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Abstract

Proprietary large language models (LLMs) exhibit strong generalization capabilities
across diverse tasks and are increasingly deployed on edge devices for efficiency
and privacy reasons. However, deploying proprietary LLMs at the edge without
adequate protection introduces critical security threats. Attackers can extract
model weights and architectures, enabling unauthorized copying and misuse. Even
when protective measures prevent full extraction of model weights, attackers may
still perform advanced attacks, such as fine-tuning, to further exploit the model.
Existing defenses against these threats typically incur significant computational
and communication overhead, making them impractical for edge deployment. To
safeguard the edge-deployed LLMs, we introduce CoreGuard, a computation-
and communication-efficient protection method. CoreGuard employs an efficient
protection protocol to reduce computational overhead and minimize communication
overhead via a propagation protocol. Extensive experiments show that CoreGuard
achieves upper-bound security protection with negligible overhead.

1 Introduction

Large language models (LLMs), especially proprietary ones, such as ChatGPT [28] and Claude [4],
demonstrate exceptional generalization ability across various tasks [6, 31]. Additionally, deploying
LLMs on edge devices is a growing trend for latency- and privacy-sensitive tasks, e.g., Apple Inc.
introduced Apple Intelligence, which integrates a 3-billion-parameter LLM into users’ devices in the
latest iOS version [5]. However, when these proprietary LLMs are deployed to edge devices without
adequate protection, adversaries can extract detailed model information (including architecture and
weights) through software analysis techniques [7, 45], leading to unauthorized copying and misuse
outside the intended device. Even if some protections prevent attackers from fully extracting the
original weights, attackers can still perform more advanced attacks, such as fine-tuning the partially
recovered model to exploit its embedded knowledge and strong generalization capabilities for new
tasks. We refer to this threat as foundational capability stealing. This threat is especially practical for
proprietary, domain-specific LLMs trained on private data, like BloombergGPT [46] in finance or
Med-PaLM 2 [36] in healthcare, where comparable open-source alternatives are limited. Considering
the substantial resources required to develop high-performance LLMs [41], it is crucial to ensure
robust protection against these threats in edge deployments.
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Table 1: Comparison with existing solutions. ✓/✗ indicate whether each property is satisfied.
Solutions (exemplar) Proactivity Runtime Security Backbone Protection Sufficiency Efficiency
Watermarking [1] ✗ ✗ ✗ ✗ ✓
Model encryption [52] ✓ ✗ ✗ ✗ ✓
TPTE [51] ✓ ✓ ✗ ✗ ✗
PPTE [24] ✓ ✓ ✓ ✗ ✗
PSP [38] ✓ ✓ ✓ ✓ ✗
CoreGuard (ours) ✓ ✓ ✓ ✓ ✓

Unfortunately, as shown in Table 1, traditional solutions struggle to protect the edge-deployed LLMs.
Specifically, passive protection methods, such as watermark [1, 15, 21], are not applicable since
only the proof of ownership is insufficient in such an unsupervised edge operation scenario, where
attackers can misuse the model without detection. In contrast, active protection works by allowing
only authorized users to use the well-performed model. For example, some work encrypts models
before deploying them on devices [52, 22], and these models are only decrypted before execution.
However, it’s crucial to recognize that while these solutions can implement effective protection
before the inference state, current studies [7, 45] suggest that, even after decryption, models remain
susceptible to runtime attacks during inference, i.e., attackers reverse engineer the models in their
runtime state.

To defend against runtime attacks, one potential solution [25, 8] is to place the model into a secure
execution environment, e.g., a trusted execution environment (TEE), which are typically implemented
as a CPU-based enclave (e.g., ARM TrustZone, Intel SGX) that stores sensitive data and safeguards
against runtime attacks. However, directly placing the entire model within a TEE is impractical, as it
results in approximately a 50× reduction in model efficiency due to the TEE’s limited computational
speed [43]. Thus, some researchers propose only putting the most critical parameters in TEEs and
offloading the rest computation to GPUs. For example, Zhang et al. [51] protect only task-related
adapters within TEE and offload the model backbone to GPUs. However, such approaches are
primarily effective for traditional task-specific models and are insufficient for protecting LLMs, as
they leave the model backbone directly exposed.

To protect the backbone, a straightforward idea [24, 35] is to place a subset of the backbone (e.g.,
the last layer) in the TEE, i.e., Partial Parameter TEE Execution (PPTE). However, prior work [51]
shows that PPTE only provides insufficient protection, and this limitation becomes even more critical
when applied to LLMs. Specifically, PPTEs crudely execute weights in TEE for protection, where
the limited computational power of TEEs restricts the number of protected weights. The scarcity of
protected weights makes it easy for attackers to reconstruct them, even with just 1% of the training
datasets, compromising security [51]. Even worse, if an attacker aims to exploit a LLM’s foundational
capabilities, their target task is likely one for which they already have abundant labeled data (e.g.,
100% training set), making theft easier.

To increase the number of protected weights, a promising approach is to protect weights through
shuffling, i.e., Parameter Shuffling Protection (PSP) [38, 20]. For example, ShadowNet [38] protects
model weights by shuffling the channels of convolutional kernels. The protection ensures that only
the corresponding shuffled input can be correctly computed with the shuffled weights. This input-
shuffling process is performed within the TEE, thus ensuring its security. However, the excessive data
transfer overhead between the TEE and GPU makes ShadowNet impractical for LLMs. Specifically,
each shuffled layer requires transferring its input from the GPU to the TEE and back, resulting in
448 TEE-CPU transfers for a LLaMA3-8B model with 224 linear layers (each linear layer requires 2
transfers) to generate a single token. Therefore, with an input of 128 context length, each transfer
would average 3MB of data (assuming float-32 precision), leading to a total data transfer volume of
approximately 1.3GB (448 × 3MB). Given that mainstream mobile platform TEEs, like TrustZone,
have a transfer rate of about 1GB/s between TEE and GPU [3], generating a single token takes about
1.3 seconds. Consequently, producing a complete output would require several hundred seconds
(assuming it consists of 100 tokens) solely for data TEE-GPU transfer.

