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ABSTRACT

Molecular structure elucidation is a critical step in understanding chemical phenom-
ena, with applications in identifying molecules in natural products, lab syntheses,
forensic samples, and the interstellar medium. We consider the task of elucidating
a molecule’s 3D structure given only its molecular formula and moments of inertia,
motivated by the ability of rotational spectroscopy to precisely measure these mo-
ments. While existing generative models can conditionally sample 3D structures
with approximately correct moments, this soft conditioning fails to leverage the
many digits of precision afforded by experimental rotational spectroscopy. To
address this, we first show that the space of n-atom point clouds with a fixed set of
moments of inertia is embedded in the Stiefel manifold St(n, 4). We then propose
Stiefel Flow Matching as a generative model for elucidating 3D structure under ex-
act moment constraints. Additionally, we learn simpler and shorter flows by finding
approximate solutions for optimal transport on the Stiefel manifold. Empirically,
satisfying moment constraints exactly allows Stiefel Flow Matching to achieve
higher success rates and faster sampling than Euclidean diffusion models, even
on high-dimensional manifolds corresponding to large molecules in the GEOM
dataset.

1 INTRODUCTION

Elucidating the structure of unknown molecules is a ubiquitous task in chemistry, important for
analyzing environmental samples (Moneta et al., 2023), identifying novel drugs (Sonstrom et al.,
2023), and determining potential building blocks of life in the interstellar medium (McGuire et al.,
2016). The challenge is to aggregate information from multiple sources of analytical data to un-
ambiguously determine a molecule’s structure. Rotational spectroscopy holds a unique capacity to
provide precise measurements about a molecule’s moments of inertia, which in turn has routinely
provided the highest quality gas-phase 3D structures attainable from experiment (Domingos et al.,
2020). As the moments of inertia are trivial to compute for a given 3D structure, structure elucidation
with rotational spectroscopy usually proceeds by confirming whether a known structure’s moments
matches with experimentally measured moments (Lee & McCarthy, 2019; McCarthy et al., 2020).
However, this approach is limited only to molecules whose structures are known a priori. This
fundamentally limits applications related to identifying molecules that have not been catalogued,
such as novel natural products, undiscovered molecules, and key reactive intermediate species that
cannot be easily isolated (Womack et al., 2015).

To overcome this, we apply generative modeling to structure elucidation by inferring candidate 3D
structures based on the moments and molecular formula alone. By themselves, moments of inertia
only describe the spread of the molecule’s mass in three directions. Going from moments to 3D
structure (3 → 3n values) is therefore a heavily underconstrained inverse problem. Nevertheless,
deep generative models such as diffusion (Ho et al., 2020; Song et al., 2020) and flow matching
(Lipman et al., 2023; Liu et al., 2022) have shown promise in solving various inverse problems (Song
et al., 2022; Chung et al., 2023; Song et al., 2023a). Previous work has trained a Euclidean diffusion
model to sample 3D structures conditioned on a given set of moments of inertia (Cheng et al., 2024).

However, analytic formulas for the moments of inertia are sufficiently simple that we can define
a feasible space where these constraints are always exactly satisfied. Such precise adherence to
moments can potentially leverage the many digits of precision provided by rotational spectroscopy

1
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Figure 1: Stiefel Flow Matching learns to elucidate 3D molecular structure from moments and
molecular formula alone by transforming uniform Stiefel noise X0 into valid molecular structures
X1. Generative modelling on the Stiefel manifold St(n, 4) guarantees that samples always have the
correct moments of inertia, which allows the network to focus only on generating chemically stable
structures. Within the intersection of these spaces lies the true 3D structure.

(Shipman et al., 2011) in order to constrain the space of plausible structures. We first show thatM,
the set of n-atom point clouds with fixed moments of inertia, is embedded in the Stiefel manifold
St(n, 4). We then propose Stiefel Flow Matching as a generative model on the Stiefel manifold for
solving the moment-constrained structure elucidation problem (Figure 1). Stiefel Flow Matching
builds on ideas from Riemannian flow matching (Chen & Lipman, 2024) with equivariant optimal
transport (Klein et al., 2023; Song et al., 2023c), which simplifies and shortens generation paths.

Concretely, our contributions are:

1. We propose the task of moment-constrained structure elucidation as a challenging generative
modelling problem on the Stiefel manifold.

2. To solve this problem, we present Stiefel Flow Matching, a Riemannian flow matching approach.
Furthermore, we formulate an objective for equivariant optimal transport on the Stiefel manifold,
which obtains shorter and simpler flows.

3. Stiefel Flow Matching predicts 3D structure with greater success rate and lower cost than
Euclidean diffusion models on both the QM9 (Ramakrishnan et al., 2014) and GEOM (Axelrod
& Gomez-Bombarelli, 2022) datasets.

2 BACKGROUND AND APPROACH

We consider a 3D molecule as a point cloud of n atoms with atomic numbers a ∈ Nn and 3D
coordinates X = (xi, yi, zi)

N
i=1 ∈ Rn×3. We also refer to X as the molecule’s 3D structure.

Molecules have translational, rotational, and permutation symmetry. However, as a and X are stored
on a computer, they necessarily have a node ordering and orientation. Therefore, when we refer to
structure, we really mean the equivalence class containing X under these symmetries.

2
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2.1 PROBLEM STATEMENT

We are given a molecule’s molecular formula and moments of inertia, and wish to infer the 3D
structure of the molecule. The molecular formula provides us with the number of atoms n, atomic
numbers a ∈ Nn, and atomic masses m ∈ Rn. The moments of inertia1 (PX , PY , PZ) are three
nonnegative numbers that summarize the mass distribution of the point cloud. They are defined as the
eigenvalues of the planar dyadic P ∈ R3×3 (Kraitchman, 1953), calculated from masses m and the
3D atomic coordinates X = (xi, yi, zi)

N
i=1 ∈ Rn×3 as

P = X⊤(diagm)X =

n∑
i=1

 mix
2
i mixiyi mixizi

miyixi miy
2
i miyizi

mizixi miziyi miz
2
i

 . (1)

This definition assumes a coordinate system whose origin is the weighted center of mass of the
molecule, which gives the constraint m⊤X = 0. We assume that PX > PY > PZ > 0, which
eliminates rare edge cases (Appendix A.2). Note that P is symmetric and positive semidefinite
and can be thought of as the mass-weighted covariance matrix of the point cloud, as in principal
component analysis (PCA).

Diagonalizing P yields three eigenvectors, referred to as the principal axes of rotation, which orient
a molecule in a canonical representation up to sign-flips. The principal axes correspond to directions
which “explain” the most molecular mass, in analogy to PCA. The principal axis system is then
the coordinate system whose origin is the center-of-mass and whose axes are the principal axes of
rotation. We fix our coordinate system to be the principal axis system by construction, which gives
the following constraints on X:

PX =
n∑

i=1

mix
2
i , 0 =

n∑
i=1

miyizi, 0 =
n∑

i=1

mixi,

PY =
n∑

i=1

miy
2
i , 0 =

n∑
i=1

mixizi, 0 =
n∑

i=1

miyi,

PZ =
n∑

i=1

miz
2
i , 0 =

n∑
i=1

mixiyi, 0 =
n∑

i=1

mizi.

(2)

These constraints also canonicalize a 3D structure up to sign-flips of the axes (e.g. x 7→ −x). The
center-of-mass constraint removes translational degrees of freedom, while the off-diagonal constraints
remove rotational degrees of freedom.

The goal of molecular identification from moments and molecular formula is to find all molecular
structures X which are consistent with these constraints and are thermodynamically stable, i.e., local
minima of potential energy surfaces. Structures which satisfy these criteria can then be compared to
experimental measurements from rotational spectroscopy.

2.2 THE FEASIBLE SPACE OF MOMENT-CONSTRAINED STRUCTURES

The Stiefel manifold is the set of orthonormal n× p matrices, defined as

St(n, p) = {U ∈ Rn×p | U⊤U = Ip}, (3)

where Ip is the p× p identity matrix, and n ≥ p. Elements of St(n, p) can be thought of as the first
p columns of some n-dimensional (improper) rotation matrix, or can be thought of as orthonormal
p-frames residing in n-dimensional space.

Moment-constrained structures X can then be mapped into St(n, 4) by scaling rows by masses and
columns by moments. Letting M =

∑n
i=1mi be the total mass, consider the following construction:

U =


√

m1

PX
x1

√
m1

PY
y1

√
m1

PZ
z1

√
m1

M

...
...

