
Break it - Message it - Fix it : Learning to Repair Python Programs using
Error Messages without Labelled Data

Anonymous ACL submission

Abstract

In recent years there is an increasing demand to001
reduce the gap in development to deployment.002
It has been estimated that developers spend al-003
most 20% of their time in fixed problems with004
their code. Therefore tools which can auto-005
matically repair code can help accelerate the006
DevOps cycles. In this work we build upon007
recent success of deploying neuro-symbolic ap-008
proaches for automatic code repair. In our ap-009
proach, we use a dataset of python code, viz,010
CodeNet, which represents data distribution011
for human generated code. We train two neu-012
ral modules a breaker and a fixer, which are013
trained iteratively, along with a symbolic mod-014
ule Pylint. The breaker learns to introduce er-015
rors in the code, the symbolic module acts as016
a Critic and is able to fragment the error by017
identifying the line, as well provide the error018
type with a specific exception message. The019
Fixer utilizes the exception message to repair020
the erroneous line in the code. We are able021
to cover 32 different syntax errors, and itera-022
tive training based on back translation actually023
helps improve the performance of the Fixer.024

1 Introduction025

In the world of programming, if there exists a tool026

like a Fixer which is capable of fixing the bugs by027

generating the corresponding solutions to the er-028

rors, a lot of effort and time will be saved, thereby029

producing good quality error-free codes. The num-030

ber of coding errors is directly proportional to the031

complexity and size of the code. While static an-032

alyzers can help to point out the errors, manually033

rectifying them is a very tedious task and very time034

consuming to understand those errors first and then035

fix them. This issue highlights the need of a fixer ca-036

pable of fixing errors from the code, thereby trans-037

forming it to error-free code.038

In this work, we propose to build a fixer for039

Python which uses the error message for a cor-040

rupted code in input and tries to output the correct041

Figure 1: High-level diagram of our approach

fix for the mentioned error, leading to the error-free 042

code. Inorder to further improve the fixer’s per- 043

formance, we also train a breaker capable of cor- 044

rupting good code to produce bad code as output. 045

These bad codes will be more realistic compared 046

to synthetically generated corrupted codes. Our 047

fixer is then retrained on these bad codes inorder to 048

make it more capable to fix errors in codes. We up- 049

date the fixer and breaker in an iterative manner to 050

improve both their performances. Figure 1 denotes 051

our overall approach. To evaluate this approach, 052

we build our own Python dataset based on CodeNet 053

data (Puri et al., 2021). We synthetically corrupt 054

the data points using random insert/swap/delete op- 055

erations inorder to deliberately create error in a line 056

of code. 057

We use a static code analysis tool, Pylint (code 058

analysis for python, 2021), which serves as a critic 059

in our work. Given a buggy code, it helps to detect 060

the error and it provides the error line number, type 061

of error detected and the corresponding error mes- 062

sage associated with it. This information helps our 063

fixer in fixing the detected bug easily. 064

Our contributions in this work are two-fold: 065

• We build a new code repair dataset in Python 066

by adding perturbations to the CodeNet (Puri 067

et al., 2021) Python benchmark data. 068

1



• We train a fixer by a critic-verified backtrans-069

lation (Yasunaga and Liang, 2021) approach070

to make it capable of fixing code errors.071

This paper is organized in the following man-072

ner : Section 2 covers the brief literature survey,073

Section 3 talks about the dataset description, Sec-074

tion 4 covers our proposed methodology, Section 5075

covers our results and analysis and finally we have076

conclusion in Section 6.077

2 Related Works078

There have been several works which learn to re-079

pair code errors, for example: (Just et al., 2014),080

