

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVING CODE TRANSLATION CORRECTNESS AND EFFICIENCY WITH MULTI-PERSPECTIVE EXPLORATION AND DIFFERENCE-AWARE SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

While large language models (LLMs) have greatly advanced the functional correctness of automated code translation systems, the runtime efficiency of translated programs has received comparatively little attention. With the waning of Moore’s law, runtime efficiency has become as critical as functional correctness in evaluating program quality. Our preliminary study reveals that LLM-translated programs often run slower than human-written ones, and this issue cannot be remedied through prompt engineering alone. Therefore, our work proposes SWIFTTRANS, a code translation framework comprising two key stages: (1) **Multi-Perspective Exploration**, where *MpTranslator* leverages parallel in-context learning (ICL) to generate diverse translation candidates; and (2) **Difference-Aware Selection**, where *DiffSelector* identifies the optimal candidate by explicitly comparing differences between translations. We further introduce *Hierarchical Guidance* for MpTranslator and *Ordinal Guidance* for DiffSelector, enabling LLMs to better adapt to these two core components. To evaluate the runtime efficiency of programs, we extend existing benchmarks, CodeNet and F2SBench, with efficiency-critical test cases and maximum runtime constraints on translated programs. We also introduce SWIFTBENCH, a new benchmark designed to evaluate whether translation models can improve the efficiency of programs when the source code exhibits inefficiencies. Experimental results across all three benchmarks show that SWIFTTRANS achieves consistent improvements in both correctness and efficiency. Notably, SWIFTTRANS built on Qwen2.5-7B surpasses current state-of-the-art models such as GPT-5 and training-based F2STrans (Zhang et al., 2025b).

1 INTRODUCTION

Code translation, the task of converting code from a source programming language (e.g., C) to a target language (e.g., Python), is vital in software engineering scenarios like legacy system migration and cross-platform development (Mossienko, 2003). The rise of large language models (LLMs) has introduced a new paradigm for code translation. Unlike earlier methods relying on handcrafted features (Zhong et al., 2010) or intricate deep architectures (Chen et al., 2018), LLMs can perform preliminary translation through simple prompt learning (Yan et al., 2023). This has attracted increasing research attention on enhancing the functional correctness of code translated by LLMs, and significant progress has been made (Zhang et al., 2025a). For example, Yang et al. (2024); Ibrahimzada et al. (2025b) leverage compilers to detect translation bugs, enabling targeted repairs by LLMs.

However, according to the ISO/IEC 25010 guidelines (ISO/IEC25010, 2011), program quality includes not only functional correctness but also non-functional attributes such as efficiency. Despite progress in **Functional Correctness** (Yin et al., 2024; Ibrahimzada et al., 2025a), **Runtime Efficiency**—a crucial aspect of program performance—has received little attention in prior work. To address this gap, we conduct a preliminary investigation and present two key findings: (1) *LLM-translated code typically exhibits lower efficiency than human-written code in the target language*, as shown in Fig. 1 (a). One major reason is that LLMs tend to replicate the logic and structure of the source code (Zhang et al., 2025b). Although such replication reduces the risk of errors, it also perpetuates any inefficient coding constructs present in the source code and neglects target language-specific optimizations, such as C pointers or Python’s built-in functions. (2) *Ensuring both correctness and efficiency is challenging*.

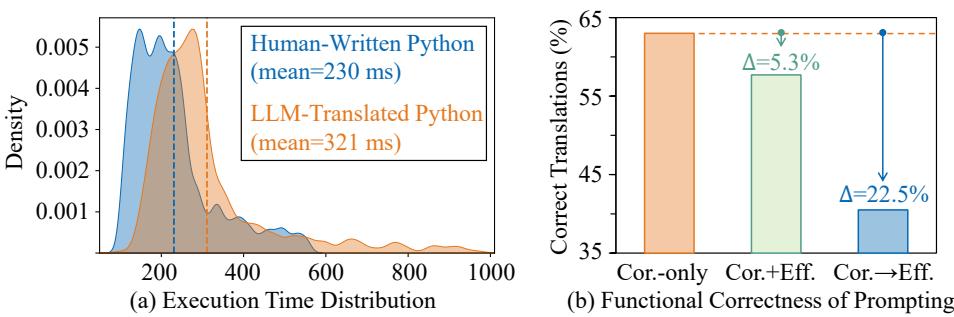


Figure 1: Challenges in runtime efficiency of LLM-translated code, shown on C-to-Python translation from F2SBench (Zhang et al., 2025b) with Qwen3-Next-80B (Qwen, 2025). (a) LLM-translated programs generally run slower than human-written ones. (b) This issue is hard to address, as prompt engineering strategies—such as prompts that additionally emphasize efficiency (“Cor.+Eff.”) or employ post-hoc optimization (“Cor.→Eff.”)—can improve efficiency but often reduce functional correctness relative to correctness-only prompts (“Cor.-only”).

efficiency in translated code remains challenging, as shown in Fig. 1 (b). Straightforward solutions, like complex prompts or post-hoc optimization modules, often improve efficiency at the cost of correctness due to increased complexity.

Our work introduces SWIFTTRANS, a code translation framework designed to ensure both correctness and efficiency. SWIFTTRANS first employs a **Multi-Perspective Translator** (MpTranslator) to generate diverse translation candidates from the source code, and then applies a **Difference-Aware Selector** (DiffSelector) to identify the optimal one. MpTranslator draws on diverse, multi-scale demonstrations, which improves translation quality and diversity compared to traditional repeated sampling (Brown et al., 2024). Through hierarchical guidance training, MpTranslator learns to produce outputs that range from conservative (correctness-first) to optimized (efficiency-aware) translations, enabling adaptation to tasks of varying complexity. Serving as a pairwise LLM-as-a-judge, DiffSelector performs fine-grained comparisons between translation candidates, considering both correctness and efficiency. It employs an efficient linear-time selection strategy, inspired by bubble sort, to evaluate all candidates. Finally, we introduce ordinal-guidance training to enhance DiffSelector’s accuracy and robustness to candidate order.

To support a comprehensive evaluation of code translation models, we introduce enhanced benchmarks that assess not only functional correctness but also runtime efficiency. Current benchmarks, such as CodeNet (Puri et al., 2021) and F2SBench (Zhang et al., 2025b), typically contain only limited, simple test cases that emphasize functional correctness. To address this limitation, we augment these benchmarks with manually curated, efficiency-critical test cases and corresponding maximum runtime constraints on translated programs. Moreover, we propose SWIFTBENCH, a new benchmark that incorporates source programs with intentionally embedded inefficiencies, such as redundant computations or suboptimal algorithmic choices. This design evaluates whether translation models can eliminate inefficiencies in translated code without compromising functional correctness. Additionally, SWIFTBENCH is regularly updated to mitigate the risk of data contamination.

Extensive experiments on CodeNet, F2SBench, and SWIFTBENCH show that SWIFTTRANS consistently surpasses existing methods in both functional correctness and runtime efficiency. For example, across translation tasks among C, C++, Go, Java, and Python, SWIFTTRANS with Qwen2.5-7B outperforms GPT-5 (OpenAI, 2025) and training-based approaches, such as F2STrans (Zhang et al., 2025b). Ablation studies further validate the effectiveness of both MpTranslator and DiffSelector.

Our key contributions are summarized as follows:

- To our knowledge, we are the first to systematically highlight and address efficiency deficits in LLM-based code translation, for which we propose the SWIFTTRANS framework.
- We extend existing benchmarks and develop a new benchmark, SWIFTBENCH, to support the evaluation of both correctness and efficiency.
- Experiments across diverse benchmarks and programming languages show that our approach significantly improves the quality of translated code compared to various baselines.