...
...√

mn

PX
xn

√
mn

PY
yn

√
mn

PZ
zn

√
mn

M

 ∈ Rn×4. (4)

1This overview is a slight simplification of rotational spectroscopy. Full details are outlined in Appendix A.
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It can be verified by inspection and comparison to the Equation 2 constraints that the columns of U
are orthonormal. That is, U ∈ St(n, 4). However, we cannot yet freely convert between X and U :
the last column of U is not free as it must equal the unit mass vector m̂ =

√
m/M to satisfy the zero

center-of-mass constraint. To convert an arbitrary U ∈ St(n, 4) to an X satisfying all constraints, we
first apply a rigid n-dimensional rotation R to U so that its last column is aligned to m̂ (Appendix
B.5), before finally unscaling the rows and columns of U .

The feasible spaceM of moment-constrained structures is therefore the subset of St(n, 4) whose last
column is fixed to m̂, i.e.,

M = {U ∈ St(n, 4) | U·,4 = m̂}. (5)
In fact, we show in Appendix B.7 thatM is a totally geodesic submanifold of St(n, 4), which means
that geodesics between points inM stay inM. The first three columns of elements inM form
the intersection between St(n, 3) and the orthogonal complement to span(m̂), which is in turn
equivalent to St(n− 1, 3). Hence, the dimension ofM is 3n− 9, which corresponds to removing
3 translational, 3 rotational, and 3 moment degrees of freedom. Going forward, we assume that
the molecule of interest contains n ≥ 5 atoms, so that we always deal with Stiefel manifolds of
rectangular matrices.

2.3 NAVIGATING THE STIEFEL MANIFOLD

The Stiefel manifold provides rich structure for navigating the feasible space of molecular structures.
As a manifold, it is locally Euclidean but globally curved. This means that every point U ∈ St(n, p)
is attached a vector space called its tangent space TUSt(n, p). For the Stiefel manifold, these tangent
spaces are given as

TUSt(n, p) = {∆ ∈ Rn×p | U⊤∆+∆⊤U = 0}. (6)
Then, equipping every tangent space with an inner product ⟨·, ·⟩U turns St(n, p) into a Riemannian
manifold, giving rise to notions of angles and distances. The collection of inner products for each
tangent space is called the Riemannian metric. One such metric for the Stiefel manifold is the
canonical metric (Edelman et al., 1998),

⟨∆, ∆̃⟩U = trace∆⊤ (In − 1
2UU⊤) ∆̃, (7)

which we exclusively use for this work. The canonical metric induces a norm ||∆||U =
√
⟨∆,∆⟩U

on each tangent space, allowing us to define the length of a curve γ : [0, 1] → St(n, p) as L(γ) =∫ 1

0
||γ̇(t)||γ(t)dt. Curves that are locally length-minimizing are called geodesics, providing a notion

of “straight lines” for efficiently navigating around the manifold. Geodesics are defined by their
starting point and initial velocity. Indeed, the exponential map expU (∆) takes in a starting point
U ∈ St(n, p) and an initial velocity ∆ ∈ TUSt(n, p), and outputs the final manifold point after
following this geodesic for unit time. The exponential map is locally invertible, which gives the
existence of the logarithmic map logU (Ũ). The logarithmic map takes in a starting point U and
a target point Ũ , and outputs the tangent vector needed to travel from U to Ũ . Algorithms for
computing exponential and logarithmic maps under the canonical metric for the Stiefel manifold
are given in Appendix B.3. In addition, points which are not on the manifold can be projected onto
the manifold (Appendix B.6), which can turn a Euclidean generative model into a Stiefel generative
model.

3 STIEFEL FLOW MATCHING

Having shown that the feasible space of moment-constrained structures is a Stiefel manifold, we
can now formulate the problem of moment-constrained structure elucidation as an unconstrained
generative modeling problem on the Stiefel manifold. An attractive approach to this is flow matching
(FM), which trains a network as a time-dependent velocity field ut that transforms samples from a
prior noise distribution x0 ∼ p0(x0) into samples which approximately match the data distribution
x1 ∼ p1(x1) ≈ pdata(x1) (Lipman et al., 2023). The integration of the velocity field over time is then
a continuous normalizing flow ψt, which generates marginal probability densities pt over time by the
pushforward operation pt = [ψt]#(p0). In practice, this is realized by sampling initial conditions
x0 ∼ p0(x0) and evolving them from time 0 to t according to the ODE dx

dt = ut(x) (Appendix C.4).
The goal of training is to approximate this ut using a neural network vθ(t, x) parameterized by θ.
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Flow matching is readily generalized to distributions on Riemannian manifolds (Chen & Lipman,
2024). When closed-form geodesics are available, Riemannian flow matching provides a simulation-
free training objective for learning ut, called Riemannian conditional flow matching,

LRCFM(θ) = Et∼U(0,1), p(U0), p(U1)

[
||vθ(t,Ut)− U̇t||2Ut

]
, (8)

To compute this loss, we require (1) sampling U0 ∼ p(U0) from a prior noise distribution, (2)
geodesic interpolation between U0 and U1 to get Ut, (3) computing the time derivative of the
interpolant U̇t, and (4) evaluating the norm || · ||Ut .

To sample uniformly from the feasible spaceM, we can sample U uniformly from St(n, 4) (Ap-
pendix B.4) and then rigidly rotate U so that its last column aligns with the unit mass vector m̂
(Appendix B.5). Then, geodesics can be computed from the exponential (Edelman et al., 1998) and
logarithmic (Zimmermann & Hüper, 2022) maps, which are efficient to compute for St(n, 4),

Ut = expU0
(t logU0

(U1)), (9)

making our training objective simulation-free. Once we have the interpolant Ut, which will be the in-
put to the neural network, we can then calculate the network’s target U̇t. Instead of autodifferentiation,
which introduces unnecessary overhead, we compute U̇t using the logarithmic map,

U̇t =
1

1− t
logUt

(U1), (10)

observing that U̇t is a unit length tangent vector along the geodesic from Ut to U1. Finally, we
compute the norm of vθ(t,Ut)− U̇t following Appendix B.2. Additionally, Appendix Theorem 4
shows how we can compute the logarithm in St(n, 3), rather than St(n, 4), which slightly saves time.

3.1 REFLECTION AND PERMUTATION EQUIVARIANCE

As mentioned earlier, we set the coordinate axes as the principal axes of rotation by construction.
This canonicalizes the 3D structure, removing translational symmetries and reducing the rotational
symmetries to sign-flip symmetries of the eigenvectors of P , which are the coordinate axes (Puny
et al., 2022; Duval et al., 2023). Hence, the flow needs to be equivariant with respect to sign-flips
of the coordinate axes, which we call “reflection-equivariance” for brevity (Lim et al., 2023; Cheng
et al., 2024). In addition, because 3D structure is invariant under node order permutations, the learned
velocity should be equivariant to permutations. Together, the explicit equivariance constraints on
the network are given as vθ(t,ΠUtR) = Πvθ(t,Ut)R, for all node permutations Π and reflections
R = diag(±1,±1,±1, 1). We satisfy these constraints with a reflection-equivariant graph neural
network architecture described in Appendix C.1.

3.2 EQUIVARIANT OPTIMAL TRANSPORT

Flow matching learns a velocity field which transports samples from the noise distribution to the data
distribution, but there is no guarantee that samples will follow paths γ that are optimal with respect
to transport cost L(γ). Optimal paths are desired because they afford more efficient training and
faster generation (Pooladian et al., 2023; Tong et al., 2024). During training, the model should be
encouraged to learn dynamics which follow paths with lower transport cost. Since molecules have
permutation and rotational symmetries, optimal paths should connect structures whose equivalence
classes are close to each other. This corresponds to finding optimal node permutations and rotations
to align noise samples X0 to data samples X1. In contrast to the Euclidean case (Klein et al., 2023;
Song et al., 2023c), only reflections are needed, as opposed to rotations, because the coordinate axes
are already fixed in place by the principal axes of rotation, enforced by the orthogonality condition.

In addition, transport cost on St(n, 4) must be measured using the Riemannian distance. Thus, the
optimal transport map from U0 to U1 minimizes the following cost over atom-type-preserving node
permutations Π (i.e., Πa = a) and reflections R = diag(±1,±1,±1, 1):

c(U0,U1) = || logΠU0R(U1)||ΠU0R. (11)

While searching for optimal alignments, we do not compute the full Stiefel logarithm and instead
approximately calculate distance using only one iteration of the inner loop described in Appendix
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Stiefel FM

Stiefel FM-OT

Figure 2: (Left) Learned sampling trajectories for Stiefel FM and Stiefel FM-OT on QM9. Each
column begins generation from the same noise. (Right) Histogram of curve lengths of all QM9
sampling trajectories for Stiefel FM and Stiefel FM-OT. Permutation and reflection alignment lead to
simpler and shorter paths.

Algorithm 2, and justified in Appendix Figure 11 . This approximate distance is then heuristically
optimized over atom permutations and reflections with a greedy random local search. Appendix
Algorithm 4 outlines this procedure, which samples several U matrices for each reflection to approxi-
mately identify the best reflection, and then performs a local search of random atom type-preserving
index swaps (Appendix Figure 9).

