well. Concretely, we are interested in the following
statistical guarantee.

Definition 2.1 (Offline density estimation oracle). Let p be a map from a context to a distribu-
tion on the set of policies ΠRNS, that is, for any c ∈ C, p(c) ∈ ∆(ΠRNS). Given n training
trajectories (ci, πi, s

1
i , a

1
i , r

1
i , . . . , s

H
i , aHi , rHi ) i.i.d. drawn according to ci ∼ D, πi ∼ p(ci) and

1The regret we defined here is conventionally known as the pseudo-regret in the literature. The conventional
regret defined as

∑T
t=1 reg(πt, ct) can be bounded by the pseudo-regret up to an additional O(

√
T log(1/δ))

term with a standard concentration argument, which we omit here for simplicity.
2The value is independent of the choice of ν.
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s1i , a
1
i , r

1
i , . . . , s

H
i , aHi , rHi be the trajectory sampled according to M⋆(πi, ci). The offline density

estimation oracle OffDEM returns a predictor M̂ . For any δ ∈ (0, 1/2), with probability at least
1− δ, we have

Ec∼D,π∼p(c)

[
D2

H

(
M̂(π, c),M⋆(π, c)

)]
≤ EM,δ(n).

The Maximum Likelihood Estimation estimator MLEM is an example of an offline density estima-
tion oracle that achieves EM,δ(n) ≲ log(|M|/δ)/n (see more details in Appendix C) and can be
implemented using ERM on the log loss. Moreover, this implementation can be efficient for cases
like the multinomial logit model [32, Example 2.4] and [1].

3 Main Results and Algorithm
In this section, we present our main results and introduce the algorithm of LOLIPOP (Algorithm 1).
First, we give an overview of the algorithm. Then, we discuss the theoretical guarantees obtained
by this algorithm. Finally, we introduce the algorithm’s different components with corresponding
guarantees. All proofs are deferred to Appendix D.

3.1 Main Results
Overview of Algorithm 1. The algorithm proceeds with epochs. The total number of T rounds
is divided into N epochs. For an epoch schedule 0 = τ0 < τ1 < · · · < τN = T/H to be specified
later, the m-th epoch will last H(τm − τm−1) rounds. Furthermore, each epoch is evenly divided
into H segments, each consisting of τm − τm−1 rounds. During the h-th segment in m-th epoch, a
kernel phm : C → ∆(Π) will be specified to determine the policy. More specifically, upon receiving
the context ct, a policy πt will be sampled from phm(ct) and executed. After collecting the trajectories
{ct, πt} ∪ {sjt , a

j
t , r

j
t}j∈[H] in the h-th segment of the m-th epoch for τm−1H + (τm − τm−1)(h−

1) + 1 ≤ t ≤ τm−1H + (τm − τm−1)h, the offline density estimation oracle OffDEM is called with
these trajectories as input. Denote the output M̂h

m, we will only be interested in the h-th layer of this
output, which we denote by {P̂h

m, R̂h
m}. Then the collections of estimators M̂m = {P̂h

m, R̂h
m}Hh=1

will be used for the next epoch.

Throughout this paper, we will adopt the following convention for the free variables m,π, c, h, s, a.
They will be used to denote an epoch index in [N ], a policy in ΠRNS, a context in C, a layer index in
[H], a state in S, and an action in A respectively.

Before we dive into the details of the algorithm, we highlight first the theoretical guarantees obtained.

Theorem 3.1. If T is known, then by choosing the epoch schedule τm = 2(T/H)1−2−m

for m ≥ 1
and the offline density estimation oracle OffDEM = MLEM, the outputs {πt}t∈[T ] of Algorithm 1
satisfies that with probability at least 1− δ,

Reg(T ) ≲
√
H7S4A3T · log(|M| log log T/δ) log log T

with only O(H log log T ) number of oracle calls to the MLEM oracle for δ ∈ (0, 1/2).

Theorem 3.2. If T is not known, then by choosing the epoch schedule τm = 2m for m ≥ 1 and the
offline density estimation oracle OffDEM = MLEM, the outputs {πt}t∈[T ] of Algorithm 1 satisfies
that with probability at least 1− δ,

Reg(T ) ≲
√

H7S4A3T · log(|M| log T/δ)

with O(H log T ) number of oracle calls to the MLEM oracle for δ ∈ (0, 1/2).

The theorems above show that Algorithm 1 with both epoch schedules achieve near-optimal statistical
complexity that a matches the lower bound of Ω(

√
HSAT log |M|/ logA) proven by Levy and

Mansour [24] up to a poly(H,S,A) factor.

Computational efficiency. Consider the epoch schedule τm = 2m for m ∈ N as discussed in
Theorem 3.2. For any unknown T , our algorithm operates over O(log T ) epochs, making one oracle
call per epoch. Thus, the computational complexity is O(log T ) oracle calls over T rounds, with an
additional per-round cost of O(poly(H,S,A, log T )). This offers potential advantages over existing
algorithms that achieve near-optimal rates without assumptions beyond realizability. The E2D
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Algorithm 1 Layerwise pOLicy cover Inverse gaP weighting with trusted OccuPancy measures
(LOLIPOP)
Require: epoch schedule 0 = τ−1 = τ0 < τ1 < · · · < τN = T/H , confidence parameter

δ ∈ (0, 1/2), model class M, offline oracle OffDEM.
1: Initialize: M̂0 = {P̂h

0 , R̂0}Hh=1, where P̂h
0 is any transtion kernel and R̂0 is constantly 0.

2: for epoch m = 1, 2, · · · , N do
3: Let Em = EM,δ/2N2(τm−1 − τm−2), γm =

√
H6S4A3

/Em and ηm = γm/720eH5S3A2.
4: for segment h = 1, . . . ,H do
5: for round t = τm−1H + (τm − τm−1)(j − 1) + 1, · · · , τm−1H + (τm − τm−1)h do
6: Observe context ct ∈ C from the environment.
7: for s, a ∈ S ×A do
8: Compute

πh,s,a
m,ct = argmax

π

d̃hm(s, a;π, ct)

SA+ ηm · r̂egm−1(π, ct)
,

where d̃hm is the trusted occupancy measure defined as in Definition 3.1.
9: Let the policy cover Πh

m(ct) = {π̂m−1,ct} ∪ {πh,s,a
m,ct }s,a∈S×A.

10: Define phm(ct) to be the Inverse Gap Weighting distribution on the policy cover Πh
m,ct

phm(ct, π) =
1

λh
m,ct + ηm · r̂egm−1(π, ct)

, ∀π ∈ Πh
m(ct), (1)

where λh
m,ct is the constant that normalize the distribution.

11: Sample and execute πt ∼ phm(ct) and observe the trajectory ct, πt, {sjt , a
j
t , r

j
t}j∈[H].

12: Run OffDEM with the input trajectories {ct, πt, {sjt , a
j
t , r

j
t}j∈[H]}t:m(t)=m and obtain the

h-th layer estimator P̂h
m and R̂h

m.

algorithm [16], for instance, requires O(T ) calls to an online density estimation oracle, involving
significantly more calls to a more complex oracle for a general model class M. On the other
hand, the Version Space Averaging + E2D algorithm [18] requires O(T ) calls to an offline density
estimation oracle and incurs a computational cost scaling with O(|M|) per round. Compared to our
algorithm, this results in far more oracle calls and considerably higher computational costs per round.

If the total number of rounds T is known to the learner, we can further reduce the computational cost of
LOLIPOP. For any T ∈ N, consider the epoch schedule τm = 2(T/H)1−2−m

as in Theorem 3.1, sim-
ilar to Simchi-Levi and Xu [36]. In this scenario, LOLIPOP will run in O(log log T ) epochs, making
only O(log log T ) oracle calls over T rounds while still maintaining a slightly worse regret guarantee.

Lower bound on switching cost. There is a lower bound on the switching cost of the scale
Ω(log log T ) [44], where the switching cost is the number of switches in the learner’s randomized
policy. Thus, any learner that only switches its randomized policy after an oracle call will need more
than Ω(log log T ) number of oracle calls.

Technical challenge. The main technical challenge is to accurately estimate the occupancy mea-
sures for all layers. Naively, the upper bound of divergence between the true occupancy measure and
the estimated occupancy measure accumulates exponentially with respect to the number of layers
because, naively, the divergence at each layer is upper bounded by the summation of divergences
from previous steps. This phenomenon is unavoidable when estimating all the occupancy measures
from one dataset generated from a single policy. To avoid this exponential divergence, we apply two
methods. First, we turn to layerwise design. Specifically, we generate for occupancy measures at
each layer a new dataset from a different policy. This alleviates the exponential accumulation of
divergence. Second, we turn to multiplicative guarantees between true occupancy measures and the
approximated occupancy measures, i.e., they are equivalent up to a small constant. To achieve this,
we construct the trusted occupancy measure (see Definition 3.1), which discards the rarely visited
state-action pairs. We then use the trusted occupancy measures to guide exploration.
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{
P̂h
m−1, R̂

h
m−1

}
h∈[H]

Π1
m, p1m Π2

m, p2m ......

