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ABSTRACT

While large language models (LLMs) have greatly advanced the functional correct-
ness of automated code translation systems, the runtime efficiency of translated
programs has received comparatively little attention. With the waning of Moore’s
law, runtime efficiency has become as critical as functional correctness in evaluat-
ing program quality. Our preliminary study reveals that LLM-translated programs
often run slower than human-written ones, and this issue cannot be remedied
through prompt engineering alone. Therefore, our work proposes SWIFTTRANS,
a code translation framework comprising two key stages: (1) Multi-Perspective
Exploration, where MpTranslator leverages parallel in-context learning (ICL) to
generate diverse translation candidates; and (2) Difference-Aware Selection, where
DiffSelector identifies the optimal candidate by explicitly comparing differences
between translations. We further introduce Hierarchical Guidance for MpTrans-
lator and Ordinal Guidance for DiffSelector, enabling LLMs to better adapt to
these two core components. To evaluate the runtime efficiency of programs, we
extend existing benchmarks, CodeNet and F2SBench, with efficiency-critical test
cases and maximum runtime constraints on translated programs. We also introduce
SWIFTBENCH, a new benchmark designed to evaluate whether translation models
can improve the efficiency of programs when the source code exhibits inefficien-
cies. Experimental results across all three benchmarks show that SWIFTTRANS
achieves consistent improvements in both correctness and efficiency. Notably,
SWIFTTRANS built on Qwen2.5-7B surpasses current state-of-the-art models such
as GPT-5 and training-based F2STrans (Zhang et al., 2025b).

1 INTRODUCTION

Code translation, the task of converting code from a source programming language (e.g., C) to a
target language (e.g., Python), is vital in software engineering scenarios like legacy system migration
and cross-platform development (Mossienko, 2003). The rise of large language models (LLMs)
has introduced a new paradigm for code translation. Unlike earlier methods relying on handcrafted
features (Zhong et al., 2010) or intricate deep architectures (Chen et al., 2018), LLMs can perform
preliminary translation through simple prompt learning (Yan et al., 2023). This has attracted increasing
research attention on enhancing the functional correctness of code translated by LLMs, and significant
progress has been made (Zhang et al., 2025a). For example, Yang et al. (2024); Ibrahimzada et al.
(2025b) leverage compilers to detect translation bugs, enabling targeted repairs by LLMs.

However, according to the ISO/IEC 25010 guidelines (ISO/IEC25010, 2011), program quality in-
cludes not only functional correctness but also non-functional attributes such as efficiency. Despite
progress in Functional Correctness (Yin et al., 2024; Ibrahimzada et al., 2025a), Runtime Effi-
ciency—a crucial aspect of program performance—has received little attention in prior work. To
address this gap, we conduct a preliminary investigation and present two key findings: (1) LLM-
translated code typically exhibits lower efficiency than human-written code in the target language, as
shown in Fig. 1 (a). One major reason is that LLMs tend to replicate the logic and structure of the
source code (Zhang et al., 2025b). Although such replication reduces the risk of errors, it also perpetu-
ates any inefficient coding constructs present in the source code and neglects target language-specific
optimizations, such as C pointers or Python’s built-in functions. (2) Ensuring both correctness and
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Figure 1: Challenges in runtime efficiency of LLM-translated code, shown on C-to-Python translation
from F2SBench (Zhang et al., 2025b) with Qwen3-Next-80B (Qwen, 2025). (a) LLM-translated
programs generally run slower than human-written ones. (b) This issue is hard to address, as prompt
engineering strategies—such as prompts that additionally emphasize efficiency (“Corr.+Eff.”) or
employ post-hoc optimization (“Corr.—Eff.”)—can improve efficiency but often reduce functional
correctness relative to correctness-only prompts (“Corr.-only™).

efficiency in translated code remains challenging, as shown in Fig. 1 (b). Straightforward solutions,
like complex prompts or post-hoc optimization modules, often improve efficiency at the cost of
correctness due to increased complexity.

Our work introduces SWIFTTRANS, a code translation framework designed to ensure both correctness
and efficiency. SWIFTTRANS first employs a Multi-Perspective Translator (MpTranslator) to
generate diverse translation candidates from the source code, and then applies a Difference-Aware
Selector (DiffSelector) to identify the optimal one. MpTranslator draws on diverse, multi-scale
demonstrations, which improves translation quality and diversity compared to traditional repeated
sampling (Brown et al., 2024). Through hierarchical guidance training, MpTranslator learns to
produce outputs that range from conservative (correctness-first) to optimized (efficiency-aware)
translations, enabling adaptation to tasks of varying complexity. Serving as a pairwise LLM-as-a-
judge, DiftSelector performs fine-grained comparisons between translation candidates, considering
both correctness and efficiency. It employs an efficient linear-time selection strategy, inspired by
bubble sort, to evaluate all candidates. Finally, we introduce ordinal-guidance training to enhance
DiffSelector’s accuracy and robustness to candidate order.

To support a comprehensive evaluation of code translation models, we introduce enhanced benchmarks
that assess not only functional correctness but also runtime efficiency. Current benchmarks, such
as CodeNet (Puri et al., 2021) and F2SBench (Zhang et al., 2025b), typically contain only limited,
simple test cases that emphasize functional correctness. To address this limitation, we augment
these benchmarks with manually curated, efficiency-critical test cases and corresponding maximum
runtime constraints on translated programs. Moreover, we propose SWIFTBENCH, a new benchmark
that incorporates source programs with intentionally embedded inefficiencies, such as redundant
computations or suboptimal algorithmic choices. This design evaluates whether translation models can
eliminate inefficiencies in translated code without compromising functional correctness. Additionally,
SWIFTBENCH is regularly updated to mitigate the risk of data contamination.

