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Figure 1: Motivation. We propose AlignDiff, a diffusion-based framework that formulates satellite image recovery as a spa-
tiotemporal alignment task. The model addresses key challenges in remote sensing imagery—including cloud occlusion, ac-
quisition gaps, and spectral inconsistency—by aligning missing regions with both spatial and temporal context through guided

generation and geophysical priors.
Abstract

Remote sensing imagery plays a critical role in environmen-
tal monitoring and land assessment, but is often degraded
by large missing regions due to cloud occlusion, sensor fail-
ure, or acquisition gaps. Existing interpolation and genera-
tive approaches struggle to reconstruct such data while main-
taining spatial, spectral, and temporal coherence. We pro-
pose AlignDiff, a diffusion-based framework that formulates
remote sensing image reconstruction as a spatiotemporal
alignment problem. The model adopts a three-way align-
ment strategy to recover missing regions in a physically
and semantically consistent manner: (1) spatial alignment
through Digital Elevation Model (DEM) conditioning, (2) se-
mantic alignment via prompt-based modulation, and (3) dis-
tributional alignment using a VGG-Adapter with feature-
level consistency loss. Experiments on multi-region Landsat-
8 imagery and EarthNet2021 demonstrate that AlignDiff out-
performs state-of-the-art baselines on both spatial and tem-
poral completion tasks. Our method enables scalable and re-
liable satellite image recovery. The dataset and code will be
released upon acceptance.

Introduction

Remote sensing imagery serves as a critical data source for
environmental monitoring, agricultural planning, and disas-
ter response (Zhu et al. 2017; Zhang 2010). However, satel-
lite observations are frequently disrupted by cloud cover,

sensor failure, or acquisition discontinuities, particularly
in high-resolution or high-frequency scenarios (Belgiu and
Drégut 2016; Gorelick et al. 2017). These disruptions result
in temporally and spatially incomplete datasets that degrade
the accuracy of downstream analyses, hinder multi-source
fusion, and weaken the capacity for reliable long-term obser-
vation. In climate-vulnerable and data-scarce regions, such
deficiencies exacerbate global inequities in access to envi-
ronmental intelligence.

Challenges. Traditional approaches, including interpola-
tion methods and deep learning-based image completion
models, typically operate at the pixel level, focusing on
visually plausible reconstruction (Li et al. 2023; Zhang
et al. 2023). However, they often fail to preserve structural,
spectral, or temporal consistency, particularly when recov-
ering semantically complex or geographically diverse re-
gions (Gui et al. 2024). Many methods also overlook the
physical priors inherent in remote sensing data—such as ter-
rain morphology or acquisition geometry—and rely heavily
on large-scale labeled datasets. Consequently, restored im-
ages may diverge from the underlying geophysical reality,
limiting their usability in scientific and operational contexts.

Problem formulation. In this work, we reformulate satel-
lite image reconstruction as a spatiotemporal alignment
problem. Instead of treating missing data as isolated gaps to
be filled, we aim to infer content that is structurally and se-



mantically consistent with both the spatial landscape and the
temporal dynamics of the scene. This formulation empha-
sizes context-aware reasoning and geophysically grounded
alignment, moving beyond standard completion paradigms.

Proposed approach. We introduce AlignDiff, a
diffusion-based framework designed to model spatiotem-
poral alignment in remote sensing imagery. AlignDiff
integrates Digital Elevation Models (DEMs) as geospatial
priors and employs structured prompts that encode spatial
location and acquisition time to guide the generation
process. To ensure distribution-level consistency between
generated and observed regions, we further incorporate
a lightweight alignment adapter module that constrains
statistical deviations during sampling.

Contributions.

* We formulate remote sensing image reconstruction as
a spatiotemporal alignment task, unifying spatial and
temporal recovery under a structured modeling perspec-
tive;

e We propose AlignDiff, a diffusion-based generation
framework that integrates terrain priors and prompt-
based conditioning to align missing regions with physical
and semantic context;

* We develop an alignment adapter that enforces distri-
butional consistency, improving generalization across di-
verse terrain types and missing patterns.

Related Work
Data Issues and Traditional Approaches

Remote sensing imagery is widely used in earth observa-
tion and environmental monitoring, yet data issues such as
cloud cover, sensor failures, and temporal discontinuities
frequently lead to missing or corrupted data (Ju and Roy
2008; Xie et al. 2016; Daras et al. 2024). These gaps are par-
ticularly problematic for high-resolution imagery and long-
term monitoring tasks, and disproportionately affect regions
with persistent cloud coverage or limited data infrastruc-
ture—hindering access to timely and accurate environmental
information.

Traditional methods for filling missing data rely on inter-
polation techniques such as nearest-neighbor (Rukundo and
Cao 2012; Xing, Song, and Cheng 2022), bilinear (Grib-
bon and Bailey 2004; Yan et al. 2021), spline (McKinley
and Levine 1998; Sun et al. 2023), and kriging (Oliver and
Webster 1990; Jang, Kim, and Choo 2024) interpolation.
While effective for small and smooth missing regions, these
methods fail to reconstruct large gaps or preserve complex
spatial patterns, often introducing blurriness or spectral in-
consistencies (Kakar, Sudha, and Ser 2011; De Luca et al.
2024). These limitations restrict their applicability in real-
world satellite pipelines that support environmental risk as-
sessment, land management, or policy monitoring.