In summary, maintaining acceptable computation and communication overhead under sufficient
security of LLM in edge deployment is an unresolved challenge for existing solutions. To address
this, we propose CoreGuard, a computation- and communication-efficient approach designed to
prevent the model from working without the proper authorization from the trusted hardware, i.e.,
TEE, within the edge device. To reduce TEE execution overhead, CoreGuard is inspired by prior
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PSP solutions by securing parameters through obfuscation, which allows model computations to be
performed on the GPU. Specifically, it employs a protection protocol that row-permutes the weight
matrices of linear layers, ensuring their input features must be correspondingly column-permuted
(i.e., authorization) by TEE. Crucially, to avoid requiring TEE authorization for each linear layer and
minimize TEE-GPU transfer overhead, CoreGuard introduces a propagation protocol that reduces
TEE authorizations to a single initial authorization. After this, all subsequent protected layers apply
column permutations to their outputs, enabling the initial authorization to be propagated.

Our evaluation shows that CoreGuard outperforms existing defenses in security and efficiency.
Besides, the experimental results show no difference in accuracy between the CoreGuard-protected
model and the original model. The contributions of this work are as follows:

• We are the first to address the protection of foundational capabilities in edge-deployed LLMs.
Our work systematically characterizes the security challenges in this setting and identifies
the requirements for the protection of edge-deployed LLMs.

• We propose CoreGuard, a plug-and-play solution that utilizes a lightweight authorization
mechanism to protect edge-deployed LLMs. It employs a propagation protocol, significantly
reducing transfer overhead while maintaining a low computation overhead.

• Extensive experiments demonstrate that compared to the existing solutions, CoreGuard
offers a higher security guarantee with lower overhead and no accuracy loss.

2 Threat Model

In this paper, we consider two parties: the defender and the attacker. The defender is the party that
owns the edge-deployed model. The attacker aims to steal the model.

Defender’s Goal. The defender aims to deploy a locked model on the device, ensuring it works only
with proper authorization from the trusted hardware (i.e., TEE) within the device. The defender can
control its model and modify it to ensure protection. This protection ensures that, when correctly
authorized, the model permits normal queries from authorized users, while other attacks based on
these legitimate queries (e.g., distillation attacks) are orthogonal to our work.

Adversary’s Goal. The attacker aims to abuse the deployed model off-device (i.e., without TEE
authorization) for their task. A straightforward way is to try to reverse the authorization process so
that the locked model can be used independently of the device. Another more practical new way is to
fine-tune the locked model to obtain a model that excels at a desired task [20, 51].

Adversary’s Capability. The attacker could decide the target task and possess sufficient well-labeled
data, whereas prior work often assumes access to only 1% of the dataset [51]. In this paper, we
consider TEE to be a secure world, while other hardware (e.g., GPU and CPU) could be white-box
exposed to attackers. Therefore, the attacker can have access to the details, e.g., model architecture
and weights, of the locked model outside TEE.

3 Design of CoreGuard

This section presents our proposed protection method, CoreGuard, which utilizes a permutation
strategy to address the key requirements outlined in Section 1.

3.1 Approach Overview

As shown in Figure 1, CoreGuard operates in two phases: model locking (before deployment) and
inference authorization (post-deployment). In the model locking phase, CoreGuard locks a trained
model by applying a protection protocol to the weights of linear layers, i.e., swapping rows of the
weight matrix. These row permutations act as a lock, rendering the linear layers dysfunctional, thus
making the overall model unusable. These locked layers can only function properly with inputs that
are correspondingly column-permuted, which essentially acts as authorization. However, directly
using a TEE to authorize each locked layer would result in significant TEE-GPU transfer overhead.
To address this, CoreGuard proposes a propagation protocol, which enables the features to be
column-permuted by the network itself. Specifically, CoreGuard permutes the columns of certain
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Figure 1: An overview of CoreGuard. (a) Model locking: before deployment, CoreGuard permutes layers in the
original model, thus creating a locked model. (b) Inference authorization: during inference, the input feature of
the permuted layers is authorized, which is integrated within the FFN block of the preceding transformer layer.

layers, thus through these layers’ operation, their output features are column-permuted, which achieve
authorization similarly. In this way, the TEE only needs to manage the initial authorization, and the
authorization can be propagated to all subsequent layers.

The inference authorization phase, as shown in the black dashed box of Figure 1 (b), aims to securely
perform initial authorization. A naive method directly authorizes the original output z in the TEE
and returns zπ, but this obviously will leak π via input-output comparisons. One solution is to place
both Linear B and the add-norm layer inside the TEE, fully hiding z, but executing Linear B in the
TEE introduces high overhead. To reduce cost, we offload linear B to the GPU. However, exposing
Linear B’s output n will leak z. Therefore, we apply OTP noise p to Linear B’s input m. Since OTP
also requires protection, we apply a permutation after encryption, producing m′ (i.e., (m + p)π).
Correspondingly, Linear B’s weights are pre-permuted by πT to offset π. Overall, as shown in the
Figure 1 (b), the feature enters the TEE twice: first for OTP encryption (encrypting m to m′), and
second for performing authorization to produce zπ.

3.2 Model Locking

Given a classic transformer model, we describe how to lock a transformer layer within it. We first
apply the protection protocol to layers involved in input feature projection (e.g., the QKV projection
layer) to secure the model. Then, the propagation protocol is applied to layers managing output
projection (e.g., the output projection layer in the attention block and the FFN block). Finally, we
demonstrate the functionality of the locked transformer layer.

Transformer Layer Formalization. We begin by formalizing a standard transformer layer. Let x,
and z ∈ Rl×d denote its input and output, where l is the sequence length (e.g., the number of tokens)
and d is the model dimension. We define a classic transformer layer as a function fw : Rl×d → Rl×d

with weight parameters w. The transformer layer, i.e., fw(x) = z, is computed as follows:

Q = xWq,K = xWk, V = xWv, //QKV project

o = softmax

(
QKT√
d/h

+M

)
VWo, //Attention

y = γ1 ⊙
o+ x− µo+x

σo+x
+ β1, //Add & norm

m = ReLU(yWm + bm), //FFN input
n = mWn + bn //FFN output

z = γ2 ⊙
y + n− µy+n

σy+n
+ β2, //Add & norm

(1)

where w includes the attention weights Wq, Wk, Wv, and Wo ∈ Rd×d, the add-norm weights γ1,
β1, γ2, and β2 ∈ Rd, the FFN weights Wm and Wn ∈ Rd×d, the bias bm and bn ∈ Rd. h is the
number of attention heads. The mask M ∈ Rd×d is an all-zero matrix in the encoder and has negative
infinity in its upper right corner in the decoder. Notably, among these layers, we refer to Wq, Wk,
and Wv in the attention block, and Wm in the FFN block as input-processing layers as they process
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the input feature of their blocks. We refer to Wo, Wn, and the add-norm weights in each block as
output-processing layers as they manage the output of the blocks.