4 EXPERIMENTS

We evaluate Euclidean diffusion models and Stiefel Flow Matching on the QM9 and GEOM datasets.
For each example, the model takes in moments and molecular formula and produces K = 10 samples.

Datasets. For QM9 (Ramakrishnan et al., 2014), we use the conformers provided by the GEOM
dataset. We abbreviate GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) as GEOM. We use
the same training, validation, and test splits as Cheng et al. (2024), except that examples which are
unstable or have less than 5 atoms are removed, which drops 76 examples from QM9 and drops
no examples from GEOM. QM9 has train/val/test splits of 104265/13056/13033 molecules, while
GEOM has splits of 233625/29203/29203 molecules, or 5537598/29203/29203 conformers. We only
predict 3D structures for the lowest-energy conformers of GEOM. This reflects experimental reality,
as the lowest-energy conformer typically has the highest proportion in the population after cooling by
supersonic jet expansion, assuming thermodynamic equilibrium (Ruoff et al., 1990).

Structure elucidation. The only measure of a model’s success is its ability to generate the correct
3D structure X with high accuracy at least once, where accuracy is measured by root-mean-squared-
deviation (RMSD) of the predicted coordinates to the ground truth. High accuracy is needed because
the only confirming evidence available to us is (1) agreement with moments and (2) thermodynamic
stability by quantum chemistry. For this reason, we use stringent thresholds of RMSD < 0.25 Å and
RMSD < 0.10 Å to ensure that the predicted structure is in the same potential energy basin as the
true structure. Success is reported if the minimum RMSD over K = 10 generated samples satisfies
these thresholds. The success rate is the percentage of the test set whose generated samples has a
minimum RMSD which satisfies each threshold. Error bars are standard errors of the mean.

Evaluating RMSD is nontrivial because the generated and ground truth structure must first be aligned
under same-atom-type permutations and reflections. We use the same RMSD procedure as Cheng
et al. (2024): We first align node permutations by solving a linear assignment problem whose cost
matrix is squared Euclidean distance, and repeat this for all 8 reflections, taking the minimum. Then
we compute RMSD between the ground truth coordinates and the aligned coordinates. This is similar
to the alignment procedure used in (Klein et al., 2023; Song et al., 2023c).

Auxiliary metrics. To characterize the samples generated by each model, we report additional
metrics. In contrast to success rate, which checks the minimum RMSD of generated samples for each
example, these auxiliary metrics are averaged over all generated samples (except diversity). Error
measures how much the generated structure violates the moment constraints. If P̂ is the computed
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Table 1: Experimental results on QM9. Stiefel FM shows no violation of moment constraints as
shown in the Error metrics, and has the highest success rate for structure elucidation, with the lowest
computational cost.

Method % < RMSD ↑ Error ↓ Valid ↑ Stable ↓ Diverse ↑ NFE ↓
0.25 Å 0.10 Å

Stiefel Random 0.00±0.00 0.00±0.00 0.00 0.061 nan 2.640 0

KREED 11.22±0.28 9.55±0.26 5.18 0.878 −1.335 1.429 1000
KREED-XL 13.65±0.30 10.94±0.27 3.64 0.933 −1.048 0.870 1000
KREED-XL-DPS 12.36±0.29 9.40±0.26 1.33 0.744 −0.826 1.060 1000
KREED-XL-proj 13.67±0.30 10.93±0.27 0.00 0.924 −0.905 0.871 1000

Stiefel FM 15.17±0.31 13.82±0.30 0.00 0.882 −1.125 1.040 200
Stiefel FM-OT 13.99±0.30 12.68±0.29 0.00 0.835 −1.039 1.045 200

Figure 3: Histograms of minimum RMSD for predicted QM9 examples show two distinct clusters for
RMSD. The 0.25Å threshold captures molecular structures that are useful for structure elucidation.

planar dyadic of the generated structure, this is computed as 1√
6
||triu(P̂ − P )||2, where triu takes

the upper triangular part of the matrix (contains 6 elements). Validity is a heuristic check based
on bond detection with rdDetermineBonds.DetermineConnectivity (Landrum, 2013;
Kim & Kim, 2015). Stability is the log norm of the gradient of energy with respect to coordinates,
as reported by the xtb quantum chemistry program (Bannwarth et al., 2019). Stable structures
should have a gradient norm close to zero (log norm very negative), assuming the structure is at a
local minimum and not a saddle point. Diversity is calculated as the average pairwise RMSD of
all generated samples of a single example. NFE is the number of function evaluations used during
generation, and measures computational cost. We do not set boldface for these metrics because they
do not correspond directly to success criteria.

Baselines. Given the novelty of the problem, the number of available baselines is limited. We
compare the performance of Stiefel FM to KREED (Cheng et al., 2024). KREED is a reflection-
equivariant diffusion model trained to generate 3D structure conditioned on molecular formula and
moments of inertia, and is a specialization of E(3)-equivariant approaches like EDM (Hoogeboom
et al., 2022). Since our architecture for Stiefel FM is much larger (parameter-wise) than the model
architecture used in KREED, and because KREED is tailored for a slightly different task, we also
train another reflection-equivariant diffusion model with an identical neural network architecture to
Stiefel Flow Matching, which we label as KREED-XL. The planar dyadic is computable at every step
of the generation process, which means that this task can be treated as a nonlinear inverse problem:
On top of KREED-XL, we apply Diffusion Posterior Sampling (DPS) (Chung et al., 2023), which
guides generation with an additional drift term for minimizing the planar dyadic error. As a simple
baseline which exactly satisfies moment constraints, we report performance for uniform random
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Table 2: Experimental results on GEOM. Stiefel FM generates few valid structures on its own due to
the increased difficulty of manifold-constrained generative modelling. When adjusted to generate
the same number of valid molecules, Stiefel FM-OT (filter) obtains the highest success rate, without
surpassing baselines in computational cost.

Method % < RMSD ↑ Error ↓ Valid ↑ Stable ↓ Diverse ↑ NFE ↓
0.25 Å 0.10 Å

Stiefel Random 0.00±0.00 0.00±0.00 0.00 0.000 nan 4.104 0

KREED 0.05±0.01 0.02±0.01 58.36 0.353 −0.583 2.297 1000
KREED-XL 3.54±0.11 2.02±0.08 30.71 0.907 −0.900 2.190 1000
KREED-XL-proj 3.54±0.11 2.04±0.08 0.00 0.904 −0.752 2.188 1000

Stiefel FM 2.17±0.08 1.24±0.07 0.00 0.388 −0.066 2.212 200
Stiefel FM-OT 2.45±0.09 1.49±0.07 0.00 0.376 −0.002 2.195 200
Stiefel FM (filter) 3.57±0.11 2.06±0.08 0.00 0.889 −0.437 2.208 600
Stiefel FM-OT (filter) 3.79±0.11 2.34±0.09 0.00 0.869 −0.352 2.193 600

Figure 4: Histograms of minimum RMSD for predicted GEOM examples.

sampling on the Stiefel manifold. We also report the results of KREED-XL after projecting samples
to the feasible manifold. Relevant hyperparameters for all methods are provided in Appendix C.3.

Results. Table 1 shows our experimental results on QM9, reporting Stiefel FM with and without
optimal transport (OT). We note that the average number of atoms in QM9 is 18, meaning that on
average the model must infer 3(18)− 9 = 39 values from 3 moments. We find that Stiefel FM can
generate the correct structure with a greater success rate than all Euclidean diffusion models. We
also see that incorporating the analytic formula of the moments via DPS does improve agreement
with the moments, but at the cost of accuracy. In contrast, Stiefel FM does not suffer from this
tradeoff. Projecting samples onto the manifold does not change success rate, because the projection
leaves correct structures untouched, while only distorting incorrect structures. In addition, Stiefel
FM uses only 20% of the computation used by diffusion models. Unconstrained diffusion models
can produce more valid and stable structures, though they may not necessarily generate the correct
structure. Figure 3 reveals that when Stiefel FM’s predictions are correct, it is likely to be extremely
accurate, achieving RMSD even below 0.05 Å. Training with equivariant optimal transport helps learn
simpler generation paths and reduces the average curve length of generation trajectories from 1.696
to 1.547 (Figure 2). Interestingly, training with optimal transport slightly reduces the success rate of
Stiefel FM on QM9, though this trend is reversed for GEOM. Appendix Table 5 reports additional
trials experimenting with optimal transport, logit-normal timestep sampling (Esser et al., 2024), and
stochasticity (Bose et al., 2024).

