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ABSTRACT

Multimodal Story Customization aims to generate coherent story flows while con-
ditioning on both textual descriptions and reference identity images. While re-
cent progress in story generation has shown promising results, most existing ap-
proaches rely on text-only inputs, with a few works incorporating character iden-
tity cues (e.g., facial ID) but lacking broader multimodal conditioning. This lim-
ited reliance makes it difficult to jointly preserve consistency of characters, scenes,
and textual details across frames, thereby constraining the applicability of these
approaches in practical domains such as filmmaking, advertising, and storytelling.
In this work, we introduce Story2Screen, a multimodal framework that integrates
free-form description with character and background references to enable coherent
and customizable story generation. To enhance cinematic diversity, we introduce
shot-type control via parameter-efficient prompt tuning on movie data, enabling
the model to generate sequences that more faithfully reflect real-world cinematic
grammar. To comprehensively evaluate our framework, we establish two new
benchmarks, MSB and M2SB, which assess multimodal story customization from
the perspectives of character/scene consistency, text–visual alignment, and shot-
type control. Extensive experiments demonstrate Story2Screen achieves improved
consistency and cinematic diversity compared to existing methods.

1 INTRODUCTION

Recent advancements in text-to-video (T2V) (Kondratyuk et al., 2023; Liu et al., 2025a) and text-
and-image-to-video (TI2V) (Wan et al., 2025) Transformers have shown notable progress in generat-
ing compelling clips. However, producing longer videos with consistent characters, coherent scenes,
and structured narratives remains a significant challenge. This limitation constrains their applicabil-
ity in creative domains such as filmmaking and advertising. A central difficulty lies in maintaining
long-term consistency, since the computational and memory cost of Transformer self-attention scales
quadratically with temporal length. Recent efforts (Chen et al., 2024; Wang et al., 2025a; Dalal et al.,
2025) have extended video duration to the minute scale, however, preserving long-term consistency
remains an open challenge. Under these limitations, research (Zhao et al., 2025; He et al., 2025)
has proposed pipelines to extend the video, where T2I models generate keyframes that are then ex-
panded into video clips via I2V or TI2V models. Concatenating these clips enables longer video
generation, making keyframe coherence critical as structural anchors for storytelling. This naturally
motivates the task of Multimodal Story Customization (MSC), which extends beyond text-only gen-
eration by conditioning on both text prompt and reference images. Unlike producing isolated frames
from T2I or TI2I models, MSC aims to generate sequences that preserve character identity, temporal
consistency, and maintain narrative coherence.

Existing approaches to story generation (Tewel et al., 2024; Zhou et al., 2024; Wang et al., 2025b)
are training-free methods that build on text-to-image diffusion models but cannot utilize reference
images for character- or scene-specific customization. Other methods (Liu et al., 2025b; Zhao et al.,
2025; Ma et al., 2025) have focused their consistency objectives on foreground consistency (e.g.,
character faces), while accessories and background continuity are often ignored. To address this,
CharaConsist (Wang et al., 2025b) proposes point-tracking attention to improve scene consistency.
However, without explicit conditioning on character and scene reference images, story customiza-
tion and long-term consistency remain difficult. Therefore, we focus on MSC, conditioning on both
textual descriptions and visual references to generate coherent story sequences, as shown in Fig. 1.
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(1)Kai flips open his sketchbook, revealing a 
detailed drawing of a tree, his hand poised with a 
pencil, capturing the essence of the library's calm 
atmosphere.

(2) Kai leans over his sketchbook, carefully 
shading in the leaves, his brow furrowed in 
concentration while surrounded by tall 
bookshelves.

(3) Kai steps away from the table, gathering his 
things, and adjusts the strap of his backpack 
while glancing back at the bookshelves.

Story: "Kai, the warm and approachable 
boy, spends his afternoon exploring the 
tranquility of the library. After finishing a 
book, he gleefully packs his sketchbook 
and heads to the riverside to draw the 
scenery."Kai Library Riverside

Multimodal
Materials

(4) Kai arrives at the riverside, a wide view of 
the water and trees in the background, as he 
sets down his backpack on the grassy bank.

(5) Kai sits cross-legged on the grass, pulling 
out his sketchbook and flipping to a blank page, 
his face illuminated with excitement to draw.

(6) Kai holds his pencil over the blank page, 
focusing intently on the riverscape, with the sun 
reflecting off the water in the background.

Figure 1: Story2Screen can generate (1) consistent keyframes with different shot types based on the
multimodal materials. (2) coherent story scenes that reference multiple characters and backgrounds.

Table 1: Features Comparison between ConsistFilmer and existing Story Generation Models

Methods/Features Consistency Reference Images as ID (Customization) Control

Character Scene Single
Character

Multiple
Characters

Scene/
Background Text Prompt Shot-type

IP-Adapter (Arxiv’23) ✓ ✗ ✓ ✗ ✗ ✓ ✗
StoryGen (CVPR’24) ✓ ✗ ✓ ✗ ✗ ✓ ✗

ConsiStory (SIGGRAPH’24) ✓ ✗ ✗ ✗ ✗ ✓ ✗
StoryDiffusion (NeurIPS’24) ✓ ✗ ✗ ✗ ✗ ✓ ✗

Storynizor (AAAI’25) ✓ ✗ ✓ ✗ ✗ ✓ ✗
StoryWeaver (AAAI’25) ✓ ✗ ✓ ✓ ✗ ✓ ✗
DreamStory (TPAMI’25) ✓ ✗ ✓ ✓ ✗ ✓ ✗
CharaConsist (ICCV’25) ✓ ✓ ✗ ✗ ✗ ✓ ✗