Protection Protocol. To achieve protection, we row-permutate the input-processing layers for
protection. These layers process the module’s inputs directly, thus they have the ability to cause
computation failures if the input is not authorized, leading to incorrect results.

Specifically, let π ∈ {0, 1}d×d denote a permutation matrix, where ∀π, ππT = I , where I is the
identity matrix, a property of the permutation matrix. We row-permute the parameters w:

W ′
q = πTWq, W ′

k = πTWk, W ′
v = πTWv, W ′

m = πTWm. (2)

Thus, only the corresponding column-permuted input can be computed with these layers. For instance:

xππTWq = xWq = Q, (3)

where input’s column permutation (i.e., π, the authorization) and row permutations (i.e., πT , the lock)
offset each other (ππT = I), resulting in the same computation as the original.

Propagation Protocol. The propagation protocol aims to avoid repeated TEE authorization by
allowing each transformer layer to automatically receive an authorized input zπ from the previous
layer. Specifically, the output of a transformer layer is directly determined by four output-processing
layers: Wo, Wn, and two add-norm layers. Once all their outputs are column-permuted, the overall
output is column-permuted, thus achieving automatic authorization. Therefore, the problem simplifies
to column-permuting the output of a single layer. For instance, as illustrated below, column-permuting
Wn to Wnπ transforms its original output n into a column-permuted output nπ:

n′ = mW ′
n + b′n = mWnπ + bnπ = nπ, (4)

Therefore, to implement propagation protocol, we column-permutate all output-processing layers,
ensuring the feature can be re-authorized before exiting the module:

W ′
o = Woπ, γ′

1 = γ1π, β′
1 = β1π, W ′

n = Wnπ, b′n = bnπ, γ′
2 = γ2π, β′

2 = β2π. (5)

Locked Transformer Layer Formalization. With the permuted weights (denoted as w′), taking xπ
as authorized input, its functionality can be described as follows:

Q′ = xππTWq = xWq = Q,

K ′ = xππTWk = xWk = K,

V ′ = xππTWv = xWv = V,

o′ = softmax

(
Q′K ′T√

d/h
+M

)
V ′Woπ = oπ,

y′ = γ1π ⊙ o′ + xπ − µxπ+o′

σxπ+o′
+ β1π = yπ.

m′ = ReLU(y′πTWm + bm) = m.

n′ = m′Wnπ + bnπ = nπ,

z′ = γ2π ⊙ n′ + y′ − µy′+n′

σy′+n′
+ β2π = zπ.

(6)

Thus, the functionality of the locked layer can be represented as fw′(x′) = zπ = fw(x)π, valid only
when x′ = xπ, thereby preventing unauthorized access (without π). When the permuted transformer
layer receives authorized input (xπ), its output (zπ) matches the original output (z) with a column
permutation, authorizing the next layer. This propagation is consistent across all subsequent layers.
Therefore, authorization is required only for the first permuted layer.

3.3 Inference Authorization

During the inference, the initial column-permutated feature (xπ) is generated while ensuring the
security of this authorization process. As shown in Figure 1, TEE encrypts the feature before the
FFN block’s output linear layer. After the GPU processes the feature with this layer, it re-enters the
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TEE for decryption. Finally, the add-norm computation is performed, followed by the permutation of
the output before it is returned. The detailed descriptions are provided in the following subsections.

Encryption. At the beginning, the input linear layer of the FFN block receives y as input from the
previous layer:

m = ReLU(yWm + bm). (7)

Following this, before the output linear layer, the feature is encrypted using an OTP. Additionally, to
protect this encryption process from input-output differencing, we introduce positional obfuscation
by applying a permutation:

m′ = mπ + pπ, (8)

where p is the pad, a noise matrix of the same shape as m, and m′ is the encrypted permuted feature.
The principle of the one-time pad (OTP) [34] ensures that p is different each time, thus even for the
same m, m′ produced will differ. In this way, the OTP encryption (i.e., p) and the permutation (i.e.,
π) can conceal each other.

Output Linear Layer. The FFN block’s output linear layer processes the encrypted feature. However,
since m′ is permuted, the layer’s parameters must be pre-aligned to ensure correct computations.
Specifically, we correspondingly permute the output linear layer (Wn) before deployment:

W ′
n = πTWn. (9)

With the above preparation, during inference, the encrypted feature m′ is transferred to GPUs and
processed by the permuted output linear layer W ′

n:

n′ = m′W ′
n = (mπ + pπ)πTWn + bn = n+ pWn. (10)

Decryption. If the OTP noise (i.e., pWn) is not eliminated, the network’s functionality is com-
promised. Specifically, OTP implementation must meet two requirements: 1) conceal both the
encryption and decryption; 2) all computations on the feature before decryption are linear. To meet
these requirements, n′ is transferred to the TEE for decryption:

n′′ = n′ − pWn = n. (11)

Notably, following prior work [43], pWn can be conducted by the model provider or in an offline
phase. Both strategies do not increase the overhead of online inference or impede its efficiency [51].

Authorization. Lastly, the decrypted feature is processed by the add-norm layer and permuted to
achieve authorization in TEE. The steps are as follows:

z′ = (γ2 ⊙
n+ y − µy+n

σy+n
+ β2)π = zπ, (12)

where z′ (i.e., zπ) is the authorized feature, which will be the input feature for the subsequent
permuted transformer layer, thus achieving authorized usage. Notably, the TEE only authorizes
once for each inference, minimizing communication overhead by limiting TEE-GPU transfers to 5
rounds. Furthermore, it uses only lightweight computations (e.g., matrix addition), ensuring minimal
computation overhead.