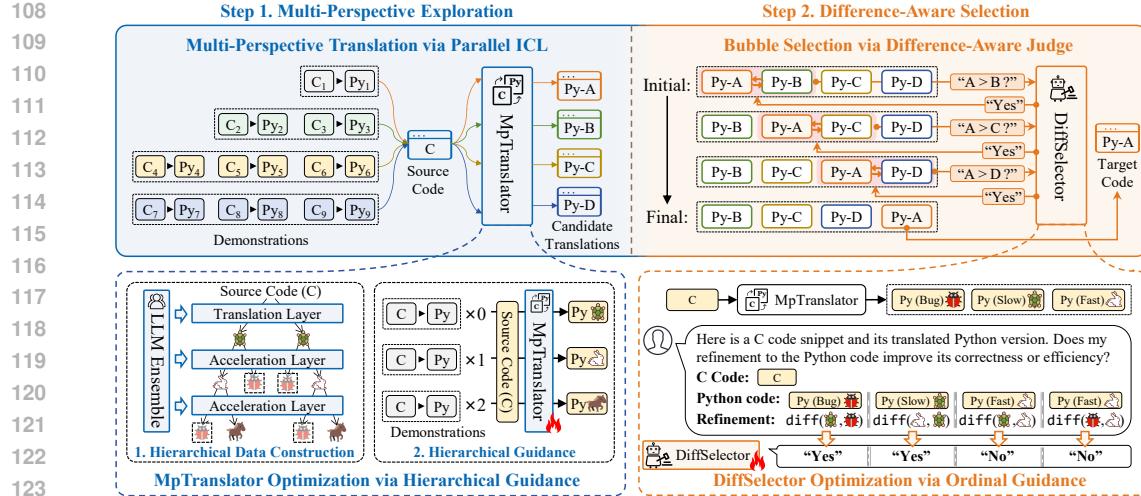


Figure 2: Overview of our SWIFTTRANS. Taking C-to-Python translation as an example, MpTranslator first generates diverse candidates through parallel ICL, and DiffSelector applies a difference-aware judging strategy with bubble selection to identify the most accurate and efficient translation. We introduce hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector to better adapt LLMs to these two core components.

2 METHODOLOGY

As shown in Fig. 2, given a source code snippet, our SWIFTTRANS framework first applies the *Multi-Perspective Exploration* to generate a diverse set of candidate translations, and then selects the optimal one through *Difference-Aware Selection*. In this process, LLMs provide critical support for SWIFTTRANS’s two core components: *MpTranslator* and *DiffSelector*. We optimize LLMs specifically for these two components, enabling lightweight open-source LLMs (*e.g.*, Qwen2.5-3B) to match or even surpass the performance of powerful LLMs like GPT-5.

2.1 MULTI-PERSPECTIVE EXPLORATION

This subsection first describes the multi-perspective translation mechanism of MpTranslator, which leverages parallel in-context learning (ICL) to generate diverse candidates. Next, it details the hierarchical guidance strategy used to optimize MpTranslator.

2.1.1 MULTI-PERSPECTIVE TRANSLATION VIA PARALLEL ICL

Traditional repeated sampling approaches (Brown et al., 2024) generate multiple outputs by issuing identical prompts to the LLM. However, constrained by fixed inputs, these outputs remain confined to a narrow semantic space (Wang et al., 2024b).

To overcome this limitation, MpTranslator leverages parallel ICL to encourage diversity in candidate translations. Specifically, for a source code snippet src , MpTranslator first randomly constructs m sets of demonstrations from a large demonstration library \mathcal{C} . Each set contains a random number (ranging from 0 to K) of demonstrations. The demonstration library \mathcal{C} is derived from hierarchical guidance data, which will be discussed in the following section. MpTranslator then generates candidate translations in parallel, conditioned on each demonstration set. Compared to vanilla repeated sampling, MpTranslator offers two key advantages. First, ICL generally elicits significantly higher-quality responses from LLMs than direct prompt learning. Second, parallel ICL can explicitly induce LLMs to explore diverse responses by varying the provided context.

2.1.2 MPTRANSLATOR OPTIMIZATION VIA HIERARCHICAL GUIDANCE

To enhance the adaptability of lightweight, open-source LLMs to the MpTranslator, we employ the hierarchical guidance strategy grounded in instruction fine-tuning (IFT). Standard IFT optimizes LLMs

162 via next-token prediction, improving their capacity to follow task-specific instructions. However, its
 163 direct application to MpTranslator faces two limitations: First, traditional IFT uses only the source
 164 code as input, while MpTranslator requires additional demonstrations as context during inference.
 165 This input inconsistency between training and inference can degrade model performance. Second,
 166 IFT learns from a single ground-truth response, which can lead to diversity collapse (Dang et al.,
 167 2025) in the model’s outputs. To address these issues, we propose a hierarchical guidance training.
 168

169 **Hierarchical Data Construction.** We construct multi-level target code from source code collected
 170 on online platforms (e.g., Codeforces). Lower levels correspond to functionally correct but slower
 171 implementations, while higher levels represent progressively optimized, faster versions.

172 Specifically, an ensemble of powerful LLMs (e.g., Qwen2.5-Coder-32B, gpt-oss-20B) first generates
 173 initial translations focusing on functional correctness, with each LLM contributing one candidate.
 174 The ensemble then iteratively edits and accelerates these translations for up to n rounds. A code
 175 compiler, leveraging online platform-provided test cases, filters out translations that are functionally
 176 incorrect or fail to achieve runtime improvement. Through this process, the ensemble contributes
 177 diverse strategies for translation and acceleration.

178 From each level, we randomly sample one code snippet, ensuring that each level exhibits at least a
 179 10% speedup over the previous one. The source code src and its most optimized translation tgt^n are
 180 stored in the demonstration library \mathcal{C} . In addition, src and its hierarchical translations $\{tgt^0, \dots, tgt^n\}$
 181 form our hierarchical training dataset, where tgt^0 is the initial functionally correct translation, and
 182 $tgt^{1\dots n}$ are increasingly optimized variants.

183 **Hierarchical Guidance.** We use the constructed hierarchical data to train LLMs, yielding the final
 184 MpTranslator. First, for each source code src and its target code tgt^t at optimization level t , we
 185 randomly sample a subset \mathcal{D}^t from the demonstration library \mathcal{C} , with the size of \mathcal{D}^t set to t to match
 186 the optimization level. For the base level tgt^0 , which focuses solely on correctness, we set $\mathcal{D}^0 = \emptyset$.
 187 We then train the model with demonstrations as context, with the loss defined as follows:
 188

$$\mathcal{L}_{hg}(src, \mathcal{D}^0, tgt^0, \dots, \mathcal{D}^n, tgt^n) = -\frac{1}{n+1} \sum_t \sum_i \log p(tgt_i^t | \mathcal{D}^t, src, tgt_{<i}^t), \quad (1)$$

191 where tgt_i^t denotes the i -th token of tgt^t , and $tgt_{<i}^t$ represents the preceding token sequence.

192 This hierarchical guidance provides three key advantages: (1) Training with demonstrations as context
 193 ensures consistency between training and inference. (2) Learning from multiple translations per
 194 source mitigates the diversity collapse (Dang et al., 2025) inherent in standard IFT. (3) Linking the
 195 size t of demonstration set \mathcal{D}^t to the optimization level teaches the model to produce conservative
 196 translations under sparse context and increasingly efficient translations with richer context, thereby
 197 adapting flexibly to tasks of varying difficulty.

198 2.2 DIFFERENCE-AWARE SELECTION

200 This subsection first introduces the workflow of the DiffSelector component, which employs a
 201 difference-aware judge to evaluate translation quality and utilizes a bubble-selection strategy for
 202 optimal candidate selection. Next, it presents ordinal guidance, which optimizes DiffSelector to
 203 achieve greater accuracy and robustness.

205 2.2.1 BUBBLE SELECTION VIA DIFFERENCE-AWARE JUDGE

207 The LLM-as-a-judge strategy is commonly used to select the optimal candidate from multiple outputs
 208 generated by LLMs (Zheng et al., 2023). However, since translations originate from the same source
 209 code, their differences are often subtle, sometimes limited to only a few tokens. Distinguishing such
 210 minor variations is challenging for LLMs.

211 To address this, we introduce DiffSelector, a difference-aware selector designed to facilitate fine-
 212 grained discrimination among similar translations. DiffSelector adopts a pairwise comparison strategy,
 213 evaluating two translations at a time. Unlike conventional methods, it treats one translation as a
 214 modified version of the other, explicitly highlighting their differences to support more accurate
 215 judgments. As illustrated in Fig. 2, the `diff(tgt1, tgt2)` operation shows the modifications from
 tgt_1 to tgt_2 in unified diff format, computed using GNU diff.