Extensive experiments on CodeNet, F2SBench, and SWIFTBENCH show that SWIFTTRANS consis-
tently surpasses existing methods in both functional correctness and runtime efficiency. For example,
across translation tasks among C, C++, Go, Java, and Python, SWIFTTRANS with Qwen2.5-7B
outperforms GPT-5 (OpenAl, 2025) and training-based approaches, such as F2STrans (Zhang et al.,
2025b). Ablation studies further validate the effectiveness of both MpTranslator and DiffSelector.

Our key contributions are summarized as follows:

* To our knowledge, we are the first to systematically highlight and address efficiency deficits
in LLM-based code translation, for which we propose the SWIFTTRANS framework.

* We extend existing benchmarks and develop a new benchmark, SWIFTBENCH, to support
the evaluation of both correctness and efficiency.

» Experiments across diverse benchmarks and programming languages show that our approach
significantly improves the quality of translated code compared to various baselines.
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Figure 2: Overview of our SWIFTTRANS. Taking C-to-Python translation as an example, MpTransla-
tor first generates diverse candidates through parallel ICL, and DiftSelector applies a difference-aware
judging strategy with bubble selection to identify the most accurate and efficient translation. We
introduce hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector to better
adapt LLMs to these two core components.

2 METHODOLOGY

As shown in Fig. 2, given a source code snippet, our SWIFTTRANS framework first applies the
Multi-Perspective Exploration to generate a diverse set of candidate translations, and then selects
the optimal one through Difference-Aware Selection. In this process, LLMs provide critical support
for SWIFTTRANS’s two core components: MpTranslator and DiffSelector. We optimize LLMs
specifically for these two components, enabling lightweight open-source LLMs (e.g., Qwen2.5-3B)
to match or even surpass the performance of powerful LLMs like GPT-5.

2.1 MULTI-PERSPECTIVE EXPLORATION

This subsection first describes the multi-perspective translation mechanism of MpTranslator, which
leverages parallel in-context learning (ICL) to generate diverse candidates. Next, it details the
hierarchical guidance strategy used to optimize MpTranslator.

2.1.1 MULTI-PERSPECTIVE TRANSLATION VIA PARALLEL ICL

Traditional repeated sampling approaches (Brown et al., 2024) generate multiple outputs by issuing
identical prompts to the LLM. However, constrained by fixed inputs, these outputs remain confined
to a narrow semantic space (Wang et al., 2024).

To overcome this limitation, MpTranslator leverages parallel ICL to encourage diversity in candidate
translations. Specifically, for a source code snippet src, MpTranslator first randomly constructs m
sets of demonstrations from a large demonstration library C. Each set contains a random number
(ranging from O to K') of demonstrations. The demonstration library C is derived from hierarchical
guidance data, which will be discussed in the following section. MpTranslator then generates
candidate translations in parallel, conditioned on each demonstration set. Compared to vanilla
repeated sampling, MpTranslator offers two key advantages. First, ICL generally elicits significantly
higher-quality responses from LLMs than direct prompt learning. Second, parallel ICL can explicitly
induce LLMs to explore diverse responses by varying the provided context.

2.1.2 MPTRANSLATOR OPTIMIZATION VIA HIERARCHICAL GUIDANCE

To enhance the adaptability of lightweight, open-source LLMs to the MpTranslator, we employ the hi-
erarchical guidance strategy grounded in instruction fine-tuning (IFT). Standard IFT optimizes LLMs
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via next-token prediction, improving their capacity to follow task-specific instructions. However, its
direct application to MpTranslator faces two limitations: First, traditional IFT uses only the source
code as input, while MpTranslator requires additional demonstrations as context during inference.
This input inconsistency between training and inference can degrade model performance. Second,
IFT learns from a single ground-truth response, which can lead to diversity collapse (Dang et al.,
2025) in the model’s outputs. To address these issues, we propose a hierarchical guidance training.

Hierarchical Data Construction. We construct multi-level target code from source code collected
on online platforms (e.g., Codeforces). Lower levels correspond to functionally correct but slower
implementations, while higher levels represent progressively optimized, faster versions.

Specifically, an ensemble of powerful LLMs (e.g., Qwen2.5-Coder-32B, gpt-o0ss-20B) first generates
initial translations focusing on functional correctness, with each LLM contributing one candidate.
The ensemble then iteratively edits and accelerates these translations for up to n rounds. A code
compiler, leveraging online platform-provided test cases, filters out translations that are functionally
incorrect or fail to achieve runtime improvement. Through this process, the ensemble contributes
diverse strategies for translation and acceleration.

From each level, we randomly sample one code snippet, ensuring that each level exhibits at least a
10% speedup over the previous one. The source code src and its most optimized translation tgt™ are
stored in the demonstration library C. In addition, src and its hierarchical translations {tgt’, ..., tgt"}
form our hierarchical training dataset, where tgt° is the initial functionally correct translation, and
gt are increasingly optimized variants.

Hierarchical Guidance. We use the constructed hierarchical data to train LLMs, yielding the final
MpTranslator. First, for each source code src and its target code tgt’ at optimization level £, we
randomly sample a subset D! from the demonstration library C, with the size of D! set to ¢ to match
the optimization level. For the base level tgt°, which focuses solely on correctness, we set D° = .
‘We then train the model with demonstrations as context, with the loss defined as follows:

1
Lig(s7¢, D%, tgt®, ..., D" tgt") = — Xt: Zi:logp (tgt; | D', sre, tgtl,), (1

where ¢gt! denotes the i-th token of ¢tgt’, and tgt’ ; represents the preceding token sequence.

This hierarchical guidance provides three key advantages: (1) Training with demonstrations as context
ensures consistency between training and inference. (2) Learning from multiple translations per
source mitigates the diversity collapse (Dang et al., 2025) inherent in standard IFT. (3) Linking the
size t of demonstration set D! to the optimization level teaches the model to produce conservative
translations under sparse context and increasingly efficient translations with richer context, thereby
adapting flexibly to tasks of varying difficulty.