(Bader et al., 2019), (Chen et al., 2021), (Mes-081

bah et al., 2019) and so on. In (Yasunaga and082

Liang, 2021), the authors proposed a critic-verified083

backtranslation approach inorder to train a fixer084

on buggy codes. (Berabi et al., 2021) suggested085

an approach of using error messages to generate086

fixes for the bugs in code. (Yasunaga and Liang,087

2020) solves the problem of learning to repair pro-088

grams from diagnostic feedback. Motivated with089

the works of (Berabi et al., 2021) and (Yasunaga090

and Liang, 2021), we propose a novel critic-verified091

backtranslation-based approach which uses error092

messages to repair buggy codes in Python.093

3 Dataset Description094

The benchmark data in CodeNet consist of compi-095

lable coding solutions to different problems. The096

authors in (Puri et al., 2021) ensure that the solu-097

tions are not near-duplicates of other code samples.098

Since we require corrupted codes to train our fixer,099

we follow our corrupting procedure to convert these100

good codes into bad codes so that we can form a101

paired dataset. We try to insert errors in good codes102

such that they contain common programming er-103

rors like typo, punctuation mistake etc. so that104

the errors seem to be realistic. We modify the105

good codes released in CodeNet(Puri et al., 2021)106

Python benchmark data by adding perturbations107

in the form of insert/swap/delete operation. We108

randomly choose a line of code and decide one of109

the operations randomly with appropriate weights.110

Based on the operation chosen, we either insert111

noisy tokens in a line or swap tokens from two112

different indices in a line or delete a random token113

from a line of code.114

After the perturbation procedure, we find that115

there can exist a paired dataset (Good code, Bad116

code) consisting of 208921 data points. From this 117

paired dataset D, we keep 10% of the data reserved 118

as the test set for evaluating our fixer model. From 119

the remaining dataset, we equally divide it into two 120

splits - forming D1 and D2 respectively each of 121

size 94025. We use D1 for initial round of training 122

for both fixer and breaker. 123

Fixer : TrainBad−>Good(D1) 124

Breaker : TrainGood−>Bad(D1) 125

Fixer is responsible for transforming a bad code 126

into a good code and the breaker does the opposite. 127

4 Methodology 128

This section describes in brief the critic used, the 129

neural architectures used for breaker and fixer, the 130

training procedure and the experimental details. 131

4.1 Critic 132

In our work, we require an error detector which 133

will help us to identify good codes from the bad 134

codes. We use Pylint (code analysis for python, 135

2021) as a static code analyzer for python. Pylint 136

takes a python code as input and generates the 137

corresponding error report. Figure 2 highlights a 138

sample bad code and the corresponding error report 139

produced by Pylint. Each report mainly consists 140

of a symbol, error message, message id and the 141

location of the error in the code snippet. We only 142

restrict the Pylint output to error messages so that 143

we can filter out codes having only errors and not 144

focusing on any warnings or the ones violating any 145

standard coding convention and so on. This error 146

detector serves as our critic, examining whether 147

the fixer has successfully fixed the error and thus 148

the output can be added to the D1 and whether the 149

breaker has succesfully added noise to the good 150

code, helping the generated output to get added to 151

D2. Pylint has been able to capture 32 different 152

types of coding errors which have occurred due 153

to the added perturbations in our dataset. Three 154

most frequent error types are syntax error, used- 155

before-assignment message and undefined-variable 156

message. 157

4.2 Fixer 158

We leverage the Text-to-Text Transfer Transformer 159

(T5) (Raffel et al., 2020) architecture as our fixer. 160

We follow (Berabi et al., 2021) to build a fixer 161

by providing the inputs based on the critic’s error 162

report in the following manner : 163

2



(a) Corrupted code