Authorization Position. The TEE authorization position, which determines the number of layers
to be locked, is a hyperparameter. CoreGuard sets this position to the midpoint to enhance security,
as detailed in Appendix B. Specifically, when the authorization point is in the middle, attackers
must recover more parameters, increasing the difficulty of theft. Essentially, permutation only maps
parameters to a new domain without disrupting their functionality, meaning the attacker only needs
to recover the missing layers, whether in the original or the new domain, to obtain a complete model.
If the authorization occurs at the beginning or the end, attackers can retrain just one layer to recover,
which is similar to prompt tuning or training a classification head. In contrast, placing it in the middle
requires the attacker to restore at least half of the parameters, which is more difficult.

Security Analysis. Potential attackers might attempt to steal the locked model by recovering the
permuted parameters. However, it is impossible as the probability of guessing the correct π is 1/(d!).
In practice, d is typically larger than 512, e.g., d = 4096 in LLaMA3-8B [42].
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Alternatively, attackers may attempt to recover π by exploiting the TEE’s functionality—for instance,
by trying to crack π from the TEE’s inputs and outputs. However, accurately solving π is infeasible,
as the problem is ill-posed. Specifically, even with auxiliary information, the task reduces to solving
a Learning With Errors (LWE) problem, which is widely regarded as NP-hard (see Appendix C).

Although solving π exactly is impossible, attackers might try to approximate TEE’s functionality
to facilitate model stealing. For example, trying to learn a mapping from y to zπ to bypass OTP
encryption. However, this approach is also ineffective (as shown in Appendix D): the mapping
is nonlinear, involves a massive number of parameters, and even minor approximation errors can
invalidate the result [11].

4 Experiments

In this section, we perform extensive experiments to answer the following research questions (RQs):

RQ1: How secure is CoreGuard, and does it effectively protect the foundational capabilities of LLMs? RQ2:
How does CoreGuard’s computation and communication overhead compare to other defenses? RQ3: Does
CoreGuard sacrifice the accuracy of the model?

4.1 Experimental Settings

Datasets. To evaluate CoreGuard, we assume the attacker attempts to steal the LLM to different target
tasks, including four domain-specific tasks: GSM8k (mathematics) [9], Spider (code generation) [50],
PubMedQA (medical question answering) [16], and SQuAD (reading comprehension) [32].

Models. We choose four representative LLMs for validation. Two of them are specifically designed
for on-device deployment: Qwen2-0.5B-Instruct [49], Gemma2-2B-it [40]. The other two are larger
models: ChatGLM3-6B-32k [11] and LLaMA3-8B-Instruct [42].

Metric. For all tasks, we use accuracy as the metric. Specifically, for GSM8k, a prediction is
considered correct when the final answer matches the actual result. For PubMedQA, a 3-class
classification task is deemed correct if it matches the true label. For Spider, we follow the prior
work [19] and assess whether the generated query matches the reference query. For SQuAD, we
align the answer with the reference, as in previous work [48]. To evaluate execution overhead, we
use Floating Point Operations (FLOPs) as the metric, following the prior research [39, 14].

Implementation Details. We conduct experiments with the Huggingface library [13]. For optimiza-
tion, we use the widely adopted AdamW [17] optimizer and a linear learning rate scheduler [47].
Same as previous work [47], we report results of the runs that achieve the highest performance,
consistent with real-world practices prioritizing the optimal model. All experiments are conducted on
NVIDIA A800 GPUs with 80GB of VRAM.

Baselines. We compare our method against comprehensive baselines, including ideal bounds and
representative defenses, categorized by their protection principles (TPTE, PPTE, PSP): 1 Lower
bound: (i) No-shield, where the adversary accesses the unprotected model directly. 2 Upper
bound: (i) Black-box, where only model architecture is visible to the attacker, offering the strongest
protection. 3 TPTE (task-only protection): (i) NPLO [51]. 4 PPTE (partial model protection):
(i) DarkneTZ [24]; (ii) SOTER [35]; (iii) Serdab [12]; (iv) Our baseline, DTE, runs the latter trans-
former layers within TEE. 5 PSP (parameter shuffling): (i) ShadowNet [38]; (ii) TransLinkGuard
(TLG) [20]. To adapt these methods to transformer models, we rigorously configure each solution
based on its papers. Specifically, for SOTER, TEE randomly shields 20% layers. For Serdab, the
TEE shields the first transformer layer. ShadowNet obfuscates all the linear transformation layers.
For DarkneTZ, the last transformer layer is put into TEE.

Model Stealing Attack. As discussed in prior work [51], we identify finetuning attacks as a major
threat to edge-protection solutions. The finetuning attack, as detailed in Appendix A, is well-defined
in prior studies [51, 20], and involves two main steps. First, the attacker builds a surrogate model
using available parameters of the target model from unsecured environments. Second, they train this
surrogate model with accessible datasets to perform the target task. Notably, due to the generalization
ability of LLMs, attackers can steal the model for any target task, where they may possess sufficient
training datasets to achieve stealing. Therefore, we assume the attacker has the entire training dataset
(100%), a more stringent condition than the 1% dataset employed in previous research.
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Table 2: Security assessment of CoreGuard in preventing unauthorized direct inference and model stealing attack.
For direct inference, we report the authorized (“Auth”) and unauthorized (“Unau”) usage accuracies (%). For
model stealing attacks, we report the attack accuracies (%), lower attack accuracies indicate stronger defense.
The last row reports the average attack accuracies of each defense relative to the baseline black-box solutions.
The column representing CoreGuard (“Ours”) is highlighted in bold.

