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Abstract

The text-to-SQL problem remains a challenging task, even
with the advancements of Large Language Models (LLMs).
Current state-of-the-art models require extensive preprocess-
ing steps and powerful LLMs to achieve accurate SQL query
generation, which leads to significant resource utilization.
We introduce two models deriving from one another SQL-
RL-GEN and SQL-RL-GEN∗, that improve text-to-sql genera-
tion while minimizing the resources needed for training and
maximizing flexibility. The SQL-RL-GEN generates a reward
function to guide the agent’s training process, while SQL-RL-
GEN∗ uses this reward function to tune a base LLM in solving
the specified task. Our models achieve an accuracy improve-
ment of 2-7% compared to state-of-the-art methods on a lim-
ited training dataset composed of only 1000 samples and with
a small LLM of 248M parameters.

Code — https://github.com/IBM/sql-rl-gen
Datasets — https://ibm.box.com/v/sql-rl-gen-data

Introduction
Large Language Models (LLMs) have exhibited remarkable
capabilities in various tasks, including text and code gen-
eration problems (Jiang et al. 2024). The success is largely
attributed to the vast amount of data available for training
and tuning processes.

The text-to-SQL generation problem is a critical area of
research within the fields of natural language processing
(NLP) and database systems. Since SQL remains one of the
most widely used programming languages for database man-
agement (51.52%), the text-to-SQL translation enables non-
skilled users to access structured databases like engineers
using everyday language (Hong et al. 2024).

Current text-to-SQL best models, which achieve the top
scores on the most comprehensive SQL datasets, are based
on modifying the model structure by providing several other
preprocessing steps in between the model and SQL genera-
tion. For instance, ExSL + granite-34b-code by IBM
Research combines 2 steps before passing the question to
the model, which are: schema linking and content linking
(Martineau 2024). SQLNet uses a sketch-based approach,
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incorporating a dependency graph to guide token predic-
tions based on their dependencies (Xu, Liu, and Song 2017).
However, the question remains open whether generations
without a solid data background can be further improved and
generalized easily, no matter the model used. Another ap-
proach based on Reinforcement Learning (RL), Seq2SQL,
uses basic rewards (1 for correct query generation and -1
otherwise) obtained from in-the-loop query execution over
the database to learn a policy for generating the better query
(Zhong, Xiong, and Socher 2017). Despite the impressive
results that Seq2SQL has demonstrated at the time of its
publication, subsequent work suggest that the base reward
is not enough to solve the text-to-SQL problem (Xu, Liu,
and Song 2017).

Reward function design for generation task demands sig-
nificant human effort and is known to be notoriously diffi-
cult in practice (Sutton and Barto 1995). For this purpose,
recently, a generic novel reward design algorithm, EUREKA
(Ma et al. 2024), powered by coding LLMs was proposed.
Unlike prior works using LLMs to aid reward design, EU-
REKA is completely free of task-specific prompts, reward
templates, as well as few-shot examples (Ma et al. 2024).
Instead, it uses evolutionary search and feedback to gener-
ate the best reward function with LLM.

In this paper, we introduce two models deriving from one
another SQL-RL-GEN and SQL-RL-GEN∗.

SQL-RL-GEN algorithm finds the best reward function
(reference reward function) to be used for the training of
an RL agent to generate SQL queries from text with sim-
ilar techniques as proposed by EUREKA i.e. implementing
the reward design for SQL generation, feedback formulation
and an evolutionary search of the best reward function.

SQL-RL-GEN∗ uses the reference reward function gener-
ated by SQL-RL-GEN on a reference dataset to tune a base
LLM (flan-t5-base) for SQL generation with limited
resources.

The approach makes the following key contributions com-
pared to existing work:

1. Versatility and efficiency of the reference reward
function for SQL generation: SQL-RL-GEN∗ outper-
forms state-of-the-art SQL generation models on a dif-
ferent dataset than the one used to generate the reference
reward function, with only 1000 samples used for train-
ing and a relatively small base LLM of 248M parameters.



Figure 1: SQL-RL-GEN takes as inputs: a system prompt, an SQL environment code, and a task description prompt. The coding
LLM iteratively generates N reward function candidates, each used to train an SQL generation model from scratch with the
RL Proximal Policy Optimization (PPO) algorithm. The resulting models are evaluated by comparing the rows obtained from
generated SQL queries execution with those from ground truth queries. The evaluation results (feedback) and the best selected
by accuracy reward function are fed back to the coding LLM for the next iteration. SQL-RL-GEN∗ is a special case where the
best reward function from a previous SQL-RL-GEN training is used directly to train the RL agent.

This makes SQL-RL-GEN∗ efficient in terms of resource
utilization.

2. Domain adaptability: SQL-RL-GEN algorithm is easily
adaptable for generating reward functions in various text-
to-code domains, enabling its application in diverse set-
tings.