P̂ 1
m, R̂1

m T̃ 1
m, d̃2m P̂ 2

m, R̂2
m T̃ 2

m, d̃3m P̂H
m , R̂H

m

Figure 1: The dependence graph of the construction. The estimation M̂m−1 = {P̂h
m−1, R̂

h
m−1}h∈[H]

from the previous round provides the optimal policy π̂m−1 (Line 9) and the regret estimation r̂egm−1

(Line 8) for the construction of Πh
m, phm. The estimation P̂h

m, R̂h
m is generated by calling the oracle

OffDEM on the trajectories collected with policy kernel phm (Line 12). The trusted transitions and
trusted occupancy measures T̃ h

m, d̃h+1
m are computed from d̃hm, P̂h

m (Eqs. (2) and (3)). The policy
cover Πh

m is the union of π̂m−1,· and the policies {πh,s,a
m,· }s,a∈S×A calculated in Line 8 which requires

T̃ h−1
m , d̃hm. The policy kernel phm is the inverse gap weighting on Πh

m (Line 10).

3.2 Detailed Construction and Guarantees of Each Component
In this section, we explain in detail our construction and the guarantees of each component along the
dependence graph (Figure 1). We first introduce how the estimators {P̂h

m−1, R̂
h
m−1}h∈[H] from the

previous epoch are used in the new epoch. Then we proceed to introduce how to construct phm(ct)

given Πh
m(ct) . Next, we introduce how are P̂h

m, R̂h
m obtained given phm. Subsequently, we present

the definition of the set of trusted transitions T̃ h
m and trusted occupancy measure d̃hm. Finally, we

present how the policy cover Πh
m(ct) is constructed.

During epoch m, we will be using the estimators {P̂h
m−1, R̂

h
m−1}Hh=1 from the previous epoch

for regret estimation. More specifically, for π, c, h, s, we define the value functions with respect
to the model {P̂h

m−1(c), R̂
h
m−1(c)}Hh=1 as V̂ h

m−1(s;π, c). The optimal value function is denoted
by V̂ 1

m−1(s; c) = maxπ V̂
1
m−1(s;π, c). For h = 1, we further simply the notation by denoting

V̂ 1
m−1(c) = V̂ 1

m−1(s
1; c) and V̂ 1

m−1(π, c) = V̂ 1
m−1(s

1;π, c). Also denote the optimal policy under
context c by π̂m−1,c = argmaxπ V̂

1
m−1(π, c). Thus, the regret is estimated to be

r̂egm−1(π, c) = V̂ 1
m−1(c)− V̂ 1

m−1(π, c).

At round t, let m(t) and h(t) be the epoch in which the segment round t lies. We note that during
each epoch m and segment h, all of the notions Πh

m(ct), P̂
h
m(ct), R̂h

m(ct), T̃ h
m(ct), d̃hm(·, ·; ·, ct),

phm(ct), and πh,s,a
m,ct will not depend on the specific time step t, but only the context ct. Thus, we

will use Πh
m(c) to denote the policy cover if ct = c when m(t), h(t) = m,h. Similar conventions

regarding the context c apply to the notations P̂h
m, R̂h

m, T̃ h
m, d̃hm, phm, πh,s,a

m,· . Under any context c, the
policy cover Πh

m will include π̂m−1,c and has no more than SA+ 1 policies. These two properties
together guarantee that the Inverse Gap Weighting [14] randomized policy phm(c) (Line 10) satisfies
the following guarantee on the estimated regret.

Lemma 3.1. For any m, h, c, the definition of the randomized policy phm(c) is well defined, i.e., there
exist λh

m,c ∈ [0, 2SA] such that
∑

π∈Πh
m(c) p

h
m,c(π) = 1. Furthermore, we have the estimated regret

is bounded by Eπ∼ph
m(c)

[
r̂egm−1(π, c)

]
≲

√
H4S4A3 · Em.

The choice of λh
m,c here is for compactness of presentation. It can be chosen to be 2SA for suboptimal

arms and collect the probability remained to the optimal arm [36], which is computationally efficient.
The computation for the policy π

h(t),s,a
m(t),ct

for any t, s, a can be computed in poly(H,S,A, log T ) time
by formulating it as a linear fractional programming problem. We defer the details to Appendix G.

Since phm maps C to randomized policies, it is thus a policy kernel. This means the trajectories gen-
erated in epoch m and segment h follow an i.i.d. distribution as described in the definition of Defini-
tion 2.1. By applying the guarantee from Definition 2.1, we have the following guarantee on P̂h

m, R̂h
m.
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Lemma 3.2. For any m, h, and c ∼ D, π ∼ phm(c), we have with probability at least 1− δ
2N2 , that

Ec,π

[
EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)
+D2

H

(
R̂h

m(sh1 , a
h
1 ; c), R

h
⋆(s

h
1 , a

h
1 ; c)

)]]
≤ Em.

If the offline density estimation oracle is chosen to be the Maximum Likelihood Estimation oracle
MLEM, we will obtain Em ≲ log(TM/δ)/(τm−1 − τm−2).

The most involved part of our construction concerns the idea of trusted transitions and trusted
occupancy measures. This construction eliminates the parts of transitions that are too scarcely visited.
The purpose will be clear in the guarantees (Lemmas 3.3 and 3.4) subsequent to the definitions.

Definition 3.1. For any m,π, c, h, s, a, we define iteratively the trusted occupancy measures
d̃hm(s;π, c), d̃hm(s, a;π, c) and the set of trusted transitions T̃ h

m(c) at layer h as the following:

d̃1m(s;π, c) = 1(s = s1), d̃1m(s, a;π, c) = 1(s = s1)π1(s, a),

d̃hm(s;π, c) :=
∑

s′,a′,s∈T̃ h−1
m (c)

d̃h−1
m (s′, a′;π, c)P̂h−1

m (s|s′, a′; c),

d̃hm(s, a;π, c) := d̃hm(s;π, c)πh(s, a).

(2)

For any m,h, c, the set of trusted transitions are defined as the set of transtions

T̃ h
m(c) ≜

{
(s, a, s′)

∣∣∣max
π

d̃hm(s, a;π, c)

SA+ ηm · r̂egm−1(π, c)
· P̂h

m(s′|s, a; c) ≥ 1

ζm

}
, (3)

where ζm = γm

8eH(H+1)2 . Notice that to define d̃hm(s;π, c) and d̃hm(s, a;π, c), we only need

{T̃ j
m(c), P̂ j

m(c)}j∈[h−1]. Thus the two definitions are iteratively well-defined. Meanwhile, we also
define the observable occupancy measures as the occupancy measures of the true model going
through only the trusted transitions, i.e.,

d1m(s;π, c) = 1(s = s1), d1m(s, a;π, c) = 1(s = s1)π1(s, a),

dhm(s;π, c) :=
∑

s′,a′,s∈T̃ h−1
m (c)

dh−1
m (s′, a′;π, c)Ph−1

⋆ (s|s′, a′; c),

dhm(s, a;π, c) := dhm(s;π, c)πh(s, a).

The computation of the set of trusted transitions need not enumerate all policies. The trusted transition
set can be computed in poly(H,S,A, log T ) time by formulating it as a linear fractional programming
problem. We defer the details to Appendix G.

Define the estimated occupancy measures d̂hm(s;π, c) := EM̂m,π,c[1(sh1 = s)] and d̂hm(s, a;π, c) :=

EM̂m,π,c[1(sh1 , a
h
1 = s, a)]. The trusted occupancy measure, though it eliminates rarely visited

transitions, remains a valid estimate for all policies because the divergence between the estimated
occupancy measure and itself is bounded. Specifically, we have the following lemma.

Lemma 3.3. For all m,π, h, s, a, under any context c, we have

d̂hm(s, a;π, c)− d̃hm(s, a;π, c) ≤ 32e
√
H4S2A · Em + r̂egm−1(π; c)/(90HSA).

The next guarantee is the key to our analysis and is the most non-trivial guarantee of our construction.
The following lemma states that if, for a context c, the Hellinger divergence between P̂ and Ph

⋆ at
layer h is small for all h ∈ [H], then the trusted occupancy measure is upper bounded by a scaling of
the observable occupancy measure.