Direct Inference Model Stealing Attack ↓
Unau ↓ Auth No-shield NPLO Serdab DarkneTZ SOTER TLG ShadowNet DTE Ours Black-box

Qwen2-0.5B
GSM8k 0.00±0.00 15.51±1.02 21.53±1.43 20.92±1.21 14.96±0.88 16.81±1.07 12.50±0.91 1.43±0.04 1.34±0.04 2.36±0.06 2.41±0.07 1.29±0.03
Spider 0.00±0.00 5.56±0.62 28.48±1.54 30.28±1.73 23.90±1.21 26.01±1.47 21.52±1.03 3.31±0.10 3.67±0.11 3.92±0.12 3.79±0.11 3.81±0.11

PubMedQA 0.00±0.00 15.50±1.24 58.00±2.56 56.50±2.47 49.00±2.02 51.50±2.19 47.00±1.94 3.50±0.14 4.50±0.18 5.50±0.22 6.00±0.24 5.00±0.20
SQuAD 0.00±0.00 16.50±1.28 30.54±1.75 32.33±1.89 28.42±1.53 29.89±1.64 26.34±1.47 6.81±0.27 5.93±0.24 4.42±0.18 7.35±0.29 5.66±0.23

Gemma2-2B
GSM8k 0.00±0.00 30.10±2.05 40.94±2.57 40.50±2.41 35.18±1.96 37.07±2.10 32.67±1.72 4.58±0.18 10.81±0.43 4.56±0.18 3.91±0.16 1.74±0.07
Spider 0.00±0.00 3.52±0.38 39.15±1.71 38.83±1.65 24.80±1.08 23.29±0.98 12.81±0.63 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

PubMedQA 0.00±0.00 10.50±0.83 69.50±3.21 69.00±3.12 55.50±2.41 60.00±2.63 55.50±2.32 10.50±0.42 7.00±0.28 9.50±0.38 12.00±0.48 6.50±0.26
SQuAD 0.00±0.00 43.21±2.76 63.96±3.08 63.94±3.07 60.82±2.81 61.02±2.84 57.87±2.63 7.91±0.32 6.71±0.27 7.51±0.30 7.81±0.31 8.81±0.35

ChatGLM3-6B
GSM8k 0.00±0.00 37.13±2.33 55.95±2.87 55.07±2.74 53.67±2.58 54.91±2.74 54.55±2.71 2.84±0.11 0.43±0.02 0.93±0.04 1.04±0.04 0.23±0.01
Spider 0.00±0.00 5.15±0.61 35.81±1.94 37.03±2.03 32.25±1.64 33.81±1.79 33.22±1.75 6.19±0.25 8.31±0.33 8.44±0.34 7.37±0.29 7.91±0.32

PubMedQA 0.00±0.00 46.00±3.12 71.00±3.34 70.00±3.21 63.00±2.89 65.50±3.04 60.50±2.63 10.00±0.40 12.00±0.48 12.00±0.48 12.50±0.50 12.00±0.48
SQuAD 0.00±0.00 62.11±3.47 68.13±3.58 68.21±3.59 66.28±3.46 63.91±3.32 62.61±3.21 8.61±0.34 9.56±0.38 9.42±0.38 8.98±0.36 9.15±0.37

LLaMA3-8B
GSM8k 0.00±0.00 33.11±2.25 53.07±2.68 53.83±2.71 47.79±2.36 51.31±2.54 49.75±2.43 5.61±0.22 4.15±0.17 6.09±0.24 6.22±0.25 4.05±0.16
Spider 0.00±0.00 10.67±1.03 40.04±1.94 41.73±2.08 38.27±1.89 38.14±1.87 36.63±1.75 0.00±0.00 0.57±0.02 1.40±0.06 1.08±0.04 0.22±0.01

PubMedQA 0.00±0.00 29.00±2.12 77.00±3.85 77.00±3.85 72.50±3.54 72.50±3.54 68.00±3.21 9.50±0.38 10.00±0.40 12.50±0.50 11.00±0.44 10.50±0.42
SQuAD 0.00±0.00 73.02±3.94 75.91±4.02 75.20±3.98 67.92±3.61 73.81±3.87 69.12±3.42 11.94±0.48 9.64±0.39 10.48±0.42 10.01±0.40 9.71±0.39

Relative Mean Attack Accuracy - - 9.58× 9.59× 8.48× 8.43× 8.09× 1.07× 1.09× 1.18× 1.17× 1.00×

4.2 Security Evaluation

Security against Unauthorized Usage. In this subsection, we assess CoreGuard’s security against
unauthorized usage. We first evaluate its ability to prevent direct unauthorized inference. Then, we
assess its security against MS attacks. Table 2 reports the results: in all cases, the unauthorized
inference (“Unau”) accuracy is 0%, demonstrating CoreGuard’s strong resistance to unauthorized
inference. In terms of MS attacks, the security of CoreGuard is comparable to the upper bound,
indicating that attackers cannot misuse the foundational capabilities of the protected model for
downstream tasks. Specifically, CoreGuard’s relative accuracy is 1.17× compared to the black-box
baseline, benefiting from the effective protection provided by our proposed permutation protocal.
specifically, the relative accuracy of CoreGuard (1.17×) is similar to that of DTE (1.18×), which
protects the same parameters directly using TEE. This suggests that permutation offers a similar
security to the strongest protection (i.e., direct protection by TEE). Regarding other methods, the
TPTE solution, NPLO (9.59×) offers no defense (no-shield is 9.58×), and PPTE solutions, e.g.,
DarkneTZ (8.43×), only provide weak protection. In contrast, PSP methods, TLG (1.07×) and
ShadowNet (1.09×), also reach the upper bound.

Security under Other Attack Settings.
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Figure 2: CoreGuard’s Defense Effectiveness Against Model
Stealing Across Various Attack Settings.

In this subsection, we evaluate Core-
Guard’s security under various attack set-
tings. Specifically, first, prior evaluations
focus on FFT for training. To test Core-
Guard under different MS training meth-
ods, we assess its security against MS using
LoRA, a most commonly used LLM fine-
tuning approach. Second, previous eval-
uations take base models as the deployed
model, but in real-world scenarios, LLMs
may also be task-customized, which may
align with or differ from the attacker’s target, which could affect the defense. Third, while CoreGuard
approaches the upper bound with the entire dataset, attackers may sometimes only have a small
portion of the data. To verify whether it can still approach the upper bound in such cases, where the
upper bound is also lower, we assess the defense with varying training data, ranging from 1% to 100%.
As shown in Figure 2, we report the attack accuracies under various settings on Qwen2-0.5B, and
CoreGuard consistently ensures the model’s security across all these settings. The attack accuracies
stay close to black-box protection and significantly lower than no-shield cases, regardless of whether
the task is aligned, the proportion of data the attacker possesses, or the training method used.