216 A straightforward use of DiffSelector is to compare every pair of candidate translations and select
 217 the best one, which requires $\mathcal{O}(n^2)$ comparisons for n candidates. To improve efficiency, we draw
 218 inspiration from the bubble sort algorithm, in which elements are compared and swapped based
 219 on pairwise evaluations. Specifically, we utilize DiffSelector as the pairwise comparator and treat
 220 candidate translations as elements to be sorted by quality. As shown in Fig. 2, we first compare “Py-A”
 221 and “Py-B”, retain the better one, and then compare it against the third candidate “Py-C”. The process
 222 repeats sequentially until all candidates have been evaluated. In this way, DiffSelector identifies the
 223 best translation in a single pass with only $n - 1$ comparisons, achieving $\mathcal{O}(n)$ complexity.

224 225 2.2.2 DIFFSELECTOR OPTIMIZATION VIA ORDINAL GUIDANCE

226 We further enhance DiffSelector through ordinal guidance, which leverages the inherent ranking
 227 of translation quality: efficient and correct translations \succ slower correct translations \succ incorrect
 228 translations. Firstly, MpTranslator generates multiple candidate translations from source code src
 229 collected on online platforms. Based on compiler feedback, we then select two target translations of
 230 different quality, denoted as tgt^+ and tgt^- . For example, tgt^+ is correct and efficient code, while
 231 tgt^- is correct but less efficient. Given the source code src and the two targets, we propose a bi-judge
 232 loss that trains the LLM to judge their relative quality bidirectionally, *i.e.*, whether tgt^+ constitutes
 233 an improvement over tgt^- and vice versa. The loss function is defined as:

$$234 \mathcal{L}_{\text{og}}(src, tgt^+, tgt^-) = -\frac{1}{2} [\log p(\text{‘Yes’} | src, tgt^+ \succ tgt^-) + \log p(\text{‘No’} | src, tgt^- \succ tgt^+)] \quad (2)$$

235 where “Yes” and “No” denote the ground-truth responses for the relative quality between tgt^+ and
 236 tgt^- . This bi-judge design mitigates sensitivity to candidate order (Zheng et al., 2023) in the prompt.

237 3 EXPERIMENTS

238 3.1 BENCHMARK CONSTRUCTION

239 **Extension of Existing Benchmarks.** Current benchmarks, such as CodeNet (Puri et al., 2021) and
 240 F2SBench (Zhang et al., 2025b), primarily focus on functional correctness but offer little support
 241 for efficiency evaluation, due to two main limitations: (1) The test cases are too simple to reveal
 242 runtime performance differences. For example, $\mathcal{O}(n^2)$ and $\mathcal{O}(n)$ implementations often show
 243 negligible runtime differences when $n = 1$. (2) The lack of baseline execution times prevents reliable
 244 efficiency evaluation. To address these limitations, we manually augment each sample in CodeNet
 245 and F2SBench with (i) ten efficiency-critical test cases and (ii) the maximum baseline execution time
 246 derived from conservative translations. Annotation is performed by three independent teams, each
 247 consisting of 20 experienced software professionals. From the collected annotations, we select the
 248 ten most diverse and challenging test cases for each sample. For runtime evaluation, we annotate
 249 multiple conservative translations and adopt the slowest execution time among them as the reference.

250 **Construction of SWIFTBENCH.** Beyond extending existing benchmarks, we introduce a new
 251 benchmark, SWIFTBENCH. Similar to CodeNet and F2SBench, SWIFTBENCH collects source
 252 code from online platforms, such as Codeforces, and provides both efficiency-critical test cases
 253 and a baseline execution time of target code. Distinctively, each source program in SWIFTBENCH
 254 contains intentional efficiency issues, such as redundant computations or suboptimal algorithms. This
 255 design reflects real-world scenarios, where source code quality is often unpredictable. Consequently,
 256 SWIFTBENCH evaluates whether translation models can improve inefficient input programs. To
 257 further reduce benchmark leakage in LLM evaluation (Xu et al., 2024), SWIFTBENCH is updated
 258 quarterly with programming problems recently released on online platforms. The current version
 259 covers problems released from June to August 2025. App. B provides additional details about the
 260 SWIFTBENCH benchmark.

261 3.2 EXPERIMENTAL SETTINGS

262 3.2.1 IMPLEMENTATION DETAILS

263 In the multi-perspective translation via parallel ICL, we set the number of demonstration sets m
 264 to 10, with each set containing up to $K = 3$ examples. For the hierarchical data construction, the

270 LLM ensemble consists of DeepSeek-Coder-V2-Lite-Instruct-16B, gpt-oss-20B, and Qwen3-Coder-
 271 30B-A3B-Instruct, with the code acceleration depth n fixed at 3. Our experiments cover translation
 272 among five programming languages: C, C++, Go, Java, and Python, yielding a total of 20 translation
 273 scenarios. Both the hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector
 274 utilize approximately 15k training instances per scenario, consistent with the data scale in prior
 275 work (Zhang et al., 2025b). Both components are trained on the same set of open-source LLMs, such
 276 as Qwen2.5-3B, using full-parameter fine-tuning with a learning rate of 1e-5. The complete set of
 277 prompts used in our experiments is provided in the App. E. All experiments are conducted on a server
 278 equipped with eight NVIDIA A800-SXM4-80GB GPUs.

279 3.2.2 METRIC DESIGN

280 We evaluate translated code along two dimensions: **Computational Accuracy (CA)** and **Execution**
 281 **Time (ET)**. Computational Accuracy measures the proportion of translated programs that produce
 282 outputs identical to the source code across all inputs, following the standard metric used in prior
 283 work (Zhang et al., 2025b). Execution Time is defined as the average runtime of the translated
 284 code over all program inputs. For functionally incorrect translations, we use the baseline execution
 285 time from the benchmark as their runtime. To ensure reliable evaluation, we employ the Judge0
 286 engine (Došilović & Mekterović, 2020), an online sandbox widely used for program execution
 287 testing (Waghjale et al., 2024). Each program, together with its inputs, is submitted to Judge0 and
 288 executed five times. The average runtime is then reported as the final result.

289 3.2.3 BASELINES

290 Our experiments include both training-free and training-based baselines. For the training-free base-
 291 lines, we evaluate three prompt learning strategies on Qwen3-Next-80B (Qwen, 2025) and GPT-5: (1)
 292 **Correctness-Only**: prompts focusing solely on functional correctness. (2) **Correctness+Efficiency**:
 293 prompts emphasizing both correctness and runtime efficiency. (3) **Correctness→Efficiency**: a
 294 two-step prompting approach where the first step generates a correctness-oriented translation, which
 295 is then further optimized for efficiency. Detailed prompts for these training-free baselines are listed
 296 in the App. E. For the training-based baseline, we adopt **F2STrans** (Zhang et al., 2025b), which first
 297 applies IFT on weakly supervised data, followed by preference learning with high-quality data.

300 3.3 MAIN RESULTS

301 We implement our SWIFTTRANS framework based on Qwen2.5-3B, Qwen2.5-7B, **Deepseek-6.7B**
 302 and **StarCoder-7B** separately. Tab. 1 summarizes results on CodeNet, F2SBench, and SWIFTBENCH
 303 across five programming languages (C, C++, Go, Java, Python), reporting averages from each
 304 source language to the other four targets. App. C presents additional benchmark results, including
 305 PIE (Shypula et al., 2024) and xCodeEval (Khan et al., 2024).