Machine Learning Methods

In recent years, machine learning and deep learning have
revolutionized remote sensing image reconstruction. Con-
volutional Neural Networks (CNNs) (Gu et al. 2018) have

been widely applied in image restoration due to their ability
to capture spatial features. Partial Convolutions (Liu et al.
2018) and Generative Adversarial Networks (GANSs) (Good-
fellow et al. 2014) further advanced image completion, with
methods such as Contextual Attention GAN (Yu et al. 2018)
and the Globally and Locally Consistent Image Completion
model (lizuka, Simo-Serra, and Ishikawa 2017) demonstrat-
ing strong performance in generating visually plausible im-
age completions.

Variational Autoencoders (VAEs) (Kingma 2013) have
also been applied to image restoration by learning latent dis-
tributions, though they tend to generate over-smoothed re-
sults, limiting their applicability in high-resolution remote
sensing imagery (Kingma, Welling et al. 2019).

Spatio-temporal models, such as Spatio-Temporal Convo-
Iutional Neural Networks (ST-CNN) (He, Chow, and Zhang
2019) and Spatio-Temporal Graph Convolutional Networks
(ST-GCN) (Song et al. 2020), have been introduced to ad-
dress dependencies in time-series satellite data. However,
they often require large annotated datasets and struggle to
generalize across geographical regions or sensor types, mak-
ing deployment in low-resource or dynamic environments
challenging.

Diffusion Models

Recent advances in generative modeling, particularly diffu-
sion models, have significantly improved image synthesis
tasks (Song and Ermon 2020; Dhariwal and Nichol 2021;
Rombach et al. 2022). These models iteratively add and re-
move noise to generate high-quality images, with Denois-
ing Diffusion Probabilistic Models (DDPM) (Ho, Jain, and
Abbeel 2020) demonstrating remarkable success in natural
image inpainting.

However, diffusion models face challenges in complex
structured data. While methods such as Stable Diffusion
(Rombach et al. 2022) optimize high-resolution image gen-
eration, they do not explicitly address spectral consistency
across multiple bands, a critical factor in remote sensing.
Additionally, ensuring that generated content aligns with
physical ground truth data remains an open problem, par-
ticularly in domains like environmental monitoring where
geospatial consistency is essential.

To introduce explicit control, ControlNet (Zhang, Rao,
and Agrawala 2023) integrates external conditioning (e.g.,
edge maps, depth maps) into diffusion models, enabling
stable and structured image generation. GeoSynth (Sastry
et al. 2024) attempted to use basemaps as conditioning in-
formation, but such methods remain limited to qualitative
reconstruction rather than precise quantitative remote sens-
ing tasks.

Unlike natural image datasets, remote sensing images
involve multi-band spectral information and strict spatial-
temporal consistency, which traditional diffusion models do
not explicitly handle. Moreover, most existing approaches
lack integration with geographic priors such as terrain or
vegetation indices, limiting their interpretability and deploy-
ment in socially critical applications such as food secu-
rity estimation, climate resilience, and disaster prepared-
ness. These limitations motivate the design of more control-
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Figure 2: The AlignDiff pipeline integrates DEM-guided diffusion generation, LoRA-based prompt adaptation, and VGG-based
distribution alignment for reconstructing missing satellite data across spatial and temporal gaps.

lable and context-aware generative frameworks for geospa-
tial data restoration.

Proposed Framework: AlignDiff

We propose AlignDiff , a unified diffusion-based generative
framework that reconstructs missing satellite observations
through three complementary alignment mechanisms: (1)
spatial alignment via terrain-aware priors; (2) distribution
alignment to enforce statistical and perceptual consistency;
and (3) semantic alignment through prompt-conditioned
generation. AlignDiff is designed to address both spatially
incomplete observations across regions (Task-1) and tempo-
rally missing observations within spatiotemporal sequences
(Task-2).

Problem Formulation and Task Setting

Letx € RO*HXW denote the complete ground-truth remote
sensing image, and xqps be its partially observed counterpart
with missing regions M C ). The goal is to generate a
completed image & that restores the missing content while
preserving spatial structure, spectral distribution, and con-
textual coherence.

Formally, the model learns the conditional distribution:

p(i | Lobss Aspatial y Adist s asemantic) D

where agpaia1 denotes the spatial alignment input, typi-
cally represented by Digital Elevation Models (DEMs) that
encode topographic structure; agisc represents the distribu-
tional alignment objective, which enforces the alignment of
feature distributions and textures between generated outputs
and reference samples; and agemantic corresponds to the se-
mantic conditioning signal introduced via textual prompts,
incorporating contextual information such as season, region,
or spectral band type.

We consider two complementary reconstruction tasks:

(1) Task-1 (Spatial Completion): At a fixed timepoint
t, reconstruct missing regions across spatially distinct tiles
using DEM-guided priors and prompt-specific adaptation.

(2) Task-2 (Temporal Completion): At a fixed location
s, recover observations at missing timepoints {¢ } by lever-
aging seasonal semantics and historical dynamics.