Answer to RQ1: CoreGuard effectively prevents edge-deployed LLMs from being off-device misused,
blocking model stealing attacks and achieving upper-bound security across diverse attack settings.
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Table 3: The results of additional overhead. For execution overhead, we present the original model’s FLOPs
(“Original”), the additional overhead in TEE (FLOPs), and its proportion to the original model’s FLOPs
(%FLOPs). For transfer overhead, we report the transfer volume (KB) and the number of transfers (rounds)
between the TEE and GPU for each method.
Models TEE Execution Overhead FLOPs/(%FLOPs) ↓ TEE-GPU Transfer Overhead KB/rounds ↓

Original Serdab DarkneTZ SOTER TLG ShadowNet DTE Ours Serdab DarkneTZ SOTER TLG ShadowNet DTE Ours

Qwen2 1.27E+11 3.82E+09
(3.02%)

3.82E+09
(3.02%)

2.59E+10
(20.48%)

3.54E+07
(2.79e-02%)

3.67E+10
(28.97%)

4.58E+10
(36.23%)

1.47E+06
(1.17e-03%)

2.24E+02
2

1.12E+02
2

5.50E+04
67

1.42E+05
115

2.75E+05
336

2.24E+02
2

6.18E+03
5

Gemma2 6.70E+11 1.99E+10
(2.98%)

1.99E+10
(2.98%)

1.44E+11
(21.52%)

7.67E+07
(1.14e-02%)

1.89E+11
(28.23%)

2.59E+11
(38.72%)

2.95E+06
(4.41e-04%)

5.76E+02
2

2.88E+02
2

1.30E+05
72

3.95E+05
125

6.49E+05
364

5.76E+02
2

1.58E+04
5

ChatGLM3 1.53E+12 5.22E+10
(3.41%)

5.22E+10
(3.41%)

3.01E+11
(19.65%)

2.26E+08
(1.48e-02%)

4.86E+11
(31.75%)

7.31E+11
(47.77%)

8.06E+06
(5.27e-04%)

1.02E+03
2

5.12E+02
2

1.78E+05
67

5.91E+05
135

1.02E+06
336

1.02E+03
2

2.19E+04
5

LLaMA3 1.92E+12 5.58E+10
(2.91%)

5.58E+10
(2.91%)

3.85E+11
(20.02%)

1.51E+08
(7.86e-03%)

5.03E+11
(26.15%)

8.94E+11
(46.50%)

4.72E+06
(2.46e-04%)

1.02E+03
2

5.12E+02
2

2.82E+05
90

6.36E+05
155

1.31E+06
448

1.02E+03
2

2.05E+04
5

Table 4: The accuracy comparison between the original model (Mori) and the CoreGuard-protected model
(Mloc). The result is presented as Mori/Mloc. Cells showing changes in accuracy are highlighted in bold.

GSM8k Spider PubMedQA SQuAD

Qwen2 15.51%/15.50% 5.56%/5.56% 15.50%/15.50% 16.50%/16.50%
Gemma2 30.10%/30.10% 3.51%/3.51% 10.50%/10.50% 43.21%/43.21%
ChatGLM3 37.13%/37.13% 5.15%/5.15% 46.00%/46.00% 62.11%/62.09%
LLaMA3 33.11%/33.13% 10.67%/10.67% 29.00%/28.50% 73.02%/73.01%

4.3 Execution and Transfer Overhead

To answer RQ2, we measure both TEE execution and TEE-GPU transfer overheads to assess Core-
Guard’s efficiency in computation and communication. Specifically, we take an example length of 128
as input and report the TEE execution and data transfer overhead of each solution to generate a single
token, excluding TPTE, which offers no protection. All results are reported in Table 3, and CoreGuard
demonstrates a clear advantage. Specifically, compared to PPTE solutions, CoreGuard achieves
thousands of times lower TEE execution overheads. Specifically, the CoreGuard’s execution overhead
is less than 1.17e-03% in all cases, whereas PPTE incur execution overheads ranging from 2.91% to
21.52%. More importantly, compared to existing PSP solutions (highlighted in bold), CoreGuard’s
transfer overhead is nearly two orders of magnitude lower due to its communication-friendly design.
Specifically, as mentioned in Section 3.3, CoreGuard requires only a single authorization, which is
optimal, limiting the transfer rounds to 5. In this way, CoreGuard cuts the unacceptable overhead
(seconds per token) of existing PSP solutions by two orders of magnitude to negligible levels.

Answer to RQ2: CoreGuard’s computation and communication overheads are significantly lower than other
solutions, showcasing a substantial efficiency advantage.

4.4 Accuracy Loss

To answer RQ3, we compare the accuracy between the unprotected model Mori and the CoreGuard-
protected model Mloc. The result is shown in Table 4. As demonstrated, the impact of CoreGuard on
accuracy is minimal. Specifically, in most cases, there is no difference in accuracy between Mori

and Mloc. However, for some specific cases, accuracy slightly fluctuates (highlighted in bold). For
example, with LLaMA3 on PubMedQA, accuracy decreases slightly by 0.5%. However, interestingly,
we observe a 0.02% improvement on GSM8k. Therefore, we consider the minor fluctuations caused
by precision limitations (e.g., floating-point errors) rather than the defense itself, which is inevitable.

Answer to RQ3: While significantly outperforming existing defenses in terms of both security and efficiency,
CoreGuard maintains the model’s accuracy without compromise.

5 Limitation and Discussion

Side Channel Attacks. CoreGuard uses TEEs as its security root, making it vulnerable to side-
channel attacks [37, 2]. However, various defense methods have emerged in recent years to mitigate
the risk of side-channel leaks, and both these software- [23, 18] and hardware-based [10, 44] defenses
can be integrated into our approach. For software-based defense, CoreGuard uses TEE only for basic
matrix operations (e.g., matrix permutation and addition). For hardware-based defense, CoreGuard
does not require modifications to hardware, allowing physical defense measures to be compatible.