The task of structure elucidation poses an even harder challenge on GEOM, with an average of
46 atoms, giving a task of inferring 3(46) − 9 = 129 values. Naively, one would expect that this
problem is hopelessly underconstrained. Nevertheless, Table 2 shows that both diffusion models
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and flow matching can obtain a nontrivial success rate for structure elucidation. However, the low
accuracy, validity, and stability of Stiefel FM(-OT) suggests that the model is underfitting the dataset,
even as KREED-XL is able to generate numerous valid samples. We observe that less than half
of the structures generated by Stiefel FM are valid, which aligns with the fact that there are fewer
valid structures on the feasible manifoldM than in regular Euclidean space. This suggests that a
fairer evaluation utilizing the strength of the manifold constraint should generate a similar number of
valid structures for each model. This is justified by the fact that validity does not use ground truth
labels and can be computed at only nominal cost. Therefore, we generate 30 samples for Stiefel FM
and Stiefel FM-OT before filtering to retain up to K = 10 valid samples. Note that the combined
computational cost of generating 3x as many samples (3 x 200 NFE) is still lower than KREED-XL
(1000 NFE). After filtering, Stiefel FM-OT obtains a similar validity rate to KREED-XL, but obtains
the highest success rate for structure elucidation. Even after filtering, the mediocre stability of
generated samples suggests that success rate can be improved further, though at the slightly higher
cost of quantum chemistry calculations. Now, we see that optimal transport does help Stiefel FM to
predict accurate structures, while also reducing average curve length from 1.421 to 1.344 (Appendix
Figure 8). However, biasing generation by selecting for valid samples seems to also select for longer
generation trajectories. We find that generation paths that land on the correct structure are usually
longer than generation paths that land on incorrect structures (Appendix Figure 7) This may be
explained by the fact that initial points are sampled anywhere uniformly on the manifold, but for
success they must end up on the single true structure. In contrast, there are many incorrect structures
all over the manifold, which may end up on average closer to random initial points.

It should be noted that one should expect success rates to be of this magnitude for solving a heavily
underconstrained problem. This is simply due to the fact that there exist many stable structures
with the same molecular formula and very similar moments of inertia. Indeed, trained models
usually generate realistic-looking molecules – see generated examples in Appendix Figure 5 and
Figure 6. Furthermore, only 10 to 30 samples were queried for each molecule, but an actual structure
elucidation campaign would have a much larger compute budget for generating thousands of samples.
As a highlight, our results show that it is actually possible at 0.25 Å resolution to elucidate 27.4% of
the test set of QM9 (3580/13033) when combining KREED-XL, Stiefel FM, and Stiefel FM-OT; and
7.9% of the test set of GEOM (2297/29203), when combining KREED-XL, Stiefel FM (filter), and
Stiefel FM-OT (filter).

5 RELATED WORK

Generative models for 3D molecules. While research in applying generative models for 3D structure,
only few works have applied these methods to the task of structure elucidation (Cheng et al., 2024).
Adjacent work in applying diffusion and flow matching models to 3D molecules include molecular
generation (Hoogeboom et al., 2022; Song et al., 2023c), conformer search (Jing et al., 2022; Xu et al.,
2022), docking (Corso et al., 2022), biomolecular assembly (Abramson et al., 2024) and Boltzmann
generators (Klein et al., 2023). Generative models on Riemannian manifolds have also been applied
to protein design (Bose et al., 2024; Yim et al., 2023) and crystal structure prediction (Jiao et al.,
2024). Recent work has applied generative modelling to predict 3D structure from powder X-ray
diffraction patterns (Lai et al., 2024; Riesel et al., 2024).

Deep learning for molecular identification using rotational spectroscopy. A limited number of
works have provided parts of the overall puzzle needed for structure elucidation using rotational
spectroscopy. Zaleski & Prozument (2018) propose RAINet as a forward modeling approach for
assigning rotational spectra, where a set of peaks is fed into a classifier, that categorizes the spectra
to an appropriate multilayer pereception that outputs spectroscopic parameters, including moments.
McCarthy & Lee (2020) adopt a “mixture-of-experts” approach that maps spectroscopic parameters
and approximate molecular formula into a set of complementary experimental observables and
SMILES strings, though with limited success. Cheng et al. (2024) present a Euclidean diffusion
model KREED for determining 3D structure from moments, molecular formula, and unsigned
substitution coordinates, the latter of which is also measurable from rotational spectroscopy, but
can be difficult and expensive to obtain. Most recently, Schwarting et al. (2024) provide a thorough
analysis into the inverse problem, examining the frequency with which different molecules have
moments of inertia that are very close in value. Stiefel Flow Matching could disambiguate these
structures by providing a diversity of structures that satisfy moment constraints exactly.
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Statistics on the Stiefel manifold. While the Stiefel manifold is often studied in the context of
optimization (Absil et al., 2008; Chen et al., 2021; Kong et al., 2022), a number of works study
probability distributions on the Stiefel manifold (Chakraborty & Vemuri, 2019; Chikuse, 1990). One
distribution on the Stiefel manifold is called the matrix von Mises-Fisher distribution or matrix
Langevin distribution (Pal et al., 2020; Chikuse, 2003; Jupp & Mardia, 1979). Wang & Solo (2020)
propose a particle filtering algorithm on the Stiefel manifold, with the first application of optimal
transport on the Stiefel manifold. Yataka et al. (2023) propose a continuous normalizing flow on the
Grassmann manifold, which is closely related to the Stiefel manifold.

6 CONCLUSION

We propose Stiefel Flow Matching, a Riemannian generative model for generating samples subject to
exact orthogonality constraints, and apply it to the challenging inverse problem of structure elucidation
from moments of inertia and molecular formula. Empirically, Stiefel Flow Matching achieves a
higher success rate than other Euclidean diffusion approaches. Satisfying the constraints exactly will
enable future advances in Riemannian generative modelling to directly transfer to generating more
stable molecules, without needing to consider agreement to the moments.

6.1 FUTURE RESEARCH DIRECTIONS

Improving Stiefel generative models. Riemannian flow matching empirically shows degradation
compared to Riemannian diffusion (Lou et al., 2024; Zhu et al., 2024). This has been attributed to two
pathologies of Riemannian flow matching for compact manifolds: (1) the geodesic-based velocity
field is discontinuous at the cut locus (Lou et al., 2024; Zhu et al., 2024), and (2) the probability
density has a shrinking support (Stark et al., 2024; Holderrieth et al., 2024). These pathologies may
explain the difficulty of Stiefel FM in fitting GEOM, and motivate the development of alternative
probability paths for Stiefel flow matching, such as Stiefel diffusion (De Bortoli et al., 2022), or flows
which asymptotically land on the Stiefel manifold (Ablin & Peyré, 2022; Gao et al., 2022). Training
a Stiefel diffusion model with the denoising score matching objective requires the heat kernel as
training targets for the neural network, which can be computed using techniques by Azangulov et al.
(2022) and Lou et al. (2024). Alternatively, the matrix Langevin distribution may be amenable to
modelling with Star-Shaped Denoising Diffusion Probabilistic Models (Okhotin et al., 2024). Future
work can also explore varying the metric used on the Stiefel manifold, since the Stiefel manifold
admits a 1-parameter family of metrics generalizing the canonical metric (Hüper et al., 2021). These
metrics have efficient numerical algorithms for the exponential and logarithm (Mataigne et al., 2024).
Sample-time advances in flow matching, such as corrector sampling (Gat et al., 2024) or enhancing
the flow with a jump process (Holderrieth et al., 2024), are also orthogonal avenues for improvement.

A key limitation of Stiefel Flow Matching is the requirement of molecular formula as input. Recent
approaches in discrete flow matching (Campbell et al., 2024; Gat et al., 2024) could enable a
multimodal flow to simultaneously vary both continuous atom positions and discrete atom types.
The jump processes of generator matching (Holderrieth et al., 2024) are particularly natural for this
problem, as they could allow the flow to jump between Stiefel manifolds of different sizes.

Modeling on real-world chemical data. Since we require only minimal information in the moments
and molecular formula, another direction is to incorporate other conditioning information, such as
energy and force information, fragments of 2D graphs, dipole moments, or other sources of analytical
chemistry data. We can do so through MCMC sampling (Du et al., 2023), guidance (Song et al.,
2023a;b; Mardani et al., 2023), or diversity sampling approaches (Corso et al., 2024). This presents
an opportunity in mass spectrometry, as the 3D structural information provided by the moments can
distinguish molecules which have the same mass. Controllable diversity can also be leveraged here
since, in a molecule identification campaign, we can eliminate candidates once we know they are not
correct (by calculating the rovibrational correction and comparing to experiment). We then want to
sample structures which are different from these eliminated candidates.

Additional applications of Stiefel Flow Matching. Stiefel generative models can also be applied
to other domains of orthogonality constrained data, such as molecular orbitals (Mrovec & Berger,
2021; Aoto & da Silva, 2021), orthogonal neural network weights (Kong et al., 2022), and covariance
matrices in neural data (Nejatbakhsh et al., 2024).
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Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=eLH2NFOO1B.