Problem Statement
Given a textual prompt input p, which is the part of the set
of all possible textual prompts P = {p1, p2, ..., pn}, and an
LLM L : P → O that maps prompts to code outputs in the
space of all possible code outputs O = {o1, o2, ..., om}, our
goal is to train L to generate an SQL query s ∈ S from the
input prompt p, where S ∈ O is the set of all possible SQL
queries.

The prompt is represented as p = (I, T,Q), where:

• I is a set of possible instructions, e.g., “convert”, “sum-
marize”, “answer”, etc. It can be represented as a binary
vector i ∈ {0, 1}|I|, where each element corresponds to
one of the instructions in I .

• T is a set of possible table schemas: T = (t1, t2, ..., tj).
t is a single table, represented as a tuple of columns
t = (c1, c2, ..., ck) where k is the number of columns
in the table t.

• Q is a set of possible questions, e.g., “How many...”,
“What is...”, etc. Each question can be represented as a
string q.

As instruction (I) for the problem remains unchanged,
training and testing datasets consist of pairs of input data
(t, q) and corresponding (ground truth) query s such that a

dataset D is defined as D = ((t1, q1), s1), ...((tN , qN ), sN )
where N is the number of samples.

Once trained, model Ltrained should return for a specific
prompt p a generated SQL query sgen to be compared with
corresponding (ground truth) query s.

Method
An overview of the approach of SQL-RL-GEN is illustrated
in Figure 1. An initialization step is followed by a loop com-
posed of:
• the generation of a reward function,
• the training of the RL agent,
• the evaluation of the tuned SQL generation model and

the supply of textual feedback.

Initialization. In the initialization stage, similarly to EU-
REKA original approach, we provide the LLM with a prompt
that outlines the task and SQL environment. It is composed
of the following parts.
1. The system prompt explicitly defines the role of the

LLM as a reward engineer and provides an example of
the reward function signature.

2. The task description specifies the goal of the model dur-
ing training and generation. For SQL generation, it is set
to “Converting question and database tables into SQL
query”.

3. The SQL environment component is crucial and pro-
vides the LLM with context where the trained agent will
operate and execute generated reward functions during
training. In the same manner as in EUREKA, SQL-RL-
GEN feeds the raw environment source code (excluding



reward code, if present) as context with minimal expla-
nations of external functions (Ma et al. 2024).

The entire initialization stage sets the generation goal, al-
lowing adaptation to different tasks by modifying the initial
prompts to solve similar problems in a comparable manner.
All initialization prompts are available in Appendix.

Reward Function Generation and Training. Thanks to
the provided prompts, the coding LLM generates multiple
reward functions that are used to train RL agents with PPO
(Schulman et al. 2017) algorithm in a similar manner to EU-
REKA, and obtain a tuned SQL generation LLM.

Evaluation and Feedback. In order to improve the next
iteration of reward function generation, textual feedback on
the performance of the best tuned SQL generation LLM is
provided to the coding LLM as well as the reward function,
with which this model is trained. The SQL generation LLM
is considered the best (out of the multiple generated), if after
training it yields higher average accuracy during the evalua-
tion step than other models from both previous and current
iterations.

To evaluate the tuned SQL generation LLM performance,
similarly to Seq2SQL approach, both SQL-RL-GEN and
SQL-RL-GEN∗ evaluation step consists in comparing the
SQL rows resulting from the execution of the generated SQL
query and the ones obtained with the ground truth query. The
generated queries are only executed when they do not mod-
ify the execution environment.

The evaluation results are saved, converted into text and
provided back to the LLM as feedback with quantitative in-
formation of the performance (accuracy, precision, recall,
F1-score and intersect over union (IoU)). In addition, if
errors are encountered during the execution of generated
queries, error types along with the error descriptions are re-
turned in the feedback. The error descriptions do not provide
specific information about the database context and are data
independent.

As shown in Figure 1, SQL-RL-GEN∗ is derived from
SQL-RL-GEN and consists in retrieving the best generated
reward function from a former training of SQL-RL-GEN and
using it to directly train a RL agent.

Experiments
In order to evaluate the validity and usefulness of SQL-RL-
GEN, we apply it on Spider dataset (Yu et al. 2019) to ob-
tain our reference reward function. The WikiSQL dataset
(Zhong, Xiong, and Socher 2017) is then used to evaluate
the validity and robustness of this reference reward function,
SQL-RL-GEN∗.

Spider Dataset Spider consists of 10181 questions and
5693 unique complex SQL queries on 200 databases with
multiple tables covering 138 different domains. In Spi-
der 1.0, different complex SQL queries and databases appear
in train (8659 examples) and test (1034 examples) sets.