TEE in GPUs. Recent work has explored implementing trusted environments directly within
GPUs [26]. However, such GPU/NPU TEEs are still in their early stage and mainly target datacenter
settings requiring high-end hardware [27], making them impractical for current edge deployment.
Orthogonal to these solutions, CoreGuard instead focuses on broadly available edge devices—such as

9



smartphones and personal computers—where TEEs are typically CPU-based (e.g., ARM TrustZone,
Intel SGX).

Real-World Environments. This paper focuses on the core framework, without delving into device-
specific implementations. However, this limitation does not affect the general applicability of our
approach. CoreGuard is designed to be hardware-agnostic in both implementation and evaluation. In
practice, the TEE masks features, performs permutation, and returns the authorized features, relying
only on basic TEE functions like matrix operations and data storage, which are universally supported.
Additionally, our evaluation is platform-agnostic and suitable across different platforms.

Architecture Compatibility. CoreGuard is compatible with mainstream transformer architectures,
including LLaMA variants and models with Mixture-of-Experts (MoE) design. For MoE-based
transformers, CoreGuard protects each expert independently using the same method applied to
standard FFNs. The gating mechanism, typically a linear projection, also supports permutation.

6 Conclusions

In this paper, we presents CoreGuard, a protection method that uses a permutation strategy to secure
edge-deployed models with maximum security. Importantly, to reduce transfer overhead during
authorization, CoreGuard proposes a propagation protocol, thus only a single authorization is required
to authorize the entire model, which is optimal. Experimental results show that CoreGuard delivers
superior security and efficiency without accuracy loss. In conclusion, CoreGuard is an effective
solution that provides model owners with the means to safeguard their proprietary LLMs.
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A Appendix / Detailed Model Stealing Attack

We consider finetuning attacks as a key security challenge of existing protection solutions. The
finetuning attack is a commonly used attack model that is widely discussed in previous papers and is
a well-defined and reproducible attack that is specifically designed for edge-deployed models. This
attack typically occurs in two steps. First, the attacker creates a surrogate model and fills it with all
the available parameters from the non-secure world. Then, the attacker trains this surrogate model
with the datasets they have access to, attempting to apply the surrogate model to their target task.

Specifically, the attack consists of two phases: foundational capabilities stealing (P1) and task-
specific adaptation (P2). In P1, to exploit the foundational capabilities of the locked model (Mloc),
the attack begins by inferring the architecture of Mloc through its exposed parts. Following this, a
replica model, Mrep, is constructed with the same architecture as Mloc. Finally, the attacker transports
Mloc’s exposed weights to the corresponding parts of Mrep. In P2, the attacker attempts to fine-tune
Mrep for their tasks. To this end, one potential approach is to train Mrep with the training dataset
the attacker possesses. Specifically, We assume the attacker has access to the entire training dataset,
making this scenario more challenging than previous works[29, 30, 51], which assume attackers
have access to only a small portion (e.g., 1%) of the data. In the training, we mainly consider a
more comprehensive and effective method, namely full-parameter training (FFT). However, to ensure
comprehensiveness, we also consider other training settings, such as LoRA.

B Appendix / Authorization Position

Security under Different Authorization Position. The position of authorization is a hyper-parameter
of CoreGuard, and its selection can influence the overall security. To identify the best authorization
position, we examine how different authorization positions impact security. Specifically, we place the
authorization before various transformer layers and evaluate their security based on model-stealing
attacks.
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Figure 3: Impact of authorization position on security. Model-stealing accuracy is reported for different positions,
with the total number of transformer layers indicated for each model.

As shown in Figure 3, the results demonstrate that placing the initial authorization point in the middle
of the network is practical. Specifically, the model stealing accuracy is higher when the authorization
is placed near the beginning or end of the network. Conversely, when the authorization is deployed
within the central layers of the network, the model-stealing accuracy significantly decreases. This
aligns with our expectations: applying authorization at the first layer means CoreGuard permutes
nearly all the transformer layers, which means the attacker only needs to recover the functionality
of the first transformer layer. In contrast, placing authorization in the middle leaves at least half of
the parameters unaligned, requiring the attacker to recover the functionality of at least half of the
network’s parameters. Thus, placing the authorization in the central layers is an adequate strategy.

C Appendix / Analysis of Neural Network Fitting Attack

The attacker knows that the input and output are y,m,m′, n′, πz. Since Linear A is public, it is
meaningless to attack the neural network fitting from y to m. In addition, it is meaningless to use
m′ as input to attack the neural network fitting because m′ itself is noisy data. Although m is the
same, m′ is likely to be different. Therefore, the truly effective input and output of the neural network
fitting attack is m,n′, πz.
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The attacker’s training for neural network fitting attack must be less than the amount of pre-training
data, otherwise it will be more trouble than gain. However, the fitted parameters Ŵb, π̂ are definitely
noisy. Therefore, the process can be specifically expressed as

m(π̂Ŵb) + ϵ = n′ and Normalization(m(π̂Ŵb)) + ϵ = πz. (13)

Define πWb as a whole W . Then the attacker can crack π and Wb as

π̂Ŵb + ϵ = W. (14)

In the absence of noise, it is impossible for an attacker to crack it from a mathematical perspective.
This is because this is a pathological equation, the number of unknown variables is much greater than
the number of equations, and it is a quadratic equation and a nonlinear equation.

From another perspective, the attacker fits infinitely and obtains many Ŵb and π̂. Even if we tell the
attacker that the Ŵb is closest to the real Wb, it is difficult for the attacker to solve it. This can
be expressed as

π̂(Wb − ϵ′) + ϵ = π̂Wb + ϵ̃ = W, (15)

where ϵ′ is error between Wb and Ŵb. Since floating point numbers have a minimum precision, the
equation can be converted to integers by dividing both sides by this minimum precision. Such an
integer equation solution problem is a Matrix-Learning With Errors problem.

Hardness of Matrix-Learning With Errors (Matrix-LWE). The Matrix-Learning With Errors
(Matrix-LWE) problem is a natural generalization of the standard LWE problem. It is defined as
follows:

W = π̂Wb + ϵ mod q. (16)

If we regard q as the largest positive integer that can be represented by a computer floating point
number, then we can directly ignore q. In other words, the attacker’s solution to the problem is
equivalent to solving the LWE problem.