(b) Error Report produced by the critic

Figure 2: Pylint producing error report for the given bad
code

fix error type error message error line : error164

context165

Here error type refers to the type of error occurred166

due to the error line, error message refers to the167

message given by the static analyzer to understand168

the error and error context refers to a single line169

of code both before and after the error line. We170

consider the symbol as shown in Figure 2 as the171

error type.172

We frame this task of fixing code bugs as a173

text-to-text task and hence use this sequence-to-174

sequence based Transformer (Vaswani et al., 2017)175

architecture, T5. The output of the fixer model176

is the correct line of code, which when replaced177

with the error line, will convert the bad code to a178

good code. The T5 model is pretrained on a large179

corpus of English data for various NLP tasks. We180

finetune the pretrained T5 model on our code re-181

pair dataset. Since the code fragments use different182

natural language identifiers and keywords, our intu-183

ition is that this model will understand the coding184

terminologies better when finetuned on the code 185

repair data. 186

4.3 Breaker 187

We use the codeGPT (Lu et al., 2021) model pre- 188

trained on Python programming language as the 189

neural architecture for the breaker. CodeGPT has 190

the same architecture and training objective like 191

GPT-2 (Radford et al., 2019). Our intuition behind 192

using this model to implement the breaker function 193

is to generate proper syntactic code as output with 194

proper indents (if required). This can be possible 195

only if the pretraining has been done on code cor- 196

pus. CodeGPT is pretrained from scratch on python 197

functions so that the BPE (Byte Pair Encoder) (Sen- 198

nrich et al., 2016) vocabulary is obtained on the 199

code corpus. We feed the correct code as input and 200

auto-regressively generate the bad code as output. 201

4.4 Training Procedure 202

We apply a critic verified back-translation proce- 203

dure like in (Yasunaga and Liang, 2021). Our 204

breaker model helps in back-translation by gen- 205

erating bad codes from good codes. Initially, we 206

train the breaker and the fixer on the paired D1 207

dataset. Algorithm 1 highlights our training pro- 208

cedure. We restrict the breaker to run prediction 209

on only the data points in the val split of D1 due 210

to computational constraints. As a result of this re- 211

training, breaker and fixer learn better based on the 212

outputs of each other in an iterative manner, which 213

improves the overall performance of the fixer. 214

4.5 Experimental details 215

For the fixer, we choose the T5-small model (Raf- 216

fel et al., 2020) which consists of 60 million pa- 217

rameters with 6 layers in the encoder and decoder 218

blocks. We finetune the T5 model for 4 epochs and 219

choose the best model in terms of evaluation loss 220

for prediction. For the breaker network, we choose 221

the codeGPT-small (Lu et al., 2021) model which 222

consists of 12 layers of Transformer decoders. We 223

download the pretrained models released by Hug- 224

ging Face 1. We finetune it for 10 epochs and 225

choose the best model similarly for prediction. We 226

keep the batch size of 1 for both the networks due 227

to computational constraints. We keep the maxi- 228

mum sequence length of 256 and 512 for fixer and 229

breaker respectively. 230

1https://huggingface.co/models

3

https://huggingface.co/models


Algorithm 1 Training Procedure
1: Train the breaker and fixer models on D1 initially.
2: loop :
3: Apply the current fixer to real bad examples in D2 and keep outputs that are fixed.
4: Train the breaker on this new paired dataset from the earlier checkpoint.
5: Apply the current breaker to real good examples in D1 and keep outputs that are broken.
6: Retrain the fixer from the earlier checkpoint on the paired dataset resulting from step 5.
7: goto loop

5 Results and Analysis231

Round EM Repair
t5-small Round-0 84.87% 87.62%

Round-1 85.43% 87.96%

Table 1: Performance of the Fixer Model. EM refers
to the exact match Accuracy and Repair refers to the
Repair Accuracy.

