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ABSTRACT

Recent breakthroughs in diffusion models have exhibited exceptional image-
generation capabilities. However, studies show that some outputs are merely
replications of training data. Such replications present potential legal chal-
lenges for model owners, especially when the generated content contains pro-
prietary information. In this work, we introduce a straightforward yet effec-
tive method for detecting memorized prompts by inspecting the magnitude of
text-conditional predictions. Our proposed method seamlessly integrates with-
out disrupting sampling algorithms, and delivers high accuracy even at the first
generation step, with a single generation per prompt. Building on our detec-
tion strategy, we unveil an explainable approach that shows the contribution of
individual words or tokens to memorization. This offers an interactive medium
for users to adjust their prompts. Moreover, we propose two strategies i.e., to
mitigate memorization by leveraging the magnitude of text-conditional predic-
tions, either through minimization during inference or filtering during training.
These proposed strategies effectively counteract memorization while maintain-
ing high-generation quality. Code is available at https://github.com/
YuxinWenRick/diffusion_memorization.

1 INTRODUCTION

Recent advancements in diffusion models have revolutionized image generation, with modern text-
to-image diffusion models, such as Stable Diffusion and Midjourney, demonstrating unprecedented
capabilities in generating diverse, stylistically varied images. However, a growing body of research
(Somepalli et al., 2022; Carlini et al., 2023; Somepalli et al., 2023b) reveals a concerning trend:
some of these “novel” creations are, in fact, near-exact reproductions of images from their training
datasets, as depicted in the top row of Fig. 1. Some of the creations appear to borrow elements
from these training images, as illustrated in the second row of Fig. 1. This issue of unintended
memorization poses a serious concern for model owners and users, especially when the training data
contains sensitive or copyrighted material. A poignant real-life example of this is Midjourney, which
felt obliged to ban prompts with the substring “Afghan” to avoid generating images reminiscent of
the renowned copyrighted photograph of the Afghan girl. Yet, as Wen et al. (2023a) note, merely
banning the term “Afghan” does not prevent the model from recreating those images. In light of
these issues, the development of techniques to detect and address such inadvertent memorizations
has become crucial.

To address this, we first introduce a novel method for detecting memorized prompts. We’ve observed
that for such prompts, the text condition consistently guides the generation towards the memorized
solution, regardless of the initializations. This phenomenon suggests significant text guidance during
the denoising process. As a result, our detection method prioritizes the magnitude of text-conditional
predictions as its cardinal metric. Distinctively, memorized prompts tend to exhibit larger magni-
tudes than non-memorized ones, as showcased in Fig. 1. Unlike previous methods that query large
training datasets with generated images (Somepalli et al., 2022) or assess density across multiple
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Figure 1: Memorization vs. non-memorization generation. We display the magnitude of text-
conditional noise prediction at each time-step, as described in Section 3.3, for all four generations
distinctly (with 4 different random seeds) for each prompt. As illustrated in the first two rows, the
metric typically indicates a higher value when memorization occurs. On the other hand, the normal
generations, represented in the third row, consistently exhibit significantly lower metric values.

generations (Carlini et al., 2023), our strategy offers precise detection without adding any extra work
to the existing generation framework and even without requiring multiple generations. In terms of
efficacy, our method achieves an AUC of 0.960 and a TPR@1%FPR of 0.760 in under 2 seconds. In
contrast, the baseline method (Carlini et al., 2023) demands over 39 seconds, even though it registers
an AUC of 0.934 and a TPR@1%FPR of 0.523. Such efficiency empowers model owners to halt
generations early and initiate corrective measures promptly upon detecting a memorized prompt.

Building on our discoveries, we devise a strategy to highlight the influence of each token in driv-
ing memorization, aiming to pinpoint the specific trigger tokens responsible for it. Following the
intuition that removing these trigger tokens should neutralize memorization, we anticipate a cor-
responding reduction in the magnitudes of text-conditional predictions. Thus, by evaluating the
gradient change for every token when minimizing text-conditional prediction magnitudes, we dis-
cern the relative significance of every token to memorization. Armed with this tool, model owners
can provide constructive feedback to users, guiding them to identify, modify, or omit these pivotal
trigger tokens, effectively reducing the propensity for memorization. In contrast to earlier work like
(Somepalli et al., 2023b), where trigger tokens were discerned manually from training data or by
experimenting with various token combinations, our approach stands out for its automated nature
and computational efficiency.