306
 307 **Functional Correctness Evaluation.** Tab. 1 (I) shows that prompts aimed at improving efficiency
 308 often significantly reduce functional correctness, even for GPT-5. This is intuitive, as introducing
 309 efficiency-oriented constraints increases the complexity of code translation, amplifying the risk of
 310 logical errors. Although more powerful LLMs such as GPT-5 are more robust to this trade-off,
 311 their high inference costs hinder wide application. In contrast, With our SWIFTTRANS framework,
 312 Qwen2.5-3B achieves an average CA 2.3% higher than F2STrans with Qwen2.5-7B, even though
 313 F2STrans leverages the stronger 7B model. Furthermore, applying SWIFTTRANS to Qwen2.5-7B
 314 outperforms GPT-5 by 3.8%. These results highlights both the potential of open-source LLMs for
 315 code translation and the effectiveness of SWIFTTRANS.

316
 317 **Runtime Efficiency Evaluation.** From Tab. 1 (II), we can find that the “Correctness + Efficiency”
 318 and “Correctness→Efficiency” strategies do improve runtime efficiency, confirming that the target
 319 code translated by LLMs usually has significant room for efficiency improvement. However, these
 320 gains come at the expense of a decline in functional correctness, making these prompt engineering
 321 strategies suboptimal solutions. Moreover, scaling up F2STrans from 3B to 7B does not improve the
 322 runtime efficiency of translations. This stems from F2STrans’s explicit emphasis on preserving the
 323 source code’s logical structure (Zhang et al., 2025b), which mitigates errors but constrains runtime
 324 efficiency. In contrast, SWIFTTRANS employs multi-perspective exploration to generate diverse

324
 325
 326
 327
 328 Table 1: Functional correctness and runtime efficiency of translated code on the CodeNet, F2SBench,
 329 and SWIFTBENCH benchmarks. Each piece of data reflects the average performance for translations
 330 from one source language into the other four among C, C++, Go, Java, and Python.
 331

328 Method	329 LLM	330 CodeNet					331 F2SBench					332 SWIFTBENCH (Ours)					333 Avg.
		334 C	335 C++	336 Go	337 Java	338 Py	339 C	340 C++	341 Go	342 Java	343 Py	344 C	345 C++	346 Go	347 Java	348 Py	
(I) Functional Correctness Evaluation—Computational Accuracy (%) ↑																	
331 Cor.-Only	332 Qwen3- 333 Next-80B	79.3	81.5	71.2	77.3	80.9	69.7	61.0	64.8	75.2	50.4	75.1	75.8	84.2	81.6	71.4	73.3
		79.7	79.2	66.8	74.6	77.9	66.0	51.7	55.1	68.3	44.6	73.5	77.6	78.4	70.7	65.5	68.6
		68.9	72.9	69.5	69.3	70.1	50.0	43.9	48.0	50.9	35.5	61.7	60.5	67.6	62.3	58.1	59.3
334 Cor.-Only	335 GPT-5	87.8	91.4	91.9	81.8	90.3	88.0	81.4	85.6	88.1	63.8	90.0	82.3	92.8	91.1	90.4	86.4
		82.9	88.5	89.1	81.2	80.5	79.9	72.9	78.5	84.1	50.1	83.3	75.0	88.3	79.8	83.6	79.8
		68.4	62.9	66.9	70.2	61.3	62.3	46.3	52.3	58.4	49.2	74.9	57.1	67.9	78.5	63.3	62.7
336 F2STrans [ICML 2025]	337 Qwen2.5-3B 338 Qwen2.5-7B	86.4	89.8	85.6	86.5	83.6	84.8	73.0	79.4	85.2	44.8	86.6	86.5	90.9	87.2	79.9	82.0
		91.0	91.4	86.8	88.5	91.1	85.6	75.6	82.2	86.7	49.6	87.8	88.6	92.8	88.4	83.1	84.6
		91.8	92.7	89.7	93.4	94.0	87.5	80.5	81.4	88.5	59.9	89.1	84.3	91.7	91.3	88.1	86.9
339 SWIFTTRANS (Ours)	340 Qwen2.5-3B 341 Qwen2.5-7B 342 Deepseek-6.7B 343 StarCoder-7B	93.6	95.0	96.1	94.9	94.6	91.2	82.7	86.9	90.3	62.1	93.1	92.3	96.5	93.1	91.5	90.2
		92.3	94.2	95.2	94.1	95.1	90.4	82.2	86.7	89.3	62.0	92.2	91.1	95.1	92.4	91.3	89.6
		92.3	93.8	95.4	94.3	94.8	89.7	82.0	85.4	88.7	61.5	92.4	91.5	95.4	92.1	91.0	89.4
(II) Runtime Efficiency Evaluation—Execution Time (ms) ↓																	
342 Cor.-Only	343 Qwen3- 344 Next-80B	514	685	363	174	315	1397	1164	523	257	356	1651	1729	983	856	682	776
		455	529	295	173	256	1274	814	419	222	339	1509	1538	823	774	586	667
		364	504	285	121	228	936	769	395	221	284	1186	1211	782	656	542	565
345 Cor.-Only	346 GPT-5	391	435	355	161	187	766	801	373	223	288	1010	1071	783	594	484	528
		376	357	338	137	167	690	721	309	172	257	870	880	623	512	388	453
		322	329	328	126	143	645	675	278	131	197	747	753	582	394	344	399
347 F2STrans [ICML 2025]	348 Qwen2.5-3B 349 Qwen2.5-7B	494	613	340	164	336	1239	1006	440	270	522	1532	1694	985	897	638	744
		470	711	303	175	320	1228	1089	423	261	508	1518	1599	837	884	639	731
		218	269	223	138	146	561	593	252	218	239	609	686	384	322	238	339
350 SWIFTTRANS (Ours)	351 Qwen2.5-3B 352 Qwen2.5-7B 353 Deepseek-6.7B 354 StarCoder-7B	190	216	145	106	122	472	573	203	168	217	563	551	328	313	214	292
		192	226	151	107	125	475	580	212	168	221	563	558	329	317	217	296
		203	242	168	123	126	497	577	228	186	233	579	605	352	316	232	311

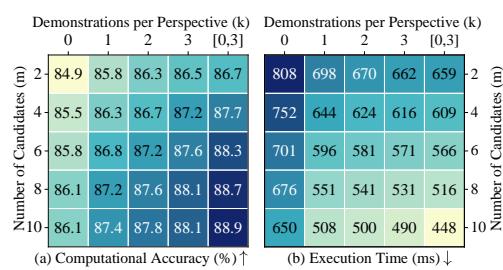
353 translations, facilitating the selection of candidates that better balance correctness and efficiency. For
 354 example, the execution time of code translated by Qwen2.5-7B-based SWIFTTRANS is comparable
 355 to that of code produced by GPT-5 under the “Correctness→Efficiency” strategy.

356 3.4 ANALYSIS

357 We conduct detailed experiments to analyze our SWIFTTRANS framework. Unless otherwise specified,
 358 the experiments are based on SWIFTTRANS with Qwen2.5-3B and evaluated on the SWIFTBENCH
 359 benchmark. Further discussions on SWIFTTRANS are provided in App. D.

360 **Multi-Perspective Translation via Parallel ICL.** In the multi-perspective translation, each perspective
 361 is constructed with $k \in [0, 3]$ demonstrations, and we sample a total of $m = 10$ perspectives
 362 to generate 10 candidate translations. Fig. 3 illustrates the effect of k and m on performance. We
 363 evaluate k under two settings: (i) fixed at 0, 1, 2, or 3, and (ii) randomly varying within $[0,3]$.

364 We observe that while ICL brings substantial
 365 benefits within our SWIFTTRANS framework, the gains diminish as the number
 366 of demonstrations increases. For example, with $m = 10$ candidates, increasing k from
 367 0 to 1 improves CA by 1.3% and reduces ET by 142 ms, whereas increasing k further
 368 from 1 to 3 provides only an additional 0.7%
 369 improvement in CA and 18 ms reduction in
 370 ET. Compared with using a fixed number of
 371 demonstrations, allowing k to vary within
 372 $[0, 3]$ delivers larger gains. This is because
 373 translations generated under variable- k are



374 Figure 3: Effect of the number of demonstrations per
 375 perspective and the number of translation candidates in
 376 multi-perspective translation.