Three-Way Alignment Strategy

To address the complex and heterogeneous nature of missing
patterns in satellite imagery, AlignDiff integrates three align-
ment modules: spatial alignment with terrain priors, distri-
bution alignment for perceptual fidelity, and semantic align-
ment via prompt-aware adaptation. Each module contributes
complementary inductive biases, as detailed below.

Spatial Alignment with DEM Conditioning. To incor-
porate physical topography and enforce terrain-aware real-
ism, we adopt a ControlNet-style branch (Zhang, Rao, and
Agrawala 2023) that conditions the diffusion process on
Digital Elevation Models (DEMs). This spatial alignment
guides generation in mountainous, coastal, and varied ter-
rain regions.
Let cgpatia denote the DEM-based conditioning input. The
conditional denoising process is formulated as:
T
p(ij ‘ Cspatial) - Hp(xt | Tt—1, Cspatial) (2)
t=1
where z; denotes the latent image at timestep ¢. The spatial
reconstruction is supervised via a pixel-wise MSE loss:

1 N
Lrecon = N Z sz - £i||2 3)
i=1

Distribution Alignment with VGG Adapter. To correct
brightness imbalance, texture distortion, and spectral incon-
sistencies, we introduce a VGG-based adapter that aligns
feature distributions between generated and ground-truth
images.

Let ¢(-) denote features extracted from a pretrained VGG-
19 network. We minimize the Maximum Mean Discrepancy
(MMD) between the empirical feature distributions:

L = |Ez[6(2)] — Ez[o(2)]]|” )

Additionally, we include a multi-level style loss to regularize
fine-grained texture via Gram matrix alignment:

1

L
2
Layle = Z ACZH?W? HGQ - GlﬁHF o)
1=1

where G! is the Gram matrix of VGG features at layer /.



Semantic Alignment with Prompt. To condition the gen-
eration process on high-level semantics—such as location,
seasonality, or band type—we introduce a lightweight adap-
tation module using Low-Rank Adaptation (LoRA) (Hu
et al. 2021). A task-specific token <AlignDiff> is
prepended to the text encoder, enabling fine-grained prompt
control across domains.
For each task, the injected prompt is structured as:
Task 1: <AlignDiff>Region, Band
Task 2: <AlignDiff>Region, Date, Day, Band
LoRA adapts the attention weight matrix W € R%*? by
injecting a low-rank perturbation:

W' =W+ AB, AeR¥" BeR™ (6

This design ensures efficient parameter tuning while main-
taining generalization and cross-domain adaptability.

Unified Loss Function and Training

To jointly optimize spatial realism, statistical fidelity, and
semantic control, we formulate a unified training objective
that balances all three alignment mechanisms. The total loss
is defined as:

£tolal = Erecon + )\distﬁdist + Astyleﬁstyle (7)

Here, Agisc and Mgy are hyperparameters used to con-
trol the influence of perceptual distribution and style con-
sistency. In practice, we set Agisx = 1.0 and Agye = 100.0
based on validation performance. The training process fol-
lows a gradient-based optimization, using DEM priors and
task-specific prompts as conditional inputs. The full pipeline
is detailed in Algorithm 1.

Algorithm 1: Training AlignDiff

Require: Dataset X, DEM D, Prompt P, Learning rate 7,
Epochs E

1: Initialize model parameters 6

2: for epoch = 1to E do

3:  for each mini-batch (z,d, p) in (X, D, P) do
Extract observed image s from x
Generate reconstruction: & <— fo(Zops, d, p)
Compute loss Ly, with Eq. (10)
Update parameters: 6 < 0 — 1V Lo

8: end for

9: end for
10: return Trained model 6

AN A

Experiment
Dataset Description

Task 1 — Landsat-8 Multi-Region Dataset. We collect
Landsat-8 imagery and Digital Elevation Model (DEM) data
across 10 geographically diverse regions spanning various
climate zones and land covers, including urban, agricultural,
and natural areas. Table A1-A3 summarizes the selected re-
gions, while Figure 3 shows their spatial distribution. All
imagery was pre-filtered using Google Earth Engine (GEE)
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Figure 3: Global distribution of selected regions for Landsat
imagery. The imagery was downloaded using Google Earth
Engine (GEE) from various countries, ensuring diverse geo-
graphical coverage for comprehensive analysis.

to ensure less than 1% cloud cover. The images (30m reso-
lution) are tiled into 512 x 512 patches with 50% overlap to
enhance spatial diversity and reduce edge effects. Detailed
preprocessing scripts, including GEE filtering and masking
routines, are available in Appendix 4.

Task 2 — EarthNet2021 Spatiotemporal Dataset. Earth-
Net2021 (Requena-Mesa et al. 2021) provides over 200,000
Sentinel-2 image sequences, offering rich temporal context
for evaluating spatiotemporal modeling. We remove samples
with more than 5% invalid pixels (e.g., clouds, shadows)
based on quality masks. The data split follows the official
protocol, including IID-test and OOD-test subsets, enabling
rigorous assessment of generalization under in-distribution
and out-of-distribution settings.