2.2 DIFFERENCE-AWARE SELECTION

This subsection first introduces the workflow of the DiffSelector component, which employs a
difference-aware judge to evaluate translation quality and utilizes a bubble-selection strategy for
optimal candidate selection. Next, it presents ordinal guidance, which optimizes DiffSelector to
achieve greater accuracy and robustness.

2.2.1 BUBBLE SELECTION VIA DIFFERENCE-AWARE JUDGE

The LLM-as-a-judge strategy is commonly used to select the optimal candidate from multiple outputs
generated by LLMs (Zheng et al., 2023). However, since translations originate from the same source
code, their differences are often subtle, sometimes limited to only a few tokens. Distinguishing such
minor variations is challenging for LLMs.

To address this, we introduce DiffSelector, a difference-aware selector designed to facilitate fine-
grained discrimination among similar translations. DiffSelector adopts a pairwise comparison strategy,
evaluating two translations at a time. Unlike conventional methods, it treats one translation as a
modified version of the other, explicitly highlighting their differences to support more accurate
judgments. As illustrated in Fig. 2, the diff(tgt;, tgts) operation shows the modifications from
tgty to tgts in unified diff format, computed using GNU diff.
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A straightforward use of DiffSelector is to compare every pair of candidate translations and select
the best one, which requires O(n?) comparisons for n candidates. To improve efficiency, we draw
inspiration from the bubble sort algorithm, in which elements are compared and swapped based
on pairwise evaluations. Specifically, we utilize DiffSelector as the pairwise comparator and treat
candidate translations as elements to be sorted by quality. As shown in Fig. 2, we first compare “Py-A”
and “Py-B”, retain the better one, and then compare it against the third candidate “Py-C”. The process
repeats sequentially until all candidates have been evaluated. In this way, DiffSelector identifies the
best translation in a single pass with only n — 1 comparisons, achieving O(n) complexity.

2.2.2 DIFFSELECTOR OPTIMIZATION VIA ORDINAL GUIDANCE

We further enhance DiffSelector through ordinal guidance, which leverages the inherent ranking
of translation quality: efficient and correct translations > slower correct translations > incorrect
translations. Firstly, MpTranslator generates multiple candidate translations from source code src
collected on online platforms. Based on compiler feedback, we then select two target translations of
different quality, denoted as gt and tgt~. For example, tgt™ is correct and efficient code, while
tgt™ is correct but less efficient. Given the source code src and the two targets, we propose a bi-judge
loss that trains the LLM to judge their relative quality bidirectionally, i.e., whether tgt™ constitutes
an improvement over gt~ and vice versa. The loss function is defined as:

_ 1 _ _
Log(sre, tgt™ tgt™) = -3 [logp (‘Yes” | sre,tgt™ = tgt™) +logp (‘No’ | sre,tgt™ = tgtT)]  (2)

where “Yes” and “No” denote the ground-truth responses for the relative quality between tgt™ and
tgt~. This bi-judge design mitigates sensitivity to candidate order (Zheng et al., 2023) in the prompt.

3 EXPERIMENTS

3.1 BENCHMARK CONSTRUCTION

Extension of Existing Benchmarks. Current benchmarks, such as CodeNet (Puri et al., 2021) and
F2SBench (Zhang et al., 2025b), primarily focus on functional correctness but offer little support
for efficiency evaluation, due to two main limitations: (1) The test cases are too simple to reveal
runtime performance differences. For example, O(n?) and O(n) implementations often show
negligible runtime differences when n = 1. (2) The lack of baseline execution times prevents reliable
efficiency evaluation. To address these limitations, we manually augment each sample in CodeNet
and F2SBench with (i) ten efficiency-critical test cases and (ii) the maximum baseline execution time
derived from conservative translations. Annotation is performed by three independent teams, each
consisting of 20 experienced software professionals. From the collected annotations, we select the
ten most diverse and challenging test cases for each sample. For runtime evaluation, we annotate
multiple conservative translations and adopt the slowest execution time among them as the reference.

Construction of SWIFTBENCH. Beyond extending existing benchmarks, we introduce a new
benchmark, SWIFTBENCH. Similar to CodeNet and F2SBench, SWIFTBENCH collects source
code from online platforms, such as Codeforces, and provides both efficiency-critical test cases
and a baseline execution time of target code. Distinctively, each source program in SWIFTBENCH
contains intentional efficiency issues, such as redundant computations or suboptimal algorithms. This
design reflects real-world scenarios, where source code quality is often unpredictable. Consequently,
SWIFTBENCH evaluates whether translation models can improve inefficient input programs. To
further reduce benchmark leakage in LLM evaluation (Xu et al., 2024), SWIFTBENCH is updated
quarterly with programming problems recently released on online platforms. The current version
covers problems released from June to August 2025. App. B provides additional details about the
SWIFTBENCH benchmark.

3.2 EXPERIMENTAL SETTINGS
3.2.1 IMPLEMENTATION DETAILS

In the multi-perspective translation via parallel ICL, we set the number of demonstration sets m
to 10, with each set containing up to K = 3 examples. For the hierarchical data construction, the
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LLM ensemble consists of DeepSeek-Coder-V2-Lite-Instruct-16B, gpt-o0ss-20B, and Qwen3-Coder-
30B-A3B-Instruct, with the code acceleration depth n fixed at 3. Our experiments cover translation
among five programming languages: C, C++, Go, Java, and Python, yielding a total of 20 translation
scenarios. Both the hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector
utilize approximately 15k training instances per scenario, consistent with the data scale in prior
work (Zhang et al., 2025b). Both components are trained on the same set of open-source LLMs, such
as Qwen2.5-3B, using full-parameter fine-tuning with a learning rate of le-5. The complete set of
prompts used in our experiments is provided in the App. E. All experiments are conducted on a server
equipped with eight NVIDIA A800-SXM4-80GB GPUs.