Lemma 3.4. For any m and c, assume for all h ∈ [H],

Eπ∼ph
m(c)EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
≤ H/γm.

Then for the same m, c and all π, h, s, a, we have

d̃hm(s, a;π, c) ≤ (1 + 1/H)
2(h−1)

dhm(s, a;π, c).
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Since the trusted occupancy measure is upper bounded up to scaling by the observable occupancy
measure, then the state-action pairs with large trusted occupancy measures are guaranteed to be
visited often in the true dynamics as well. This enables more accurate planning and is thus crucial
to our analysis.

Finally, we state the coverage guarantee achieved by the construction of Πh
m and phm. Concretely, we

upper bound the trusted occupancy measure d̃hm(·, ·;π, ·) of any policy π by the trusted occupancy
measure induced by policy kernel phm.

Lemma 3.5. For any m,π, c, h, s, a, we have

d̃hm(s, a;π, c) ·DH(P
h
⋆ (s, a; c), P̂

h
m(s, a; c))

≤ γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c)) + E ′

m,
(4)

where E ′
m =

(
2e2
√

Em

H4S2A + 1
720H4S3A2 r̂egm−1(π, c)

)
d̃hm(s, a;π, c) ,and phm(c, πh,s,a

m,c ) is

the probability of phm(c) on πh,s,a
m,c . The guarantee Eq. (4) also holds replacing

DH(P
h
⋆ (s, a; c), P̂

h
m(s, a; c)) with DH(R

h
⋆(s, a; c), R̂

h
m(s, a; c)) on both sides of the inequality.

4 Regret Analysis
In this section, we prodive a proof sketch of the regret analysis. Detailed proofs are deferred to
Appendix E. We first aggregate the component-wise guarantees (Lemmas 3.1 to 3.5) from Section 3
to present the following epoch-wise guarantee.

Lemma 4.1. For any m, any policies {πc}c∈C , and δ ∈ (0, 1/2), with probability at least 1− δ/M ,

Ec∼D

[∣∣∣V̂ 1
m(πc, c)− V 1

⋆ (πc, c)
∣∣∣] ≤ 1

20
Ec∼D

[
r̂egm−1(πc, c)

]
+ 77e

√
H6S4A3 · Em.

Proof sketch of Lemma 4.1. For simplicity, in this proof sketch, we assume the true reward
distribution is known3. For this, we first apply the celebrated local simulation lemma (Lemma C.2) in
reinforcement learning to relate the divergence of the value functions to the stepwise divergences as
the following. Under any context c,∣∣∣V̂ 1

m(πc, c)− V 1
⋆ (πc, c)

∣∣∣ ≤∑
h,s,a

d̂hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
.

Then we can exchange the estimated occupancy measure d̂hm(s, a;πc, c) by the trusted occupancy
measure through Lemma 3.3, that is,

d̂hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
≤ d̃hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

+ 32e
√

H4S2A · Em + r̂egm−1(π; c)/(90HSA).

Then by coverage guarantee Lemma 3.5, for any h, s, a, we can bound

d̃hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤ γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c)) + E ′

m.

If the assumption in Lemma 3.4 is satisfied, then by Lemma 3.4 and the definition of phm, we have∑
h,s,a

γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

≤
∑
h,s,a

γm
H

· phm(c, πh,s,a
m,c )dhm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

≤ γm
H

·
∑
h

Eπ∼ph
m(c)

[
EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]]
.

3The uncertainty in reward distribution is not the main hardness in this problem. Specifically, our proof
extends to offline oracles with squared loss guarantees between the mean rewards for divergence between the
reward distributions as in [8].
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If the assumptions in Lemma 3.4 are not satisfied, we have similar control as well (see the full proof
Appendix E for details). Altogether with taking expectation on c, by the offline density estimation
bound from Lemma 3.2, we have

Ec∼D

[∣∣∣V̂ 1
m(πc, c)− V 1

⋆ (πc, c)
∣∣∣] ≤ E

[
r̂egm−1(πc, c)

]
/40 + 39e

√
H6S4A3 · Em.

A revised version of the regret analysis (Lemma E.1) in Simchi-Levi and Xu [36], which relates
the epoch-wise guarantee to the regret estimation error, can be found in Appendix E. Combining
Lemmas 4.1 and E.1, we arrive at the following general regret guarantee.

Theorem 4.1. The outputs {πt}t∈[T ] of Algorithm 1 satisfies with probability at least 1− δ that

Reg(T ) ≲
∑N

m=1
(τm − τm−1) ·

√
H8S4A3 · Em

for δ ∈ (0, 1/2).

5 Extension: Reward-free Reinforcement Learning for CMDPs
In this section, we introduce the application of Algorithm 1 in the task of reward-free reinforcement
learning in (stochastic) CMDPs. All proofs in this section will be deferred to Appendix F.

Reward-free reinforcement learning [22]. Reward-free reinforcement learning aims to efficiently
explore the environment without relying on observed rewards. By doing so, it aims to enable the
computation of a nearly optimal policy for any given reward function, utilizing only the trajectory
data collected during exploration and without needing further interaction with the environment.
This approach holds particular significance in scenarios where reward functions are refined over
multiple iterations to encourage specific behaviors through trial and error, such as in constrained
RL formulations. In such cases, repeatedly applying the same RL algorithm with varying reward
functions can prove to be highly inefficient regarding sample usage, underscoring the efficiency of
reward-free reinforcement learning.

Problem formulation. The major differences between the regret minimization setting (Section 2.1)
and the reward-free reinforcement learning are that in the latter, no reward signals are observed during
the interaction, and the goal of the latter is to output a CMDP prediction M̂ whose value functions are
close to the underlying true CMDP M⋆ for any reward distributions. To accommodate such a change,
for any model M = {Ph

M , Rh
M}h∈[H] and reward distribution R = {Rh}h∈[H], we define M(·;R) =

{Ph
M , Rh}h∈[H] = {Ph

M (c), Rh(c)}h∈[H],c∈C to be model M with the reward distribution part
replaced by R. Thus in the reward-free reinforcement learning setting, the underlying true model
satisfies M⋆ = M⋆(·; 0) where 0 is used to denote the reward distribution that is constantly 0.

For any model M reward distribution R, context c and policy π, we use M(π, c;R) to denote the
distribution of the trajectory c1, π1, s

1
1, a

1
1, r

1
1, . . . , s

H
1 , aH1 , rH1 given M⋆ = M(·;R), c1 = c, and

π1 = π. Also denote the probability and the expectation under M(π, c;R) to be PM,π,c,R(·) and
EM,π,c,R[·] respectively. Given reward distribution R, any policy π, state s and action a, we define
the action value function Qh

⋆(s, a;π, c,R) at layer h and the value function V 1
⋆ (s;π, c,R) at layer h

under context c and policy π as

Qh
⋆(s, a;π, c, R) =

H∑
j=h

EM⋆,π,c,R[rj1 | sh1 , ah1 = s, a] and V h
⋆ (s;π, c,R) = max

a∈A
Qh

⋆(s, a;π, c,R).

We denote the optimal policy with reward distribution R under context c as π⋆,c,R and abbreviate
its value function as V h

⋆ (·; c,R). For h = 1, we denote V 1
⋆ (c,R) = V 1

⋆ (s
1; c,R) and V 1

⋆ (π, c,R) =
V 1
⋆ (s

1;π, c,R). We also denote V h
M as the value functions when M⋆ = M .

Assumption 5.1 (Realizability for reward-free RL). Suppose the learner is given a model class M
that contains the underlying true model M⋆. Assume all models M ∈ M have 0 reward.

For a given ε, δ > 0 and a model class M, the goal of the learner is to output a model M̂ at the end of
the interaction such that for any reward distribution R and set of policies {πc}c∈C , the model satisfies

Ec∼D

[∣∣∣V 1
⋆ (πc, c, R)− V 1

M̂
(πc, c, R)

∣∣∣] ≤ ε (5)

with probability at least 1− δ. An algorithm that achieves this objective is called (ε, δ)-learns the
model class M. Then we have the following guarantee from Algorithm 1.
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Theorem 5.1. If we choose τ1 = T/(2H) and τ2 = T/H , the outputs M̂2 of Algorithm 1 satisfies
the reward-free objective Eq. (5) with probability at least 1− δ, with T at most bounded by

T ≤ O
(
H7S4A3 log(|M|/δ)/ε2

)
for δ ∈ (0, 1/2). Moreover, the algorithm requires O(H) number of oracle calls to the MLEM oracle.