We choose Exact Match accuracy and Repair232

accuracy (Yasunaga and Liang, 2021) as the two233

metrics for evaluating the performance of our fixer.234

We calculate Exact match accuracy by the number235

of data points whose ground truths and predictions236

have matched completely on token level, divided237

by the number of data points in the test set. Repair238

accuracy is calculated by the number of data points239

which have been considered as error-free by the240

critic divided by the size of test set.241

Table 1 refers to the performances of the fixer242

model on the test set. Based on our hypothesis, we243

see that the performance of T5-small model as a244

fixer improves in Round-1. There is a gain of 0.65%245

in exact match accuracy and a gain of 0.38% in246

repair accuracy. We believe that retraining the fixer247

on predictions of the breaker on both the train and248

val splits of D1 would improve the performance249

significantly. Our results also indicate that the fixer250

model is able to generate more compilable patches251

as the probable fix which do not always match252

the ground truth, thus the repair accuracy metric253

is always higher than the exact match accuracy254

metric.255

6 Conclusion256

In this work, we attempt to automatically fix syn-257

tactic bugs in Python codes using error messages.258

We use Transformer-based architecture as our Fixer259

module to generate possible fix for the bug. Retrain-260

ing the fixer on critic-verified data points which261

have been generated as a result of the predictions262

by the breaker module yields a jump in perfor- 263

mance. As a part of this work, we create a code 264

repair dataset in Python using the error messages, 265

based on the CodeNet data. We also show how 266

the breaker can generate buggy codes, which upon 267

usage by the fixer during retraining, makes it more 268

robust. In our future work, we plan to analyse the 269

performance of the fixer on individual types of syn- 270

tactic error and also try to incorporate other types 271

of error apart from the syntactic bugs. 272

References 273

Johannes Bader, Andrew Scott, Michael Pradel, and 274
Satish Chandra. 2019. Getafix: Learning to fix bugs 275
automatically. Proc. ACM Program. Lang., 3(OOP- 276
SLA). 277

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar- 278
tin Vechev. 2021. Tfix: Learning to fix coding errors 279
with a text-to-text transformer. In Proceedings of 280
the 38th International Conference on Machine Learn- 281
ing, volume 139 of Proceedings of Machine Learning 282
Research, pages 780–791. PMLR. 283

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis- 284
Noël Pouchet, Denys Poshyvanyk, and Martin Mon- 285
perrus. 2021. Sequencer: Sequence-to-sequence 286
learning for end-to-end program repair. IEEE Trans- 287
actions on Software Engineering, 47(9):1943–1959. 288

Pylint : code analysis for python. 2021. https:// 289
www.pylint.org/. 290

René Just, Darioush Jalali, and Michael D. Ernst. 2014. 291
Defects4j: A database of existing faults to enable 292
controlled testing studies for java programs. In Pro- 293
ceedings of the 2014 International Symposium on 294
Software Testing and Analysis, ISSTA 2014, page 295
437–440, New York, NY, USA. Association for Com- 296
puting Machinery. 297

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 298
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, 299
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li- 300
dong Zhou, Linjun Shou, Long Zhou, Michele Tu- 301
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun- 302
daresan, Shao Kun Deng, Shengyu Fu, and Shujie 303

4

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https: //www.pylint.org/
https: //www.pylint.org/
https: //www.pylint.org/
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055


Liu. 2021. Codexglue: A machine learning bench-304
mark dataset for code understanding and generation.305
CoRR, abs/2102.04664.306

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glo-307
rioso, and Edward Aftandilian. 2019. Deepdelta:308
Learning to repair compilation errors. In Proceedings309
of the 2019 27th ACM Joint Meeting on European310
Software Engineering Conference and Symposium on311
the Foundations of Software Engineering, ESEC/FSE312
2019, page 925–936, New York, NY, USA. Associa-313
tion for Computing Machinery.314

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,315
Giacomo Domeniconi, Vladmir Zolotov, Julian316
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,317
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam318
Ramji, Ulrich Finkler, Susan Malaika, and Freder-319
ick Reiss. 2021. Codenet: A large-scale ai for code320
dataset for learning a diversity of coding tasks.321

Alec Radford, Jeff Wu, Rewon Child, David Luan,322
Dario Amodei, and Ilya Sutskever. 2019. Language323
models are unsupervised multitask learners.324

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-325
ine Lee, Sharan Narang, Michael Matena, Yanqi326
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the327
limits of transfer learning with a unified text-to-text328
transformer. Journal of Machine Learning Research,329
21(140):1–67.330

Rico Sennrich, Barry Haddow, and Alexandra Birch.331
2016. Neural machine translation of rare words with332
subword units. In Proceedings of the 54th Annual333
Meeting of the Association for Computational Lin-334
guistics (Volume 1: Long Papers), pages 1715–1725,335
Berlin, Germany. Association for Computational Lin-336
guistics.337

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob338
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz339
Kaiser, and Illia Polosukhin. 2017. Attention is all340
you need. In Advances in Neural Information Pro-341
cessing Systems, volume 30. Curran Associates, Inc.342

Michihiro Yasunaga and Percy Liang. 2020. Graph-343
based, self-supervised program repair from diagnos-344
tic feedback. In International Conference on Ma-345
chine Learning (ICML).346

Michihiro Yasunaga and Percy Liang. 2021. Break-347
it-fix-it: Unsupervised learning for program repair.348
In International Conference on Machine Learning349
(ICML).350

5

https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