3.2.2 METRIC DESIGN

We evaluate translated code along two dimensions: Computational Accuracy (CA) and Execution
Time (ET). Computational Accuracy measures the proportion of translated programs that produce
outputs identical to the source code across all inputs, following the standard metric used in prior
work (Zhang et al., 2025b). Execution Time is defined as the average runtime of the translated
code over all program inputs. For functionally incorrect translations, we use the baseline execution
time from the benchmark as their runtime. To ensure reliable evaluation, we employ the JudgeO
engine (Dosilovi¢ & Mekterovi¢, 2020), an online sandbox widely used for program execution
testing (Waghjale et al., 2024). Each program, together with its inputs, is submitted to JudgeO and
executed five times. The average runtime is then reported as the final result.

3.2.3 BASELINES

Our experiments include both training-free and training-based baselines. For the training-free base-
lines, we evaluate three prompt learning strategies on Qwen3-Next-80B (Qwen, 2025) and GPT-5: (1)
Correctness-Only: prompts focusing solely on functional correctness. (2) Correctness+Efficiency:
prompts emphasizing both correctness and runtime efficiency. (3) Correctness—Efficiency: a
two-step prompting approach where the first step generates a correctness-oriented translation, which
is then further optimized for efficiency. Detailed prompts for these training-free baselines are listed
in the App. E. For the training-based baseline, we adopt F2STrans (Zhang et al., 2025b), which first
applies IFT on weakly supervised data, followed by preference learning with high-quality data.

3.3 MAIN RESULTS

We implement our SWIFTTRANS framework based on Qwen2.5-3B and Qwen2.5-7B separately.
Tab. 1 summarizes results on CodeNet, F2SBench, and SWIFTBENCH across five programming
languages (C, C++, Go, Java, Python), reporting averages from each source language to the other
four targets. App. C presents additional benchmark results, including PIE (Shypula et al., 2024) and
xCodeEval (Khan et al., 2024).

Functional Correctness Evaluation. Tab. 1 (I) shows that prompts aimed at improving efficiency
often significantly reduce functional correctness, even for GPT-5. This is intuitive, as introducing
efficiency-oriented constraints increases the complexity of code translation, amplifying the risk of
logical errors. Although more powerful LLMs such as GPT-5 are more robust to this trade-off,
their high inference costs hinder wide application. In contrast, With our SWIFTTRANS framework,
Qwen2.5-3B achieves an average CA 2.3% higher than F2STrans with Qwen2.5-7B, even though
F2STrans leverages the stronger 7B model. Furthermore, applying SWIFTTRANS to Qwen2.5-7B
outperforms GPT-5 by 3.8%. These results highlights both the potential of open-source LLMs for
code translation and the effectiveness of SWIFTTRANS.

Runtime Efficiency Evaluation. From Tab. | (I), we can find that the “Correctness + Efficiency”
and “Correctness—Efficiency” strategies do improve runtime efficiency, confirming that the target
code translated by LLMs usually has significant room for efficiency improvement. However, these
gains come at the expense of a decline in functional correctness, making these prompt engineering
strategies suboptimal solutions. Moreover, scaling up F2STrans from 3B to 7B does not improve the
runtime efficiency of translations. This stems from F2STrans’s explicit emphasis on preserving the
source code’s logical structure (Zhang et al., 2025b), which mitigates errors but constrains runtime
efficiency. In contrast, SWIFTTRANS employs multi-perspective exploration to generate diverse
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Table 1: Functional correctness and runtime efficiency of translated code on the CodeNet, F2SBench,
and SWIFTBENCH benchmarks. Each piece of data reflects the average performance for translations
from one source language into the other four among C, C++, Go, Java, and Python.

Method LLM CodeNet F2SBench SWIFTBENCH (Ours) Ave.
C C++ Go Java Py C C++ Go Java Py C C++ Go Java Py
(I) Functional Correctness Evaluation—Computational Accuracy (%) 1
Cor.-Only 79.3 81.5 71.2 773 80.9|69.7 61.0 648 752 504|751 758 842 81.6 714|733
Cor.+Eff. 1\%;63(3){3 79.7 79.2 66.8 74.6 77.9|66.0 51.7 55.1 683 446|735 77.6 784 70.7 65.5]| 68.6
Cor.—Eff. 68.9 729 69.5 693 70.1|50.0 439 48.0 509 355|617 60.5 67.6 623 58.1|59.3
"~ Cor-only | | 87.8 914 919 81.8 90.3]88.0 814 856 88.1 63.8[90.0 823 928 91.1 904|864
Cor.+Eff. GPT-5 829 885 89.1 81.2 805|799 729 785 841 50.1|833 750 883 79.8 83.6|79.8
Cor.—Eff. 68.4 629 669 702 613|623 463 523 584 492|749 57.1 679 785 633|627
 F2STrans | Qwen25-3B | 864 89.8 856 865 83.6|848 730 794 852 448866 865 909 872 799|820
[ICML 2025] Qwen2.5-7B | 91.0 91.4 86.8 885 91.1|85.6 756 822 867 49.6|87.8 88.6 92.8 884 83.1|84.6

SWIFTTRANS | Qwen2.5-3B | 91.8 92.7 89.7 934 94.0|87.5 80.5 81.4 885 599 89.1 843 91.7 91.3 88.1|86.9
(Ours) Qwen2.5-7B | 93.6 95.0 96.1 949 94.6 | 91.2 827 869 903 62.1 931 923 96.5 93.1 915 90.2

(IT) Runtime Efficiency Evaluation—Execution Time (ms) |

Cor.-Only 514 685 363 174 3151397 1164 523 257 356 | 1651 1729 983 856 682 776
Cor.+Eff. N%ifggia 455 520 295 173 256 | 1274 814 419 222 339 | 1509 1538 823 774 586 | 667
Cor.—Eff. 364 504 285 121 228 | 936 769 395 221 284 | 1186 1211 782 656 542 | 565

~ Coonly | | 391 435 355 161 187 | 766 801 373 223 288 | 1010 1071 783 594 484 | 528
Cor.+Eff. GPT:5 | 376 357 338 137 167|690 721 309 172 257 | 870 880 623 512 388 | 453
Cor.—Eff. 322 329 328 126 143 | 645 675 278 131 197 | 747 753 582 394 344 | 399