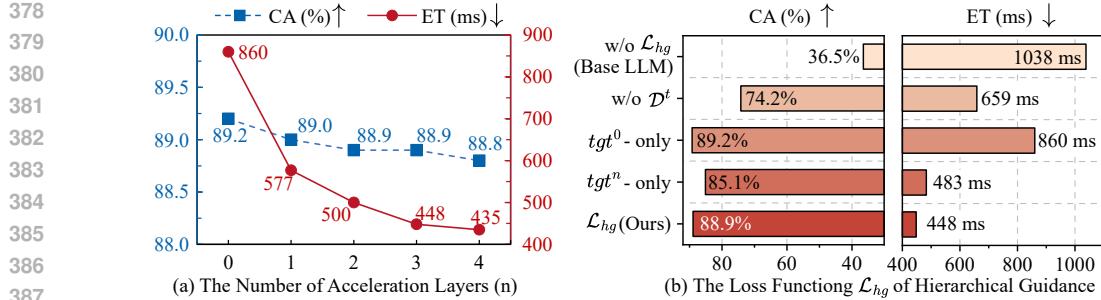


Figure 4: Analysis of the number of acceleration layers n and the training loss function \mathcal{L}_{hg} in hierarchical guidance.

essentially an aggregation of translations from multiple fixed- k settings, leading to a more diverse candidate pool. In addition, increasing the number of candidates m consistently improves translation quality. This corroborates prior findings (Brown et al., 2024) that multiple generations from the same prompt can help push the boundaries of LLM performance.

MpTranslator Optimization via Hierarchical Guidance. We analyze two key aspects of the hierarchical guidance strategy: the number of acceleration layers n used in hierarchical data construction and the loss function \mathcal{L}_{hg} in Eq. 1.

► *The Number of Acceleration Layers n .* The results of SWIFTTRANS applying various numbers of acceleration layers are shown in Fig. 4 (a). It can be observed that accelerating target code in the training data substantially mitigates efficiency issues in LLM-translated code, and additional acceleration layers further improve runtime efficiency. However, this comes at a slight cost to functional correctness—although the overall effect remains positive. For example, increasing n from 0 to 4 significantly reduces ET by 425 ms, at the cost of a marginal decrease (0.4%) in CA.

► *The Loss Function \mathcal{L}_{hg} of Hierarchical Guidance.* To analyze \mathcal{L}_{hg} , we define the following ablated variants of SWIFTTRANS: (1) “w/o \mathcal{L}_{hg} ”: candidate translations are generated directly by the base LLM, without hierarchical guidance training; (2) “w/o \mathcal{D}^t ”: demonstrations \mathcal{D}^t are removed from \mathcal{L}_{hg} ; (3) “ tgt^0 -only”: only the correctness-first translation tgt^0 is used as the supervision signal; (4) “ tgt^n -only”: only the optimal translation tgt^n is used as the supervision signal.

Fig. 4 (b) shows that hierarchical guidance substantially improves the code translation performance of base LLMs on both CA and ET. The sharp performance drop in the “w/o \mathcal{D}^t ” variant highlights the importance of ICL-based training for maintaining consistency between training and inference. Neither the “ tgt^0 -only” nor the “ tgt^n -only” variant achieves balanced performance: The former fails to promote runtime optimization (ET = 860 ms), while the latter over-prioritizes efficiency at the expense of correctness (CA = 85.1%). In contrast, SWIFTTRANS enables the model to maintain high correctness while improving efficiency.

Bubble Selection via Difference-Aware Judge.

Inspired by bubble sort, we introduce a bubble selection strategy to accelerate the candidate selection process of DiffSelector. We compare bubble selection with all-pair selection, which evaluates all candidate pairs before selecting the best one. As shown in Tab. 2, bubble selection matches the quality of all-pair selection while reducing comparisons from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. Specifically, all-pair selection outperforms bubble selection by just 0.2% in CA and 9 ms in ET. Given this marginal performance difference and the significant reduction in the number of comparisons, bubble selection proves to be highly practical for efficient candidate evaluation.

DiffSelector Optimization via Ordinal Guidance. Ordinal guidance uses the loss \mathcal{L}_{og} (Eq. 2) to compare translation quality bidirectionally. Our analytical experiments on ordinal guidance examine

Table 2: Comparison between all-pair and bubble selection. All-pair selection judges every candidate pair before choosing the best, whereas bubble selection, inspired by bubble sort, significantly reduces the number of comparisons.

Method	CA (%) ↑	ET (ms) ↓	# Judge ↓
All-Pair.	89.1	439	$\mathcal{O}(n^2)$
Bubble.	88.9	448	$\mathcal{O}(n)$

432 three ablated variants of DiffSelector: (1) “w/o \mathcal{L}_{og} ”, which reflects the base LLM without training;
 433 (2) “w/o `diff`”, which removes translation-difference information from the prompt and instead
 434 applies the standard pairwise judging strategy during training and inference; (3) “w/o Bi-Judge”,
 435 which randomly selects one order for each translation pair during training. Additionally, since the
 436 pairwise judging strategy can be influenced by the order of translations in the prompt (Zheng et al.,
 437 2023), we introduce the Order Sensitivity (OS) metric to measure this effect across judge model
 438 variants. OS quantifies the proportion of inconsistent judgments when the order of two translations is
 439 reversed. Lower OS values indicate greater model robustness to input order.

440 Tab. 3 shows that all three ablated variants lead
 441 to performance degradation across CA, ET, and
 442 OS metrics, confirming the effectiveness of the
 443 complete ordinal guidance framework. Focusing
 444 on OS, we find that the base LLM exhibits high
 445 order sensitivity, with 64.2% of its judgments
 446 influenced by input order rather than translation
 447 quality, underscoring the limitations of off-the-
 448 shelf LLMs (Zheng et al., 2023). By explicitly
 449 incorporating `diff` information between transla-
 450 tions and adopting the bi-judge training strategy,
 451 our ordinal guidance reduces this ratio to 6.4%.
 452 Importantly, the `diff` information contributes more than the bi-judge strategy, indicating that explicit
 453 difference information is crucial for distinguishing between highly similar translations.

454 3.5 DISCUSSION

457 **A More Comprehensive Evaluation of Trans-
 458 lated Code Quality.** Beyond functional correct-
 459 ness and runtime efficiency, Table 4 also eval-
 460 uates the translated code on **Memory Usage**
 461 and **Cyclomatic Complexity**, the latter being
 462 a standard indicator of code maintainability. Al-
 463 though SWIFTTRANS is designed primarily to
 464 improve correctness and runtime performance, it
 465 also produces code that uses less memory and
 466 has lower cyclomatic complexity. This benefit
 467 arises because many of the optimizations it per-
 468 forms—such as leveraging library utilities or re-
 469 moving redundant logic—naturally simplify con-
 470 trol flow and reduce memory consumption. Table 10 in the appendix summarizes the optimization
 471 types, with more than half contributing to improvements in these two metrics.

472 **Inference Efficiency of the SWIFTTRANS
 473 Framework.** Although generating multiple
 474 candidates and running the judge introduces addi-
 475 tional inference cost, we highlight two points: (1)
 476 under the same inference budget, SWIFTTRANS
 477 still outperforms F2STrans, and (2) candidate
 478 generation in SWIFTTRANS is fully paralleliz-
 479 able, so the extra overhead remains limited.

480 Table 5 reports functional correctness and aver-
 481 age per-sample inference time for various transla-
 482 tion frameworks. Due to their larger model sizes,
 483 Qwen3-Next-80B and GPT-5 incur much higher
 484 latency than F2STrans and SWIFTTRANS. With
 485 a single generated candidate, SWIFTTRANS has
 486 nearly the same inference time as F2STrans (a

Table 3: Ablation study on ordinal guidance for DiffSelector. The Order Sensitivity (OS) metric measures how sensitive the judge model is to the input order of translation pairs.

Method	CA (%) \uparrow	ET (ms) \downarrow	OS (%) \downarrow
SWIFTTRANS	88.9	448	6.4
w/o \mathcal{L}_{og}	86.1	609	64.2
w/o <code>diff</code>	87.3	519	27.5
w/o Bi-Judge	87.7	497	18.7

Table 4: Average memory usage and cyclomatic complexity of translated programs. Both F2STrans and our SWIFTTRANS use Qwen2.5-7B as the backbone.