The proof follows a similar argument of Lemma 4.1. In addition, we have a matching lower bound up
to a poly(H,S,A) factor adapted from the non-contextual lower bound from Jin et al. [22].

Theorem 5.2. Fix ε ≤ 1, δ ≤ 1/2, H,A ≥ 2. Suppose S ≥ L logA for a large enough universal
constant L and K ≥ 0 large enough. Then, there exists a CMDP class M with |S| = S, |A| = A,
|M| = K, and horizon H and a distribution µ on M such that any algorithm Alg that (ε/24, δ)-
learns the class M satisfies EM∼µEM,Alg[T ] ≳ log |M|/ε2, where T is the number of trajectories
required by the algorithm Alg to achieve (ε/24, δ) accuracy and EM,Alg[·] is the expectation under
the interaction between the algorithm Alg and model M .

6 Discussion
Extension to low rank CMDPs. Low rank MDPs represent a significant extension to tabular MDPs,
as explored in various studies [6, 28, 21, 4]. Linear MDPs are typically the first step beyond tabular
MDPs. Extending our approach to linear CMDPs would be a substantial achievement. The primary
challenge lies in identifying the trusted transitions within linear CMDPs. The current construction
for tabular CMDPs does not readily apply here because it does not utilize the low-rank structure.

Extension to model-free learning. Our approach is model-based. However, model-free methods
are often more practical for real-world applications. The main challenge lies in effectively balancing
exploration and exploitation using only the value functions, as opposed to our method which depends
on the occupancy measure.

More efficient oracles. In this paper, we focus on offline density estimation oracles due to the
necessity of a small Hellinger distance between the estimated model and the true model for our
approach. An offline regression oracle would only provide a 2-norm distance guarantee, which is
inadequate for our purposes. Nevertheless, it is interesting to explore whether a reduction from
CMDPs to offline regression could be feasible.
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A Notation
For any integer n, we use [n] to denote the set {1, . . . , n}. For any set X , we use ∆(X ) to denote the
set of all distributions on the set X . We define O(·), Ω(·), Θ(·), Õ(·), Ω̃(·), Θ̃(·) following standard
non-asymptotic big-oh notation. We use the binary relation x ≲ y to indicate that x ≤ O(y). 1(E) is
an indicator function of event E .

B Related Works
Contextual bandits and contextual MDPs. The SquareCB [14] obtains optimal regret for con-
textual bandits with access to an online regression oracle. This is extended to the CMDPs by Foster
et al. [16] with the E2D algorithm. However, the algorithm requires O(T ) called to an online density
estimation oracle. Compared to our algorithm, it necessitates significantly more calls to an oracle
that is harder to implement for a general model class M. After the FALCON algorithm [36] es-
tablishes the reduction from contextual bandits to offline regression, Xu and Zeevi [41] proposed
the UCCB algorithm, which is less oracle-efficient in terms of oracle calls but adopts the prevalent
"optimism in the face of uncertainty" principle and is thus easier to generalize. More specifically,
the UCCB algorithm is extended to CMDPs by Levy and Mansour [24], Deng et al. [11] with
assumptions on the model class. The RM-UCDD algorithm proposed by Levy and Mansour [24]
requires the model class to have a minimum reachability pmin to all states under any policy and the
regret guarantees scale with O(poly(H,S,A) · (1/pmin)

√
T log |M|). This assumption precludes

model classes with small reachability, which frequently happens in practice [4]. The CMDP-VR
algorithm proposed by Deng et al. [11] assumes a varying representation assumption on the model
class instead. The assumption asserts that any model M = {Ph, Rh}h∈[H] ∈ M satisfies for any
c, h, s, a, s′, Ph(s′|s, a; c) = ⟨ϕh(s, a; c), µh(s′)⟩ for the known feature vector ϕh(s, a; c) ∈ Rd and
an unknown vector µh(s′) ∈ Rd which does not depend on the context c. This assumption is stringent
because canonically, the feature vector for CMDPs will be chosen to be the unit vector indexed
by s, a in RSA, i.e., ϕh(s, a; c) = es,a ∈ RSA. Then, the requirement of µh(s′) not depending on
the context forces Ph to not depend on the context as well. This reduces the CMDP to an MDP.
While it is possible to complicate the feature vector to not reduce to an MDP, this would result in a
higher dimension in the feature vector space, which will be reflected in the regret bounds obtained
(Õ(poly(H, d)

√
T log |M|). Another significant disadvantage compared with our algorithm is that

the RM-UCDD and CMDP-VR algorithm requires O(T ) number of oracle calls. Other structural
assumptions are explored by Modi and Tewari [32], Levy et al. [25].

Reward-free reinforcement learning. Reward-free reinforcement learning aims to efficiently
explore the environment without relying on observed rewards. By doing so, it aims to enable the
computation of a nearly optimal policy for any given reward function, utilizing only the trajectory
data collected during exploration and without needing further interaction with the environment. This
framework is proposed by [22] and has been extensively studied for MDPs with various assumptions
[43, 4, 39, 42, 9, 31, 38, 20, 10, 27, 30, 5]. However, to the best of our knowledge, we are the
first to study the reward-free reinforcement learning setting for stochastic CMDPs. We provide a
near-optimal sample complexity upper bound and a matching lower bound up to a poly(H,S,A)
factor with only O(H) number of oracle calls. Nevertheless, the upper bound is obtained by adjusting
the exploration-exploitation, highlighting the flexibility of our algorithm.

C Technical Tools
C.1 Maximum Likelihood Estimation for Density Estimation

Example C.1 (MLE for finite model class). Let M be a finite model class and the MLE estimator
M̂ be defined by

M̂ = argmax
M∈M

n∏
i=1

PM,πi,ci
(
{shi , ahi , rhi }h∈[H]

)
.

For any δ ∈ (0, 1/2), we have with probability at least 1− δ,

Ec∼D,π∼p(c)

[
D2

H

(
M̂(π, c),M⋆(π, c)

)]
≲

log(|M|/δ)
n

.

◁
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Proof of Example C.1. For any δ ∈ (0, 1/2), by Lemma C.2 of Foster et al. [18], we have with
probability at least 1− δ/2,

n∑
i=1

D2
H

(
M̂(πi, ci),M⋆(πi, ci)

)
≲ log(|M|/δ).

Then by Lemma A.3 of Foster et al. [16], we have with probability at least 1− δ/2,

Ec∼D,π∼p(c)

[
D2

H

(
M̂(π, c),M⋆(π, c)

)]
≲

n∑
i=1

D2
H

(
M̂(πi, ci),M⋆(πi, ci)

)
+ log(|M|/δ).

Then by union bound, we obtain the desired result.

C.2 Information Theory

Lemma C.1 (Lemma B.4 of Foster et al. [17]). Let P and Q be two distributions on space χ. Let
h : χ → R be a function. Then we have:

|EP[h]− EQ[h]| ≤
√
2−1(EP[h2] + EQ[h2])D2

H(P,Q).

C.3 Reinforcement Learning

Lemma C.2 (Lemma F.3 of [16]). Let M = {Ph
M , Rh

M}h∈[H] and M = {Ph
M
, Rh

M
}h∈[H] be two

CMDPs. For any policy π and context c, we have

V 1
M (π, c)− V 1

M
(π, c)

=

H∑
h=1

EM,π,c
[(
Ph
M (sh+1

1 |sh1 , ah1 ; c)− Ph
M
(sh+1

1 |sh1 , ah1 ; c)
)
V h+1
M (sh+1

1 ;π, c)
]

+

H∑
h=1

EM,π,c
[
Erh∼RM (sh1 ,a

h
1 ;c)

[rh]− Erh∼RM (sh1 ,a
h
1 ;c)

[rh]
]

≤
H∑

h=1

∑
s,a

EM,π,c
[
1(sh1 , a

h
1 = s, a)

](
DH

(
Ph
M (s, a; c), Ph

M
(s, a; c)

)
+DH

(
Rh

M (s, a; c), Rh
M
(s, a; c)

))
.

D Proofs from Section 3
In this section, we present the proofs for Lemmas 3.1 to 3.5.

Proof of Lemma 3.1. We fix an arbitrary context c throughout the proof. Let u(λ) :=∑
π∈Πh

m
1/(λ + ηm · r̂egm−1(π)). Since for any h ∈ [H], π̂m−1,c ∈ Πh

m, then u(λ) ≥
1/(λ + ηm · r̂egm−1(π̂m−1,c)) = 1/λ. On the other hand, u(λ) ≤ (SA + 1)/λ. Moreover,
u(λ) is clearly monotonically decreasing with u(0) = ∞ and u(SA + 1) ≤ 1. Thus there exists
λh
m,c ∈ (0, SA+ 1] such that u(λh

m,c) = 1 as we desired.