Lastly, we introduce mitigation strategies to address memorization concerns. Catering to both in-
ference and training phases, we present model owners with a choice of two distinct tactics. For
inference, we suggest using a perturbed prompt embedding, achieved by minimizing the magni-
tude of text-conditional predictions. During training, potential memorized image-text pairs can be
screened out based on the magnitude of text-conditional predictions. Our straightforward approaches
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ensure a more consistent alignment between prompts and generations, and they effectively reduce
the memorization effect when benchmarked against baseline mitigation strategies.

2 RELATED WORK

Membership Inference. The membership inference attack (Shokri et al., 2017) aims to determine
if a particular data point was used in the training set of a model. Traditional studies on membership
inference (Shokri et al., 2017; Yeom et al., 2018; Carlini et al., 2022; Wen et al., 2022) have predom-
inantly focused on classifiers. An attacker can utilize losses or confidence scores as a metric. This is
because data points from the training set typically exhibit lower losses or higher confidence scores
than the unseen data points during inference due to overfitting. In a parallel development, recent
works (Matsumoto et al., 2023; Duan et al., 2023; Wang et al., 2024; 2023) have extended member-
ship inference to diffusion models. These methodologies involve introducing noise to a target image
and subsequently verifying if the predicted noise aligns closely with the induced noise.

Training Data Extraction. Somepalli et al. (2022) demonstrate that diffusion models memorize
a subset of their training data, often producing the training image verbatim. Building on this fact,
Carlini et al. (2023) introduce a black-box data extraction attack designed for diffusion models.
This approach involves generating a multitude of images and subsequently applying a membership
inference attack to assess generation density. Notably, they observe that memorized prompts tend to
produce nearly identical images across different seeds, leading to high density. This strategy bears
resemblance to the pipeline used by Carlini et al. (2021), who successfully extract training data from
large language models with over a billion parameters. Additionally, they discover that larger models
are more susceptible to data extraction attacks compared to their smaller counterparts.

Diffusion Memorization Mitigation. Recent research by Daras et al. (2023) presents a method for
training diffusion models using corrupted data. In their study, they demonstrate that their proposed
training algorithm aids in preventing the model from overfitting to the training data. Their approach
involves introducing additional corruption prior to the noising step and subsequently calculating the
loss on the original input image. In a separate study, Somepalli et al. (2023b) delve into various
mitigation strategies, with a focus on altering the text conditions. As a notable example, by inserting
random tokens into the prompt or integrating random perturbations into the prompt embedding, they
alleviate the memorization concern while preserving a high-quality generation output.

3 DETECT MEMORIZATION EFFICIENTLY

3.1 PRELIMINARY

We begin by defining the essential notation associated with diffusion models (Ho et al., 2020; Song
& Ermon, 2020; Dhariwal & Nichol, 2021). For a data point x0 drawn from the real data distribution
q(x0), a forward diffusion process comprises a fixed Markov chain spanning T steps, where each
step introduces a predetermined amount of Gaussian noise. Specifically:

q(xt|xt−1) = N (xt;
√

1− βtxt, βtI), for t ∈ {1, ..., T}, (1)

where βt ∈ (0, 1) is the scheduled variance at step t. The closed-form for this sampling is

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where, ᾱt =
∏t

i=1(1− βt).

In the reverse diffusion process, a Gaussian vector xT ∼ N (0, 1) is denoised to map to an image
x0 ∈ q(x). At each denoising step, a trained noise-predictor ϵθ anticipates the noise ϵθ(xt) that was
added to x0. Based on Eq. (2), the estimation of x0 can be formulated as:

x̂t
0 =

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
. (3)

Then, we can predict xt−1 as:

xt−1 =
√
ᾱt−1x̂

t
0 +

√
1− ᾱt−1ϵθ(xt). (4)
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Figure 2: Statistics of the magnitude of text-conditional noise predictions.