 F2STrans | Qwen2.5-3B| 494 613 340 164 336 [ 1239 1006 440 270 522 [ 1532 1694 985 897 638 | 744
teML20s) | Qwen2.5-7B | 470 711 303 175 320 | 1228 1089 423 261 508 | 1518 1599 837 884 639 | 731

SWIFTTRANS | Qwen2.5-3B | 218 269 223 138 146 | 561 593 252 218 239 609 686 384 322 238 | 339
(Ours) Qwen2.5-7B | 190 216 145 106 122 | 472 573 203 168 217 563 551 328 313 214 | 292

translations, facilitating the selection of candidates that better balance correctness and efficiency. For
example, the execution time of code translated by Qwen2.5-7B-based SWIFTTRANS is comparable
to that of code produced by GPT-5 under the “Correctness—Efficiency” strategy.

3.4 ANALYSIS

We conduct detailed experiments to analyze our SWIFTTRANS framework. Unless otherwise specified,
the experiments are based on SWIFTTRANS with Qwen2.5-3B and evaluated on the SWIFTBENCH
benchmark. Further discussions on SWIFTTRANS are provided in App. D.

Multi-Perspective Translation via Parallel ICL. In the multi-perspective translation, each per-
spective is constructed with & € [0, 3] demonstrations, and we sample a total of m = 10 perspectives
to generate 10 candidate translations. Fig. 3 illustrates the effect of k£ and m on performance. We
evaluate k£ under two settings: (i) fixed at 0, 1, 2, or 3, and (ii) randomly varying within [0,3].

We observe that while ICL brings substan- . . ‘ .

tial benefits within our SWIFTTRANS frame- ~ Pomsaioneps Persgw'E'g g]() Demonsirations per Peerpe[cg";]e )
work, the gains diminish as the number ; : ‘ ‘ ‘
of demonstrations increases. For example, 849 858 668
with m = 10 candidates, increasing k from
0 to 1 improves CA by 1.3% and reduces
ET by 142 ms, whereas increasing k further
from 1 to 3 provides only an additional 0.7%
improvement in CA and 18 ms reduction in
ET. Compared with using a fixed number of
demonstrations, allowing k to vary within
[0, 3] delivers larger gains. This is because
translations generated under variable-k are
essentially an aggregation of translations
from multiple fixed-k settings, leading to
a more diverse candidate pool. In addition, increasing the number of candidates m consistently

808 | 698 | 670

(m)
n

(i 596 581

Number of Candidates
@
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() Computational Accuracy (%) 1 (b) Execution Time (ms) |

Figure 3: Effect of the number of demonstrations per
perspective and the number of translation candidates in
multi-perspective translation.
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Figure 4: Analysis of the number of acceleration layers n and the training loss function £y,4 in
hierarchical guidance.

improves translation quality. This corroborates prior findings (Brown et al., 2024) that multiple
generations from the same prompt can help push the boundaries of LLM performance.

MpTranslator Optimization via Hierarchical Guidance. We analyze two key aspects of the hier-
archical guidance strategy: the number of acceleration layers n used in hierarchical data construction
and the loss function Ly in Eq. 1.

» The Number of Acceleration Layers n. The results of SWIFTTRANS applying various numbers
of acceleration layers are shown in Fig. 4 (a). It can be observed that accelerating target code in
the training data substantially mitigates efficiency issues in LLM-translated code, and additional
acceleration layers further improve runtime efficiency. However, this comes at a slight cost to
functional correctness—although the overall effect remains positive. For example, increasing n from
0 to 4 significantly reduces ET by 425 ms, at the cost of a marginal decrease (0.4%) in CA.

» The Loss Function Ly of Hierarchical Guidance. To analyze Ly, we define the following ablated
variants of SWIFTTRANS: (1) “w/o Ly,”: candidate translations are generated directly by the base
LLM, without hierarchical guidance training; (2) “w/o D'”: demonstrations D! are removed from
Lhg; (3) “tgt°-only”: only the correctness-first translation tgt is used as the supervision signal; (4)
“tgt™-only”: only the optimal translation tgt™ is used as the supervision signal.

Fig. 4 (b) shows that hierarchical guidance substantially improves the code translation performance
of base LLMs on both CA and ET. The sharp performance drop in the “w/o D?” variant highlights
the importance of ICL-based training for maintaining consistency between training and inference.
Neither the “tgt°-only” nor the “tgt™-only” variant achieves balanced performance: The former fails
to promote runtime optimization (ET = 860 ms), while the latter over-prioritizes efficiency at the
expense of correctness (CA = 85.1%). In contrast, SWIFTTRANS enables the model to maintain high
correctness while improving efficiency.

Bubble Selection via Difference-Aware Judge.
Inspired by bubble sort, we introduce a bubble se-
lection strategy to accelerate the candidate selec-
tion process of DiffSelector. We compare bubble
selection with all-pair selection, which evaluates
all candidate pairs before selecting the best one.
As shown in Tab. 2, bubble selection matches
the quality of all-pair selection while reducing =~ Method  CA (%)t ET (ms)| # Judge |
comparisons from O(n?) to O(n). Specifically,  All-Pair. 89.1 439 O(n?)
all-pair selection outperforms bubble selection g pple. 88.9 448 O(n)
by just 0.2% in CA and 9 ms in ET. Given this
marginal performance difference and the significant reduction in the number of comparisons, bubble
selection proves to be highly practical for efficient candidate evaluation.

Table 2: Comparison between all-pair and bubble
selection. All-pair selection judges every candi-
date pair before choosing the best, whereas bubble
selection, inspired by bubble sort, significantly re-
duces the number of comparisons.