Now we have the regret is bounded by

Eπ∼ph
m(c)

[
r̂egm−1(π; c)

]
=

∑
π∈Πh

m,c

r̂egm−1(π; c)

λh
m,c + ηm · r̂egm−1(π; c)

≤
∑

π∈Πh
m(c)

1

ηm
≤ 2SA

ηm
.

Finally, we recall ηm = γm/(720e3H5S3A2) and γm =
√

H6S4A3

Em
plug this bound in, then we have

Eπ∼ph
m(c)

[
r̂egm−1(π; c)

]
≤ 1440e3 ·

√
H4S4A3 · Em.

Proof of Lemma 3.2. By definition of Definition 2.1.
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Proof of Lemma 3.3. For any m,π, c, h, s, a, by the definition of d̃hm(s, a;π, c), we the difference
between d̂hm(s, a;π, c) and d̃hm(s, a;π, c) are the parts of occupancy measures that do not go through
the trusted transitions, i.e.,

d̂hm(s, a;π, c)− d̃hm(s, a;π, c)

=

h−1∑
j=1

∑
(sj ,aj ,sj+1)/∈T̃ j

m(c)

d̃jm(sj , aj ;π, c)P̂ j
m(sj+1|sj , aj ; c)P̂ j+1:h

m+1 (s|sj+1;π, c)πh(s, a),

where P̂ j+1:h
m+1 (s|sj+1;π, c) is the estimated transition probability from sj+1 at step j + 1 to s at step

h under policy π and context c. Then since (sj , aj , sj+1) /∈ T̃ j
m(c), we have

h−1∑
j=1

∑
(sj ,aj ,sj+1)/∈T̃ j

m(c)

d̃jm(sj , aj ;π, c)P̂ j
m(sj+1|sj , aj ; c)P̂ j+1:h

m+1 (s|sj+1;π, c)πh(s, a)

≤
h−1∑
j=1

∑
(sj ,aj ,sj+1)/∈T̃ j

m(c)

d̃jm(sj , aj ;π, c)P̂ j
m(sj+1|sj , aj ; c)

≤
h−1∑
j=1

∑
(sj ,aj ,sj+1)/∈T̃ j

m(c)

SA+ ηmr̂egm−1(π; c)

ζm

≤
hS2A(SA+ ηmr̂egm−1(π; c))

ζm
.

Recall the choice of ζm = γm

8eH(H+1)2 , ηm = γm

720e3H5S3A2 and γm =
√

H6S4A3

Em
, we have

d̂hm(s, a;π, c)− d̃hm(s, a;π, c) ≤ 32e
√

H4S2A · Em +
1

90HSA
r̂egm−1(π; c).

Proof of Lemma 3.4. We prove iteratively between the objective

d̃hm(s, a;π, c) ≤
(
1 +

1

H

)2(h−1)

dhm(s, a;π, c)

and the following claim: For any h and any (s, a, s′) ∈ T̃ h
m(c), we have

P̂h
m(s′|s, a; c) ≤

(
1 +

1

H

)2

Ph
⋆ (s

′|s, a; c).

First, we show that for any h ∈ [H],

∀π, s, a, d̃hm(s, a;π, c) ≤
(
1 +

1

H

)2(h−1)

dhm(s, a;π, c)

⇒ ∀(s, a, s′) ∈ T̃ h
m(c), P̂h

m(s′|s, a; c) ≤
(
1 +

1

H

)2

Ph
⋆ (s

′|s, a; c). (6)

For this, we note by Lemma C.1 that for any h, s, a, s′,

P̂h
m(s′|s, a; c) (7)

≤ Ph
⋆ (s

′|s, a; c) +
√
2−1(P̂h

m(s′|s, a; c) + Ph
⋆ (s

′|s, a; c))D2
H

(
Ber(P̂h

m(s′|s, a; c)),Ber(Ph
⋆ (s

′|s, a; c))
)

≤ Ph
⋆ (s

′|s, a; c) +
√
2−1(P̂h

m(s′|s, a; c) + Ph
⋆ (s

′|s, a; c))D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
, (8)
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where the second inequality is by data-processing inequality [34]. Then by AM-GM, we have√
2−1(P̂h

m(s′|s, a; c) + Ph
⋆ (s

′|s, a; c))D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤ 1

4H
(P̂h

m(s′|s, a; c) + Ph
⋆ (s

′|s, a; c)) +H ·D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
.

Plug the above back into Eq. (8) and reorganize, we obtain

P̂h
m(s′|s, a; c) ≤

(
1 +

1

H

)
· Ph

⋆ (s
′|s, a; c) + (H + 1)D2

H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
.

Then multiply both sides by d̃hm(s, a;π, c), we have

d̃hm(s, a;π, c)

(
P̂h
m(s′|s, a; c)−

(
1 +

1

H

)
Ph
⋆ (s

′|s, a; c)
)

≤ (H + 1)d̃hm(s, a;π, c)D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
.

Meanwhile, by the definition of πh,s,a
m,c , we have

d̃hm(s, a;π, c) ≤
d̃hm(s, a;πh,s,a

m,c , c)

SA+ ηm · r̂egm−1(π
h,s,a
m,c , c)

· (SA+ ηm · r̂egm−1(π, c)).

Then by the induction hypothesis, we have

d̃hm(s, a;πh,s,a
m,c , c)

SA+ ηm · r̂egm−1(π
h,s,a
m,c , c)

· (SA+ ηm · r̂egm−1(π, c))

≤
e2dhm(s, a;πh,s,a

m,c , c)

SA+ ηm · r̂egm−1(π
h,s,a
m,c , c)

· (SA+ ηm · r̂egm−1(π, c)).

Thus we have futher by the definition of phm(c) and the assumption that
Eπ∼ph

m(c)EM⋆,π,c
[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
≤ H/γm,

(H + 1)d̃hm(s, a;π, c)D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤ e2(H + 1)(SA+ ηm · r̂egm−1(π, c))
dhm(s, a;πh,s,a

m,c , c)

SA+ ηm · r̂egm−1(π
h,s,a
m,c , c)

·D2
H

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤ e2(H + 1)(SA+ ηm · r̂egm−1(π, c))p
h
m(c, πh,s,a

m,c )dhm(s, a;πh,s,a
m,c , c)D2

H

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
≤ e2(H + 1)(SA+ ηm · r̂egm−1(π, c))Eπ∼ph

m(c)EM⋆,π,c
[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
≤ e2H(H + 1)

γm
(SA+ ηm · r̂egm−1(π, c))

=
1

(H + 1)ζm
(SA+ ηm · r̂egm−1(π, c)),

where the last equality is by the definition of ζm. In all, we have shown that

d̃hm(s, a;π, c)

(
P̂h
m(s′|s, a; c)−

(
1 +

1

H

)
Ph
⋆ (s

′|s, a; c)
)

≤ 1

(H + 1)ζm
(SA+ ηm · r̂egm−1(π, c)).

Now we prove by contradiction, if for any (s, a, s′) ∈ T̃ h
m(c), the reverse inequality is true, i.e.,

P̂h
m(s′|s, a; c) >

(
1 + 1

H

)2
Ph
⋆ (s

′|s, a; c). Then for any π,

1

H + 1
d̃hm(s, a;π, c)P̂h

m(s′|s, a; c) < d̃hm(s, a;π, c)

(
P̂h
m(s′|s, a; c)−

(
1 +

1

H

)
Ph
⋆ (s

′|s, a; c)
)

≤ 1

(H + 1)ζm
(SA+ ηm · r̂egm−1(π, c)).
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This contradicts the definition of T̃ h
m(c).

For the other direction of Eq. (6), we prove for all h ∈ [H],{
P̂h
m(s′|s, a; c) ≤

(
1 + 1

H

)2
Ph
⋆ (s

′|s, a; c) ∀(s, a, s′) ∈ T̃ h
m,

d̃hm(s, a;π, c) ≤
(
1 + 1

H

)2(h−1)
dhm(s, a;π, c) ∀π, s, a.

⇒ d̃h+1
m (s, a;π, c) ≤

(
1 +

1

H

)2h

dh+1
m (s, a;π, c), ∀π, s, a. (9)

This direction is straightforward since

d̃h+1
m (s, a;π, c) =

∑
(s′,a′,s)∈T̃ h

m

d̃hm(s, a;π, c)P̂h
m(s′|s, a; c)πh+1(s, a; c)

≤
(
1 +

1

H

)2h ∑
(s′,a′,s)∈T̃ h

m

dhm(s, a;π, c)Ph
⋆ (s

′|s, a; c)πh+1(s, a; c)

=

(
1 +

1

H

)2h

dh+1
m (s, a;π, c).