Text-conditional diffusion models, such as Stable Diffusion (Rombach et al., 2022), employ
classifier-free diffusion guidance (Rombach et al., 2022) to steer the sampling process. Given a
text prompt p, its embedding ep = f(p) is computed using a pre-trained CLIP text encoder f(·)
(Radford et al., 2021; Cherti et al., 2023). In the reverse process, the conditional sampling adheres
to Eq. (3) and Eq. (4), but the predicted noise ϵθ(xt) is changed to:

ϵθ(xt, e∅) + s(ϵθ(xt, ep)− ϵθ(xt, e∅)︸ ︷︷ ︸
text-conditional noise prediction

),

where, e∅ represents the prompt embedding of an empty string, and s determines the guidance
strength, controlling the alignment of the generation to the prompt. We refer to the term ϵθ(xt, ep)−
ϵθ(xt, e∅) as the text-conditional noise prediction for future reference.

3.2 MOTIVATION

When provided with the same text prompt but different initializations, diffusion models can generate
a diverse set of images. Conversely, when given different text prompts but the same initialization,
the resulting images often display semantic similarities. These similarities include analogous layouts
and color themes, as demonstrated in Appendix Fig. 6. Such a phenomenon might arise when the
final generation remains closely tied to its initialization, and the textual guidance is not particularly
dominant. This observation is consistent with findings from Wen et al. (2023b), suggesting that one
can trace the origin to the initial seed even without knowing the text condition.

Interestingly, when it comes to memorized prompts, the initialization appears to be irrelevant. The
generated images consistently converge to a specific memorized visualization. This behavior implies
that the model might be overfitting to both the prompt and a certain denoising trajectory, which leads
to the memorized image. Consequently, the final image deviates substantially from its initial state.

These insights provide a foundation for a straightforward detection strategy: scrutinizing the magni-
tude of text-conditional noise predictions. A smaller magnitude signals that the final image is closely
aligned with its initialization, hinting that it is likely not a memorized image. On the other hand,
a larger magnitude could indicate potential memorization. The correlation between magnitude and
memorization is depicted in Fig. 2(a).

3.3 AN EFFECTIVE DETECTION METHOD

Following the intuition above, we introduce a straightforward yet effective detection method cen-
tered on the magnitude of text-conditional noise predictions. For a prompt embedding p and a
sampling step of T , the detection metric is defined as

d =
1

T

T∑
t=1

∥ϵθ(xt, ep)− ϵθ(xt, e∅)∥2.
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Table 1: Memorization detection results with AUC, TPR@1%FPR, and the running time of the
method in seconds. In this table, “n” represents the number of generations per prompt.

Method 1st Step First 10 Steps Last Step
AUC↑ / TPR@1%FPR↑ / Time in Seconds↓

Densityℓ2 , n=4 0.520 / 0.012 / 0.810 0.652 / 0.225 / 5.314 0.659 / 0.288 / 9.904
Densityℓ2

, n=16 0.506 / 0.000 / 3.570 0.656 / 0.175 / 24.78 0.676 / 0.271 / 40.66
Densityℓ2

, n=32 0.510 / 0.000 / 8.092 0.664 / 0.175 / 59.43 0.681 / 0.266 / 81.44
DensitySSCD, n=4 0.537 / 0.019 / 0.809 0.405 / 0.005 / 5.421 0.878 / 0.525 / 9.892

DensitySSCD, n=16 0.515 / 0.000 / 3.186 0.375 / 0.000 / 21.02 0.934 / 0.523 / 39.55
DensitySSCD, n=32 0.506 / 0.000 / 6.341 0.370 / 0.000 / 42.12 0.940 / 0.530 / 79.47

Ours, n=1 0.960 / 0.760 / 0.199 0.989 / 0.944 / 1.866 0.989 / 0.934 / 9.584
Ours, n=4 0.990 / 0.912 / 0.794 0.998 / 0.982 / 7.471 0.996 / 0.978 / 37.27

Ours, n=32 0.996 / 0.954 / 1.606 0.999 / 0.988 / 14.96 0.998 / 0.986 / 74.75

Memorization is then identified if the detection metric falls beneath a tunable threshold γ.