ConsistFilmer (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

We propose Story2Screen, as shown in Fig. 2, a three-stage framework that transforms free-form
descriptions into long video sequences. The process begins by generating structured multimodal
scripts for each keyframe, including text prompts and reference images (characters and scenes).
These materials are then processed by the proposed ConsistFilmer, a multimodal generation model
that can receive multiple multimodal scripts to produce consistent keyframes. By incorporating
Inner-batch Text Reference (ITR) and Next Keyframe Prediction (NKP), ConsistFilmer ensures that
each keyframe evolves smoothly from the previous one while preserving both character identity and
scene continuity. Beyond consistency, ConsistFilmer further incorporates shot-type control through
prompt tuning with movie data from CMD (Bain et al., 2020). This design enables ConsistFilmer
to produce sequences that are not only coherent but cinematic, overcoming the monotony of fixed-
view generation in existing methods. Besides, prior works (Zhou et al., 2024; Wang et al., 2025b) on
story generation have mainly concentrated on single-character scenarios. In contrast, ConsistFilmer
can be extended to multi-subject story customization. We summarize the key differences between
ConsistFilmer and existing story generation models in Tab. 1. We further introduce the Multimodal
Storyboard Benchmark (MSB) and the Multimodal & Multisubject Storyboard Benchmark (M2SB),
two benchmarks designed to evaluate MSC in single- and multi-subject settings. Both benchmarks
include diverse identity images, backgrounds, and narrative scripts, providing a unified basis for fair
comparison across existing and future methods. Our contributions are summarized as follows:
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• We propose Story2Screen, a pipeline for long story generation with multimodal customiza-
tion. To the best of our knowledge, it is the first framework to achieve customization on
text prompts, character(s)/scene references, and shot-type, making it flexible for users.

• We introduce ConsistFilmer, a unified multimodal generator that employs ITR and NKP
to improve consistency, while supporting rich shot-type control.

• We release two new benchmarks, MSB and M2SB, containing multimodal materials, which
provide the standardized evaluation for multimodal story customization.

2 RELATED WORK

Long Video Generation Models. Long video generation has been a long-standing challenge in
the field. Recent works (Chen et al., 2024; Wang et al., 2025a; Dalal et al., 2025) have extended
video duration to minutes, surpassing the lengths achievable by models such as Sora (Brooks et al.,
2024) and Veo3 (DeepMind, 2025). SEINE (Chen et al., 2024) is designed to reuse the last few
frames of a generated video to predict subsequent ones. LingGen (Wang et al., 2025a) enables
linear-complexity generation but remains limited to single scenes and slow motion, without captur-
ing complex narratives. TTT-Video (Dalal et al., 2025) produces clips up to one minute long. To
further extend video length, MovieDreamer (Zhao et al., 2025) adopts a multi-stage pipeline that first
generates keyframes, expands them into short clips via I2V models, and concatenates them into long
videos. However, MovieDreamer primarily focuses on facial consistency while neglecting scene and
contextual coherence, resulting in inconsistent scenes and reduced narrative expressiveness.

Unified Multimodal Models. Recent efforts have explored unified frameworks for multimodal
understanding and generation. Seed-X (Ge et al., 2024) introduces multi-granularity modeling to
support both image understanding and generation across arbitrary resolutions. Emu3 (Wang et al.,
2024) adopts a purely autoregressive paradigm, tokenizing all modalities to unify image and video
generation. Janus-Pro (Chen et al., 2025) employs two decoupled image encoders to separate under-
standing from generation, thereby enhancing semantic comprehension and visual synthesis. Omni-
Gen (Xiao et al., 2025) integrates text-to-image, editing, and in-context generation within a rectified-
flow framework with decoupled tokenization. While these models demonstrate strong multimodal
understanding and image generation, they fall short in maintaining long-term consistency.

Visual Story Generation. The goal of story generation is to produce coherent sequences of images
that ensure both character and scene consistency while preserving logical continuity throughout the
narrative. Prior works have explored this challenge from different perspectives, with early stud-
ies focusing mainly on character (foreground) consistency. For instance, ConsiStory (Tewel et al.,
2024) is designed to maintain subject identity while aligning with textual descriptions, StoryDiffu-
sion (Zhou et al., 2024) incorporates Consistent Self-Attention to enhance character preservation,
and Storynizor (Ma et al., 2025) introduces ID-Injector and ID-Synchronizer modules for iden-
tity consistency. Similarly, StoryWeaver (Zhang et al., 2025), DreamStory (He et al., 2025), and
1P1S (Liu et al., 2025b) continue to prioritize character consistency. Although these methods im-
prove character preservation, they remain limited in enforcing scene coherence, often leading to
discontinuities. CharaConsist (Wang et al., 2025b) advances this direction by leveraging point-
tracking attention and adaptive token merging to align foreground and background, but it still relies
solely on text inputs, restricting effective customization. In contrast, our method is the first to con-
dition on a comprehensive set of multimodal materials, including text prompts, foreground subjects,
background scenes, and shot-type annotations, providing greater flexibility for user customization,
whereas prior approaches can only handle a subset of these conditions.