Masking Strategy. To simulate missing data and evaluate
reconstruction performance, we adopt a standardized mask-
ing strategy. Cloud Removal: Pixels with high cloud prob-
ability are excluded to ensure clean ground truth. Random
Masking: We randomly mask 10%-50% of valid pixels in
each image to simulate missing regions. Reproducibility:
The masked indices are stored and shared to ensure con-
sistent evaluation and reproducibility. This masking strategy
is uniformly applied across Task 1 and Task 2 to facilitate
cross-dataset comparison.

Experimental Settings

All experiments were conducted on a single NVIDIA A100
GPU with 80 GB of memory. The diffusion model was
trained using an initial learning rate of 5 x 107> and a tar-
get image resolution of 512 x 512 pixels. For inference,
we adopted the DDIM scheduler with 50 steps, a guid-
ance strength of 0.9, classifier-free guidance scale of 1.0,
and 1 = 1.0. In baseline comparisons, the Spatio-Temporal
CNN (STCNN) was trained using a batch size of 16, learn-
ing rate of 1 x 107%, and 100 training epochs. All mod-
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Figure 4: Comparison for Task-1, addressing missing data in specific regions over a fixed time period.

els were trained and evaluated using an 80%—20% train-test
split for both Task 1 and Task 2.

Evaluation Metrics

To evaluate the reconstruction performance of AlignDiff, we
use five standard metrics: Root Mean Square Error (RMSE)
(Willmott and Matsuura 2005) and Mean Absolute Error
(MAE) (Chai and Draxler 2014) measure pixel-level ac-
curacy, with lower values indicating better fidelity. Peak
Signal-to-Noise Ratio (PSNR) (Hore and Ziou 2010) and
Structural Similarity Index Measure (SSIM) (Wang et al.
2004) assess image quality and structural similarity, where
higher values reflect better reconstruction. Learned Percep-
tual Image Patch Similarity (LPIPS) (Zhang et al. 2018)
evaluates perceptual similarity using deep features, with
lower scores indicating closer alignment to the reference.

Comparison with Existing Methods

Task-1: Spatial Completion across Diverse Regions. We
compare with state-of-the-art methods including natural im-
age inpainting models, unconditioned diffusion models, and
terrain-aware diffusion baselines.

Palette (Saharia et al. 2022) and LaMa (Suvorov et al.
2022), originally designed for natural image inpainting,

demonstrate limited transferability to the satellite domain.
Despite LaMa showing improved robustness among the two,
both methods fail to preserve geophysical structure in large
or topographically varied missing areas.

Stable Diffusion (SD) (Rombach et al. 2022), used as an
unconditioned diffusion baseline, achieves the highest SSIM
(0.5402 4+ 0.012) among all models. However, its low PSNR
(17.1599 £ 0.84) and high RMSE (0.1448 +£ 0.007) reflect
blurred reconstructions and spectral distortion, due to the ab-
sence of terrain- or time-specific conditioning.

ControlNet (Zhang, Rao, and Agrawala 2023), adapted
with DEM guidance, significantly improves generation qual-
ity, yielding PSNR of 21.184740.72 and RMSE of 0.0873+
0.005. This demonstrates the value of integrating physical
priors into the generation process.

AlignDiff improves upon ControlNet by introducing a
VGG-based adapter for distribution alignment, achieving
the best PSNR (23.04 £+ 0.69), RMSE (0.0713 £ 0.004),
and MAE (0.0500 £ 0.002). Despite slightly lower SSIM,
qualitative results (Fig. 4) show more coherent and terrain-
consistent outputs, confirming the benefit of combining
geospatial priors with perceptual alignment.

Task-2: Spatiotemporal Completion under Structured
Constraints. In this setting, we evaluate the model’s ability
to restore missing observations across both spatial and tem-
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Figure 5: Comparison for Task-2 using the EarthNet2021 dataset with selected missing data days. The above images are the
results after brightness adjustment and gamma correction, with a coefficient of 1.2. The original image was used for calculating

the evaluation metrics.

poral dimensions. We consider two reconstruction scenarios:
(1) temporal prediction from prior frames, and (2) spatial
reconstruction from DEM priors. The results are averaged
across 100 globally sampled locations with varied seasonal
and spectral conditions.

Under the temporal setting, interpolation-based meth-
ods exhibit poor performance, with PSNR below 12.0
and high RMSE above 0.25, failing to exploit seman-
tic or physical consistency. STCNN improves moderately
(PSNR=14.5317 4 0.65), but still lacks high-frequency de-
tails. AutoEncoder (Rifai et al. 2011) yields strong metrics
(SSIM=0.6090 £ 0.013, PSNR=18.2038 £ 0.78), yet suffers
from hallucination and texture mismatch in regions with sig-
nificant temporal gaps.

In spatial reconstruction, diffusion models demonstrate
superior stability. ControlNet achieves SSIM of 0.3787 +
0.011 and PSNR of 22.7866 4 0.73, substantially better than
unconditioned models (SD: SSIM=0.2819 + 0.012). How-
ever, ControlNet alone fails to ensure distributional consis-
tency, often introducing spectral shifts and texture inconsis-
tencies.