In practice, we also find that even the detection metric of a single generation can provide a strong
signal of memorization. Consequently, our method remains effective and reliable with the number of
generations restricted to 1. In contrast, earlier studies, such as those examining generation density
over a large number of generations (Carlini et al., 2023), require the simultaneous generation of
multiple images, with some cases necessitating over a hundred generations. This might impose
an extra computational burden on the service provider by generating more images than the user
requested. Moreover, another method presented in (Somepalli et al., 2023a) identifies memorized
prompts by directly comparing the generated images with the original training data. Unlike this
method, our approach allows a third party to use the detection method without needing access to the
large training dataset, thereby protecting training data privacy.

Another distinct advantage of our approach is its adaptability in calculating the detection metric.
Strong detection does not mandate collecting the metric from all sampling steps. Based on our
empirical findings, even when the metric is collated solely from the first step, reliable detection
remains attainable. This efficiency enables model owners to identify memorized prompts promptly.
By stopping generation early, they can then opt for post-processing, like declining the generated
output or reinitializing the generation with corrective strategies in place.

3.4 EXPERIMENTS

Experimental Setup. To evaluate our detection method, we use 500 memorized prompts identified
in Webster (2023) for Stable Diffusion v1 (Rombach et al., 2022), where the SSCD similarity score
(Pizzi et al., 2022) between the memorized and the generated images exceeds 0.7. The memorized
prompts gathered in Webster (2023) include three types of memorization: 1) matching verbatim:
where the images generated from the memorized prompt are an exact pixel-by-pixel match with the
original paired training image; 2) retrieval verbatim: the generated images perfectly align with some
training images, albeit paired with different prompts; 3) template verbatim: generated images bear
a partial resemblance to the training image, though variations in colors or styles might be observed.

Additionally, we use another 2, 000 prompts, evenly distributed from sources LAION (Schuhmann
et al., 2022), COCO (Lin et al., 2014), Lexica.art (Santana, 2022), and randomly generated strings.
For this set of prompts, we assume they are not memorized by the model. All generations employ
DDIM (Song et al., 2020) with 50 inference steps.

In our comparison, we use the detection method from Carlini et al. (2023) as a baseline. This method
determines memorization by analyzing generation density, computed using the pairwise ℓ2 distance
between non-overlapping tiles. While Carlini et al. (2023) utilizes the ℓ2 distance in pixel space, we
introduce an additional baseline that calculates the distance in the SSCD feature space (Pizzi et al.,
2022). This adjustment is inspired by Somepalli et al. (2022), who underscore the effectiveness of
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SSCD. As a deep learning-informed distance metric, SSCD offers enhanced resilience to particular
augmentations, like color shift — a critical advantage when the training image is only partially
memorized.

We use the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and
the True Positive Rate at the False Positive Rate of 1% (TPR@1%FPR) as metrics. Meanwhile, we
report the running time in seconds with a batch size of 4 on a single NVIDIA RTX A6000.

Results. In Fig. 2(b), we display a density plot comparing the detection metrics for the memorized
prompts against the non-memorized ones, calculated over 50 steps with 4 generations per prompt.
The distribution of memorized prompts is bimodal. This dichotomy stems from the fact that the tem-
plate verbatim scenario often exhibits a slightly smaller metric than the matching verbatim scenario,
given that the memorization occurs only partially.

In Table 1, we highlight the balance between the precision and efficiency of our proposed method.
Our method is able to achieve very strong detection performance. When generating 32 images
and using the metrics from the first 10 steps, our method is able to achieve an AUC of 0.999 and
TPR@1%FPR of 0.988. Remarkably, even when operating with a single generation, our method
can achieve TPR@1%FPR of 0.760 from the very first step within merely 0.2 seconds. This feature
provides a significant advantage in terms of time and computational resource savings, allowing
model operators the flexibility to terminate generation early if necessary. In contrast, the baseline
methods show noticeably reduced detection capability. In particular, the baseline methods can only
achieve relatively high detection accuracy when generating more than 16 images and relying on
the image generation from the final step, where it requires at least 40 seconds. Yet, in real-world
applications, service providers like Midjourney or DALL-E 2 (Ramesh et al., 2022) typically generate
a mere 4 images concurrently for each prompt.