3 METHOD

The goal of Story2Screen is to generate long visual sequences with narrative coherence, charac-
ter/scene consistency, and cinematic diversity. To achieve this, we design a three-stage framework.
First, the Multimodal Generative Model as Director, which structures the narrative into multimodal
scripts, which include textual prompts, reference images, and shot-type annotations. Second, Con-
sistFilmer produces consistent keyframes by integrating Inner-batch Text Reference (ITR), Next
Keyframe Prediction (NKP), and shot-type control. Third, Text-and-Image-to-Video (TI2V) Expan-
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𝐷: Ethan carefully prepares a cup of tea in the kitchen, 
moving in a methodical rhythm as he handles the kettle and 
teacup. After taking a moment to enjoy the warmth of the 
cup, he packs his sketchbook and leaves the kitchen, making 
his way to the riverside.

𝑝!: Ethan stands at the counter, his fingers 
wrapped around the handle of a kettle as he lifts it 
to pour boiling water into a teacup. 

𝑝": Ethan picks up a small spoon and stirs the tea, 
observing the gentle swirl of the liquid in the cup.

𝑝#: Ethan steps onto the riverside path, sketchbook 
tucked under his arm, as he gazes at the scenery, 
the sun glistening on the water.

𝑝$: Ethan opens his sketchbook, flipping to a 
blank page. He finds a comfortable spot by a tree.
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Figure 2: Overview of Story2Screen. (1) Multimodal scripts are generated from text and references;
(2) ConsistFilmer produces consistent keyframes; (3) TI2V expands them into long videos.

sion converts script–keyframe pairs from previous stages into short clips, which are then concate-
nated into long videos. The overview of Story2Screen is illustrated in Fig. 2

3.1 MULTIMODAL GENERATIVE MODEL AS DIRECTOR

In this stage, we construct the multimodal materials required for Story2Screen. Given a free-
form description D, a multimodal generative model (GPT-4o) produces: (1) Text prompts P =
{p1, . . . , pn}, each describing one of n keyframes; and (2) Reference images of story characters
C = {c1, . . . , cm} and background scenes B = {b1, . . . , bo}, where m and o denote the numbers
of unique characters and backgrounds, respectively. For each keyframe t, the script st includes a
textual prompt pt, reference images C

′

t ⊆ C and b
′

t ∈ B, and their corresponding textual mentions
of character(s) C

′text
t and background b

′text
t , and a shot type kt ∈ K, where K denotes the shot-type

vocabulary: The multimodal scripts, st = ( pt, C
′

t , C
′text
t , b

′

t, b
′text
t , kt ) serve as conditions for the

next stage, where ConsistFilmer instantiates them into consistent keyframes, enabling characters to
move dynamically across scenes, a capability not supported by prior story generation models.

3.2 CONSISTFILMER: CONSISTENT KEYFRAME GENERATOR

While multimodal generation models (Wu et al., 2025; Wang et al., 2024) achieve strong results
on in-context image generation and editing, they remain limited in producing temporally consistent
sequences required for story generation. To overcome this, we propose ConsistFilmer, a keyframe
generator that enforces both inter-frame alignment with reference images and intra-frame coherence
across time (Fig. 3). ConsistFilmer integrates three mechanisms: Inner-batch Text Reference (ITR),
Next Keyframe Prediction (NKP), and Shot-type Control.

Inner-batch Text Reference (ITR). ITR ensures consistent conditioning within the same scene.
Instead of generating each keyframe independently, we jointly encode all textual descriptions asso-
ciated with a scene. Concretely, for two consecutive scripts st−1 and st, if C

′text
t = C

′text
t−1 and

b
′text
t = b

′text
t−1 , we group them into the same batch and process them with ITR. Formally, given

multimodal scripts S = {s1, . . . , sn}, we concatenate the prompt in each script and obtain hidden
states through the autoregressive (AR) model: H = fAR([p

′
1; . . . ; p

′
n]), where H = {h1, . . . , hn}

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Autoregressive Transformer

Text Tokenizer

Diffusion Transformer

RefinerRefiner

VAE
Time
Step

System 
Prompt

Text Tokenizer Hidden States NShot Prompt N

Diffusion Transformer
Next Keyframe Prediction

Hidden States N+1Hidden States N

characterscene

Co
ns

ist
Fi

lm
er

{𝑐!}/𝑏! 
Script 1
{𝑐!}/𝑏!
Script 2

{𝑐!}/𝑏! 
Script n

The Same Scenes/Chars in the Same Batch

……

Co
ns

ist
Fi

lm
er

{𝑐!}/𝑏" 
Script n+1

{𝑐!}/𝑏" 
Script n+2

{𝑐!}/𝑏" 
Script n+m

…

{"Scene": "Riverside",
"Shot type": "Medium Shot",
"Description": "Ethan 
steps onto the riverside 
path, sketchbook tucked 
under his arm, as he gazes 
at the scenery, the sun 
glistening on the water."}

{"Scene": "Riverside",
"Shot type": "Close-up",
"Description": "Ethan 
opens his sketchbook, 
flipping to a blank page, 
as he finds a comfortable 
spot by a tree. "}
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Figure 3: Overview of ConsistFilmer, which can take multimodal materials as input to generate
sequences of consistent keyframes.

serve as textual anchors for keyframes. To align textual entities with reference images, we adjust
the prompt to the format: p′t = “In the {btextt } as image1, {ctextt } as image2, {pt}”. This prompt
adjustment provides fine-grained grounding in each keyframe and supports multiple characters by
extending the mapping.