DiffSelector Optimization via Ordinal Guidance. Ordinal guidance uses the loss L, (Eq. 2) to
compare translation quality bidirectionally. Our analytical experiments on ordinal guidance examine
three ablated variants of DiffSelector: (1) “w/o L,,”, which reflects the base LLM without training;
(2) “w/o dif£”, which removes translation-difference information from the prompt and instead
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applies the standard pairwise judging strategy during training and inference; (3) “w/o Bi-Judge”,
which randomly selects one order for each translation pair during training. Additionally, since the
pairwise judging strategy can be influenced by the order of translations in the prompt (Zheng et al.,
2023), we introduce the Order Sensitivity (OS) metric to measure this effect across judge model
variants. OS quantifies the proportion of inconsistent judgments when the order of two translations is
reversed. Lower OS values indicate greater model robustness to input order.

Tab. 3 shows that all three ablated variants lead
to performance degradation across CA, ET, and
OS metrics, confirming the effectiveness of the
complete ordinal guidance framework. Focusing
on OS, we find that the base LLM exhibits high
order sensitivity, with 64.2% of its judgments
influenced by input order rather than translation

Table 3: Ablation study on ordinal guidance for
DiffSelector. The Order Sensitivity (OS) metric
measures how sensitive the judge model is to the
input order of translation pairs.

Method CA (%)% ET(ms)) OS (%)}

quality, underscoring the limitations of off-the- SWIFTTRANS 88.9 448 6.4
§helf LLMS (Zl}eng et al., 2Q23). By explicitly Loy 36.1 609 64.2
incorporating di f f information between transla- /0 4i¢¢ 873 519 275

tions and adopting the bi-judge training strategy,
our ordinal guidance reduces this ratio to 6.4%.
Importantly, the di £ £ information contributes more than the bi-judge strategy, indicating that explicit
difference information is crucial for distinguishing between highly similar translations.

w/o Bi-Judge 87.7 497 18.7

4 RELATED WORK

A number of studies have investigated how to improve the functional correctness of code generated
by LLMs. These efforts can be broadly divided into two categories: training-free and training-based
methods. Classic prompt learning strategies, such as RAG (Bhattarai et al., 2024a;b), fall under
training-free methods and have proven effective. Some studies leveraged compiler feedback to detect
translation errors and guide LLM-based fixes (Yang et al., 2024; Pan et al., 2024; Ibrahimzada et al.,
2025b). In contrast, training-based approaches employ well-designed training processes, which
enable lightweight open-source LL.Ms to achieve translation performance comparable to proprietary
models. For example, He et al. (2025) incorporated executability signals into training, substantially
enhancing the executability of code. Zhang et al. (2025b) proposed a two-stage approach: IFT on
weakly aligned data, followed by preference learning on high-quality contrastive data.

In addition to functional correctness, runtime efficiency is an important criterion for evaluating
code quality (ISO/IEC25010, 2011). In the task of code generation, Gee et al. (2024) trained
LLMs to produce efficient solutions to programming problems, thereby achieving end-to-end code
generation with improved efficiency. Accelerating generated code via post-processing is another
mainstream approach. For example, Shypula et al. (2024) investigated LLM-based strategies code
acceleration using techniques such as RAG, CoT, and IFT. Zhang et al. (2025c) further enhanced
LLMs’ optimization capabilities through curriculum learning. Although runtime efficiency has been
increasingly recognized as an important metric for evaluating code generation models (Huang et al.,
2024), to the best of our knowledge, existing research on code translation still focuses primarily on
functional correctness. We argue that ensuring both functional correctness and runtime efficiency in
translated code is crucial for applying code translation LLMs in practical software development.

5 CONCLUSION

In this work, we proposed SWIFTTRANS, a novel code translation framework that ensures both func-
tional correctness and runtime efficiency of translated programs. Given source code, SWIFTTRANS
first uses MpTranslator to generate diverse candidates through a multi-perspective translation strategy,
and then employs DiffSelector to select the correct and most efficient candidate after comparison. In
addition, we introduced hierarchical guidance for MpTranslator and ordinal guidance for DiffSelector
to better adapt LLMs to these two core components. To support runtime efficiency evaluation, we
extended functionality-oriented benchmarks (CodeNet, F2SBench) and constructed a new benchmark,
SWIFTBENCH. Extensive experiments across these three benchmarks demonstrate that SWIFTTRANS
significantly improves the quality of LLM-based code translation.
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ETHICS STATEMENT

This work focuses on automated code translation and program optimization using large language
models. It does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used—CodeNet, F2SBench, and our newly constructed SWIFTBENCH—are publicly
available or derive from publicly accessible online programming platforms. We ensured that no
proprietary or private codebases were included. The primary ethical consideration pertains to the
deployment of automatically translated code in safety-critical or high-stakes systems. To mitigate
such risks, we emphasize that our framework should be applied with human oversight and proper
software validation. Our contributions are intended for academic research and general-purpose
software engineering scenarios, and we do not foresee any directly attributable risks of security or
privacy violations from this work.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. All benchmarks used
in this work (CodeNet, F2SBench, and SWIFTBENCH) are publicly available or will be released upon
acceptance of this paper. We provide full details of experimental settings, including training data
construction, prompt templates, and evaluation metrics. Implementation details such as the number
of demonstrations per perspective, the depth of hierarchical acceleration, and the loss functions
used for optimization are described in Sec. 3.2.1. For runtime evaluation, we employed the JudgeO
execution sandbox, a widely used open-source platform, as shown in Sec. 3.2.2. To further support
reproducibility, we will release the source code for our SWIFTTRANS framework, including data
processing scripts, training configurations, and evaluation pipelines. These materials will allow other
researchers to replicate our experiments and validate our findings across different hardware setups.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, LLMs were used as an auxiliary tool for language refinement
and formatting. Specifically, GPT-based models were employed to enhance writing clarity, improve
grammatical accuracy, and generate alternative phrasings for certain sentences. However, LLMs
played no role in generating the research ideas, methodology, experimental design, or results. All
conceptual contributions, technical developments, and data analyses were carried out by the authors.
The final content was thoroughly verified and revised by the authors, who take full responsibility for
the correctness and integrity of this work.