AlignDiff addresses these issues holistically by com-
bining spatial priors, semantic prompts, and perceptual

alignment. It outperforms all baselines in every met-
ric—SSIM (0.5704 £+ 0.011), PSNR (24.3429 £ 0.71),
RMSE (0.0642 + 0.003), MAE (0.0479 + 0.002), and
LPIPS (0.0469 £ 0.002). Compared to ControlNet, this
represents a 50.68% improvement in SSIM and 11.56% re-
duction in RMSE. The integration of alignment modules en-
ables AlignDiff to handle complex missing patterns across
seasons, land types, and spectral bands—making it a robust
candidate for real-world satellite observation recovery.

Ablation Study

VGG-Adapter Module. The proposed VGG-Adapter
serves as a style alignment module to mitigate distributional
discrepancies between generated outputs and reference data.
As shown in Figure 6, omitting the adapter results in artifacts
such as overexposed regions and brightness shifts, particu-
larly in areas with complex land cover and elevation vari-
ability. Quantitatively, the mean brightness of reconstructed
images without the adapter reaches p = 123.63 £ 6.02, sig-
nificantly deviating from the reference (1 = 95.19 4 3.87).
In contrast, AlignDiff with VGG-Adapter restores this value
to = 95.27 + 3.82, closely matching the ground truth dis-
tribution.
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Table 1: Ablation study on the impact of the VGG-Adapter module in the AlignDiff framework across 100 sites. Bold indicates
the best result; Underline denotes the second-best. The AVG row is computed as the mean of the four bands.

Band | wio VGG-Adapter

w/ VGG-Adapter

[ SSIMT PSNRT RMSE] MAE] LPIPS] } SSIMT PSNRT RMSE] MAE] LPIPS]
Blue | 0.3842 +0.024 17.8211 +1.102 0.1295 £0.012  0.1047 +0.009 0.1244 +0.008 | 0.5662 0020 24.1039 0954 0.0662 +0.006 0.0489 +0.004 0.0469 +0.005
Green | 0.3861 0025 17.7244 +1.031  0.1302 £0013  0.1055 0010  0.1217 20007 | 0.5774 0018 24.1578 +0.822  0.0647 z0.005  0.0479 x0.004 0.0478 +0.006
Red | 0.3613 x0.029 15.1034 =1354 0.1759 0015  0.1598 0012 0.1369 £0.009 | 0.5829 +0.019 26.4456 +1.021 0.0503 £0.005 0.0387 +0.003 0.0388 = 0.004
NIR | 03771 0022 17.0143 +0889 0.1407 x0.011  0.1173 +0.008 0.1181 z0.006 | 0.5524 +0.023 23.0387 +0978  0.0741 x0.006 0.0555 x0.004 0.0511 +0.005
AVG \ 0.3772 x0.025  16.9160 0874 0.1441 x0012  0.1218 x0.009  0.1253 +0.007 \ 0.5697 +0.020 24.4365 0844 0.0638 +0.006 0.0478 +0.004 0.0462 +0.005

Table 2: Performance comparison on Task-1. Bold indi-
cates the best, underline the second-best result. All values
are mean = std over multiple trials.

Method SSIMt PSNR?1 RMSE| MAE/| LPIPS|

SD 0.5412 0023  17.2635 1084 0.1452 x0011  0.0916 +0.009  0.3378 +0.013
Palette 0.4350 <0025 18.7321 21021 0.1218 0009  0.0821 +0.007  0.3424 +0.014
LaMa 0.4924 0018 20.8812 0994  0.0915 0008 0.0641 £0.006 0.2905 +0.012
ControlNet  0.4898 x0.020 21.2276+0935 0.0871 0007  0.0589 +0.005 0.2872 x0.011
AlignDiff 0.4563 <0017  23.1072 x0879  0.0708 x0.006  0.0496 +0.004 0.3417 x0.010

Table 3: Performance comparison on Task-2. The upper sec-
tion uses the previous timestep as input; the lower uses DEM
guidance. Bold denotes best, underline second-best. Values

are reported as mean + std over multiple trials.

Method SSIMt PSNR?T RMSE/| MAE| LPIPS|

Interpolation  0.5254 x0.028  11.9225 x0.845 0.2534 0022 0.2023 20019  0.3380 +0.017
STCNN 0.4047 0021 14.5317 0779  0.1877 20015  0.1498 +0.012  0.6835 =0.026
Autoencoder  0.6090 =0.030 18.2038 x 0935  0.1230 0.010  0.0981 x0.009 0.2487 x0.014
STCNN 0.2232 20020 13.9769 x0788  0.2107 20017 0.1723 x0014  0.4208 x0.021
Autoencoder  0.2514 x0024¢ 147913 0801 0.2040 0016  0.1684 £0.013  0.3073 +0.019
SD 0.2819 20022 16.1943 z0832  0.1550 20013  0.1335 20011 0.1468 +0.012
ControlNet 0.3787 +0019  22.7866 +0741  0.0726 £0006 0.0570 +0.005 0.0721 +0.006
AlignDiff 0.5704 z0.018  24.3429 0695  0.0642 x0.005  0.0479 z0.004  0.0469 = 0.005

Table 1 (averaged over 100 sites) further corroborates
this improvement across all metrics. Notably, the red
band—which is highly sensitive to spectral shifts—shows
the most significant gain in PSNR (+11.01 dB) and RMSE
reduction (-0.12), as illustrated in Figure 5. These results
confirm that the VGG-Adapter contributes both perceptual
and statistical alignment, and plays a critical role in enhanc-
ing output consistency across diverse geographies.