Next Keyframe Prediction (NKP). NKP propagates temporal information across frames. At
step t, a DiT module synthesizes the current keyframe: It = DiT(ht, zt), where ht is the hid-
den states from ITR and zt are VAE-encoded visual features of the reference images C ′

t and b′t
in st. To enhance consistency, the previous frame It−1 is considered to be added to the refer-
ence. We resize It−1 by a scale of α, re-encoded via VAE and concatenate with reference features:
zt = [VAE(C ′

t),VAE(b′t),VAE(Scaleα(It−1))] where α denotes the consistency ratio, controlling
the strength of conditioning. A larger ratio enforces a stronger signal with past frames, while a
smaller one introduces more variation. α trades off the consistency and diversity. This recursive
conditioning enables narrative information to flow smoothly across frames.

Shot-type Control. Cinematic storytelling requires diverse perspectives. To this end, we introduce
a set of shot-type embeddings learned via parameter-efficient prompt tuning on movie data (Bain
et al., 2020). This design allows a general-purpose foundation model to better capture the com-
positional priors needed for generating cinematic keyframes without retraining the entire model.
Let K denote the shot-type vocabulary and kt ∈ K the token assigned to script st. Given the
hidden state ht = fAR(st), we prepend a learnable shot embedding Eshot(k) ∈ Rd×N , where d
is the embedding dimension and N is the number of tokens, to form a shot-aware representation:
h′
t = [Eshot(kt) ; ht ]. The sequence h′

t is then used to condition the DiT decoder: It = DiT(h′
t, zt).

This hidden-state prefixing enforces shot-specific composition without re-encoding by the AR, lead-
ing to outputs that are visually diverse.

Multi-subject Story Customization. Prior story generation works (Zhou et al., 2024; Wang et al.,
2025b) are restricted to single-character scenarios, limiting their ability to capture multi-character
interactions. In contrast, ConsistFilmer conditions on multiple reference images within ITR and
NKP, enabling multi-subject story customization and broadening narrative flexibility.

3.3 TI2V EXPANSION

Given the prompt text in the scripts from Stage 1 and the keyframes from Stage 2, we employ an
existing text-and-image-to-video (TI2V) model (e.g., Veo3 (DeepMind, 2025), Wan (Wan et al.,
2025)) to generate short clips. These clips are then concatenated to form long videos, allowing
Story2Screen to scale to long horizons while preserving narrative and visual consistency.
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“Zoe, the gentle art student with light brown hair, sets out to find inspiration in the 
park. After sketching the serene view on a park bench, she decides to explore the 
lively shopping mall, observing the vibrant colors and patterns around her.”

Multimodal
Materials 
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(1) Zoe sits on a park bench, reaching for her sketchbook while 
glancing at the picturesque landscape in front of her.
(2) Zoe opens her sketchbook and begins to sketch the trees and 
people in the park, her pencil moving swiftly across the paper.
(3) Zoe stands, packing her sketchbook and art supplies into her bag, 
her face glowing with inspiration from her surroundings.
(4) Zoe walks away from the park bench, heading towards the 
entrance of the shopping mall, her bag slung over her shoulder.

(5) Inside the shopping mall, Zoe stops to gaze at a vibrant window display, her 
hands clasped in front of her as she takes in the colors.
(6) Zoe lifts her camera, aiming it at a fascinating pattern displayed in the shop 
window, her finger poised on the shutter.
(7) Zoe walks through the mall, stopping intermittently to observe different 
shops, her sketchbook now open tucked under her arm.
(8) Zoe flips to a blank page in her sketchbook with excitement, ready to 
capture her mall inspiration through sketches.

ZoeShopping MallPark

Dr
ea

m
St

or
y

Figure 4: Qualitative Comparison with prior methods on MSB

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We adopt Omnigen2 (Wu et al., 2025) as backbone to reduce training
overhead, which is a common practice in story generation. Omnigen2 integrates an autoregressive
model (Qwen2.5-VL-3B) with diffusion transformers. Since our focus is on image generation, we
discard the visual inputs in the autoregressive component of Omnigen2. For ConsistFilmer, we op-
timize the shot-type prompt for 4,000 iterations using four NVIDIA H100 GPUs. During inference,
we employ a single NVIDIA 5090 GPU. In NKP, we set α = 0.75, and in the shot-type prompt, we
set d = 2048 and N = 30.

Datasets. To systematically evaluate the performance of our method, we propose the Multimodal
Storyboard Benchmark (MSB) for evaluating single-character story customization and the Multi-
modal & Multisubject Storyboard Benchmark (M2SB) for assessing multicharacter story customiza-
tion. The details of the pipeline regarding MSB and M2SB are provided in the Appendix A.2. Each
dataset consists of 100 stories, and each story contains 8 scripts that correspond to 8 keyframes,
resulting in 800 Text-and-Image-to-Image (TI2I) instances. In these keyframes, the designated char-
acters appear at the specified locations, ensuring narrative progression. To train the shot-type prompt
in the ConsistFilmer, we collect the images from CMD and generate the synthetic data for augmen-
tation. The details of the data preparation pipeline is provided in Appendix A.3.