With the two derivations Eq. (6) and Eq. (9), along with the fact that the initial argument of Eq. (6)
holds by defintion for h = 1. Thus we conclude the proof.

Proof of Lemma 3.5. For any m,π, c, h, s, a, by AM-GM, we have

d̃hm(s, a;π, c)DH

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
≤

2e2H(SA+ ηmr̂egm−1(π
h,s,a
m,c ; c))

γmd̃hm(s, a;πh,s,a
m,c , c)

· (d̃hm(s, a;π, c))2

+
γmd̃hm(s, a;πh,s,a

m,c ; c)

2e2H(SA+ ηmr̂egm−1(π
h,s,a
m,c ; c))

·D2
H

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
.

(10)

By the definition of πh,s,a
m,c , we have futher

2e2H(SA+ ηmr̂egm−1(π
h,s,a
m,c ; c))

γmd̃hm(s, a;πh,s,a
m,c , c)

· (d̃hm(s, a;π, c))2

≤
2e2H(SA+ ηmr̂egm−1(π; c))

γmd̃hm(s, a;π, c)
· (d̃hm(s, a;π, c))2

=
2e2HSA+ 2e2Hηmr̂egm−1(π; c)

γm
· d̃hm(s, a;π, c).

(11)

Recall the choice of ηm = γm/(720e3H5S3A2) and γm =
√

H6S4A3

Em
, we have

2e2HSA+ 2e2Hηmr̂egm−1(π; c)

γm
≤ 2e2

√
Em

H4S2A
+

1

720H4S3A2
r̂egm(π, c). (12)

Also by the definition of phm(c), we have

γmd̃hm(s, a;πh,s,a
m,c ; c)

2e2H(SA+ ηmr̂egm−1(π
h,s,a
m,c ; c))

·D2
H

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
≤ γm

e2H
· phm(c, πh,s,a

m,c )d̃hm(s, a;πh,s,a
m,c , c)D2

H

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
.

(13)
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Now we plug Eqs. (11) to (13) back into Eq. (10) to obtain that

d̃hm(s, a;π, c)DH

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
≤

(
2e2
√

Em
H4S2A

+
1

720H4S3A2
r̂egm−1(π, c)

)
d̃hm(s, a;π, c)

+
γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c)D2
H

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
.

Similar bounds can be obtained replacing DH

(
Ph
⋆ (s, a; c), P̂

h
m(s, a; c)

)
with

DH

(
Rh

⋆(s, a; c), R̂
h
m(s, a; c)

)
.

E Proofs from Section 4

Proof of Lemma 4.1. For this we first apply the local simulation lemma (Lemma C.2) in rein-
forcement learning to relate the divergence of the value functions to the stepwise divergences as the
following. Under any context c,∣∣∣V̂ 1

m(πc, c)− V 1
⋆ (πc, c)

∣∣∣ ≤ ∑
h,s,a

d̂hm(s, a;πc, c)
(
DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)
+DH

(
R̂h

m(s, a; c), Rh
⋆(s, a; c)

))
.

Then we can exchange the estimated occupancy measure d̂hm(s, a;πc, c) by the trusted occupancy
measure through Lemma 3.3, that is,∑

h,s,a

d̂hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤
∑
h,s,a

d̃hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

+
∑
h,s,a

(
32e
√
H4S2A · Em +

1

90HSA
r̂egm−1(π; c)

)
≤
∑
h,s,a

d̃hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

+ 32e
√
H6S4A3 · Em +

1

90
r̂egm−1(πc; c). (14)

Then by coverage guarantee Lemma 3.5, for any h, s, a, we can bound∑
h,s,a

d̃hm(s, a;πc, c)DH

(
P̂h
m(s, a; c), Ph

⋆ (s, a; c)
)

≤
∑
h,s,a

γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

+
∑
h,s,a

(
2e2
√

Em
H4S2A

+
1

720H4S3A2
r̂egm−1(π, c)

)
d̃hm(s, a;π, c)

≤
∑
h,s,a

γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

+ 2e2
√

Em
H2A

+
1

720H3S2A2
r̂egm−1(πc, c). (15)

18



Suppose the assumption in Lemma 3.4 is satisfied, then by Lemma 3.4, we have∑
h,s,a

γm
e2H

· phm(c, πh,s,a
m,c )d̃hm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

≤
∑
h,s,a

γm
H

· phm(c, πh,s,a
m,c )dhm(s, a;πh,s,a

m,c , c) ·D2
H(P

h
⋆ (s, a; c), P̂

h
m(s, a; c))

≤ γm
H

·
∑
h

Eπ∼ph
m(c)

[
EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]]
. (16)

The DH

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)
in Eqs. (15), (16) and (26) can be replaced with

DH

(
R̂h

m(sh1 , a
h
1 ; c), R

h
⋆(s

h
1 , a

h
1 ; c)

)
as well. If the assumption in Lemma 3.4 is not satisfied, then we

there exists j such that

Eπ∼ph
m(c)EM⋆,π,c

[
D2

H

(
P̂h
m(sj1, a

j
1; c), P

h
⋆ (s

j
1, a

j
1; c)

)]
> H/γm.

This implies∣∣∣V̂ 1
m(πc, c)− V 1

⋆ (πc, c)
∣∣∣ ≤ 1 ≤ γm

H
· Eπ∼ph

m(c)EM⋆,π,c
[
D2

H

(
P̂h
m(sj1, a

j
1; c), P

h
⋆ (s

j
1, a

j
1; c)

)]
.

Thus, altogether, no matter the assumption in Lemma 3.4 is satisfied or not, we have shown∣∣∣V̂ 1
m(πc, c)− V 1

⋆ (πc, c)
∣∣∣ ≤ 76e

√
H6S4A3 · Em +

1

20
r̂egm−1(πc; c)

+
2γm
H

·
∑
h

Eπ∼ph
m(c)

[
EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]]
.

Taking expectation on c, we have

Ec∼D

[∣∣∣V̂ 1
m(πc, c)− V 1

⋆ (πc, c)
∣∣∣]

≤ 1

20
Ec∼D

[
r̂egm−1(πc, c)

]
+ 76e

√
H6S4A3 · Em

+
2γm
H

·
∑
h

Ec∼DEπ∼ph
m(c)

[
EM⋆,π,c

[
D2

H

(
P̂h
m(sh1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]]
≤ 1

20
E
[
r̂egm−1(πc, c)

]
+ 76e

√
H6S4A3 · Em + γm · Em

≤ 1

20
E
[
r̂egm−1(πc, c)

]
+ 77e

√
H6S4A3 · Em,

where the second inequality is by the offline density estimation bound from Lemma 3.2

Lemma E.1 ([36]). Let ε1, . . . , εN be N positive values. Suppose for any m > 0 and an arbitrary
policy set {πc}c∈C , we have:

Ec∼D[|V̂ 1
m(πc, c)− V 1

⋆ (πc, c)|] ≤
1

20
Ec∼D[r̂egm−1(πc, c)] + εm. (17)

Then for any m > 0,

Ec∼D[reg(πc, c)] ≤
10

9
· Ec∼D[r̂egm(πc, c)] + δm, (18)

Ec∼D[r̂egm(πc, c)] ≤
9

8
· Ec∼D[reg(πc, c)] + δm, (19)

where δ1 = 2ε1 +
1
10 and δm = 1

9δm−1 +
20
9 εm for any m ≥ 2.
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Proof of Lemma E.1. We present the proof here for completeness. By Eq. (17), we have that for all
m ≥ 0 and πc,

Ec∼D[reg(πc, c)]− Ec∼D[r̂egm(πc, c)]

= Ec∼D[V
1
⋆ (π⋆,c, c)− V̂ 1

m(π⋆,c, c)] + Ec∼D[V̂
1
m(π⋆,c, c)− V̂ 1

m(π̂m,c, c)]

+ Ec∼D[V̂
1
m(πc, c)− V 1

⋆ (πc, c)]

≤ 1

20
Ec∼D[r̂egm−1(π⋆,c, c)] +

1

20
Ec∼D[r̂egm−1(πc, c)] + 2εm. (20)

Symmetrically, we have

Ec∼D[r̂egm(πc, c)]− Ec∼D[reg(πc, c)]

≤ 1

20
Ec∼D[r̂egm−1(π̂m,c, c)] +

1

20
Ec∼D[r̂egm−1(πc, c)] + 2εm. (21)

Now we inductively show for m = 1, 2, . . . that Eq. (18) and Eq. (19) hold. For m = 1, since
Ec∼D[reg(πc, c)],Ec∼D[r̂eg1(πc, c)] ≤ 1 for all π, then we have from Eq. (20) and Eq. (21)

Ec∼D[reg(πc, c)] ≤ Ec∼D[r̂eg1(πc, c)] + 2ε1 +
1

10
and

Ec∼D[r̂eg1(πc, c)] ≤ Ec∼D[reg(πc, c)] + 2ε1 +
1

10
.