Missing Ratio. We also assess model robustness under
varying missing ratios (10% to 50%), using PSNR and
RMSE as primary indicators (see Figure 7). Traditional
interpolation methods exhibit the lowest resilience, with

PSNR plummeting from 14.53 £ 1.27 (at 10% missing) to
below 5.00 = 0.91 (at 50%), and RMSE increasing sharply.
Such instability renders them unreliable in large-scale re-
mote sensing scenarios.

STCNN and AutoEncoder maintain moderate robust-
ness. For example, STCNN shows limited degradation
(PSNR drops from 16.24 to 14.01), while AutoEncoder’s
PSNR drops more significantly (from 21.24 to 16.19), in-
dicating weaker generalization under high-missing con-
ditions. By contrast, diffusion-based models—especially
AlignDiff—exhibit strong resilience. AlignDiff achieves
24.76 4+ 0.73 PSNR at 10% missing and maintains 23.71 £
0.81 at 50%, with the lowest RMSE across all levels. These
results demonstrate that AlignDiff consistently preserves re-
construction quality, outperforming both deterministic and
deep learning baselines under severe data loss.

Conclusion

We introduce AlignDiff, a diffusion-based generative frame-
work tailored for remote sensing image reconstruction un-
der missing data conditions. Addressing both spatial com-
pletion within fixed periods and temporal recovery in spa-
tiotemporal sequences, AlignDiff leverages Digital Eleva-
tion Models (DEMs) as structural priors to guide terrain-
consistent generation. In addition, a VGG-Adapter module
is proposed to reduce distributional shifts via perceptual
alignment, enhancing both realism and spectral fidelity. Ex-
tensive experiments on globally distributed Landsat-8 im-
agery and the EarthNet2021 benchmark demonstrate consis-
tent improvements over existing inpainting and generative
baselines, including Stable Diffusion, ControlNet, and Au-
toEncoder, across SSIM, PSNR, RMSE, MAE, and LPIPS.
The proposed framework offers a scalable, generalizable,
and geophysically grounded solution for satellite image re-
covery, particularly in regions with persistent data scarcity.
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Landsat Dataset

The data used in this study, including the Digital Elevation Model (DEM) and Landsat 8 imagery, were sourced from the
Google Earth Engine (GEE) platform. GEE provides a vast repository of satellite imagery and geospatial datasets, which can
be accessed programmatically using its API. Below is the code used for downloading the selected data for the study. This script
extracts the required images, applies the necessary filters, and prepares the data for analysis. This code filters and downloads
Landsat 8 imagery with less than 1% cloud cover and the corresponding DEM data for the specified region of interest (ROI).
The data is then exported to Google Drive for further analysis. We selected 10 regions, with the range of the ROIs shown in
Table ??, and their spatial distribution illustrated in Fig. 3.

)

28

// Using Google Earth Engine JavaScript API to retrieve DEM and Landsat 8 imagery for
specific regions

// Define Areas of Interest (AOI) with corresponding country/region names

// Region 8: Near Seattle, Washington, United States
var region8 = ee.Geometry.Polygon ([

[20.0, 64.0], [20.5, 64.0], [20.5, 64.5], [20.0, 64.5]
1)

// Using Region 8 as an example
var region = region8;

// Retrieve SRTM DEM data and clip it to the Area of Interest (AOI)
var srtm = ee.Image ('USGS/SRTMGL1_003").clip(region) .toFloat ();

// Retrieve Landsat 8 imagery with cloud cover less than 1%, filtered by date and region,
including all bands
var landsat = ee.ImageCollection (' LANDSAT/LC08/C02/T1_TOA")
.filterBounds (region)
.filterDate ('2013-01-01", "2022-12-31")
.filter(ee.Filter.1lt (' CLOUD_COVER’, 1))

.median ()
.clip(region)
.toFloat () ;

// Visualization settings

var srtmVis = {min: 0, max: 3000, palette: [’#440154’, ’"#3b528b’, ’"#21908d’, ’'#5ec962’, '
#fde725"1};

var landsatVis = {bands: [’'B4’, ’'B3’, ’'B2’], min: 0, max: 3000, gamma: 1.4, palette: [’'#8
c510a’, ’"#bf812d’, ’#dfc27d’, ’'#f6e8c3’, ’#cTeaeb’, ’'#80cdcl’, ’"#35978f’, ’"#01665e’1};

// Add SRTM and Landsat 8 imagery to the map
Map.centerObject (region, 10);

Map.addLayer (srtm, srtmVis, ’SRTM DEM’);
Map.addLayer (landsat, landsatVis, ’Landsat 8');

// Export SRTM DEM data to Google Drive
Export.image.toDrive ({
image: srtm,
description: ’srtm_dem_region8’,
folder: ’output_gee_data’,
scale: 30,
region: region,
fileFormat: ’GeoTIFE’
1)