Comparison Method. In the experiments, we compare our method with both training-free and
identity-reference approaches. For the training-free category, we select StoryDiffusion (Zhou et al.,

6
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Table 2: Quantitative comparison of prior methods on consistency metrics.

Method Inter-Consistency Intra-Consistency Average
Consistency (↑)CLIP-I-fg(↑) CLIP-I-bg(↑) CLIP-I-fg(↑) CLIP-I-bg(↑)

IP-Adapter (Arxiv’23) 0.901 0.936 0.900 0.646 0.846
Consistory (SIGGRAPH’24) 0.868 0.884 0.883 0.612 0.812
StoryDiffusion (NeurIPS’24) 0.857 0.900 0.921 0.645 0.831
DreamStory (TPAMI’25) 0.844 0.858 0.896 0.635 0.808
CharaConsist (ICCV’25) 0.904 0.945 0.899 0.659 0.852
ConsistFilmer (Ours) 0.905 0.961 0.914 0.657 0.858

Table 3: Quantitative comparison of prior methods on ID-SIM and image quality/text alignment.

Method ID-SIM Text Alignment/ Image Quality

Inter(↑) Intra(↑) CLIP-T(↑) IAS(↑) IQS(↑) STA(↑)

IP-Adapter (Arxiv’23) 0.386 0.558 0.216 0.449 0.396 0.315
Consistory (SIGGRAPH’24) 0.265 0.316 0.303 0.431 0.385 0.406
StoryDiffusion (NeurIPS’24) 0.250 0.403 0.264 0.450 0.414 0.290
DreamStory (TPAMI’25) 0.255 0.363 0.276 0.438 0.411 0.280
CharaConsist (ICCV’25) 0.303 0.400 0.265 0.448 0.415 0.247
ConsistFilmer (Ours) 0.372 0.464 0.285 0.450 0.423 0.418

2024), ConsiStory (Tewel et al., 2024), DreamStory (He et al., 2025), and CharaConsist (Wang
et al., 2025b), which generate stories purely from textual descriptions without explicit visual refer-
ences. These baselines allow us to evaluate the benefit of multimodal conditioning. For the identity-
reference category, we adopt IP-Adapter (Ye et al., 2023), a representative method for identity-
preserving generation. Following (Wang et al., 2025b), we crop the face region of the reference
image using RetinaFace (Deng et al., 2020) before feeding it into IP-Adapter. For models that only
accept a single text input, we use the captions of both characters and backgrounds as input. Since the
released implementation of DreamStory also supports text-only input, we follow the same protocol.

Evaluation Metrics. Following previous works (Wang et al., 2025b), we employ several metrics
to evaluate the performance of our multimodal story generation model. CLIP-I measures the pair-
wise CLIP-based image similarity. To assess consistency more precisely, we compute CLIP-I-fg
and CLIP-I-bg, which evaluate the image similarity of foreground and background. We use Di-
nov2 (Oquab et al., 2023) and Segment Anything Model (Kirillov et al., 2023) to split the foreground
and background, and employ Alpha-CLIP (Sun et al., 2024) to compute the similarity in the mask
area. To comprehensively evaluate the performance of story customization generation, we further
propose inter-consistency and intra-consistency. Inter-consistency represents that we compute the
similarity between the reference images and the generated images. As for intra-consistency, in con-
trast, we compute the similarity between the generated images. We further adopt Identity Similarity
(ID-SIM) to measure character consistency across frames. We first use RetinaFace (Deng et al.,
2020) to detect the facial area of the character and use FaceNet (Schroff et al., 2015) to extract the
face embedding then calculate the similarity between two faces.

4.2 EXPERIMENTAL RESULTS

Qualitative Results. In Fig. 4 and Fig. 5, we show the results of ConsistFilmer and other meth-
ods on single- and multi-subject story customization. As seen in Fig. 4, existing methods struggle
to jointly leverage reference images and text, often leading to inconsistencies in backgrounds and
character clothing, as in IP-Adapter, StoryDiffusion, and ConsiStory. CharaConsist, while main-
taining stable backgrounds, produces scenes that appear overly static. In contrast, ConsistFilmer
generates coherent sequences that preserve character identity while ensuring background consis-
tency. In Fig. 5, all comparison methods fail to generate consistent stories with two subjects. As
the story progresses, the characters may appear alternately or together, but prior methods that overly
emphasize foreground consistency often suffer from character confusion in such cases. In contrast,
Story2Screen explicitly determines the required reference images for each frame, including both
characters and backgrounds, during the first stage. This design makes it less prone to confusion.
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In an art classroom, Emma silently sketches a still life while Zoe gently 
observes her work, captivated. After finishing her drawing, Emma 
transitions to the library, where she carefully flips through an art book, 
inspired by Zoe's creative energy.

Multimodal
Materials 

(1) Emma's hand moves briskly across the page as she sketches a still 
life, her focused expression highlighting her intent.
(2) Zoe stands beside Emma, her eyes wide with admiration as she 
observes the intricate details of Emma's drawing.
(3) Emma puts down her pencil and smiles at Zoe, who claps her 
hands in appreciation of the finished artwork.
(4) Emma packs her sketchbook into her bag and gestures for Zoe to 
follow her as they both exit the classroom, their enthusiasm palpable.