Hence we have shown Eq. (18) and Eq. (19) for m = 1 and δ1 = 2ε1 +
1
10 . Now, suppose Eq. (18)

and Eq. (19) holds for all 1, 2, . . . ,m− 1. Plugging Eq. (19) for m− 1 into the right hand side of
Eq. (20), we have

Ec∼D[reg(πc, c)]− Ec∼D[r̂egm(πc, c)]

≤ 1

20
Ec∼D[r̂egm−1(π⋆,c, c)] +

1

20
Ec∼D[r̂egm−1(πc, c)] + 2εm

≤ 1

20

(
9

8
Ec∼D[reg(π⋆,c, c)] + δm−1

)
+

1

20

(
9

8
Ec∼D[reg(πc, c)] + δm−1

)
+ 2εm

=
1

20
δm−1 +

1

20

(
9

8
Ec∼D[reg(πc, c)] + δm−1

)
+ 2εm,

where the last equality is by Ec∼D[reg(π⋆,c, c)] = 0. Thus reorganizing the terms, we have

Ec∼D[reg(πc, c)] ≤
10

9
Ec∼D[r̂egm(πc, c)] + δm,

where δm = 1
9δm−1 +

20
9 εm. Thus we have shown Eq. (18) for m. Then plugging Eq. (19) for m− 1

into the right hand side of Eq. (21), we have

Ec∼D[r̂egm(πc, c)]− Ec∼D[reg(πc, c)]

≤ 1

20
Ec∼D[r̂egm−1(π̂m,c, c)] +

1

20
Ec∼D[r̂egm−1(πc, c)] + 2εm

≤ 1

20

(
9

8
Ec∼D[reg(π̂m,c, c)] + δm−1

)
+

1

20

(
9

8
Ec∼D[reg(πc, c)] + δm−1

)
+ 2εm.

Furthermore, by Eq. (18) for m we have Ec∼D[reg(π̂m,c, c)] ≤ 10
9 Ec∼D[r̂eg(π̂m,c, c)] + δm = δm.

Plug this in the aforementioned inequality, we have

Ec∼D[r̂egm(πc, c)]− Ec∼D[reg(πc, c)] ≤
1

20

(
9

8
δm + δm−1

)
+

1

20

(
9

8
Ec∼D[reg(πc, c)] + δm−1

)
+ 2εm.

Reorganizing the terms, this in turn gives

Ec∼D[r̂egm(πc, c)] ≤
9

8
Ec∼D[reg(πc, c)] + δm,

where recall δm = 1
9δm−1 +

20
9 εm. This proves Eq. (19) for m which completes our induction.
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Proof of Theorem 4.1. Let E0 = 1. Then we have by Lemma 4.1, Eq. (17) holds with εm =
L
√
H6S4A3Em for L > 0 large enough for all m > 0. Combining Lemmas 3.1 and E.1, we have

Ec∼D,π∼ph
m(c)[reg(π, c)] ≲ Ec∼D,π∼ph

m(c)[r̂egm−1(πc, c)] +

m−1∑
i=0

1

9m−i

√
H6S4A3 · Ei

Then by Lemma 3.1, we have further

Ec∼D,π∼ph
m(c)[r̂egm−1(πc, c)] ≲

√
H6S4A3 · Em.

Hence, we have

Ec∼D,π∼ph
m(c)[reg(π, c)] ≲

m∑
i=0

1

9m−i

√
H6S4A3 · Ei.

In all, we can obtain the following regret bound with probability at least 1− δ,∑T

t=1
Reg(T ) =

T∑
t=1

E
ct∼D,πt∼p

h(t)

m(t)
(ct)

[reg(πt, ct)]

=
∑
h,m

Ec∼D,π∼ph
m(c)[reg(π, c)] · (τm − τm−1)

≲
N∑

m=1

(τm − τm−1) ·
√
H8S4A3 · Em,

where the last step takes a union bound on the offline oracle guarantees.

Proof of Theorem 3.1. Without loss of generality, assume that T/H > 1000. Since we are choosing
τm = 2(T/H)1−2−m

, we first note that since τm ≤ T/H , we have (T/H)2
−m ≥ 2. Then we have

τm − τm−1 = 2(T/H)1−2−m

− 2(T/H)1−21−m

= 2(T/H)1−21−m

(T 2−m

− 1)

≥ 2(T/H)1−21−m

= τm−1.

This implies τm − τm−1 ≥ 1
2τm for m ∈ [N ]. Then by Theorem 4.1, we have with probability at

least 1− δ,∑T

t=1
Reg(T ) ≤

N∑
m=1

(τm − τm−1) ·
√
H8S4A3 · Em

≲
√
H8S4A3 log(|M|N/δ) ·

N∑
m=2

τm − τm−1√
τm−1 − τm−2

+ τ1
√
H8S4A3

≲
√
H8S4A3 log(|M|N/δ) ·

N∑
m=2

τm√
τm−1

+
√
H7S4A3T

≲
√
H8S4A3 log(|M|N/δ)N

√
T/H =

√
H7S4A3T · log(|M| log log T/δ) log log T ,

where the last inequality follows from

τm√
τm−1

≤ τm√
(τm−1 + 1)/2

≤ 2(T/H)1−2−m

(T/H)
1
2 (1−21−m)

= 2
√
T/H

and N = O(log log T ). So the number of oracle calls are O(H log log T ).
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Proof of Theorem 3.2. Since we are choosing τm = 2m, we have N = O(log T ). So the number of
oracle calls are O(H log T ). Meanwhile, by Theorem 4.1, we have with probability at least 1− δ,

∑T

t=1
Reg(T ) ≤

N∑
m=1

(τm − τm−1) ·
√
H8S4A3 · Em

≲
√

H8S4A3 log(|M|N/δ)

(
1 +

N∑
m=3

2m−1

√
2m−2

)
≲
√
H8S4A3 log(|M|N/δ) · 2N/2 =

√
H7S4A3T · log(|M| log T/δ).

F Proofs from Section 5
Proof of Theorem 5.1. The reward distributions R̂m are 0 for m = 0, 1 since R̂0 are set to be 0 and
the model class M consists of models with constantly 0 reward. The regret estimations r̂egm−1 are
all 0 for m = 1, 2. Thus we apply the component-wise guarantees (Lemmas 3.2 to 3.5) to P̂2, R̂2

where R̂2 = 0. Concretely, from Lemma 3.2 we have with probability at least 1− δ,

Ec∼D,π∼ph
2 (c)

[
EM⋆,π,c

[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]]
≲ E2, (22)

with the offline MLEM oracle. From Lemma 3.3, we have for any π, c, h, s, a,

d̂h2 (s, a;π, c)− d̃h2 (s, a;π, c) ≤ 32e
√

H4S2A · E2. (23)

From Lemma 3.4, we have if for a context c and all h ∈ [H],

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
≤ H/γ2.

Then for the same c and all π, h, s, a, we have

d̃h2 (s, a;π, c) ≤ (1 + 1/H)
2(h−1)

dh2 (s, a;π, c). (24)

Finally, from Lemma 3.5, we have for any π, c, h, s, a,

d̃h2 (s, a;π, c) ·DH(P
h
⋆ (s, a; c), P̂

h
2 (s, a; c))

≤ γ2
e2H

· ph2 (c, π
h,s,a
2,c )d̃h2 (s, a;π

h,s,a
2,c , c) ·D2

H(P
h
⋆ (s, a; c), P̂

h
2 (s, a; c))

+ 2e2
√

E2
H4S2A

· d̃h2 (s, a;π, c).

(25)

Now we are ready to prove our claim following similar derivations from the proof of Lemma 4.1.
Concretely, we have for any set of policies {πc}c∈C and any context c, by local simulation lemma
(Lemma C.2)∣∣∣V 1

⋆ (πc, c, R)− V̂ 1
2 (πc, c, R)

∣∣∣ ≤ ∑
h,s,a

d̂h2 (s, a;πc, c)DH

(
P̂h
2 (s, a; c), P

h
⋆ (s, a; c)

)
.