B BENCHMARK ANALYSIS
Table 4: Data statistics of CodeNet, F2SBench, and SWIFTBENCH.

Benchmark Language #Code  #Cases Date
CodeNet C, C++, Go, Java, Python 200 x 5 10 Pre-2021
F2SBench C, C++, Go, Java, Python 1000 x 5 10 Mid-2024

SWIFTBENCH (Ours) C, C++, Go, Java, Python 500 x 5 10 Jun.—Aug. 2025

Table 5: Average execution time (ms) of conservative translations across benchmarks.

Benchmark {}»C {}—=C++ {}—Go {}—Java {}— Python
CodeNet 241 358 402 820 594
F2SBench 296 431 714 1486 1290
SWIFTBENCH (Ours) 718 578 801 1814 1400

Tab. 4 presents the data statistics for CodeNet, F2SBench, and SWIFTBENCH. Additionally, Tab. 5
illustrates the average execution time of annotated conservative translations on these three benchmarks.
It can be observed that the code samples in CodeNet tend to be relatively simple. In contrast, the
source code in SWIFTBENCH is intentionally designed to include efficiency issues, resulting in slower
execution times for the translated code. This highlights the challenging nature of the SWIFTBENCH
benchmark.

C ADDITIONAL RESULTS

We further evaluate SWIFTTRANS on the PIE (Shypula et al., 2024) and xCodeEval (Khan et al.,
2024) benchmarks. Although PIE is commonly used for the code optimization task and xCodeEval for
the code generation task, both provide source code along with basic test cases, making them suitable
for evaluating code translation models. Notably, ET metric is not supported on these benchmarks,
due to the lack of efficiency-critical test cases and the maximum baseline execution time derived from

13
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Table 6: The code translation performance of various models on PIE (Shypula et al., 2024) and
xCodeEval (Khan et al., 2024). Since these two benchmarks do not support evaluating the runtime
efficiency of translated code, we report only functional correctness, i.e., the CA metric.

PIE xCodeEval
Meth LLM Avg.
ethod C++ | C C++ Go Java py |8

Cor.-Only Qwen3-Next | 63.6 | 78.7 67.8 825 70.6 69.6 |7
8

F2STrans Qwen2.5-3B | 86.4 | 90.4 87.0 90.3 872 822 | 872
[ICML 2025] Qwen2.5-7B | 89.2 | 91.3 88.8 91.8 894 84.1 | 89.1
SWIFTTRANS | Qwen2.5-3B | 904 | 91.7 874 92.1 873 859 | 89.1
(Ours) Qwen2.5-7B | 92.3 | 93.1 90.6 935 924 89.6 | 91.9

— - - Repeated Sampling =~ —®— Multi-Perspective Translation

1600
90
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g 50 Z
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O =
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The scale of the candidate translations The scale of the candidate translations
(a) Computational Accuracy (%) 1 (b) Execution Time (ms) |

Figure 5: Comparison between the classic repeated sampling strategy and our multi-perspective
translation strategy. In the experiment, Qwen3-Next-80B is used to generate multiple candidate
Python translations for the C source code in the SWIFTBENCH benchmark, and the optimal one is
selected.

conservative translations. Tab. 6 presents the performance of various models on these two benchmarks.
We can find that the advantages of our SWIFTTRANS remain significant in both benchmarks. For
example, the average CA of SWIFTTRANS based on Qwen2.5-7B exceeds that of GPT-5.

D DISCUSSION

Comparison between Repeated Sampling and Multi-Perspective Translation. We directly
compare the classic repeated sampling approach with our multi-perspective translation strategy.
We apply both translation strategies using Qwen3-Next-80B to translate the C-to-Python subset of
SWIFTBENCH benchmark. Fig. 5 shows the pass @k results, where the best candidate translation is
selected directly, without any judging process. It is evident that multi-perspective translation brings
larger gains than repeated sampling. For instance, under multi-perspective translation, pass@ 10
improves by 23.2% over pass@1 on the CA metric, whereas repeated sampling only gains 13.7%.
Furthermore, at pass@ 10, multi-perspective translation significantly outperforms repeated sampling
on both CA and ET. These results confirm that our multi-perspective translation provides higher-
quality candidates than simple repeated sampling.

Categorization of Efficiency-Oriented Translation Optimizations. We classify code optimization
patterns into six categories: Leveraging Language/Library Tools, Mathematical Simplification,
Optimizing Algorithm Complexity, Removing Redundant Logic, Upgrading Data Structures, and
Others. To estimate the prevalence of each type, we randomly sample 500 translations produced by
Qwen2.5-3B-based SWIFTTRANS on SWIFTBENCH and compare them with manually annotated
SWIFTBENCH translations that are correct but inefficient. If multiple categories were involved in
one example, we selected the one with the greatest impact. As shown in Tab. 7, most optimizations

14
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Table 7: Distribution of optimization categories in 500 randomly sampled translations from Qwen2.5-
3B-based SWIFTTRANS on SWIFTBENCH.

Optimization Category Percentage
Leveraging Language/Library Tools 20.1%
Mathematical Simplification 6.4%
Optimizing Algorithm Complexity 13.4%
Removing Redundant Logic 30.5%
Upgrading Data Structures 26.4%
Others 3.2%

fall into three categories: Removing Redundant Logic, Upgrading Data Structures, and Leveraging
Language/Library Tools.

E PROMPT SETTINGS

Multi-Perspective Translation.

Translate the following { SOURCE_LANG} code into { TARGET_LANG} code, maintaining function-
ality, and optimizing for performance:

##H {SOURCE_LANG} Code:

{SOURCE_CODE}

##H {TARGET_LANG} Code:

Difference-Aware Judge.

Here is a {SOURCE_LANG} code snippet and its translated { TARGET_LANG} version. Does my
refinement to the { TARGET_LANG} code improve its correctness or efficiency?