// Export Landsat 8 imagery to Google Drive
Export.image.toDrive ({
image: landsat,
description: ’landsat8_image_region8’,
folder: ’output_gee_data’,
scale: 30,
region: region,




52 fileFormat: ’GeoTIFE’
30 H)

54
s5 | // Export AOI vector shapefile to Google Drive
56 |Export.table.toDrive ({

57 collection: ee.FeatureCollection (ee.Feature (region)),
58 description: ’"aoi_shapefile_region8’,

59 folder: ’output_gee_data’,

60 fileFormat: ’SHP’

oL | 1)

Listing 1: Landsat Dataset Download Code

Figures

Figure Al: VGG-Adapter Module Architecture. The VGG-Adapter module is designed to reduce distribution shifts and improve
consistency in remote sensing image reconstruction. Built upon the VGG-19 network, it extracts multi-scale feature represen-
tations from convolutional layers (convly, conv2;, conv3;, convd, convby) and aligns them with the reference image. The
module incorporates distribution loss to minimize feature discrepancies, ensuring improved stability and perceptual quality in
generated images.

Tables

Table Al: Data Information-1. Notes: cloud cover < 10%. The regions were randomly selected, but it was required to ensure
that there were available Landsat images within these areas.

No. | Country / Region | Coordinates (Center Point) | Latitude Range | Longitude Range

01 USA (-115.89, 40.90) 40.65 -41.15 -116.14 —-115.64
02 Canada (-113.67, 54.29) 54.04 — 54.54 -113.92 —-113.42
03 Brazil (-49.08, -15.61) -15.86 —-15.36 -49.33 — -48.83
04 Argentina (-66.22, -33.09) -33.34 - -32.84 -66.47 - -65.97
05 Peru (-74.82,-12.21) -12.46 —-11.96 -75.07 - -74.57
06 UK (-2.45, 53.81) 53.56 — 54.06 -2.70 - -2.20
07 France (1.78, 46.72) 46.47 - 46.97 1.53-2.03

08 Germany (10.57, 50.94) 50.69 - 51.19 10.32-10.82
09 Russia (45.91, 53.30) 53.05 -53.55 45.66 — 46.16
10 India (79.94, 23.94) 23.69 -24.19 79.69 - 80.19




Table A2: Data Information-2. Notes: cloud cover < 10%. The regions were randomly selected, but it was required to ensure

that there were available Landsat images within these areas.

No

. | Country / Region | Coordinates (Center Point) | Latitude Range | Longitude Range

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

China
Australia
South Africa
Kenya
Egypt
Iran
Kazakhstan
Indonesia
Japan
New Zealand
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Asia
Africa
Africa
Africa
Africa
Africa
Africa
Africa
Africa
Africa
Africa

(111.37, 30.76)
(147.45, -34.42)
(24.99, -29.55)
(36.81, -0.97)
(30.70, 26.40)
(53.29, 32.02)
(72.71, 46.12)
(106.93, -6.17)
(137.71, 35.65)
(174.77, -39.38)
(148.8,9.24)
(93.36, 23.71)
(145.25, 45.64)
(127.8, 54.3)
(67.52,23.81)
(110.26, 43.86)
(141.57,26.21)
(104.34, 10.56)
(102.18, 5.57)
(70.69, 7.82)
(118.43, 10.88)
(112.5, 42.3)
(93.74,53.11)
(138.17, 19.29)
(146.69, 16.18)
(147.29, 5.61)
(140.2, 7.16)
(149.37, 31.39)
(109.85, 8.69)
(107.08, 53.47)
(1.95,29.77)
(12.55, 17.46)
(10.37, 16.08)
(20.28, 6.63)
(-10.26, 13.84)
(-1.35,34.61)
(17.07, 11.13)
(36.49, 4.21)
(34.28, -1.02)
(22.84, -6.15)

30.51-31.01
-34.67 - -34.17
-29.80--29.30
-1.22--0.72
26.15 - 26.65
31.77-32.27
45.87 — 46.37
-6.42 --5.92
35.40-35.90
-39.63 - -39.13
8.99-9.49
23.46 -23.96
45.39 — 45.89
54.05 - 54.55
23.56 —24.06
43.61 —44.11
25.96 —26.46
10.31 - 10.81
5.32-5.82
7.57-8.07
10.63 -11.13
42.05 — 42.55
52.86 - 53.36
19.04 - 19.54
15.93 - 16.43
5.36 -5.86
691 -741
31.14-31.64
8.44 — 8.94
53.22-53.72
29.52 -30.02
17.21 -17.71
15.83 -16.33
6.38 — 6.88
13.59 - 14.09
34.36 — 34.86
10.88 — 11.38
3.96 - 4.46
-1.27 --0.77
-6.40 —-5.90

111.12-111.62
147.20 - 147.70
24774 —25.24
36.56 — 37.06
30.45 -30.95
53.04 - 53.54
72.46 —72.96
106.68 — 107.18
137.46 — 137.96
174.52 - 175.02
148.55 — 149.05
93.11 -93.61
145.0 - 145.5
127.55 - 128.05
67.27-67.77
110.01 - 110.51
141.32 - 141.82
104.09 — 104.59
101.93 - 102.43
70.44 —70.94
118.18 — 118.68
112.25-112.75
93.49 - 93.99
137.92 - 138.42
146.44 — 146.94
147.04 — 147.54
139.95 — 140.45
149.12 - 149.62
109.6 - 110.1
106.83 - 107.33
1.70 - 2.20
12.30 - 12.80
10.12 - 10.62
20.03 —20.53
-10.51 - -10.01
-1.60--1.10
16.82 -17.32
36.24 - 36.74
34.03 —34.53
22.59 -23.09




Table A3: Data Information-3. Notes: cloud cover < 10%. The regions were randomly selected, but it was required to ensure
that there were available Landsat images within these areas.