Then by Eq. (23), we have∑
h,s,a

d̂h2 (s, a;πc, c)DH

(
P̂h
2 (s, a; c), P

h
⋆ (s, a; c)

)
≤
∑
h,s,a

d̃h2 (s, a;πc, c)DH

(
P̂h
2 (s, a; c), P

h
⋆ (s, a; c)

)
+ 32e

√
H6S4A3 · E2 (26)

Case I: If for a context c and all h ∈ [H],

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
≤ H/γ2.
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Then by Eqs. (24) and (25),∑
h,s,a

d̃h2 (s, a;πc, c)DH

(
P̂h
2 (s, a; c), P

h
⋆ (s, a; c)

)
≤ γ2

e2H
· ph2 (c, π

h,s,a
2,c )d̃h2 (s, a;π

h,s,a
2,c , c) ·D2

H(P
h
⋆ (s, a; c), P̂

h
2 (s, a; c))

+ 2e2
√

E2
H4S2A

· d̃h2 (s, a;πc, c)

≤ γ2
H

· ph2 (c, π
h,s,a
2,c )dh2 (s, a;π

h,s,a
2,c , c) ·D2

H(P
h
⋆ (s, a; c), P̂

h
2 (s, a; c))

+ 2e2
√

E2
H4S2A

· d̃h2 (s, a;πc, c)

Thus we have∣∣∣V 1
⋆ (πc, c, R)− V̂ 1

2 (πc, c, R)
∣∣∣

≲
√
H6S4A3 · E2 +

γ2
H

·
H∑

h=1

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
.

Case II: If for a context c there exists j ∈ [H] such that

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂ j
2 (s

j
1, a

j
1; c), P

h
⋆ (s

j
1, a

j
1; c)

)]
> H/γ2.

Then∣∣∣V 1
⋆ (πc, c, R)− V̂ 1

2 (πc, c, R)
∣∣∣

≤ 1 ≤ γ2
H

·
H∑

h=1

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
.

Combine Case I and II, we have∣∣∣V 1
⋆ (πc, c, R)− V̂ 1

2 (πc, c, R)
∣∣∣

≲
√

H6S4A3 · E2 +
γ2
H

·
H∑

h=1

Eπ∼ph
2 (c)

EM⋆,π,c
[
D2

H

(
P̂h
2 (s

h
1 , a

h
1 ; c), P

h
⋆ (s

h
1 , a

h
1 ; c)

)]
.

Then take expectation with respect to c together with Eq. (22) we obtain

Ec∼D

[∣∣∣V 1
⋆ (πc, c, R)− V̂ 1

2 (πc, c, R)
∣∣∣] ≲√H6S4A3 · E2 + γ2E2

≲

√
H7S4A3 log(|M|/δ)

T
≲ ε,

where the second inequality is by E2 = H log(|M|/δ)/T and the last inequality holds when

T ≥ Ω

(
H7S4A3 log(|M|/δ)

ε2

)
.

Thus the reward-free objective Eq. (5) is satisfied with probability at least 1− δ with

T ≤ O

(
H7S4A3 log(|M|/δ)

ε2

)
.
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Lemma F.1 (Lemma D.2 of Jin et al. [22]). Fix ε ≤ 1, δ ≤ 1/2, H,A ≥ 2, and suppose that
S ≥ L logA for a universal constant L. Then consider the trivial context space C = {c0}, there
exists a model class M = {Mj}j∈J , with |S| = S, |A| = A, |J | ≤ eSA, and horizon H and a
distribution µ on M such that any algorithm Alg that (ε/12, δ)-learns the class M satisfies

EM∼µEM,Alg[T ] ≳
SA

ε2
,

where T is the number of trajectories required by the algorithm Alg to achieve (ε/12, δ) accuracy
and EM,Alg[·] is the expectation under the interaction between the algorithm Alg and model M .

Proof of Theorem 5.2. . Let n = logK/(SA), then we consider the context space C = {c1, ..., cn}
and the i.i.d. distribution D on the context space being uniform. Denote the model class obtained
from Lemma F.1 by M = {M j(c0)}j∈J . Let J = {j1, ..., jn} ∈ J n be an index. Then we consider
the model class M = {MJ}J∈Jn , where MJ(ci) = M ji(c0), that is, the model class M is on each
context ci ∈ C an independent M. We first have that the size of the model class is bounded by
|M| = |J |n ≤ enSA ≤ K. Then we have for any algorithm Alg that (ε/24, δ)-learns the class M,
it must have (ε/12, δ)-learns the class M(ci) = {MJ(ci)}J∈Jn = {M j(c0)}j∈J for at least half
of the contexts ci ∈ C by Markov’s inequality. This, in turn, combined with Lemma F.1 gives that
there exists a distribution µ on the model class M such that

EM∼µEM,Alg[T ] ≳
n

2

SA

ε2
≳

logK

ε2
,

where T is the number of trajectories required by the algorithm Alg to achieve (ε/12, δ) accuracy
and EM,Alg[·] is the expectation under the interaction between the algorithm Alg and model M . Thus
concludes our proof.

G Computation
In this section, we show that for any m, c, h, s, a, the policy πh,s,a

m,c (Line 8) and the trusted transitions
T̃ h
m(c) (Definition 3.1) can be computed efficiently through linear programming. For simplicity,

we fix a context c throughout this section and omit its dependence. We first note that if T̃ j
m for

j ≤ h− 1 and πh,s,a
m are computed, then T̃ h

m can be computed in poly(HSA) time. To see this, for
any (s, a, s′), we have by the definition of πh,s,a

m that

max
π

d̃hm(s, a;π)

SA+ ηm · r̂egm−1(π)
=

d̃hm(s, a;πh,s,a
m )

SA+ ηm · r̂egm−1(π
h,s,a
m )

.

Then (s, a, s′) ∈ T̃ h
m iff

d̃hm(s, a;πh,s,a
m )

SA+ ηm · r̂egm−1(π
h,s,a
m )

P̂h
m(s′|s, a) ≥ 1

ζm
,

where the left-hand side can be computed given T̃ j
m for j ≤ h− 1 in poly(HSA) time. Thus we only

need to show how to compute πh,s,a
m . Assume we want to compute πh̄,s̄,ā

m for h̄ ∈ [H], s̄ ∈ S, ā ∈ A,
given T̃ h

m for h ≤ h̄− 1. Let r̄hm(s, a) = Erh∼R̂h
m−1

[rh] be the mean reward for model M̂m−1 for

h, s, a. Let r̄m = (r̄hm(s, a))h,s,a be the vector of mean rewards for the model M̂m−1. We consider
the following linear fractional program with the following decision variables:

dh̄
m =

(
d̃h̄
m

d̂m−1

)
, where d̃h̄

m = (d̃h,s,a,m)h,s,a∈[h̄]×S×A, d̂m−1 = (d̂h,s,a,m−1)h,s,a∈[H]×S×A.

We will use the variable d̃h̄
m to simulate the trusted occupancy measures and d̂m−1 to simulate the

estimated occupancy measures from M̂m−1 by linear constraints. Concretely, consider the following
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linear fractional program:

max
dh̄

m

d̃h̄,s̄,ā,m

SA+ ηm(V̂ 1
m−1 − ⟨d̂m−1, r̄m−1⟩)

,

subject to :



d̂h,s,a,m−1 ≥ 0, ∀ h, s, a ∈ [H]× S ×A,∑
a d̂1,s,a,m−1 = 1(s = s1), ∀s ∈ S,∑
s,a d̂h,s,a,m−1P̂

h
m−1(s

′|s, a) =
∑

a d̂h+1,s′,a,m−1, ∀ h, s′ ∈ [H]× S,
d̃h,s,a,m ≥ 0, ∀ h, s, a ∈ [h̄]× S ×A∑

a d̃1,s,a,m = 1(s = s1), ∀s ∈ S,∑
s,a,s′∈T̃ h−1

m
d̃h−1,s,a,mP̂h−1

m (s′|s, a) =
∑

a d̃h,s′,a,m ∀ h ≤ h̄, s′ ∈ S.

This is a linear fractional program of HSA+ h̄SA decision variables with HSA+HS+ h̄SA+ h̄S

constraints. It is clear from the linear constraints that this program simulates the MDPs M̂m−1 and
M̂m, and the program obtains the right objective. Then, for this linear fractional program, we apply
the Charnes-Cooper transformation [7] to transform it into a linear program. After the transformation,
we can apply existing tools for solving linear programs (e.g., Lee and Sidford [23]) to solve for d̃h̄

m

which encodes the policy πh̄,s̄,ā
m in poly(HSA) time.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are validated by detailed proofs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes] .

Justification: The paper discusses the limitations of the work in the discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The paper provides detailed assumptions and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work. There is no societal impact on the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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