Interestingly, our method surpasses the baselines in speed even when using the metric with equiva-
lent generations and steps. This superiority emerges since our method doesn’t need to decode latent
noise into image space and perform subsequent calculations.

4 MITIGATE MEMORIZATION

4.1 A STRAIGHTFORWARD METHOD TO DETECT TRIGGER TOKENS

As observed by Somepalli et al. (2022), certain words or tokens in memorized prompts play a sig-
nificant influence on the generation process. Even when only these specific “trigger tokens” are
present in the prompt, the memorization effect remains evident. One potential approach to identify
these trigger tokens involves probing with various n-gram combinations to discern which combina-
tions induce memorization. However, this heuristic becomes notably inefficient, particularly when
the prompt contains a vast number of tokens. Our earlier observations offer a more streamlined
method for discerning the significance of each token in relation to memorization: by checking the
magnitude of the change applied to each token while minimizing the magnitude of text-conditional
noise prediction. A token undergoing substantial change suggests its crucial role in steering the
prediction; conversely, a token with minimal change is less important.

Given a prompt embedding e of prompt p with N tokens, we form the objective of the minimization
problem as:

L(xt, e) = ∥ϵθ(xt, e)− ϵθ(xt, e∅)∥2. (5)

We then determine the significance score for each token at position i ∈ [0, N − 1] as:

SSei =
1

T

T∑
t=1

∥∇eiL(xt, e)∥2.

In Fig. 3, we display generations with top-2 significant tokens highlighted. The green arrow in the
figure emphasizes that altering these significant tokens can substantially diminish the memorization
effect. Some trigger tokens, including symbols or seemingly trivial words, are challenging to iden-
tify manually. Consequently, this insight offers model owners a practical tool: advising users to
rephrase or exclude the trigger tokens before initiating another generation. In contrast, as indicated
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Training Image Original Generation After User Modification

1. Rewrite goats to 
sheep
2. Delete .

“A pair of mountain goats stand proudly, high in the Rocky Mountains.”

1. Rewrite Wave to Swell
2. Rewrite Kanagawa to 
Tokyo

“A painting of the Great Wave off Kanagawa by Katsushika Hokusai”

User 
Modification

1. Delete “proudly, 
high”
2. Rewrite “the Rocky 
Mountains” to “Blue 
Ridge Mountains”

1. Delete “by Katsushika 
Hokusai”
2. Delete “Great”

Figure 3: By modifying the trigger tokens, memorization can be effectively mitigated. The signifi-
cance score for each token is illustrated in a histogram in Appendix Fig. 7. The two most significant
tokens are highlighted in red and blue. A green arrow indicates modifications made to the top-2
tokens, while a white arrow represents changes to less significant tokens.

by the white arrow, alterations to the less significant tokens fail to effectively counter the memo-
rization effect, even when extensive changes are made. Even by renaming the play or removing the
artist’s name, memorization remains evident.

4.2 AN EFFECTIVE INFERENCE-TIME MITIGATION METHOD

A direct approach to mitigation without any supervision is to adjust the prompt embedding by min-
imizing Eq. (5). Optimizing over all time steps is computationally intensive. However, we observe
that minimizing the loss at the initial time step indirectly results in smaller magnitudes in subse-
quent time steps, effectively mitigating memorization. Thus, a perturbed prompt embedding, e∗, is
obtained at t = 0 by minimizing Eq. (5). We also apply early stopping once the loss reaches a target
value, ltarget, to keep the embedding close to the original meaning.

4.3 AN EFFECTIVE TRAINING-TIME MITIGATION METHOD

During the training of diffusion models, memorization often arises with duplicate data points due
to overfitting (Carlini et al., 2023; Somepalli et al., 2023b). Building on our earlier observation,
if the model overfits or closely memorizes a data point, the magnitude of the text-conditional noise
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Figure 4: Mitigation results. A lower similarity score suggests reduced memorization, whereas a
higher clip score denotes a better alignment between the generation and the prompt.

prediction might exceed typical values. Therefore, a straightforward mitigation method is to exclude
the sample from the current mini-batch if this magnitude surpasses a predetermined threshold, τ ,
thereby not computing the loss on that sample. Given that the model has previously seen the sample
during training, this exclusion is unlikely to significantly impact model performance.

