Break it - Message it - Fix it : Learning to Repair Python Programs using
Error Messages without Labelled Data

Anonymous ACL submission

Abstract

In recent years there is an increasing demand to
reduce the gap in development to deployment.
It has been estimated that developers spend al-
most 20% of their time in fixed problems with
their code. Therefore tools which can auto-
matically repair code can help accelerate the
DevOps cycles. In this work we build upon
recent success of deploying neuro-symbolic ap-
proaches for automatic code repair. In our ap-
proach, we use a dataset of python code, viz,
CodeNet, which represents data distribution
for human generated code. We train two neu-
ral modules a breaker and a fixer, which are
trained iteratively, along with a symbolic mod-
ule Pylint. The breaker learns to introduce er-
rors in the code, the symbolic module acts as
a Critic and is able to fragment the error by
identifying the line, as well provide the error
type with a specific exception message. The
Fixer utilizes the exception message to repair
the erroneous line in the code. We are able
to cover 32 different syntax errors, and itera-
tive training based on back translation actually
helps improve the performance of the Fixer.

1 Introduction

In the world of programming, if there exists a tool
like a Fixer which is capable of fixing the bugs by
generating the corresponding solutions to the er-
rors, a lot of effort and time will be saved, thereby
producing good quality error-free codes. The num-
ber of coding errors is directly proportional to the
complexity and size of the code. While static an-
alyzers can help to point out the errors, manually
rectifying them is a very tedious task and very time
consuming to understand those errors first and then
fix them. This issue highlights the need of a fixer ca-
pable of fixing errors from the code, thereby trans-
forming it to error-free code.

In this work, we propose to build a fixer for
Python which uses the error message for a cor-
rupted code in input and tries to output the correct

n,m=map(int,input().split()) | | CodeGPT |
(Breaker)

Bad code

(n,m=map(int,input().split()) ‘

Good code

(n,m=map(int,input().split()) "nel) invalid syntax (<unk . ‘

Static analyzer

~ 5
/| (Fixer)

Bad code Error message

message: invalid syntax (<unknown>,
line 1)

n,m=mapl(int,input().split())

Correct Fix

Error message

l(n,m:map(int,input().split()) | ’

Error line

Figure 1: High-level diagram of our approach

fix for the mentioned error, leading to the error-free
code. Inorder to further improve the fixer’s per-
formance, we also train a breaker capable of cor-
rupting good code to produce bad code as output.
These bad codes will be more realistic compared
to synthetically generated corrupted codes. Our
fixer is then retrained on these bad codes inorder to
make it more capable to fix errors in codes. We up-
date the fixer and breaker in an iterative manner to
improve both their performances. Figure 1 denotes
our overall approach. To evaluate this approach,
we build our own Python dataset based on CodeNet
data (Puri et al., 2021). We synthetically corrupt
the data points using random insert/swap/delete op-
erations inorder to deliberately create error in a line
of code.

We use a static code analysis tool, Pylint (code
analysis for python, 2021), which serves as a critic
in our work. Given a buggy code, it helps to detect
the error and it provides the error line number, type
of error detected and the corresponding error mes-
sage associated with it. This information helps our
fixer in fixing the detected bug easily.

Our contributions in this work are two-fold:

* We build a new code repair dataset in Python
by adding perturbations to the CodeNet (Puri
et al., 2021) Python benchmark data.

* We train a fixer by a critic-verified backtrans-
lation (Yasunaga and Liang, 2021) approach
to make it capable of fixing code errors.

This paper is organized in the following man-
ner : Section 2 covers the brief literature survey,
Section 3 talks about the dataset description, Sec-
tion 4 covers our proposed methodology, Section 5
covers our results and analysis and finally we have
conclusion in Section 6.

2 Related Works

There have been several works which learn to re-
pair code errors, for example: (Just et al., 2014),
(Bader et al., 2019), (Chen et al., 2021), (Mes-
bah et al., 2019) and so on. In (Yasunaga and
Liang, 2021), the authors proposed a critic-verified
backtranslation approach inorder to train a fixer
on buggy codes. (Berabi et al., 2021) suggested
an approach of using error messages to generate
fixes for the bugs in code. (Yasunaga and Liang,
2020) solves the problem of learning to repair pro-
grams from diagnostic feedback. Motivated with
the works of (Berabi et al., 2021) and (Yasunaga
and Liang, 2021), we propose a novel critic-verified
backtranslation-based approach which uses error
messages to repair buggy codes in Python.