WikiSQL Dataset WikiSQL consists of a corpus of 87726
hand-annotated SQL query and natural language question
pairs. These SQL queries are further split into training

(61297 examples), development (9145 examples) and test
sets (17284 examples).

Experimental Setting. For each dataset, a subset of 1000
randomly selected samples are used for training and an
other subset of 1000 randomly selected samples are used for
testing. The experiments are carried out with k-fold cross-
validation strategy with k = 5.

The reward function generation and reflection are im-
plemented using llama-3-405b-instruct (Touvron
et al. 2023). This model is free, open-source and is known
for its good instructed generation capabilities (Touvron et al.
2023), which makes it the better choice than the propri-
etary one described in the EUREKA reference paper. Char-
acteristics of the model are available in Appendix, Ta-
ble 4. The initial LLMs (agents) used for generating SQL
queries are flan-t5-base (Chung et al. 2024) and a pre-
trained version of flan-t5-base on SQL syntax (noa
2023). flan-t5-base transformer-based model consists
of only 248 million parameters, which makes its training
process computationally efficient and light. To evaluate the
efficiency of SQL-RL-GEN∗, trained flan-t5-base was
compared with the trained on the same samples Seq2SQL
and SQLNet reference models, which are configured accord-
ing to their original papers. All agents characteristics can be
found in Appendix, Table 5.

PPO algorithm is configured in the exact same manner
as in (Schulman et al. 2017) and as described in EUREKA
reference paper. The parameters are listed in Table 6 in Ap-
pendix. However, unlike the original PPO approach, which
only allows a single trial per sample before switching to an-
other, for the training of SQL-RL-GEN and SQL-RL-GEN∗,
we introduce an improvement by enabling the model to ex-
periment 10 times on the same sample before moving on.
This approach enables the agent to learn from its mistakes
and refine its policy for generating better SQL queries. By
allowing multiple trials on the same sample, we can more
effectively capture the nuances of text generation problems,
which often demand a more refined approach than the origi-
nal single-trial method. This modification allows our model
to learn from its errors and improve the quality of subsequent
SQL generations.

All experiments are GPU-based and were conducted on
a Lenovo ThinkPad P15 Gen 1 with Intel Core i7-10750H
CPU, 12 Cores, Quadro T1000/PCIe/SSE2 graphics with
4Gb of memory and running Red Hat Enterprise Linux 8.10.

Preliminary Results
SQL-RL-GEN and Reference Reward Function Gen-
eration. Training SQL-RL-GEN on Spider dataset, with
flan-t5-base model as initial SQL generation LLM,
does not lead to any improvements in terms of accuracy
(O%). This is due to the fact that the flan-t5-base
model has not been trained on any code or SQL queries,
and that the training on Spider dataset is severely limited by
the constrained size of 1000 training samples and that Spi-
der features highly intricate and complex queries. However,
as shown in Table 1 when training SQL-RL-GEN on Spider
dataset, with a pretrained for SQL syntax flan-t5-base



pretrained SQL-RL-GENflan-t5-base
accuracy (%) 44.7± 1.6 48.0± 0.78
exec sgen (%) 61.5± 1.5 64.3± 1.3

Table 1: Average accuracies and percentages of generated
executable queries sgen along with standard errors for 5-fold
cross validation for the initial LLM (flan-t5-base pre-
trained on SQL syntax model) and after SQL-RL-GEN train-
ing on Spider dataset. Metrics shown are obtained on Spider
testing dataset.

Seq2SQL SQLNet SQL-RL-GEN∗

accuracy 7.1% 11.3% 13.8%
exec sgen 12.8% 12.1% 30.6%

Table 2: Accuracies and percentages of executable generated
queries sgen for Seq2SQL, SQLNet and SQL-RL-GEN∗ ob-
tained on WikiSQL test dataset.

model as initial SQL generation LLM, the performance in
terms of accuracy is improved by more than 3% and on aver-
age there are almost 3% more executable generated queries.

Versatility of the Reference Reward Function. As
shown in Table 2, SQL-RL-GEN∗ which uses the refer-
ence reward function to fine-tune flan-t5-base, out-
performs state-of-the-art models Seq2SQL (Zhong, Xiong,
and Socher 2017) and SQLNet (Xu, Liu, and Song 2017)
on WikiSQL dataset both in terms of accuracy and number
of executable generated SQL queries. It points out the ver-
satility of the reference reward function and how efficient
in terms of resource utilization SQL-RL-GEN∗ is, as only
1000 samples were used for training compared to the entire
dataset for the other models.

Reusability of the Reference Reward Function. Finally,
in order to validate that the reference reward function can
also be used in other RL-based algorithm, we compared
Seq2SQL model to a version of Seq2SQL trained with our
reference reward function version as shown in Table 3. The
metrics employed for model evaluation align with those uti-
lized in the Seq2SQL original paper (and are described in
Appendix). Again, usage of the reference reward function
improved all of the different accuracies defined in (Zhong,
Xiong, and Socher 2017) to evaluate SQL generation. This
reward function can therefore be reused in other RL-based
context in the text-to-SQL generation field.