However, this method introduces an additional computational cost during training. To compute the
text-conditional noise prediction, an extra forward pass for ϵθ(xt, e∅) is needed. During typical
training, only ϵθ(xt, ep) is computed. Empirically, this results in an approximately 10% increase in
training time.

4.4 EXPERIMENTS

Experimental Setup. To evaluate the effectiveness of mitigation strategies, we adopt a setup sim-
ilar to that in Somepalli et al. (2023b). Specifically, we fine-tune the Stable Diffusion model using
200 LAION data points, each duplicated 200 times, to serve as memorized prompts. In addition,
we introduce 120, 000 distinct LAION data points to ensure that the model retains its capacity for
generalization.

For performance metrics, we compute the SSCD similarity score (Pizzi et al., 2022; Somepalli et al.,
2023b) to gauge the degree of memorization by comparing the generation to the original image.
Additionally, the CLIP score (Radford et al., 2021) is used to quantify the alignment between the
generation and its corresponding prompt. Our experiments encompass 5 distinct fine-tuned models,
each embedded with different memorized prompts, and the results are averages over 5 runs with
different random seeds.

In our evaluation of the proposed method, we test 5 distinct target losses ltarget, ranging from 1 to
5, for inference-time mitigation. We use Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.05 and at most 10 steps. Simultaneously, we investigate 5 different thresholds τ , spanning
from 2 to 6, for training-time mitigation. For comparison, we use the most effective method from
(Somepalli et al., 2023b), random token addition (RTA), as the baseline, which inserts 1, 2, 4, 6, or
8 random tokens to the prompt.

Results. In Fig. 4(a), we present the results of our inference-time mitigation, while Fig. 4(b) de-
tails the outcomes for training-time mitigation. Our proposed techniques successfully mitigate the
memorization effect and, importantly, offer a more favorable CLIP score trade-off compared to RTA.
Higher target losses ltarget or thresholds τ tend to enhance the model’s alignment with the prompt
but can result in a less pronounced mitigation effect. In practice, model owners can select the op-
timal hyperparameter based on their desired balance between mitigation efficacy and generation
alignment.
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Training Image W/o Mitig. Ours
(Inference-time)

RTA
(Inference-time)

Ours
(Training-time)

RTA
(Training-time)

“Portrait Of A Woman”

“THE STANDARD, LONDON - INTERIOR: The central London hotel, 
opposite St Pancras Station, features 'colourful interiors to contrast the greyness of London'”

“table”

Figure 5: Mitigation results with different mitigation strategies during inference and training phase.

In Fig. 5, we display a selection of qualitative results, setting ltarget = 3 and τ = 4 for our method,
while adding 4 random tokens as a baseline strategy. Our proposed strategy is effective in mitigat-
ing the memorization effect while also ensuring that the generated content aligns closely with the
prompt. In contrast, the baseline method often struggles to counteract memorization and occasion-
ally produces images with undesirable additions.

5 LIMITATIONS AND FUTURE WORK

Our detection strategy employs a tunable threshold to detect memorized prompts. This requires
model owners to first compute metrics over non-memorized prompts and then select an empirical
threshold based on a predetermined false positive rate. However, the outcomes generated by this
detection approach lack interpretability. In the future, the development of a method producing in-
terpretable p-values could significantly assist model owners by providing a confidence score that
quantifies the likelihood of memorization, thereby augmenting the transparency and trustworthiness
of the detection process.

Our proposed mitigation strategies effectively tackle the memorization problem, albeit with minor
computational overheads for model owners. The inference-time mitigation approach requires addi-
tional GPU memory due to the optimization process, and in practice, it takes at most 6 seconds with
our setup. On the other hand, the training-time mitigation extends the training period by roughly
10%. For context, while naive fine-tuning in our tests takes approximately 9 hours, our mitigation
strategy extends this to about 10 hours. However, we argue that these added costs are reasonable
given the significance of protecting training data privacy and intellectual property. Furthermore,
when combined with our detection method, model owners need only deploy the inference-time mit-
igation when a memorized prompt is detected, thereby minimizing its use.