Method	Memory Usage (MB) \downarrow	Cyclomatic Complexity \downarrow
Qwen3-Next-80B	27.6	6.5
GPT-5	26.1	5.9
F2STrans	29.1	7.0
SWIFTTRANS	23.9	5.7

Table 10 in the appendix summarizes the optimization types, with more than half contributing to improvements in these two metrics.

Table 5: Functional correctness and average inference time per sample across various code translation frameworks.

Method	Functional Correctness (%) \uparrow	Inference Time (s) \downarrow
Qwen3-Next-80B	73.3	21.8
GPT-5	86.4	121.3
F2STrans	84.6	5.1
SWIFTTRANS		
w/ 1-candidate	87.1	5.3
w/ 5-candidate	89.3	8.1
w/ 10-candidate	90.2	10.2

486 difference of only 0.2s) while achieving 2.5% higher correctness. Increasing the number of candidates
 487 from 1 to 10 roughly doubles the inference time but yields a 3.5% improvement in correctness.
 488

490 Evaluation on Additional Benchmarks.

491 While CodeNet, F2SBench, and SWIFTBENCH
 492 contain source programs from online pro-
 493 gramming platforms, we further evaluate
 494 SWIFTTRANS on benchmarks covering broader
 495 scenarios. These include the class-level
 496 ClassEval-T benchmark (Xue et al., 2025) and
 497 the repository-level AlphaTrans (Ibrahimzada
 498 et al., 2025a) and RepoTrans (Wang et al., 2024a)
 499 benchmarks. As shown in Table 6, SWIFTTRANS
 500 maintains strong performance across these benchmarks. The only exception is AlphaTrans, where
 501 GPT-4o achieves 1.6% higher functional correctness. We attribute this to the fact that source
 502 programs in AlphaTrans are very long, averaging over 5,000 tokens, a setting in which GPT-4o has a
 503 clear advantage over Qwen2.5-7B.
 504

505 4 RELATED WORK

506 A number of studies have investigated how to improve the functional correctness of code generated
 507 by LLMs. These efforts can be broadly divided into two categories: training-free and training-based
 508 methods. Classic prompt learning strategies, such as RAG (Bhattarai et al., 2024a;b), fall under
 509 training-free methods and have proven effective. Some studies leveraged compiler feedback to detect
 510 translation errors and guide LLM-based fixes (Yang et al., 2024; Pan et al., 2024; Ibrahimzada et al.,
 511 2025b). In contrast, training-based approaches employ well-designed training processes, which
 512 enable lightweight open-source LLMs to achieve translation performance comparable to proprietary
 513 models. For example, He et al. (2025) incorporated executability signals into training, substantially
 514 enhancing the executability of code. Zhang et al. (2025b) proposed a two-stage approach: IFT on
 515 weakly aligned data, followed by preference learning on high-quality contrastive data.
 516

517 In addition to functional correctness, runtime efficiency is an important criterion for evaluating
 518 code quality (ISO/IEC25010, 2011). In the task of code generation, Gee et al. (2024) trained
 519 LLMs to produce efficient solutions to programming problems, thereby achieving end-to-end code
 520 generation with improved efficiency. Accelerating generated code via post-processing is another
 521 mainstream approach. For example, Shypula et al. (2024) investigated LLM-based strategies code
 522 acceleration using techniques such as RAG, CoT, and IFT. Zhang et al. (2025c) further enhanced
 523 LLMs’ optimization capabilities through curriculum learning. Although runtime efficiency has been
 524 increasingly recognized as an important metric for evaluating code generation models (Huang et al.,
 525 2024), to the best of our knowledge, existing research on code translation still focuses primarily on
 526 functional correctness. We argue that ensuring both functional correctness and runtime efficiency in
 527 translated code is crucial for applying code translation LLMs in practical software development.
 528

529 5 CONCLUSION

530 In this work, we proposed SWIFTTRANS, a novel code translation framework that ensures both func-
 531 tional correctness and runtime efficiency of translated programs. Given source code, SWIFTTRANS
 532 first uses MpTranslator to generate diverse candidates through a multi-perspective translation strategy,
 533 and then employs DiffSelector to select the correct and most efficient candidate after comparison. In
 534 addition, we introduced hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector
 535 to better adapt LLMs to these two core components. To support runtime efficiency evaluation, we
 536 extended functionality-oriented benchmarks (CodeNet, F2SBench) and constructed a new benchmark,
 537 SWIFTBENCH. Extensive experiments across these three benchmarks demonstrate that SWIFTTRANS
 538 significantly improves the quality of LLM-based code translation.
 539

540
541
ETHICS STATEMENT

542 This work focuses on automated code translation and program optimization using large language
 543 models. It does not involve human subjects, personally identifiable information, or sensitive data.
 544 All datasets used—CodeNet, F2SBench, and our newly constructed SWIFTBENCH—are publicly
 545 available or derive from publicly accessible online programming platforms. We ensured that no
 546 proprietary or private codebases were included. The primary ethical consideration pertains to the
 547 deployment of automatically translated code in safety-critical or high-stakes systems. To mitigate
 548 such risks, we emphasize that our framework should be applied with human oversight and proper
 549 software validation. Our contributions are intended for academic research and general-purpose
 550 software engineering scenarios, and we do not foresee any directly attributable risks of security or
 551 privacy violations from this work.

552
553
REPRODUCIBILITY STATEMENT

554 We have taken extensive measures to ensure the reproducibility of our results. All benchmarks used
 555 in this work (CodeNet, F2SBench, and SWIFTBENCH) are publicly available or will be released upon
 556 acceptance of this paper. We provide full details of experimental settings, including training data
 557 construction, prompt templates, and evaluation metrics. Implementation details such as the number
 558 of demonstrations per perspective, the depth of hierarchical acceleration, and the loss functions
 559 used for optimization are described in Sec. 3.2.1. For runtime evaluation, we employed the Judge0
 560 execution sandbox, a widely used open-source platform, as shown in Sec. 3.2.2. To further support
 561 reproducibility, we will release the source code for our SWIFTTRANS framework, including data
 562 processing scripts, training configurations, and evaluation pipelines. These materials will allow other
 563 researchers to replicate our experiments and validate our findings across different hardware setups.

564
565
REFERENCES

566
567 Manish Bhattacharai, Javier E Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel
 568 O’Malley. Enhancing code translation in language models with few-shot learning via retrieval-
 569 augmented generation. *arXiv preprint arXiv:2407.19619*, 2024a.

570 Manish Bhattacharai, Minh Vu, Javier E Santos, Ismael Boureima, and Daniel O’ Malley. Enhancing
 571 cross-language code translation via task-specific embedding alignment in retrieval-augmented
 572 generation. *arXiv preprint arXiv:2412.05159*, 2024b.

573 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
 574 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
 575 *arXiv preprint arXiv:2407.21787*, 2024.

576 Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
 577 *arXiv preprint arXiv:1802.03691*, 2018.

578 Xingyu Dang, Christina Baek, J Zico Kolter, and Aditi Raghunathan. Assessing diversity collapse in
 579 reasoning. In *Scaling Self-Improving Foundation Models without Human Supervision*, 2025.

580 Herman Zvonimir Došilović and Igor Mekterović. Robust and scalable online code execution system.
 581 In *2020 43rd International Convention on Information, Communication and Electronic Technology
 582 (MIPRO)*, pp. 1627–1632. IEEE, 2020.

583 Leonidas Gee, Milan Gritta, Gerasimos Lampouras, and Ignacio Iacobacci. Code-optimise: Self-
 584 generated preference data for correctness and efficiency. *arXiv preprint arXiv:2406.12502*, 2024.

585 Minghua He, Fangkai Yang, Pu Zhao, Wenjie Yin, Yu Kang, Qingwei Lin, Saravan Rajmohan,
 586 Dongmei Zhang, and Qi Zhang. Execoder: Empowering large language models with executability
 587 representation for code translation. *arXiv preprint arXiv:2501.18460*, 2025.

588 Dong Huang, Yuhao Qing, Weiyi Shang, Heming Cui, and Jie M Zhang. Effibench: Benchmarking the
 589 efficiency of automatically generated code. *Advances in Neural Information Processing Systems*,
 590 37:11506–11544, 2024.