3 Dataset Description

The benchmark data in CodeNet consist of compi-
lable coding solutions to different problems. The
authors in (Puri et al., 2021) ensure that the solu-
tions are not near-duplicates of other code samples.
Since we require corrupted codes to train our fixer,
we follow our corrupting procedure to convert these
good codes into bad codes so that we can form a
paired dataset. We try to insert errors in good codes
such that they contain common programming er-
rors like typo, punctuation mistake etc. so that
the errors seem to be realistic. We modify the
good codes released in CodeNet(Puri et al., 2021)
Python benchmark data by adding perturbations
in the form of insert/swap/delete operation. We
randomly choose a line of code and decide one of
the operations randomly with appropriate weights.
Based on the operation chosen, we either insert
noisy tokens in a line or swap tokens from two
different indices in a line or delete a random token
from a line of code.

After the perturbation procedure, we find that
there can exist a paired dataset (Good code, Bad

code) consisting of 208921 data points. From this
paired dataset D, we keep 10% of the data reserved
as the test set for evaluating our fixer model. From
the remaining dataset, we equally divide it into two
splits - forming D; and D» respectively each of
size 94025. We use D; for initial round of training
for both fixer and breaker.

Fixer : TrainBed—>Good(D,)

Breaker : TrainGecd—>Bad(p))

Fixer is responsible for transforming a bad code
into a good code and the breaker does the opposite.

4 Methodology

This section describes in brief the critic used, the
neural architectures used for breaker and fixer, the
training procedure and the experimental details.

4.1 Ciritic

In our work, we require an error detector which
will help us to identify good codes from the bad
codes. We use Pylint (code analysis for python,
2021) as a static code analyzer for python. Pylint
takes a python code as input and generates the
corresponding error report. Figure 2 highlights a
sample bad code and the corresponding error report
produced by Pylint. Each report mainly consists
of a symbol, error message, message id and the
location of the error in the code snippet. We only
restrict the Pylint output to error messages so that
we can filter out codes having only errors and not
focusing on any warnings or the ones violating any
standard coding convention and so on. This error
detector serves as our critic, examining whether
the fixer has successfully fixed the error and thus
the output can be added to the D; and whether the
breaker has succesfully added noise to the good
code, helping the generated output to get added to
D5. Pylint has been able to capture 32 different
types of coding errors which have occurred due
to the added perturbations in our dataset. Three
most frequent error types are synfax error, used-
before-assignment message and undefined-variable
message.

4.2 Fixer

We leverage the Text-to-Text Transfer Transformer
(T5) (Raffel et al., 2020) architecture as our fixer.
We follow (Berabi et al., 2021) to build a fixer
by providing the inputs based on the critic’s error
report in the following manner :

def main():
N = int(input())
A = list(map(int, input().split(" ')))

insertion_sort(A, N)

def insertion_sort(A, N):
print(" "join{[str(n) for n in A]))
foriin range(1, N):
v = A[i]
j=i-1
while j >= 0 and A[j] > v:
Afj+1] = A[j]
j=1
Alj+1] =v

print(' .join([str(n) for n in A]))
return A

if_name__=="__main__"
main()

(a) Corrupted code

type: error,

module: s020476450_corrupted,

obj:,

line: 3,

column: 42,

path: p02255/s020476450_corrupted.py,
symbol: syntax-error,

message: unindent does not match any outer
indentation level (<unknown> line 3),

message-id: E0001

}

(b) Error Report produced by the critic

Figure 2: Pylint producing error report for the given bad
code

fix error type error message error line : error
context

Here error type refers to the type of error occurred
due to the error line, error message refers to the
message given by the static analyzer to understand
the error and error context refers to a single line
of code both before and after the error line. We
consider the symbol as shown in Figure 2 as the
error type.

We frame this task of fixing code bugs as a
text-to-text task and hence use this sequence-to-
sequence based Transformer (Vaswani et al., 2017)
architecture, T5. The output of the fixer model
is the correct line of code, which when replaced
with the error line, will convert the bad code to a
good code. The T5 model is pretrained on a large
corpus of English data for various NLP tasks. We
finetune the pretrained TS model on our code re-
pair dataset. Since the code fragments use different
natural language identifiers and keywords, our intu-
ition is that this model will understand the coding

terminologies better when finetuned on the code
repair data.

4.3 Breaker

We use the codeGPT (Lu et al., 2021) model pre-
trained on Python programming language as the
neural architecture for the breaker. CodeGPT has
the same architecture and training objective like
GPT-2 (Radford et al., 2019). Our intuition behind
using this model to implement the breaker function
is to generate proper syntactic code as output with
proper indents (if required). This can be possible
only if the pretraining has been done on code cor-
pus. CodeGPT is pretrained from scratch on python
functions so that the BPE (Byte Pair Encoder) (Sen-
nrich et al., 2016) vocabulary is obtained on the
code corpus. We feed the correct code as input and
auto-regressively generate the bad code as output.