6 CONCLUSION

In this paper, we introduced a new approach to detect memorization in diffusion models by lever-
aging the magnitude of text-conditional noise predictions. Remarkably, our approach attains high
precision even when using a limited number of generations per prompt and a limited number of
sampling steps. Furthermore, we provide an explanatory tool to indicate the significance score of
individual tokens in relation to memorization. To conclude, our paper presents both inference-time
and training-time mitigation strategies. These not only effectively address the memorization concern
but also maintain the superior generative performance of the model.
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7 REPRODUCIBILITY STATEMENT

We have detailed all essential hyperparameters used in our experiment setup in the main body. Our
experiments were conducted using widely available computing resources and open-source software.
All referenced models and datasets in this paper are publicly accessible. Furthermore, we have
included the code necessary to reproduce our results in the supplementary material.
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A APPENDIX

Seed 0

Seed 3

Seed 2

Seed 1

Normal Prompt Memorized Prompt

Figure 6: Different seeds vs. different prompts.
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Training Image Original Generation After User Modification

1. Rewrite goats to 
sheep
2. Delete .

“A pair of mountain goats stand proudly, high in the Rocky Mountains.”

1. Rewrite Wave to Swell
2. Rewrite Kanagawa to 
Tokyo

“A painting of the Great Wave off Kanagawa by Katsushika Hokusai”

User 
Modification

1. Delete “proudly, 
high”
2. Rewrite “the Rocky 
Mountains” to “Blue 
Ridge Mountains”

1. Delete “by Katsushika 
Hokusai”
2. Delete “Great”

Figure 7: By modifying the trigger tokens, memorization can be effectively mitigated. The signifi-
cance score for each token is illustrated in a histogram in Appendix Fig. 7. The two most significant
tokens are highlighted in red and blue. A green arrow indicates modifications made to the top-2
tokens, while a white arrow represents changes to less significant tokens.
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Training Image Generated Image Magnitude of Text-Conditional
Noise Prediction

02505007501000
Time-step

0

5

10

15

20

M
et

ric 0
1
2
3

“Prince Reunites With Warner Brothers, Plans New Album”

02505007501000
Time-step

0

5

10

15

20

M
et

ric

“The No Limits Business Woman Podcast”

02505007501000
Time-step

0

5

10

15

20
M

et
ric

“The Happy Scientist”

02505007501000
Time-step

0

5

10

15

20

M
et

ric

“Netflix Strikes Deal with AT&T for Faster Streaming”

02505007501000
Time-step

0

5

10

15

20

M
et

ric

“Pencil pleat curtains in collection Avinon, fabric: 129-66”

Figure 8: Memorization generation. We display the magnitude of text-conditional noise prediction
at each time-step, as described in Section 3.3, for all four generations distinctly (with 4 different
random seeds) for each prompt. The metric typically indicates a higher value when memorization
occurs.
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Training Image Generated Image Magnitude of Text-Conditional
Noise Prediction

02505007501000
Time-step

0

5

10

15

20

M
et

ric

0
1
2
3

“Watercolour painting of Xian fortifications. Sian city wall, China aquarelle illustration.”

02505007501000
Time-step

0

5

10

15

20

M
et

ric
“painting #ballet #painting”

02505007501000
Time-step

0

5

10

15

20
M

et
ric

“Naruto: Ultimate Ninja Storm PS3”

02505007501000
Time-step

0

5

10

15

20

M
et

ric

“the marq vietnams ultimate luxury residential destination to be launched”

02505007501000
Time-step

0

5

10

15

20

M
et

ric

“Croque madame sandwich, delish food”

Figure 9: Non-memorization generation. We display the magnitude of text-conditional noise predic-
tion at each time-step, as described in Section 3.3, for all four generations distinctly (with 4 different
random seeds) for each prompt. The non-memorized generations consistently exhibit significantly
lower metric values.
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