594 Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan, Saurabh
 595 Sinha, and Reyhaneh Jabbarvand. Alphatrans: A neuro-symbolic compositional approach for
 596 repository-level code translation and validation. *Proc. ACM Softw. Eng.*, 2(FSE), June 2025a. doi:
 597 10.1145/3729379.

598 Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan, Saurabh
 599 Sinha, and Reyhaneh Jabbarvand. Alphatrans: A neuro-symbolic compositional approach for
 600 repository-level code translation and validation. *Proceedings of the ACM on Software Engineering*,
 601 2(FSE):2454–2476, 2025b.

602 ISO/IEC25010. Systems and software engineering – systems and software quality requirements and
 603 evaluation (square), 2011.

604 Mohammad Abdullah Matin Khan, M Saiful Bari, Do Long, Weishi Wang, Md Rizwan Parvez, and
 605 Shafiq Joty. Xcodeeval: An execution-based large scale multilingual multitask benchmark for code
 606 understanding, generation, translation and retrieval. In *Proceedings of the 62nd Annual Meeting of*
 607 *the Association for Computational Linguistics (ACL)*, pp. 6766–6805, 2024.

608 Maxim Mossienko. Automated cobol to java recycling. In *Proceedings of Seventh European*
 609 *Conference on Software Maintenance and Reengineering (CSMR)*, pp. 40–50, 2003.

610 OpenAI. Gpt-5. <https://openai.com>, 2025. Accessed: 2025-09-25.

611 Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele
 612 Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation:
 613 A study of bugs introduced by large language models while translating code. In *Proceedings of the*
 614 *IEEE/ACM 46th International Conference on Software Engineering (ICSE)*, pp. 1–13, 2024.

615 Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
 616 Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
 617 code dataset for learning a diversity of coding tasks. *arXiv preprint arXiv:2105.12655*, 2021.

618 Qwen. Qwen3 technical report, 2025.

619 Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad
 620 Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh.
 621 Learning performance-improving code edits. In *The Twelfth International Conference on Learning*
 622 *Representations (ICLR)*, 2024.

623 Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. Ecco: Can
 624 we improve model-generated code efficiency without sacrificing functional correctness? *arXiv*
 625 *preprint arXiv:2407.14044*, 2024.

626 Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo, Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma,
 627 Mingzhi Mao, Hongyu Zhang, et al. Repotransbench: A real-world benchmark for repository-level
 628 code translation. *arXiv preprint arXiv:2412.17744*, 2024a.

629 Zhenyi Wang, Li Zou, Shengyun Wei, Feifan Liao, Jia Zhuo, Haibo Mi, and Rongxuan Lai. Large
 630 language model enabled semantic communication systems, 2024b.

631 Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
 632 language models. *arXiv preprint arXiv:2404.18824*, 2024.

633 Pengyu Xue, Linhao Wu, Zhen Yang, Chengyi Wang, Xiang Li, Yuxiang Zhang, Jia Li, Ruihai Jin,
 634 Yifei Pei, Zhaoyan Shen, et al. Classeval-t: Evaluating large language models in class-level code
 635 translation. *Proceedings of the ACM on Software Engineering*, 2(ISSTA):1421–1444, 2025.

636 Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A comprehen-
 637 sive multilingual benchmark for code translation. *arXiv preprint arXiv:2310.04951*, 2023.

638 Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
 639 Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
 640 code translation. In *Proceedings of the ACM on Software Engineering*, pp. 1585–1608, 2024.

648 Xin Yin, Chao Ni, Tien N Nguyen, Shaohua Wang, and Xiaohu Yang. Rectifier: Code translation
 649 with corrector via llms. *arXiv preprint arXiv:2407.07472*, 2024.
 650

651 Hanliang Zhang, Cristina David, Meng Wang, Brandon Paulsen, and Daniel Kroening. Scalable,
 652 validated code translation of entire projects using large language models. *Proceedings of the ACM
 653 on Programming Languages*, 9(PLDI):1616–1641, 2025a.

654 Longhui Zhang, Bin Wang, Jiahao Wang, Xiaofeng Zhao, Min Zhang, Hao Yang, Meishan Zhang,
 655 YU LI, Jing Li, Jun Yu, and Min Zhang. Function-to-style guidance of LLMs for code translation.
 656 In *Forty-second International Conference on Machine Learning*, 2025b.

657 Longhui Zhang, Jiahao Wang, Meishan Zhang, GaoXiong Cao, Ensheng Shi, Mayuchi Mayuchi, Jun
 658 Yu, Honghai Liu, Jing Li, and Min Zhang. Speed up your code: Progressive code acceleration
 659 through bidirectional tree editing. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 660 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 661 for Computational Linguistics (Volume 1: Long Papers)*, pp. 28563–28576, Vienna, Austria, July
 662 2025c. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 663 2025.acl-long.1387.

664 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 665 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 666 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

667 Hao Zhong, Suresh Thummala, Tao Xie, Lu Zhang, and Qing Wang. Mining api mapping for
 668 language migration. In *Proceedings of the 32nd ACM/IEEE International Conference on Software
 669 Engineering (ICSE)*, pp. 195–204, 2010.

671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

APPENDIX

705	A The Use of Large Language Models (LLMs)	14
706		
707	B Benchmark Analysis	14
708		
709	C Additional Results	14
710		
711	D Discussion	15
712		
713	E Prompt Settings	16
714		
715	F Case Study	17
716		

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

721 During the preparation of this paper, LLMs were used as an auxiliary tool for language refinement
 722 and formatting. Specifically, GPT-based models were employed to enhance writing clarity, improve
 723 grammatical accuracy, and generate alternative phrasings for certain sentences. However, LLMs
 724 played no role in generating the research ideas, methodology, experimental design, or results. All
 725 conceptual contributions, technical developments, and data analyses were carried out by the authors.
 726 The final content was thoroughly verified and revised by the authors, who take full responsibility for
 727 the correctness and integrity of this work.

B BENCHMARK ANALYSIS

Table 7: Data statistics of CodeNet, F2SBench, and SWIFTBENCH.

Benchmark	Language	#Code	#Cases	Date
CodeNet	C, C++, Go, Java, Python	200×5	10	Pre-2021
F2SBench	C, C++, Go, Java, Python	1000×5	10	Mid-2024
SWIFTBENCH (Ours)	C, C++, Go, Java, Python	500×5	10	Jun.–Aug. 2025

Table 8: Average execution time (ms) of conservative translations across benchmarks.

Benchmark	$\{\} \rightarrow \mathbf{C}$	$\{\} \rightarrow \mathbf{C++}$	$\{\} \rightarrow \mathbf{Go}$	$\{\} \rightarrow \mathbf{Java}$	$\{\} \rightarrow \mathbf{Python}$
CodeNet	241	358	402	820	594
F2SBench	296	431	714	1486	1290
SWIFTBENCH (Ours)	718	578	801	1814	1400

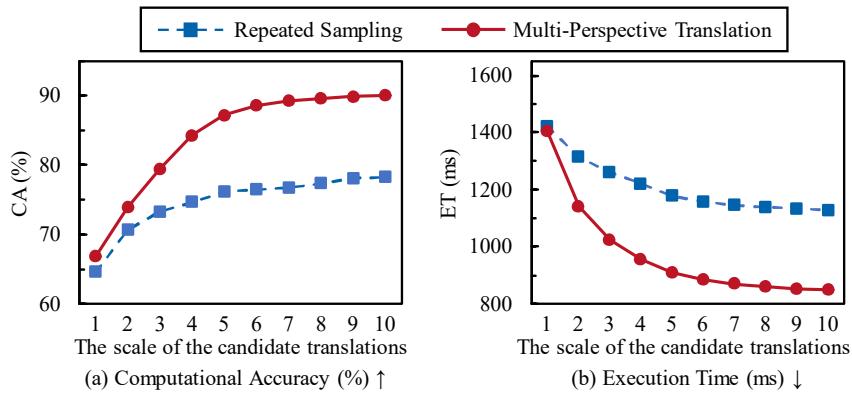
743 Tab. 7 presents the data statistics for CodeNet, F2SBench, and SWIFTBENCH. Additionally, Tab. 8
 744 illustrates the average execution time of annotated conservative translations on these three benchmarks.
 745 It can be observed that the code samples in CodeNet tend to be relatively simple. In contrast, the
 746 source code in SWIFTBENCH is intentionally designed to include efficiency issues, resulting in slower
 747 execution times for the translated code. This highlights the challenging nature of the SWIFTBENCH
 748 benchmark.