### {SOURCE_LANG} Code:

{SOURCE_CODE}

#H {TARGET_LANG} Code:

{TARGET_CODE._1}

### Refinement:

dif£({TARGET_CODE_1}, {TARGET_CODE_2})

Translation Layer of Hierarchical Data Construction.

Translate the {SOURCE_LANG} code to {TARGET-LANG} code.
##Ht {SOURCE_LANG} Code:

{SOURCE_CODE}

### {TARGET_LANG} Code:

Acceleration Layer of Hierarchical Data Construction.

Below is a {SOURCE_LANG} code. Optimize the code and provide a more efficient version.
### {SOURCE_LANG} Code:

{SOURCE_CODE}

### Optimized Version:

Correctness-Only Prompt.

Translate the {SOURCE_LANG} code to {TARGET_LANG} code.
### [SOURCE_LANG} Code:

{SOURCE_CODE}

### {TARGET_LANG} Code:
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Correctness+Efficiency Prompt.

Translate the following { SOURCE_LANG} code into {TARGET_LANG} code, maintaining function-
ality, and optimizing for performance:

### {SOURCE_LANG} Code:

{SOURCE_CODE}

### {TARGET_LANG} Code:

Correctness— Efficiency Prompt.

Stage 1—Correctness-Only Prompt:

Translate the {SOURCE_LANG} code to {TARGET_LANG} code.

##H {SOURCE_LANG} Code:

{SOURCE_CODE}

##H {TARGET_LANG} Code:

Stage 2—Code Acceleration Prompt:

Below is a {TARGET_LANG} code. Optimize the code and provide a more efficient version.
### {TARGET_LANG} Code:

{TARGET_CODE}

### Optimized Version:

F CASE STUDY

Fig. 6 illustrates a case study of SWIFTTRANS, highlighting its advantages over traditional correctness-
first models. Direct translation of the source code often carries over suboptimal logic from the original
or overlooks optimizations specific to the target language. In contrast, SWIFTTRANS is designed to
overcome these issues and produce translations that are both more efficient and more accurate.
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Explanation

int main() {
inta, b, mod;
scanf("%d %d %d", &a, &b, &mod);

long long result = 1;
for (int i =05 i <b; i++) {
result = (result * a) % mod;

1

printf("%lld\n", result);
return 0;

a, b, mod = map(int, input().split()
result =1
for i in range(b):

result = (result * ) % mod

prin(result)

a, b, mod = map(int, input().split()
|prini(pow(a, b, mod))

(5 Code Task:
Given integers a, b, and mod, compute;
(a"b % mod ).

@ Case Study:
Correctness-First Translation uses a
loop for modular exponentiation.
SWIFITRANS leverages Python's built-
in pow function with modular support.

int calculate_sum(int n) {
int sum = 0;

<=n; i) {

return sum;

int main() {
intn;
scanf("%d", &n);
printf("%d\n", calculate_sum(n));
return 0;

def calculate_sum(n):

for i in range(1, n+ 1):
s+=i
return s

n = int(input())
print("calculate_sum(n)")

def calculate_sum(n):
returnn* (n+1) /2

n = int(input())
print("calculate_sum(n)")

(% Code Task:
Given an integer n, compute the sum|
of integers from 1 to n.

& Case Study:
Correctness-First Translation uses a
loop to iteratively sum numbers.
SWIFITRANS optimizes the algorithm|
by using the arithmetic series formula.

int main() {
intn;
scanf("%d", &n);
int *arr = malloc(n * sizeof(int));
for (int'i = 0; i < n; i++) scanf("%d", &arr[il);
long long max_sum
for (inti = 05 i < n;
long long sum = 0;
for (intj =15 j < n; j++) {
sum += arr[j];
if (sum > max_sum) max_sum = sum:}

i
printf("%lld\n", max_sum);

n = int(input())
arr = list(map(int, input().split()))
max_sum = arr{0]
for i in range(n):
sum
for j in range(i, n):
sum += ar[j]
if sum > max_sum:
max_sum = sum
print(max_sum)

n = int(input())
arr = list(map(int, input().split()))
max_sum = current_sum = arr[0]
for num in arr{1:]:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
print(max_sum)

(% Code Task:

Given an integer array of size n, find
the maximum subarray sum.

# Case Study:
Correctness-First Translation uses a;
nested loop for brute-force summation)
SWIFITRANS optimizes the algorithm
with Kadane's algorithm using a|
single pass.

scanf("%d", &n);
int *arr = (int *)malloc(n * sizeof(in));
for (inti= <n;itt)

scanf("%d", &arr(i]);
long long sum = 0;
for (inti=0;i<n;i++) {

if (i %2 == 0)

1

printf("%lld\n", sum);
free(arr);

return 0;

|

t(map(int, input().split()))
0

print(sum)

ist(map(int, input().split()))
0

sum =

for i in range(0, n, 2):
sum += arr[i]
print(sum)

free(arr);
return 0;

|

int main() { n = int(input()) n = int(input()) (;v Code Task:
int n;

Given an integer array of size n, return
the sum of elements at even indices.

@ Case Study:
Correctness-First Translation uses |
loop with redundant  conditional
checks.

SWIFTTRANS optimizes by removing
redundant logic, iterating only over|
even indices with a step size of 2.

int main() {
intn, x, found = 0;
scanf("%d", &n);
int *arr = malloc(n * sizeof(int));
0:i < ;i)

i
printf(found ? "Yes\n" : "No\n");
free(arr);
return 0;

|

n = int(input())

arr = list(map(int, input().split()))
x = int(input())

found = False

print("Yes" if found else "No")

n = int(input())
arr = set(map(int, input().split()))
x = int(input())

print("Yes" if x in arr else "No")

(% Code Task:

Given an integer array of size 1 and a
target , determine if x exists in the
array.

@ Case Study:
Correctness-First Translation uses a;
linear search over a list.

SWIFITRANS translation upgrades  the
data structure to a set, leveraging
efficient hash-based lookup.

Figure 6: Case studies of SWIFTTRANS under different types of translation optimizations.
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