Lingkai Kong, Yuqing Wang, and Molei Tao. Momentum stiefel optimizer, with applications to
suitably-orthogonal attention, and optimal transport. arXiv preprint arXiv:2205.14173, 2022.

J Kraitchman. Determination of molecular structure from microwave spectroscopic data. American
Journal of Physics, 21(1):17–24, 1953.

Qingsi Lai, Lin Yao, Zhifeng Gao, Siyuan Liu, Hongshuai Wang, Shuqi Lu, Di He, Liwei Wang,
Cheng Wang, and Guolin Ke. End-to-end crystal structure prediction from powder x-ray diffraction.
arXiv preprint arXiv:2401.03862, 2024.

Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013.

John M. Lee. Smooth Manifolds, pp. 1–29. Springer New York, New York, NY, 2003. ISBN 978-
0-387-21752-9. doi: 10.1007/978-0-387-21752-9 1. URL https://doi.org/10.1007/
978-0-387-21752-9_1.

Kin Long Kelvin Lee and Michael McCarthy. Study of Benzene Fragmentation, Isomerization,
and Growth Using Microwave Spectroscopy. The Journal of Physical Chemistry Letters, 10(10):
2408–2413, April 2019. ISSN 1948-7185. doi: 10.1021/acs.jpclett.9b00586.

Kin Long Kelvin Lee and Michael McCarthy. Bayesian Analysis of Theoretical Rotational Constants
from Low-Cost Electronic Structure Methods. The Journal of Physical Chemistry A, 124(5):
898–910, February 2020. ISSN 1089-5639. doi: 10.1021/acs.jpca.9b09982.

Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive sign equivariant
networks for spectral geometric learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=UWd4ysACo4.

13

https://app.knovel.com/kn/resources/kpMMSE0001/toc
https://app.knovel.com/kn/resources/kpMMSE0001/toc
https://openreview.net/forum?id=eLH2NFOO1B
https://openreview.net/forum?id=eLH2NFOO1B
https://doi.org/10.1007/978-0-387-21752-9_1
https://doi.org/10.1007/978-0-387-21752-9_1
https://openreview.net/forum?id=UWd4ysACo4


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling riemannian diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
inverse problems with diffusion models. arXiv preprint arXiv:2305.04391, 2023.

Alan G Marshall and Christopher L Hendrickson. High-resolution mass spectrometers. Annu. Rev.
Anal. Chem., 1:579–599, 2008.

Simon Mataigne, Ralf Zimmermann, and Nina Miolane. An efficient algorithm for the riemannian log-
arithm on the stiefel manifold for a family of riemannian metrics. arXiv preprint arXiv:2403.11730,
2024.

Michael McCarthy and Kin Long Kelvin Lee. Molecule Identification with Rotational Spectroscopy
and Probabilistic Deep Learning. The Journal of Physical Chemistry A, 124(15):3002–3017, April
2020. ISSN 1089-5639, 1520-5215. doi: 10.1021/acs.jpca.0c01376.

Michael C. McCarthy, Kin Long Kelvin Lee, P. Brandon Carroll, Jessica P. Porterfield, P. Bryan
Changala, James H. Thorpe, and John F. Stanton. Exhaustive Product Analysis of Three Benzene
Discharges by Microwave Spectroscopy. The Journal of Physical Chemistry A, 124(25):5170–5181,
June 2020. ISSN 1089-5639, 1520-5215. doi: 10.1021/acs.jpca.0c02919.

Brett A McGuire. 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and
exoplanetary molecules. The Astrophysical Journal Supplement Series, 239(2):17, 2018.

Brett A. McGuire, P. Brandon Carroll, Ryan A. Loomis, Ian A. Finneran, Philip R. Jewell, Anthony J.
Remijan, and Geoffrey A. Blake. Discovery of the interstellar chiral molecule propylene oxide
(CH3CHCH2O). Science, 352(6292):1449–1452, June 2016. doi: 10.1126/science.aae0328.

Benedetta Giannelli Moneta, Sara Elsa Aita, Elena Barbaro, Anna Laura Capriotti, Andrea Cerrato,
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A ROTATIONAL SPECTROSCOPY & MOLECULAR STRUCTURE

A.1 NOTATION

(PX , PY , PZ) are really called the planar moments of inertia. We refer to them as the moments of
inertia as shorthand. The actual moments of inertia (IA, IB , IC) are uniquely related to the planar
moments by a simple linear transformation (Kraitchman, 1953).

A.2 INERTIA EDGE CASES

We assume that the molecule of interest has moments of inertia PX > PY > PZ > 0, or in other
words, a nonplanar asymmetric rotor. This assumption holds for the vast majority of molecules. We
now discuss edge cases, such as perfectly symmetric, planar, or linear molecules. It is worth noting
that, owing to their rarity and symmetries, these edge cases have significant overlap with the set of
molecules that have already been studied (McGuire, 2018).

When structures have two equal eigenvalues (PY = PZ) in their inertia matrix, there is no longer a
unique choice of these two principal axes. These axes now sweep out a plane of possibilities, and
numerical diagonalization will arbitrarily pick two orthogonal axes from this plane. But, making an
arbitrary choice does not break the mapping between X and U in Equation (4). The only issue is
that to respect this additional symmetry, the flow should be invariant to in-plane rotoreflections of the
molecule. However, these examples are so rare that they can be ignored: 76 examples in QM9 and 8
examples in GEOM. If needed, this symmetry can be handled using data augmentation.

Stiefel Flow Matching cannot handle exactly planar (PZ = 0) and exactly linear (PY = PZ = 0)
molecules due to divide by zero in Equation (4). The vast majority of “planar” molecules are actually
slightly nonplanar and therefore pose no issue. In rare cases where molecules are truly planar, Stiefel
Flow Matching can be reformulated for 1 and 2 dimensions.

A.3 EXPERIMENTAL WORKFLOW

For an unknown molecule, we assume that its molecular formula can be measured by high-resolution
mass spectrometry (Marshall & Hendrickson, 2008) and that its moments can be measured from
rotational spectroscopy (Gordy et al., 1984).

At a high level, rotational spectroscopy observes how molecules freely rotate in the gas phase. The
rotation of molecules is quantized, giving rise to a discrete set of rotational states. Molecules can
absorb or emit radiation at characteristic wavelengths to transition between these energy levels. Rota-
tional spectroscopy measures the energies of these transitions. A broadband microwave spectrometer
can simultaneously measure thousands of these transitions, producing a spectrum of many sharp
peaks (Brown et al., 2006; 2008). Rotational transition energies are in the microwave to terahertz
region, which is why rotational spectroscopy is also known as microwave spectroscopy.

For an asymmetric rigid molecule, and neglecting effects like centrifugal distortion and hyperfine
structure, the molecule’s rotational energy levels are essentially determined by three unique rotational
constants, A(BC), A > B > C. Rotational constants are inversely proportional to the principal
moments of inertia, i.e.,A = ℏ2

2IA
. Each energy level is also indexed by quantum numbers. Transitions

are the differences in these energy levels. Transition strength is also affected by the molecule’s dipole
moment.

Once a spectrum is measured, the rotational spectroscopist is tasked with assigning each transition to
its quantum numbers and ultimately assigning rotational constants A(BC). Spectral assignment is a
challenging problem tackled in other works (Zaleski & Prozument, 2018; Yeh et al., 2019). Rotational
constants can then simply be inverted to obtain effective moments of inertia.

Using these effective moments, a spectroscopist can now search for the true structure using any of
the models developed in this work. In an actual structure elucidation campaign, only a few targets
are considered, which permits querying K > 1000 samples for each target, and also leaves enough
computational resources to evaluate every generated sample using quantum chemistry.
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A.4 EXPERIMENTAL PRECISION

While the proposed method generates structures which satisfy the moment constraints exactly,
and while rotational spectroscopy can measure experimental rotational constants to many digits of
precision (Vogt et al., 2011), it is unfortunate that the experimental rotational constants do not directly
translate to moments of inertia. This is because molecules are not perfectly rigid: Experiment observes
properties that have been vibrationally averaged, including the rotational constants. Vibrational
averaging is distinguished from conformational fluctuations such as torsions, which can be frozen
out by cooling molecules to their ground vibrational state. However, even in the ground vibrational
state, a molecule is still vibrating due to zero-point energy. As a result, the experimental rotational
constants A(BC)0 are proportional to ⟨ 1

r2 ⟩, whereas equilibrium rotational constants A(BC)e are
proportional to 1

⟨r⟩2 , where ⟨·⟩ denotes a vibrational average. Structures in QM9 and GEOM have
been geometry optimized to reach equilibrium structures ⟨r⟩. Equilibrium rotational constants are on
the order of 1% relative error of the experimental rotational constants (Vogt et al., 2011; Puzzarini &
Stanton, 2023).