C ADDITIONAL RESULTS

752 We further evaluate SWIFTTRANS on the PIE (Shypula et al., 2024) and xCodeEval (Khan et al.,
 753 2024) benchmarks. Although PIE is commonly used for the code optimization task and xCodeEval for
 754 the code generation task, both provide source code along with basic test cases, making them suitable
 755 for evaluating code translation models. Notably, ET metric is not supported on these benchmarks,
 due to the lack of efficiency-critical test cases and the maximum baseline execution time derived from

756 Table 9: The code translation performance of various models on PIE (Shypula et al., 2024) and
 757 xCodeEval (Khan et al., 2024). Since these two benchmarks do not support evaluating the runtime
 758 efficiency of translated code, we report only functional correctness, *i.e.*, the CA metric.

Method	LLM	PIE	xCodeEval					Avg.
		C++	C	C++	Go	Java	Py	
Cor.-Only	Qwen3-Next	63.6	78.7	67.8	82.5	70.6	69.6	72.1
Cor.-Only	GPT-5	93.9	89.4	89.7	90.9	88.3	84.8	89.5
F2STrans	Qwen2.5-3B	86.4	90.4	87.0	90.3	87.2	82.2	87.2
[ICML 2025]	Qwen2.5-7B	89.2	91.3	88.8	91.8	89.4	84.1	89.1
SWIFTTRANS (Ours)	Qwen2.5-3B	90.4	91.7	87.4	92.1	87.3	85.9	89.1
	Qwen2.5-7B	92.3	93.1	90.6	93.5	92.4	89.6	91.9



782 Figure 5: Comparison between the classic repeated sampling strategy and our multi-perspective
 783 translation strategy. In the experiment, Qwen3-Next-80B is used to generate multiple candidate
 784 Python translations for the C source code in the SWIFTBENCH benchmark, and the optimal one is
 785 selected.

787 conservative translations. Tab. 9 presents the performance of various models on these two benchmarks.
 788 We can find that the advantages of our SWIFTTRANS remain significant in both benchmarks. For
 789 example, the average CA of SWIFTTRANS based on Qwen2.5-7B exceeds that of GPT-5.

D DISCUSSION

794 **Comparison between Repeated Sampling and Multi-Perspective Translation.** We directly
 795 compare the classic repeated sampling approach with our multi-perspective translation strategy.
 796 We apply both translation strategies using Qwen3-Next-80B to translate the C-to-Python subset of
 797 SWIFTBENCH benchmark. Fig. 5 shows the pass@k results, where the best candidate translation is
 798 selected directly, without any judging process. It is evident that multi-perspective translation brings
 799 larger gains than repeated sampling. For instance, under multi-perspective translation, pass@10
 800 improves by 23.2% over pass@1 on the CA metric, whereas repeated sampling only gains 13.7%.
 801 Furthermore, at pass@10, multi-perspective translation significantly outperforms repeated sampling
 802 on both CA and ET. These results confirm that our multi-perspective translation provides higher-
 803 quality candidates than simple repeated sampling.

804 **Categorization of Efficiency-Oriented Translation Optimizations.** We classify code optimization
 805 patterns into six categories: Leveraging Language/Library Tools, Mathematical Simplification,
 806 Optimizing Algorithm Complexity, Removing Redundant Logic, Upgrading Data Structures, and
 807 Others. To estimate the prevalence of each type, we randomly sample 500 translations produced by
 808 Qwen2.5-3B-based SWIFTTRANS on SWIFTBENCH and compare them with manually annotated
 809 SWIFTBENCH translations that are correct but inefficient. If multiple categories were involved in
 one example, we selected the one with the greatest impact. As shown in Tab. 10, most optimizations

810
811 Table 10: Distribution of optimization categories in 500 randomly sampled translations from Qwen2.5-
812 3B-based SWIFTTRANS on SWIFTBENCH.

813 Optimization Category	814 Percentage
815 Leveraging Language/Library Tools	20.1%
816 Mathematical Simplification	6.4%
817 Optimizing Algorithm Complexity	13.4%
818 Removing Redundant Logic	30.5%
819 Upgrading Data Structures	26.4%
	Others 3.2%

820
821 fall into three categories: Removing Redundant Logic, Upgrading Data Structures, and Leveraging
822 Language/Library Tools.

825 E PROMPT SETTINGS

827 Multi-Perspective Translation.

828
829 Translate the following {SOURCE_LANG} code into {TARGET_LANG} code, maintaining function-
830 ality, and optimizing for performance:
831 ### {SOURCE_LANG} Code:
832 {SOURCE_CODE}
833 ### {TARGET_LANG} Code:

835 Difference-Aware Judge.

836
837 Here is a {SOURCE_LANG} code snippet and its translated {TARGET_LANG} version. Does my
838 refinement to the {TARGET_LANG} code improve its correctness or efficiency?
839 ### {SOURCE_LANG} Code:
840 {SOURCE_CODE}
841 ### {TARGET_LANG} Code:
842 {TARGET_CODE_1}
843 ### Refinement:
844 diff({TARGET_CODE_1}, {TARGET_CODE_2})

845 Translation Layer of Hierarchical Data Construction.

846
847 Translate the {SOURCE_LANG} code to {TARGET_LANG} code.
848 ### {SOURCE_LANG} Code:
849 {SOURCE_CODE}
850 ### {TARGET_LANG} Code:

851 Acceleration Layer of Hierarchical Data Construction.

852
853 Below is a {SOURCE_LANG} code. Optimize the code and provide a more efficient version.
854 ### {SOURCE_LANG} Code:
855 {SOURCE_CODE}
856 ### Optimized Version:

858 Correctness-Only Prompt.

859
860 Translate the {SOURCE_LANG} code to {TARGET_LANG} code.
861 ### {SOURCE_LANG} Code:
862 {SOURCE_CODE}
863 ### {TARGET_LANG} Code:

864
865

Correctness+Efficiency Prompt.

866

Translate the following {SOURCE_LANG} code into {TARGET_LANG} code, maintaining function-
867 ality, and optimizing for performance:

868

{SOURCE_LANG} Code:

869

{SOURCE_CODE}

870

{TARGET_LANG} Code:

871

872

Correctness→Efficiency Prompt.

873

874

Stage 1—Correctness-Only Prompt:

Translate the {SOURCE_LANG} code to {TARGET_LANG} code.

875

{SOURCE_LANG} Code:

876

{SOURCE_CODE}

877

{TARGET_LANG} Code:

878

Stage 2—Code Acceleration Prompt:

Below is a {TARGET_LANG} code. Optimize the code and provide a more efficient version.

879

{TARGET_LANG} Code:

880

{TARGET_CODE}

881

Optimized Version:

882

883

884

F CASE STUDY

885

Fig. 6 illustrates a case study of SWIFTTRANS, highlighting its advantages over traditional correctness-first models. Direct translation of the source code often carries over suboptimal logic from the original or overlooks optimizations specific to the target language. In contrast, SWIFTTRANS is designed to overcome these issues and produce translations that are both more efficient and more accurate.

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
919
920
921
922
923
924

	Source Code (C)	Correctness-First Translation (Python)	SWIFTTRANS Translation (Python)	Explanation
925				
926				
927				
928				
929				
930				
931				
932				
933				
934				
935				
936				
937				
938				
939				
940				
941				
942				
943				
944				
945				
946				
947				
948				
949				
950				
951				
952				
953				
954				
955				
956				
957				
958				
959				
960				
961				
962				
963				
964				
965				
966				
967				
968				
969				
970				
971				

Figure 6: Case studies of SWIFTTRANS under different types of translation optimizations.