No. | Country / Region | Coordinates (Center Point) | Latitude Range | Longitude Range

51 Africa (31.76, -17.72) -17.97--17.47 31.51-32.01
52 Africa (35.95, -6.83) -7.08 —-6.58 35.70 - 36.20
53 Africa (13.42,-10.48) -10.73 - -10.23 13.17 - 13.67
54 Africa (6.11, -5.77) -6.02 —-5.52 5.86 - 6.36
55 Africa (-8.65, 20.26) 20.01 -20.51 -8.90 - -8.40
56 Africa (27.82, -12.89) -13.14 - -12.64 27.57 - 28.07
57 Africa (14.36, 19.24) 18.99 — 19.49 14.11 - 14.61
58 Africa (30.95, 1.92) 1.67-2.17 30.70 - 31.20
59 Africa (37.47,6.73) 6.48 — 6.98 37.22-37.72
60 Africa (39.59, -4.41) -4.66 —-4.16 39.34 -39.84
61 Africa (32.48, -1.18) -1.43 --0.93 32.23-32.73
62 Africa (29.75, -3.04) -3.29--2.79 29.50 - 30.00
63 Africa (18.31, -33.99) -34.24 - -33.74 18.06 — 18.56
64 Africa (15.64, 38.56) 38.31 -38.81 15.39 - 15.89
65 Africa (24.91, -17.76) -18.01 —-17.51 24.66 —25.16
66 Africa (36.38,0.52) 0.27-0.77 36.13 - 36.63
67 Africa (9.62,-13.65) -13.90 - -13.40 9.37-9.87
68 Africa (5.33,7.10) 6.85-7.35 5.08 —5.58
69 Africa (-4.43,15.26) 15.01 - 15.51 -4.68 —-4.18
70 Africa (21.19, 39.36) 39.11 -39.61 20.94 -21.44
71 Africa (0.49, 32.85) 32.60 - 33.10 0.24-0.74
72 Africa (28.88, 3.19) 2.94-3.44 28.63 -29.13
73 Africa (19.91, -1.43) -1.68 —-1.18 19.66 — 20.16
74 Africa (34.78, 8.64) 8.39 - 8.89 34.53-35.03
75 Africa (12.01, -0.36) -0.61 —-0.11 11.76 - 12.26
76 Africa (11.56, 6.21) 5.96 - 6.46 11.31-11.81
77 Africa (23.92, 35.14) 34.89 - 35.39 23.67-24.17
78 Africa (25.13, -4.83) -5.08 —-4.58 24.88 —25.38
79 Africa (-15.38, 28.26) 28.01 —28.51 -15.63 —-15.13
80 Africa (20.72, -3.64) -3.89--3.39 20.47-20.97
81 Australia (115.86, -31.95) -32.20--31.70 115.61 —-116.11
82 Australia (138.60, -34.92) -35.17 - -34.67 138.35 - 138.85
83 Australia (149.13, -35.28) -35.53--35.03 148.88 — 149.38
84 Australia (145.75, -16.92) -17.17 - -16.67 145.50 — 146.00
85 Australia (130.84, -12.46) -12.71 - -12.21 130.59 - 131.09
86 Australia (152.97, -27.47) -27.72 - -27.22 152.72 - 153.22
87 Australia (135.86, -31.94) -32.19 - -31.69 135.61 - 136.11
88 Australia (141.45, -37.83) -38.08 — -37.58 141.20 - 141.70
89 Australia (115.13, -22.05) -22.30--21.80 114.88 — 115.38
90 Australia (122.20, -17.96) -18.21 --17.71 121.95 - 122.45
91 Antarctica (11.80, -70.67) -70.92 - -70.42 11.55-12.05
92 Antarctica (77.57, -68.58) -68.83 —-68.33 77.32-77.82
93 Antarctica (164.02, -74.70) -74.95 - -74.45 163.77 — 164.27
94 Antarctica (-46.42, -67.61) -67.86 —-67.36 -46.67 — -46.17
95 Antarctica (-69.88, -75.25) -75.50 - -75.00 -70.13 —-69.63
96 Antarctica (-122.95, -79.30) -79.55--79.05 | -123.20--122.70
97 Antarctica (20.21, -69.50) -69.75 —-69.25 19.96 —20.46
98 Antarctica (-102.40, -77.36) -77.61 —-77.11 | -102.65 —-102.15
99 Antarctica (96.84, -66.72) -66.97 — -66.47 96.59 - 97.09
100 Antarctica (130.24, -70.05) -70.30 — -69.80 129.99 - 130.49