The goal is to recover the secret π̂. Matrix-LWE can be viewed as packing ℓ independent instances of
the standard LWE problem:

W = [Wbπ̂1 + ϵ1 | Wbπ̂2 + ϵ2 | · · · | Wbπ̂ℓ + ϵℓ] mod q, (17)

where each column corresponds to an individual LWE sample with secret π̂i and noise ϵi.

The hardness of Matrix-LWE follows from the hardness of standard LWE. Regev [33] proved that
solving LWE on average is at least as hard as solving certain worst-case lattice problems such as the
Shortest Independent Vector Problem (SIVPγ) and the Gap Shortest Vector Problem (GapSVPγ).

Specifically, SIVPγ asks for a set of n linearly independent lattice vectors whose maximum length
is at most γ · λn(L), and GapSVPγ asks to decide whether the shortest non-zero vector λ1(L) in a
lattice L is smaller than a given threshold d or larger than γd.

Since these worst-case lattice problems are known to be NP-hard or conjectured to be intractable
even for quantum algorithms, Matrix-LWE inherits a strong worst-case to average-case hardness
guarantee. In practice, this makes Matrix-LWE a reliable foundation for constructing cryptographic
primitives, including post-quantum encryption schemes.

For examply, assume an attacker obtains an approximate estimate W̃b of the true parameter matrix
Wb satisfying ∥W̃b −Wb∥F ≤ ε′, and observes the authorized (locked) output W = πWb. Since π
is a permutation matrix in our construction (hence ∥π∥2 = 1), the attacker can only form

W = πW̃b + ε, with ε := π(Wb − W̃b), ∥ε∥F ≤ ε′.

This matches the canonical Matrix-LWE form W = πW̃b + ε, reducing recovery of π to solving a
Matrix-LWE instance.
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D Appendix / Adaptive Attack

Security against Permutation Matrix Simulation Attack. In this subsection, we assess the security
of CoreGuard against attackers familiar with the CoreGuard’s mechanism and implement attacks
accordingly. Specifically, the core of authorization involves the permutation matrix (i.e., π), which
the TEE protects. Therefore, an attacker might first attempt to simulate π by initializing a substitute
permutation matrix with the same shape and training it based on the TEE’s input and output to
approximate the true π. Then, the attacker uses the simulated π to mimic the TEE’s authorization and
fine-tunes the model on their task to complete the attack.

Table 5: Security evaluation of CoreGuard against permutation matrix simulation attack (simulation).
No-Shield Simulation Black-box

Qwen2 GSM8k 21.53%±1.43% 0.00%±0.00% 1.29%±0.03%
PubMedQA 58.00%±2.56% 3.50%±0.52% 5.00%±0.20%

Gamma2 Spider 39.15%±1.71% 0.00%±0.00% 0.00%±0.00%
SQuAD 63.96%±3.08% 0.00%±0.00% 8.81%±0.35%

ChatGLM3 GSM8k 55.95%±2.87% 0.00%±0.00% 0.23%±0.01%
PubMedQA 71.00%±3.34% 1.00%±0.76% 12.00%±0.48%

LLaMA3 Spider 40.04%±1.94% 0.00%±0.00% 0.22%±0.01%
SQuAD 75.91%±4.02% 3.18%±0.61% 9.71%±0.39%

The results are shown in Table 5; the attack is ineffective, even performing worse than the black-
box baseline. The outstanding security is due to the targeted design. Specifically, the non-linear
nature of the authorization process, which relies on π, significantly increases the difficulty of the
simulation. Moreover, CoreGuard requires high precision in the authorization process, where even
slight simulation errors can compromise model performance.

Security against Authorization Simulation Attack. Considering that precisely fitting π is a
challenging task, we consider that attackers might attempt to extend their simulation to include
adjacent layers or structures, potentially making the attack more feasible. Specifically, since the TEE
and the FFN block jointly achieve the authorization, they can be considered as a single unit, which the
attacker might attempt to simulate directly. Therefore, the attacker could reconstruct an FFN block
structure and train this new FFN block based on the input and output of the original TEE-authorized
FFN block, thereby bypassing the TEE’s authorization.

Table 6: Security evaluation of CoreGuard against authorization simulation attack (simulation).
No-Shield Simulation Black-box

Qwen2 GSM8k 21.53%±1.43% 2.72%±0.61% 1.29%±0.03%
PubMedQA 58.00%±2.56% 7.00%±1.66% 5.00%±0.20%

Gamma2 Spider 39.15%±1.71% 0.00%±0.00% 0.00%±0.00%
SQuAD 63.96%±3.08% 3.51%±0.15% 8.81%±0.35%

ChatGLM3 GSM8k 55.95%±2.87% 0.00%±0.00% 0.23%±0.01%
PubMedQA 71.00%±3.34% 13.50%±0.58% 12.00%±0.48%

LLaMA3 Spider 40.04% ±1.94% 0.00%±0.00% 0.22%±0.01%
SQuAD 75.91%±4.02% 6.81%±0.72% 9.71%±0.39%

As shown in Table 6, the attack is ineffective. In all cases, the attack accuracy is similar between
the simulation and the black-box baseline but significantly lower than the no-shield baseline. The
outstanding defense effectiveness is due to the targeted design. Specifically, CoreGuard disrupts
the alignment of the parameters before and after the authorization, making it highly challenging for
attackers to simply adjust the FFN to recover the compatibility between the two sets of parameters.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of the paper clearly outline the main contributions
and the scope of the research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We claimed the limitation in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Every theorem stated in the main text is accompanied by a complete proof
provided in the appendix, with appropriate cross-references to ensure clarity and rigor.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiments can be reproduced and the paper provides a clear and com-
prehensive explanation of the proposed method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release code as soon as the article is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We claimed the experimental details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error margins alongside all experimental results to reflect
uncertainty and ensure transparency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the GPU used in our experiments as well as its memory capacity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work investigates model merging stealing, an emerging form of model
theft that may pose a serious threat to the open-source model ecosystem.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in this paper are properly credited, and the license and terms
are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not conduct any research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM is only used for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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