(5) Emma grabs a large art book from the shelf, her fingers gliding 
over the cover as she reaches for inspiration.
(6) Zoe flips through the pages of a smaller art magazine at a nearby 
table, her eyes scanning the vibrant images and ideas.
(7) Emma sits at a table, opened art book in front of her, as Zoe leans 
over, pointing enthusiastically to a colorful painting, both immersed 
in the creative process.
(8) Emma's eyes spark with inspiration as she gazes at a page of the 
art book, her fingers delicately tracing over an elegant brush stroke.

Dr
ea

m
St

or
y 

Figure 5: Qualitative Comparison with prior methods on M2SB

Table 4: Comparison of different methods on multiple subject story customization.

Method CLIP-T(↑) IQS(↑) IAS(↑)

IP-Adapter (Arxiv’23) 0.249 0.487 0.392
Consistory (SIGGRAPH’24) 0.302 0.463 0.382
StoryDiffusion (NeurIPS’24) 0.253 0.495 0.415
CharaConsist (ICCV’25) 0.263 0.492 0.424
DreamStory (TPAMI’25) 0.265 0.491 0.440
ConsistFilmer (Ours) 0.272 0.496 0.439

Notably, our method can produce visually richer results by following shot types. More qualitative
comparisons and results can be found in Appendix A.5.

Quantitative Results. We compare ConsistFilmer with IP-Adapter, StoryDiffusion, ConsiStory,
and CharaConsist in Tab. 2 and Tab. 3. ConsistFilmer achieves the best overall consistency, ben-
efiting from image references for stronger inter-consistency. For intra-consistency, its foreground
scores are lower due to richer action variations from following textual descriptions, while CharaCon-
sist attains higher background scores by generating nearly identical scenes. This reflects a trade-off
between consistency and diversity. In Tab. 3, IP-Adapter shows the highest ID-SIM by produc-
ing static, camera-facing characters, whereas ConsistFilmer yields more dynamic and instruction-
following results, leading to lower ID-SIM but better story alignment. For text alignment and image
quality, our method obtains slightly lower CLIP-T scores compared to ConsiStory, which we at-
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(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 6: Top: Ablation on consistency
components (a) Previous frame, (b) w/o
ITR&NKP, (c) +NKP, (d) +ITR&NKP.
Bottom: Ablation on α, (e) Previous frame,
(f) 1, (g) 0.25, (h) 0.125.

(1) Zoe leans over her canvas, concentrating 
intently as she sketches detailed lines of a 
landscape. (2) Zoe smiles slightly as she adds 
the final touches, bringing her artwork to life 
with vibrant colors.

(b) (c)(a)

Figure 7: Two consecutive frames generated by (b)
ConsistFilmer and (c) Veo3 based on the same mul-
timodal input (a).

Table 5: Ablation on ITR and NKP

ITR NKP CLIP-T Avg-Consistency ID-SIM

✗ ✗ 0.2834 0.854 0.316
✓ ✗ 0.2848 0.855 0.380
✗ ✓ 0.2855 0.856 0.391
✓ ✓ 0.2852 0.858 0.418

Table 6: Ablation on different α

α CLIP-T Avg-Consistency

0.125 0.2894 0.850
0.25 0.2885 0.854
0.50 0.2863 0.857
0.75 0.2852 0.858
1.00 0.2841 0.860

tribute to differences in the base models, as also noted in CharaConsist (Wang et al., 2025b). On
multi-subject customization (Tab. 4), ConsistFilmer achieves competitive results on M2SB.

4.3 ANALYSIS

Ablation on Consistency Components. To demonstrate the effectiveness of ITR and NKP, we show
quantitative results in Tab. 5. Both components improve consistency, and their combination achieves
the best performance. Qualitative examples in Fig. 6 (top row) further show that ConsistFilmer can
preserve objects across frames (e.g., the evolving painting) and maintain story flow.

Ablation on Different Consistent Ratios (α). In Tab. 6, we ablate different consistency ratios,
and the corresponding qualitative comparisons are shown in Fig. 6 (bottom row). We observe that
increasing α leads to stronger consistency across frames, but at the cost of reduced visual diversity.
This is because allocating more tokens to reference images reduces the proportion of text tokens,
making the generated results less aligned with textual descriptions and thereby lowering the CLIP-T
score. To balance consistency and diversity, we set α = 0.75 in our experiments.

Comparison between ConsistFilmer and Veo. The Veo series demonstrates strong video gen-
eration capabilities with image conditioned synthesis. However, Veo3 generates each frame inde-
pendently without referencing past outputs, leading to inconsistencies in objects and backgrounds
(Fig. 7). In contrast, ConsistFilmer explicitly leverages past keyframes, allowing our framework to
maintain narrative continuity and better preserve story progression.

5 CONCLUSION

We present Story2Screen, a multimodal framework for story generation. Our method integrates
multimodal scripts to generate long visual sequences with both character and scene consistency.
To achieve this, we introduced ConsistFilmer, which leverages the power of the multimodal gen-
eration model and employs Inner-batch Text Reference (ITR), Next Keyframe Prediction (NKP),
and shot-type–aware prompt tuning to produce coherent and cinematic keyframes. We further de-
veloped MSB and M2SB, two novel benchmarks that evaluate story generation from consistency,
alignment, and shot-type perspectives. Experimental results show that Story2Screen outperforms
existing methods in maintaining long-term consistency and enabling controllable story generation.
We believe this work provides a step toward more flexible and reliable multimodal story generation,
with potential applications in filmmaking, advertising, and storytelling.
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A APPENDIX

A.1 LARGE LANGUAGE MODEL (LLM) USAGE

This paper benefited from the use of LLM (e.g., ChatGPT) for grammar correction and language
polishing. All ideas, experimental designs, and analyses are the sole responsibility of the authors.