Typically, experimental rotational constants A(BC)0 can be corrected into equilibrium rotational
constants A(BC)e by a rovibrational calculation. Experimental and equilibrium rotational constants
are related by a perturbative expansion (Demaison et al., 2011)

A(BC)0 = A(BC)e −
1

2

∑
i

α
A(BC)
i +

1

8

∑
ij

γ
A(BC)
ij + · · · , (12)

where i, j index normal modes of vibration (i, j ∈ {1, 2, . . . , 3n− 6} for n atoms), and α and γ are
first and second order interaction constants that couple rotational and vibrational motions together.
As a Taylor series, α is generally much larger than γ, so γ is usually neglected. The rovibrational
correction α can be calculated using an electronic structure method with a good compromise between
computational time and accuracy (Puzzarini & Stanton, 2023; Spaniol et al., 2023). However, this
calculation requires knowing the structure in the first place.

Alternatively, experimental rotational constants can be corrected to equilibrium rotational constants
by simple semi-empirical scaling factors under marginalized Bayesian uncertainty (Lee & McCarthy,
2020).

But, exact moment constraints do allow application in the following sense: if one were to a priori
guess the equilibrium moments correctly, one could then verify whether they are indeed correct by
generating structures, calculating their rovibrational corrections, and then checking their agreement
to the experimental rotational constants. Therefore, given experimental rotational constants A(BC)0,
one can use this verification procedure in a fine-grid search for the true equilibrium rotational
constantsA(BC)e. This is feasible sinceA(BC)e consist of only 3 numbers. Experimental precision
in A(BC)0 is maintained up to the precision in computing α. To verify that a structure is the true
structure, we must know that (1) its A(BC)e and α match A(BC)0 and (2) gradient norm is near 0.

B THE STIEFEL MANIFOLD

In this section, we discuss various facts about the Stiefel manifold and computations thereon. We
refer readers to (Lee, 2003; Edelman et al., 1998; Bendokat et al., 2024) for further details.

The Stiefel manifold St(n, p) is the set of orthonormal p-frames in Rn:
St(n, p) = {U ∈ Rn×p | U⊤U = Ip}. (13)

St(n, p) is a manifold of dimension np− 1
2p(p+ 1). Elements of St(n, p) can be thought of as the

first p columns of an n× n orthogonal matrix. In fact, St(n, p) generalizes some well-known spaces.
For example, St(n, n) is the orthogonal group O(n), and St(n, n− 1) is diffeomorphic to the special
orthogonal group SO(n), and St(n, 1) recovers the unit n-sphere Sn−1.

B.1 TANGENT SPACE

The tangent space of St(n, p) at a point U is identified with the subspace:
TUSt(n, p) = {∆ ∈ Rn×p | U⊤∆+∆⊤U = 0}, (14)

In other words, this is the set of n× p matrices ∆ for which U⊤∆ is skew-symmetric.
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B.2 CANONICAL METRIC

Smoothly equipping every tangent space with an inner product turns St(n, p) into a Riemannian
manifold. Herein, we will consider the canonical metric:

⟨∆, ∆̃⟩U = trace∆⊤ (In − 1
2UU⊤) ∆̃, (15)

Any inner product induces a norm by ||∆||U =
√
⟨∆,∆⟩U . For the canonical metric, the induced

norm is equivalent to:

||∆||2U = trace∆⊤∆− 1
2 trace(U

⊤∆)⊤(U⊤∆) = ||∆||2F − 1
2 ||U

⊤∆||2F , (16)

where || · ||F is the Frobenius norm. Computing the canonical norm in this way is much faster for the
nodewise-batching approach used by PyTorch Geometric (Fey & Lenssen, 2019).

B.3 EXPONENTIAL AND LOGARITHM

The Stiefel exponential can be computed by the algorithm presented by Edelman et al. (1998), who
give the closed-form expression for a geodesic γ with initial conditions γ(0) = U and γ̇(0) = ∆.
Here, we reproduce the algorithm for computing expU (∆) = γ(1).

Algorithm 1 Computing a Stiefel geodesic γ(t). (Edelman et al., 1998)

Require: Base point U ∈ St(n, p), initial direction ∆ ∈ TUSt(n, p), time t ∈ R
1: QR← (In −UU⊤)∆, where Q ∈ Rn×p and R ∈ Rp×p ▷ QR decomposition

2: A←
(
U⊤∆ −R⊤

R 0

)
∈ R2p×2p

3:

(
M(t) · · ·
N(t) · · ·

)
← expm(tA), where M(t),N(t) ∈ Rp×p ▷ take submatrices

4: return UM(t) +QN(t) ∈ St(n, p)

An efficient algorithm for computing the Stiefel logarithm is reproduced and simplified here from
Zimmermann & Hüper (2022). We implement the logarithm in C++ for speed on the CPU, as it must
be called on every fetch of a data example. This does not present a bottleneck: computing logarithmic
maps takes an average of 0.1 ms for molecules in both QM9 and GEOM. The logarithm has a cost of
O(np2). The thin QR decomposition and initial matrix multiplications have a cost of O(np2), while
the inner loop’s Schur decomposition, Sylvester solve, matrix multiplications, and matrix exponential
have a cost of O(p3).

Algorithm 2 Computing the Stiefel logarithm. (Zimmermann & Hüper, 2022)

Require: Base point U ∈ St(n, p), target point Ũ ∈ St(n, p)

1: M ← U⊤Ũ ∈ Rp×p

2: QN ← Ũ −UM ∈ Rn×p ▷ thin QR

3: OR←
(
M
N

)
∈ R2p×p, O ∈ R2p×2p ▷ compute orthogonal completion via full QR

4: V ←
(
M

O·,p:2pN

)
∈ SO(2p) ▷ flip sign if det < 0

5: for k = 1, . . . , 20 do

6:

(
A −B⊤

B C

)
← logm(V ) ▷ use Schur matrix logarithm

7: S ← 1
12BB⊤ − 1

2Ip
8: solve C = SΓ+ ΓS for Γ ∈ Rp×p ▷ symmetric Sylvester equation
9: Φ← expm(Γ) ∈ Rp×p ▷ matrix exponential, or use Cayley transform

10: V·,p:2p ← V·,p:2pΦ ▷ rotate last p columns of V

11: return UA+QB ∈ TUSt(n, p)
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B.4 UNIFORM SAMPLING

To sample uniformly on St(n, p) with respect to the Haar measure, we can compute U =
Z(Z⊤Z)−1/2 for a random matrix Z ∈ Rn×p whose elements are drawn i.i.d. from a standard
Gaussian (i.e. Z = randn(n, p)).

B.5 HOUSEHOLDER REFLECTIONS

To align the final column of a matrix U ∈ St(n, p) to a unit vector y, we can rotate its columns under
a transformation R ∈ SO(n) such that RU·,4 = y. Let U·,4 = x. For any unit vector v ∈ R3, the
Householder matrix H(v) = In − 2vv⊤ has determinant −1. Then,

R = H(y)H

(
x+ y

||x+ y||

)
∈ SO(n) (17)

is our desired rotation. In particular, we can verify that

H

(
x+ y

||x+ y||

)
x = x− (2 + 2x⊤y)

||x+ y||2
(x+ y) = x− (x+ y) = −y (18)

so that Rx = H(y)(−y) = y, as desired.

B.6 ORTHOGONAL PROJECTIONS

The orthogonal projection of a point U0 ∈ Rn×p onto the St(n, p) is a special case of the well-known
orthogonal Procrustes problem:

argmin
U

||UIp −U0||F , subject to U⊤U = Ip. (19)

Letting U0 = AΣB⊤ under a singular value decomposition, the solution to this problem is AB⊤.
The orthogonal projection of a point Z ∈ Rn×p onto the tangent space TUSt(n, p) is computed by
Z −U sym(U⊤Z), where sym(A) = 1

2 (A+A⊤) is a symmetrization operation.

B.7 THE ZERO CENTER-OF-MASS SUBMANIFOLD

For n ≥ 5, we are interested in the subset of St(n, 4) obtained by fixing the final column to a fixed
unit vector a ∈ Sn−1:

M = {U ∈ St(n, p) | U·,4 = a}. (20)

Note that S = π−1({a}) is a level set of the projection map:

π : St(n, 4)→ Sn−1, U 7→ U·,4. (21)

In fact, π is a smooth surjective map of constant rank, so it is a submersion by the global rank theorem.
Hence,M is an embedded submanifold by the submersion level set theorem. The tangent vectors to
M are exactly those whose final column is zero, since

TUM = ker dπU = {∆ ∈ TUSt(n, 4) | ∆·,4 = 0}. (22)

IfM further inherits the canonical metric from St(n, 4), then it becomes a Riemannian manifold.
Note thatM is homeomorphic to St(n− 1, 3), so it is connected and compact. Hence, it is geodesi-
cally complete and any two points inM can be connected with a length-minimizing geodesic onM.
Theorem 1 shows thatM is totally geodesic, i.e., any geodesic onM is a geodesic on St(n, 4). This
allows us to perform simpler computations in the ambient space. Theorem 5 computes projections of
arbitrary matrices onto TUM.
Theorem 1. As defined above,M is totally geodesic.