Limitations and Future Directions
While SQL-RL-GEN and SQL-RL-GEN∗ show strong im-
provements with limited data, further analysis is needed:

1. Error Mitigation: The reward function penalizes syntax
errors, logical inconsistencies, and schema mismatches.
A detailed breakdown of its impact on correction rates
would clarify its role in improving performance.

Seq2SQL
Seq2SQL

with SQL-RL-GEN∗

reference reward function

Dev Accqm 53.1% 55.0%
Dev Accexec 60.4% 62.5%
Test Accqm 52.7% 55.3%
Test Accexec 60.0% 63.2%

Table 3: Accuracy comparison on WikiSQL dataset between
Seq2SQL and Seq2SQL with SQL-RL-GEN∗ reference re-
ward function. Accqm and Accexec indicate the query-match
(string match) and the execution accuracy (correct result)
(Zhong, Xiong, and Socher 2017) respectively on develop-
ment and testing datasets.

2. Generalization: The model improves when transferring
from Spider to WikiSQL, but its adaptability to un-
seen schemas requires further evaluation across diverse
benchmarks.

3. PPO Trials: Additional trials refine the reward function
but increase computational cost. Analyzing diminishing
returns could optimize efficiency.

4. Scalability: Testing on varied datasets and resource con-
straints would help assess robustness and adaptability.

Conclusion
We have presented SQL-RL-GEN and SQL-RL-GEN∗ deriv-
ing from one another. The first one proposes a reference re-
ward function calibrated for SQL generation thanks to evo-
lutionary search and feedback formulation (Ma et al. 2024)
that can be used by the second to tune LLM with limited re-
sources. The experiments demonstrated that SQL-RL-GEN∗

outperforms state-of-the-art methods and that the reference
reward function can boosts the generation capability of RL-
based methods on WikiSQL and Spider datasets.
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Appendix - Initialization Prompts
System Prompt
You are a reward engineer trying
to write reward functions to solve
reinforcement learning tasks as
effective as possible. Your goal
is to write a reward function for
the environment that will help the
agent learn the task described in
text. Your reward function should use
useful variables from the environment
as inputs. An example of the reward
function signature can be:

‘‘‘python
{task_reward_signature_string}

‘‘‘
You need to generate the reward

functions of EXACTLY this syntax.
Everything else is not accepted. Please
make sure that the code is compatible
with Gym env. **PROVIDE ONLY PYTHON
CODE.**

Task Description
The Python environment is
{task_environment_code_string}. Write a
reward function for the following task:
{task_description}.

SQL environment

‘‘‘python
class SQLRLEnv(TextRLEnv):

def __init__(self, model,
tokenizer, dataset, ...):
super().__init__(model,

tokenizer,
observation_input,
max_length,
compare_sample,
unfreeze_layer_from_past)

...
def sql_query_execution_feedback

(self, input_item,
predicted_text) -> Dict:
...

# Base method
def get_reward(self, input_item,

predicted_list, finish):
if finish:

predicted_text = self.
tokenizer.
convert_tokens_to_string
(predicted_list[0])

reward, metrics = self.
compute_reward(
input_item,
predicted_text)

metrics["reward"] =
reward

...
return reward

return 0.0

# Skeleton of generation
def compute_reward(self,

input_item, predicted_text)
-> Tuple[float, Dict]

‘‘‘

Appendix - Experimental Settings

llama-3-405b
-instruct

Number of parameters 405B
Temperature 0.95
Context size 15 000
Decoding method sample

Table 4: llama-3-405b-instruct and flan-t5-base characteris-
tics.



flan-t5-base SQLNet Seq2SQL
Architecture Encoder-Decoder BiLSTM + attention Encoder-Decoder

Transfomer (T5) + seq2set + RL

Number of parameters 248M 38.5M 37M
Pretrained Yes No No
Fine-tuning required Yes Yes Yes
Temperature 0.8 0.8 0.8

Table 5: Experimental flan-t5-base, Seq2SQL and SQLNet agents models characteristics.

Parameters Values
Tensors type F32
Temperature 0.8
Top k 100
Top p 0.85
Update interval 50
Minibatch size 512
Number of Epochs 5000
Number of steps 1000
Number of evaluation episodes 5
Maximum training episodes length 1000
Evaluation interval 10
Maximum new tokens 250
Minimum new tokens 10

Table 6: PPO algorithm settings.

Appendix - Reference Reward Function
generated with SQL-RL-GEN

Figure 2: Reference Reward Function generated with SQL-
RL-GEN and used for training of SQL-RL-GEN∗.