A.2 DETAILS OF MSB & M2SB

The overview of MSB and M2SB is illustrated in Fig. 8. We first use GPT-4o to generate the story
outline and the possible characters/scenes images, then we prompt GPT-4o to generate the story
scripts in MSB and M2SB for each keyframe, as shown in Fig. 9.

Classroom

Train Car

Kitchen

Park Bench

Cafe

Riverside

Bedroom

Field Street

Library

Shopping Mall

LaboratoryArt Classroom

Living Room

Parking Lot

Dining Room

Reference Images (Characters) Text Prompts (Stories)

Emma Zoe

Ryan Kai

Ethan

Lenna

"Kai, the warm and approachable 
boy, spends his afternoon 
exploring the tranquility of the 
library. After finishing a book, 
he gleefully packs his 
sketchbook and heads to the 
riverside to draw the scenery."

Reference Images (Scenes)

{"Scene": "Library",
"Shot type": "Extreme Close-up",
"Description": "Kai flips open 
his sketchbook, revealing a 
detailed drawing of a tree, his 
hand poised with a pencil, 
capturing the essence of the 
library's calm atmosphere."}

{"Scene": "Riverside",
"Shot type": "Close-up",
"Description": "Kai's hand 
swiftly glides the pencil across 
the page, sketching the outline 
of the trees, with droplets of 
water occasionally glistening in 
the sunlight."}

Text Prompts (Scripts)

Figure 8: Overview of Multimodal Story Benchmark

A.3 DATASET FOR SHOT-TYPE CONTROL

In this section, we detail the pipeline used to construct the dataset for shot-type control. (1) We
collect video data from the Condensed Movie Dataset (Bain et al., 2020). (2) We apply Byte-
Track (Zhang et al., 2022) to track character trajectories across frames, enabling retrieval of the
same individual across different scenes. (3) We randomly sample two frames to form a pair and
use CLIP (Radford et al., 2021) to verify that both frames depict the same character, thereby avoid-
ing trivial duplication or copy–paste artifacts. (4) We apply a shot-type classifier trained by Xie
et al. (2025) to categorize the target frame into one of the canonical shot types. (5) Finally, we use
Qwen2.5-VL (Bai et al., 2025) to generate a caption for the target frame, which serves as the textual
prompt. The resulting dataset contains 715 example pairs, which we use for training. Examples in
this dataset are illustrated in Fig. 10. We further provide more example from Story2Screen on MSB
in Fig. 11

A.4 STORY2SCREEN WITH EXISTING TI2V MODEL.

We employ Veo3 to demonstrate that Story2Screen can be integrated with recent TI2V models to
form longer, meaningful videos. Specifically, we leverage the text prompts produced in Stage 1 of
Story2Screen and the keyframes generated by ConsistFilmer to synthesize short clips, which are
then concatenated into longer videos. We also compare against closed-source models (Sora and
Veo3). Story2Screen not only enables the generation of longer videos but also improves text-video
alignment with the abstract, resulting in more semantically meaningful content. Qualitative compar-
isons are provided in Appendix A.4. Story2Screen can generate longer videos with global and local
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"""You are a storyboard designer.

I will give you a list of possible scenes and possible characters.
Your tasks:
1. Randomly select exactly TWO different scenes from the scene list.
2. Randomly select exactly One character from the character list.
3. Create a short story outline (2–3 sentences) with only ONE main character (the chosen character). No other characters may appear, be 
named, be implied, or interact with the main character.
4. Based on the story, design three 8-frame storyboards and the character might back and forth across different scene.

Storyboard rules:
- Only use these shot types: [Extreme Close-up, Close up, Medium Shot, Full Shot, Long Shot].
- Each frame must include: (1) the shot type, and (2) a concise 1–2 sentence description of the visual.
- The sequence should logically flow from beginning to end.
- Do not invent new shot types.
- **Action clarity:** The story outline and EVERY frame description must include a specific, observable physical action performed by the 
chosen character (use strong verbs).
- **Avoid static-only prose:** Do not write purely static states (e.g., “is standing”). If a static posture is needed, pair it with an action.
- **Environment interaction:** Across the 8 frames, show the character interacting with the environment or props in at least 4 frames.
- **Action-driven transitions:** When moving between the two scenes, make the transition motivated by an action.
- **Visual-only:** Do not include inner thoughts or dialogue; describe only what can be seen on screen.