Proof. A sufficient condition is that for any U ∈ M and ∆ ∈ TUM, the geodesic γ with initial
conditions γ(0) = U and γ̇(0) = ∆ stays withinM. Fortunately, γ is given in closed-form by
Edelman et al. (1998) in Algorithm 1. Since ∆·,4 = 0, the fourth columns of R and U⊤∆ are zero.
Since U⊤∆ is skew-symmetric by Equation 14, its fourth row is also zero. Then, the fourth row and
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column of A and expm(tA) are zero, but expm(tA)4,4 = 1. It follows that M(t)·,4 = (0, 0, 0, 1)
and N(t)·,4 = 0, so that

γ(t)·,4 = U (M(t)·,4) +Q (N(t)·,4) = U·,4 = a. (23)

Hence, γ(t) ∈M as desired.

We now provide some lemmas which are useful for proving that the Stiefel logarithm onM can be
computed using St(n, 3) rather than St(n, 4) (Theorem 4).

Lemma 2. Let X be a square matrix whose ith row and column are 0. Positive powers of X retain
zeros in the ith row and column. Suppose

X =

(
E 0 F
0 0 0
G 0 H

)
,

(
E F
G H

)k

=

(
Ê F̂

Ĝ Ĥ

)
. (24)

Then we have

Xk =

Ê 0 F̂
0 0 0

Ĝ 0 Ĥ

 . (25)

Proof. We show this by induction over k. It is clear this is true for k = 1. Then, we assume

Xk =

Ê 0 F̂
0 0 0

Ĝ 0 Ĥ

 and aim to show for k + 1. We know that

(
E F
G H

)k+1

=

(
Ê F̂

Ĝ Ĥ

)(
E F
G H

)
=

(
ÊE + F̂G ÊF + F̂H

ĜE + ĤG ĜF + ĤH

)
. (26)

At the same time, we have that

Xk+1 =

Ê 0 F̂
0 0 0

Ĝ 0 Ĥ

(E 0 F
0 0 0
G 0 H

)
=

ÊE + F̂G 0 ÊF + F̂H
0 0 0

ĜE + ĤG 0 ĜF + ĤH

 , (27)

which completes the proof.

Lemma 3. Let X be a square matrix whose ith row and column are 0, and consider the matrix
exponential of its nonzero portions:

X =

(
E 0 F
0 0 0
G 0 H

)
, expm

(
E F
G H

)
=

(
Ē F̄
Ḡ H̄

)
. (28)

Then we have

expm(X) =

Ē 0 F̄
0 1 0
Ḡ 0 H̄

 . (29)

Proof. The matrix exponential is given by

expm(X) =

∞∑
k=0

1

k!
Xk. (30)

By Lemma 2, all non-identity terms of this series are identical to terms in the series for

expm

(
E F
G H

)
but with zeros inserted in the ith row and column. The identity term then contributes

the extra 1 in the main diagonal.
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Theorem 4. Let U ∈M, and let Ũ be its first three columns so that U =
(
Ũ a

)
.

The exponential on M can be computed as the exponential on St(n, 3) after discarding the last
column of ∆ =

(
∆̃ 0

)
.

expU (∆) =
(
expŨ (∆̃) a

)
(31)

Similarly, the logarithm onM can be computed as the logarithm on St(n, 3) followed by concatenat-
ing a zero column:

logU0
(U1) =

(
logŨ0

(Ũ1) 0
)

(32)

Proof. We go line-by-line through Algorithm 1 to show that the Stiefel exponential onM is equivalent
to the exponential for St(n, 3).

The last column of (In −UU⊤)∆ is 0 because the last column of ∆ is 0. Then,

QR = (In −UU⊤)∆ =
(
Q̃ q

)(R̃ 0
0 0

)
, (33)

where q is some orthogonal vector to the 3 columns of Q̃, and R̃ is the first 3 columns and rows of
R. This corresponds to the QR decomposition Q̃R̃ = (In − ŨŨ⊤)∆̃.

In addition, we have that U⊤∆ =

(
Ũ⊤∆̃ 0
0 0

)
.

Thus, the block matrix A in Algorithm 1 is given as
Ũ⊤∆̃ 0 −R̃⊤ 0
0 0 0 0

R̃ 0 0 0
0 0 0 0

 . (34)

By Lemma 3, the matrix exponential of A containing extra rows and columns of zeros is equivalent
to the matrix exponential with these rows and columns of zeros removed.

Therefore,

expm(tA) =

(
M(t) · · ·
N(t) · · ·

)
=


M̃(t) 0 · · ·
0 1 · · ·

Ñ(t) 0 · · ·
0 0 · · ·

 . (35)

Finally, the output of Algorithm 1 is

UM(t) +QN(t) =
(
Ũ a

)(M̃(t) 0
0 1

)
+
(
Q̃ q

)(Ñ(t) 0
0 0

)
(36)

=
(
ŨM̃(t) a

)
+
(
Q̃Ñ(t) 0

)
(37)

=
(
ŨM̃(t) + Q̃Ñ(t) a

)
(38)

=
(
expŨ (∆̃) a

)
. (39)

Since the Stiefel exponential is locally invertible, this also shows that the Stiefel logarithm can be
computed using Ũ0 and Ũ1.

Theorem 5. Let U ∈M, and let Ũ be its first three columns so that U = [Ũ a]. Given Z ∈ Rn×3,
the minimum-norm projection of [Z 0] onto TUM is given by [π(Z)0], where

π(Z) = Ũ skew(Ũ⊤Z) + (In −UU⊤)Z ∈ Rn×3 (40)

= Ũ skew(Ũ⊤Z) + (In −UU⊤)Z ∈ Rn×3 (41)

Note there is no tilde in the second term.
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Proof. We can rewrite

TUM = {[∆̃0] | Ũ⊤∆̃ + ∆̃⊤Ũ = 0, ∆̃⊤a = 0} (42)

= {[∆̃0] | ∆̃ ∈ TŨSt(n, 3) ∩ span(a)⊥}, (43)
Edelman et al. (1998) give an orthogonal projection of Z onto TŨSt(n, 3) as:

π1(Z) = Ũ skew(Ũ⊤Z) + (In − ŨŨ⊤)Z, (44)
where skew(A) = 1

2 (A−A⊤). The orthogonal projection of Z onto span(a)⊥ is

π2(Z) = (In − aa⊤)Z. (45)
We can check that π1 and π2 commute with π = π1 ◦ π2 = π2 ◦ π1. Hence, π is an orthogonal
projection onto TŨSt(n, 3) ∩ span(a)⊥, as desired.

C EXPERIMENTAL DETAILS

C.1 ARCHITECTURE

Explicitly, the neural network takes in moments (PX , PY , PZ), time t, atom types a, and coordinates
X , and outputs a Stiefel tangent vector. Moments are embedded using sinusoidal features with
wavelength geometrically spaced from 0.0001 to 10,000. Time is similarly embedded but with
a wavelength range from 0.001 to 1. We use a reflection-equivariant network. Note that given a
reflection-invariant function f , the mapping X 7→ sign(X)⊙ f(X) is reflection-equivariant, where
sign(X) gives the element-wise signs of X , with sign(0) = 0. Thus, the problem is reduced to
constructing a network that is reflection-invariant with respect to the input coordinates X .

As input to our network, we begin by featurizing the molecule in a reflection-invariant manner. We
obtain invariant node features hi ∈ Rdnode by using the molecule’s unsigned coordinates and atom
types, and edge features eij ∈ Rdedge are computed from the unsigned differences between pairs of
atomic coordinates. These features are passed through a Transformer backbone (Vaswani et al., 2017).
We use the PreLN layout with an adaptive version of LayerNorm (Dieleman et al., 2022; Dhariwal &
Nichol, 2021) that conditions on the timestep and molecule’s moments. In addition, the attention
module is replaced with a message-passing block that jointly updates the node and edge features:

(vij , aij , e
′
ij)← MLP(hi,hj , eij), for all i, j, (46)

eij ← eij + e′ij , for all i, j, (47)

yi ←
n∑

j=1

(
exp(aij)∑n
k=1 exp(aik)

)
vij , for all i, (48)

hi ← hi + Linear(yi) for all i. (49)
The last two equations are reminiscent of self-attention in Transformers, and along the same lines, we
use a multi-headed extension of them. Across all experiments, we use dnode = 768 and dedge = 192.
We use 16 Transformer-like blocks, 12 update heads, SiLU/Swish activations, and a 4× expansion in
each block’s feed-forward module. In total, our model has 154M trainable parameters.