4.4 Training Procedure

We apply a critic verified back-translation proce-
dure like in (Yasunaga and Liang, 2021). Our
breaker model helps in back-translation by gen-
erating bad codes from good codes. Initially, we
train the breaker and the fixer on the paired D,
dataset. Algorithm 1 highlights our training pro-
cedure. We restrict the breaker to run prediction
on only the data points in the val split of D; due
to computational constraints. As a result of this re-
training, breaker and fixer learn better based on the
outputs of each other in an iterative manner, which
improves the overall performance of the fixer.

4.5 Experimental details

For the fixer, we choose the T5-small model (Raf-
fel et al., 2020) which consists of 60 million pa-
rameters with 6 layers in the encoder and decoder
blocks. We finetune the T5 model for 4 epochs and
choose the best model in terms of evaluation loss
for prediction. For the breaker network, we choose
the codeGPT-small (Lu et al., 2021) model which
consists of 12 layers of Transformer decoders. We
download the pretrained models released by Hug-
ging Face !. We finetune it for 10 epochs and
choose the best model similarly for prediction. We
keep the batch size of 1 for both the networks due
to computational constraints. We keep the maxi-
mum sequence length of 256 and 512 for fixer and
breaker respectively.

'https://huggingface.co/models

https://huggingface.co/models

Algorithm 1 Training Procedure

1: Train the breaker and fixer models on D initially.

2: loop :

3: Apply the current fixer to real bad examples in D5 and keep outputs that are fixed.

4: Train the breaker on this new paired dataset from the earlier checkpoint.

5: Apply the current breaker to real good examples in D; and keep outputs that are broken.
6: Retrain the fixer from the earlier checkpoint on the paired dataset resulting from step 5.
7: goto loop

5 Results and Analysis

Round EM Repair
t5-small | Round-0 | 84.87% | 87.62%
Round-1 | 85.43% | 87.96%

Table 1: Performance of the Fixer Model. EM refers
to the exact match Accuracy and Repair refers to the
Repair Accuracy.

We choose Exact Match accuracy and Repair
accuracy (Yasunaga and Liang, 2021) as the two
metrics for evaluating the performance of our fixer.
We calculate Exact match accuracy by the number
of data points whose ground truths and predictions
have matched completely on token level, divided
by the number of data points in the test set. Repair
accuracy is calculated by the number of data points
which have been considered as error-free by the
critic divided by the size of test set.

Table 1 refers to the performances of the fixer
model on the test set. Based on our hypothesis, we
see that the performance of T5-small model as a
fixer improves in Round-1. There is a gain of 0.65%
in exact match accuracy and a gain of 0.38% in
repair accuracy. We believe that retraining the fixer
on predictions of the breaker on both the train and
val splits of D; would improve the performance
significantly. Our results also indicate that the fixer
model is able to generate more compilable patches
as the probable fix which do not always match
the ground truth, thus the repair accuracy metric
is always higher than the exact match accuracy
metric.

6 Conclusion

In this work, we attempt to automatically fix syn-
tactic bugs in Python codes using error messages.
We use Transformer-based architecture as our Fixer
module to generate possible fix for the bug. Retrain-
ing the fixer on critic-verified data points which
have been generated as a result of the predictions

by the breaker module yields a jump in perfor-
mance. As a part of this work, we create a code
repair dataset in Python using the error messages,
based on the CodeNet data. We also show how
the breaker can generate buggy codes, which upon
usage by the fixer during retraining, makes it more
robust. In our future work, we plan to analyse the
performance of the fixer on individual types of syn-
tactic error and also try to incorporate other types
of error apart from the syntactic bugs.

References

Johannes Bader, Andrew Scott, Michael Pradel, and
Satish Chandra. 2019. Getafix: Learning to fix bugs
automatically. Proc. ACM Program. Lang., 3(OOP-
SLA).

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-
tin Vechev. 2021. Tfix: Learning to fix coding errors
with a text-to-text transformer. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 780-791. PMLR.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-
Noél Pouchet, Denys Poshyvanyk, and Martin Mon-
perrus. 2021. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. /IEEE Trans-
actions on Software Engineering, 47(9):1943—1959.

Pylint : code analysis for python. 2021. https://
www.pylint.org/.

René Just, Darioush Jalali, and Michael D. Ernst. 2014.
Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Pro-
ceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, page
437-440, New York, NY, USA. Association for Com-
puting Machinery.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https: //www.pylint.org/
https: //www.pylint.org/
https: //www.pylint.org/
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055

Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glo-
rioso, and Edward Aftandilian. 2019. Deepdelta:
Learning to repair compilation errors. In Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2019, page 925-936, New York, NY, USA. Associa-
tion for Computing Machinery.

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladmir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam
Ramji, Ulrich Finkler, Susan Malaika, and Freder-
ick Reiss. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 17151725,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, 1. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback. In International Conference on Ma-
chine Learning (ICML).

Michihiro Yasunaga and Percy Liang. 2021. Break-
it-fix-it: Unsupervised learning for program repair.
In International Conference on Machine Learning
(ICML).

https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