Output format:
**Chosen Scenes:** <Scene A>, <Scene B> (list of scene names)
**Chosen Character:** <Exactly Character Name> (only name)
**Story Outline:** <2–3 sentences>
**Storyboard:**
1. <Scene> - <Shot type> – <Description>
2. <Scene> - <Shot type> – <Description>
...
8. <Scene> - <Shot type> – <Description>

Here are the possible scenes:
- {scenes_1}
- {scenes_2}

Here are the possible characters:
- {character_1}
- {character_2}

"Please integrate the character names and appearance details into the abstract, and return only in JSON format.\n” """

{"Chosen Scenes": ["Laboratory", "Cafe"],
"Chosen Character": "Zoe",
"Story Outline": "In a cluttered laboratory, Zoe carefully arranges her art supplies on a workbench, her hands deftly moving between 
paintbrushes and canvas. As inspiration strikes, she eagerly darts towards the door, her movement brightening the space. Transitioning to 
the cafe, she sets her canvas on a small table, revealing a vibrant splash of colors before beginning to paint with deliberate strokes.",
"Storyboard": [
{"Scene": "Laboratory",
"Shot type": "Close up",
"Description": "Zoe's hands quickly sort through various art supplies, picking up vibrant paintbrushes with focused determination."},
…
{"Scene": "Cafe",
"Shot type": "Extreme Close-up",
"Description": "A focused shot on Zoe’s hand, now adding fine details to her painting, showcases her delicate touch and artistic intent."}]}

GPT-4o

Output
format

Storyboard Rules

(a) Prompt

(b) Example Response

Story Outline

Story Scripts

User

Figure 9: Prompt for GPT to generate scripts prompt in MSB

consistency in the scene, and more diverse shot types. We provide more Qualitative Comparison
with the existing T2V model in Figure 12. We also provide the video in the supplementary.

A.5 MORE QUALITATIVE COMPARISON

We provide more qualitative comparison with existing methods in Fig. 13.

A.6 LIMITATION

ConsistFilmer primarily relies on the previous frame as a reference to maintain temporal consistency.
While this is effective for local continuity, it may be insufficient for capturing long-range narrative
structures required in real-world story generation. Future directions could involve integrating higher-
level semantic representations, such as multimodal knowledge graphs or narrative planning modules,
to provide global guidance and enhance the overall coherence of story progression. We regard this
as a promising avenue for future work.
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Reference Image Target Images Text Prompt Shot Type
The young man with curly hair appears to be in a 
moment of deep contemplation or perhaps even 
distress. his expression is serious, and his gaze is 
directed off to the side.

Close-up Shot

A man sitting on a makeshift campsite by a serene 
pond, surrounded by lush greenery and towering 
trees.

Full Shot

the character, dressed in a tweed blazer over a 
sweater vest and tie, sits in a dimly lit room with a 
classic, somewhat formal ambiance.

A man stands in a dimly lit kitchen, his body language 
tense and his expression one of intense 
concentration or perhaps fear.

Close-up Shot

Medium Shot

Figure 10: Dataset for shot-type control from CMD

Kai's face shifts to a 
thoughtful expression as 
he gazes out the window, 
his hands resting on the 
windowsill as he 
contemplates something 
profound.

Kai’s eye depicts a spark 
of reflection, 
highlighting his deep 
contemplation and the 
world just beyond the 
glass.

Kai leaning against the 
wall, arms crossed, still 
lost in his thoughts while 
gazing at the street 
outside.

Close up Extreme Close-upMedium Shot

Lana leans forward, 
carefully flipping 
through the pages of 
her sketchbook, her 
focused expression 
highlighting her 
determination.

Lana stands and gathers 
her art supplies from the 
desk, placing them into a 
bag while glancing out 
the window.

Lana walks towards the 
door, her bag slung over 
one shoulder, as she 
turns to take one last 
look at her bedroom.

Medium ShotFull Shot Close up

LanaBedroom

Street Zoe
Zoe steps out of the art 
classroom, walking along 
the vibrant street, her 
bag slung over her 
shoulder.

Zoe pauses to look up at 
a tree, reaching out to 
touch the leaves as they 
sway in the breeze.

Zoe takes a deep breath, 
closing her eyes briefly 
to savor the fresh air, a 
look of inspiration on 
her face.

Medium ShotFull Shot Close up

KaiLiving Room

Figure 11: Additional results from MSB
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“Zoe, the gentle art student with light brown hair, sets out to find inspiration in the park. After sketching the serene view on 
a park bench, she decides to explore the lively shopping mall, observing the vibrant colors and patterns around her.”

Sora
(5s)

Veo3
(8s)

Wan2.2
(5s)

Story2Screen 
+ Veo3
(64s)

Figure 12: Qualitative Comparison with T2V models.

Lana enters the library, her eyes scanning the shelves for a specific book. After locating it, 
she packs her bag, exits the library, and heads to the riverside to relax. Once there, she 
lays back on the grass, flipping through the pages of her newly found book.
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(1) [Medium Shot] Lana stands in front of the towering bookshelves, 
reaching up to pull down a book from the top shelf. 
(2) [Close Up] Lana flips open the book, her focused expression reflecting 
her calm nature as she scans the first few pages. 
(3) [Full Shot] Lana carefully places the book inside her backpack, 
adjusting the straps as she prepares to leave. 
(4) [Long Shot] Lana exits the library, stepping onto the street with a 
determined look as she starts her journey to the riverside.

(5) [Long Shot] Lana approaches the riverside, stepping onto the grass and taking 
a moment to appreciate the view..
(6) [Medium Shot] Lana lays down on the grass, propping herself on one elbow, 
and opens the book to the first chapter.
(7) [Medium Shot] Lana's fingers flip through the pages, her calm demeanor 
evident as she becomes engrossed in the story.
(8) [Close-up] The camera focuses on Lana's eyes as they sparkle with interest, 
capturing her connection to the book.

ParkLibrary Lana
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Figure 13: Qualitative comparison with prior methods.
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