This architecture is distinct from the pretrained network of KREED (Cheng et al., 2024), which was
tailored for predicting 3D structure given molecular formula, moments of inertia, and substitution
coordinates. KREED was trained using random dropout of input substitution coordinates. For
QM9, the model sometimes observed examples with no substitution coordinates during training.
However, for GEOM, the model always received at least some substitution coordinates during training.
Therefore, KREED is operating out-of-distribution when provided with no substitution coordinates at
all.

C.2 STOCHASTICITY

Diversity is important for identifying unknown molecules outside the training set. Therefore, we
experiment with adding stochasticity to the dynamics of the flow, leading individual paths to be
stochastic. To do so during training, we apply an exponential map to a Gaussian variable with noise
scale γ · cos(πt)+1

2 in the tangent space of the interpolant before calculating U̇ again. During sampling,
we add Gaussian noise of the same noise schedule to the tangent vector at every time step.
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Table 3: General training and sampling hyperparameters.

Hyperparameter QM9 GEOM

Training

Epochs 1000 60
Effective batch size 1024 96
Optimizer AdamW AdamW
Learning rate 10−4 10−4

Learning rate warmup steps 2000 2000
Weight decay 0.01 0.01
Gradient clipping yes yes
EMA decay 0.9995 0.9995

KREED Timesteps 1000 1000
Schedule polynomial polynomial

Stiefel FM Timesteps 200 200

Table 4: Training and sampling hyperparameters for Stiefel Flow Matching.

Dataset Model Timestep sampling OT stochasticity γ

QM9

Stiefel FM uniform no 0.00
Stiefel FM-OT uniform yes 0.00
Stiefel FM-OT-stoch uniform yes 0.10
Stiefel FM-ln logit-normal no 0.00
Stiefel FM-ln-OT logit-normal yes 0.00

GEOM Stiefel FM uniform no 0.00
Stiefel FM-OT uniform yes 0.00

Table 5: Extended ablation study for QM9.

Method % < RMSD ↑ Error ↓ Valid ↑ Stable ↓ Diverse ↑ NFE ↓
0.25 Å 0.10 Å

Stiefel FM 15.17 ± 0.31 13.82 ± 0.30 0.00 0.882 -1.125 1.040 200
Stiefel FM-OT 13.99 ± 0.30 12.68 ± 0.29 0.00 0.835 -1.039 1.045 200
Stiefel FM-stoch 15.13 ± 0.31 13.83 ± 0.30 0.00 0.877 -1.116 1.045 500
Stiefel FM-ln 15.74 ± 0.32 11.45 ± 0.28 0.00 0.880 -0.600 0.982 200
Stiefel FM-ln-OT 14.90 ± 0.31 12.45 ± 0.29 0.00 0.875 -0.687 1.026 200

Method Dataset Training Training Sampling
(min / epoch) (it / s) (seconds / K=10 samples)

KREED-XL QM9 1.02 6.7 13.9
Stiefel FM QM9 1.32 5.1 2.9

Stiefel FM-OT QM9 3.48 1.9 2.9
KREED-XL GEOM 225.6 17.0 71.3
Stiefel FM GEOM 224.4 17.1 15.0

Stiefel FM-OT GEOM 229.8 16.7 15.0

Table 6: Training and sampling timing on QM9 and GEOM. A CPU bottleneck of computing
logarithms and optimal transport exists for QM9 due to a large batch size of 256, but this CPU
bottleneck disappears for GEOM due to a small batch size of 24.

C.3 TRAINING

Models were trained on 4 NVIDIA A100 40GB GPUs. Tables 3 and 4 gives our hyperparameters.
We use the adaptive gradient clipping strategy from Hoogeboom et al. (2022).
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Stiefel FMKREED-XL

Figure 5: Selected QM9 examples. Best viewed zoomed in. Examples are sorted by RMSD to ground
truth, which is shown in cyan. Green panels indicate meeting the threshold of 0.25 Å.

Stiefel FM-OT (filter)KREED-XL

Figure 6: Selected GEOM examples. Best viewed zoomed in. Examples are sorted by RMSD to
ground truth, which is shown in cyan. Green panels indicate meeting the threshold of 0.25 Å.
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Figure 7: Normalized histogram of curve lengths of success (0.25 Å) and failure examples of Stiefel
FM on the QM9 (left) and GEOM (right) datasets. Success cases are more often the result of longer
generation paths.

Figure 8: Equivariant optimal transport shortens generation trajectories for GEOM. However, gener-
ating more samples and filtering by validity has a slight bias towards longer generation trajectories.

C.4 SAMPLING

During sampling, we sample uniformly fromM and iteratively query the trained model for a tangent
vector ∆ at every step. If stochasticity is turned on, Gaussian noise with scale γ · cos(πt)+1

2 is added to
this tangent vector. At every step, Ut is projected onto the manifold (Appendix B.6) before projecting
the tangent vector to the tangent space on the manifold TUt

St(n, 4) (Theorem 5). Integration
proceeds by applying expUt

to this tangent vector, scaled by dt.
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Algorithm 3 Sampling under Stiefel Flow Matching.

Require: Size n, atom types a, moments PXY Z = (PX , PY , PZ), stochasticity γ, timesteps T
1: U ∼ Uniform(St(n, 4)) using Appendix B.4
2: Project U toM (defined in Equation 5) using Appendix B.5
3: t← 0
4: t∆ ← 1/T
5: for step in 1, . . . , T do
6: X ←X(U ,m, PXY Z) by inverting Equation 4
7: ∆← vθ(t,X, PXY Z ,a) ∈ Rn×3

8: if step < T then
9: ∆← t∆∆+ 1

2γ
√
t∆(cos(πt) + 1)ε, where εij ∼ N (0, 1)

10: else
11: ∆← t∆∆

12: Project ∆ to TUM using Theorem 5
13: U ← expU (∆)
14: t← t+ t∆

return X ←X(U ,m, PXY Z) by inverting Equation 4

D GREEDY RANDOM OPTIMAL ASSIGNMENT ALGORITHM

The computational cost of computing the optimal transport map is O(np2), as it relies on a fixed
number of computations of the logarithm.

Algorithm 4 Heuristic alignment algorithm.

Require: U0,U1 ∈ St(n, p), atom types a, number of restarts R, local search budget L
1: c∗ ←∞ ▷ lowest cost seen so far
2: for reflections R ∈ {diag(s) | s ∈ {−1,+1}3} do ▷ find a good reflection
3: for k = 0, 1, . . . , R do
4: sample a random atom-type-preserving node permutation Π
5: Ucand ← ΠU0R

⊤

6: c← d̃(Ucand,U1), ▷ approximate distance
7: if c < c∗ then
8: c∗ ← c
9: Ubest ← Ucand

10: for k = 0, 1, . . . , L do ▷ local search over node swaps
11: sample (i, j) such that ai = aj , without repeating pairs
12: Ucand ← swap(Ubest, i, j)

13: c← d̃(Ucand,U1), ▷ approximate distance
14: if c < c∗ then
15: c∗ ← c
16: Ubest ← Ucand

17: return Ubest
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reflect z-axis,
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      to 
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      to 

Figure 9: Equivariant optimal transport aligns noise samples X0 to training examples X1 over
reflections and permutations, leading to smoother and shorter paths shown to the model during
training.

E STIEFEL LOGARITHM EMPIRICAL ANALYSIS

We sample 100k training examples from QM9 or GEOM to be used as U1 and for each example
sample one random point U0. We compute the true logarithm ∆ = logU0

(U1) using a large number
of iterations and compare it to the 20-iteration truncated logarithm. We record error as the infinity
norm of the difference between the true and approximate logarithms. We set the convergence
threshold to be 1e-6.

For QM9, the 20-iteration logarithm converges 97.9% of the time (median 9 iterations to converge),
and the median error in case of nonconvergence is 2.4e-4. The Spearman correlation between the
1-iteration approximate distance and the true distance is ρ = 0.88. For GEOM, the 20-iteration
logarithm converges 99.7% of the time (median 9 iterations to converge), and the median error in
case of nonconvergence is 8.8e-5. The Spearman correlation between the 1-iteration approximate
distance and the true distance is ρ = 0.82.

These results empirically validate that the 1-iteration approximate distance used in Algorithm 4 is an
upper bound on the true distance, and that it is a valid heuristic which generally maintains the same
relative ordering as the true Stiefel distance.
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Figure 10: Histograms of the number of inner iterations of the Stiefel logarithm required to converge
to an error of 1e-6 for 100k random training examples of QM9 (left) and GEOM (right).

Figure 11: Parity plots comparing the 1-iteration approximate Stiefel distance to the true Stiefel
distance of QM9 (left) and GEOM (right).
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