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Abstract

Foundation models for molecular science have significantly impacted small-1

molecule and protein modeling, however there is a lack of models able to encode2

therapeutic peptides. Existing chemical language models often operate with short3

context windows, while protein language models are limited to canonical amino4

acids and struggle with nonnatural residues, modifications, or cyclizations. We5

present PeptideMTR, a SMILES-based foundation model with multimodal pretrain-6

ing via descriptor alignment. PeptideMTR couples masked language modeling with7

an auxiliary regression objective to RDKit-derived physicochemical descriptors,8

aligning symbolic sequence representations with continuous chemical properties.9

Our contributions are threefold: (i) a kmer tokenizer tailored to chemically co-10

herent fragments and peptide motifs, (ii) a dual-objective pretraining scheme that11

unifies symbolic and numeric modalities, and (iii) an empirical study of the impact12

scaling from 32M to 337M parameters has on predicting peptide permeability13

and aggregation. PeptideMTR consistently outperforms fingerprint baselines and14

MLM-only pretraining, demonstrating that multimodal pretraining yields richer15

peptide representations.16

1 Introduction17

Peptides are an increasingly important therapeutic class [1, 2, 3, 4, 5, 6], occupying an intermediate18

size range that falls between small molecules and proteins. Drug-like peptides frequently include19

noncanonical residues [7], cyclization [8, 9], and backbone/side-chain modifications [10]. These20

features challenge standard machine-learning toolkits: protein language models are tied to amino-acid21

alphabets and are unable to incorporate non-canonical amino acids [11], and chemical language22

models trained on small molecules require adaptation to peptide-specific motifs and long-range23

interactions beyond steric hindrance [12, 13].24

Most prior work treats representation learning as single-modal, focused on either discrete sequence25

modeling or purely numeric descriptors. For peptides, however, useful representations must reconcile26

symbolic sequence context with continuous physicochemical behavior. We address this by coupling a27

SMILES tokenizer tailored to chemically coherent peptide fragments with a dual pretraining objective28

that aligns sequence predictions with molecule-level properties.29

We introduce PeptideMTR, a BERT-style encoder [14] trained with a dual objective: masked language30

modeling (MLM) over kmer SMILES tokens and multi-task regression (MTR) [15] to RDKit [16]31

computed physicochemical descriptors. This blended pretraining ties local sequence syntax to global32

chemical attributes, yielding embeddings that transfer to peptide property prediction. We study33

scaling from 32M to 337M parameters and perform ablations over tokenizer, masking strategy, and34

the inclusion of MTR. Empirically, PeptideMTR outperforms fingerprint baselines on multiple peptide35

endpoints, improves over MLM-only pretraining, and achieves results that outclass prior literature.36

Pretrained models of small, base, and large are availabe at https://huggingface.co/subm-123abc.37



2 Related work38

2.1 Protein Language Models39

Large-scale corpora such as UniProt [17] have enabled the training of protein language models40

(pLMs) at the scale of hundreds of millions to billions of sequences. Representative models include41

the ESM-family of models [18, 19, 20] and ProtTrans [21], demonstrating that self-supervised training42

objectives on large sequence databases can produce embeddings informative of protein structure43

and function. It is hypothesized that MLM provides a method to learn long-range dependencies and44

implicit biophysical constraints [22]. Beyond MLM, other pretraining strategies such as autoregressive45

objectives [23], contrastive learning [24, 25], multi-task pretraining [26], and multi-model inputs [20]46

have been explored. Finetuned pLMs achieve strong results on tasks including secondary-structure47

prediction [27], mutation-effect estimation [28, 29], protein-protein interaction [30], and protein48

structure prediction [19].49

2.2 Chemical Language Models (CLMs)50

Chemical language models (CLMs) apply sequence modeling to small molecules, with examples51

such as SMILES-BERT [31], ChemBERTa [32, 33], and MoLFormer [34]. Transformer-based CLMs52

leverage string notations (e.g., SMILES, SELFIES) to represent molecules in a tokenizable form53

[35, 36]. Pretraining adopts NLP-style objectives, MLM or auto-regressive modeling, applied to large54

molecular databases like PubChem [37]. Multi-task regression (MTR) for CLMs was introduced55

in ChemBERTa-2 [32], predicting molecular properties for compounds during pretraining, and56

resulting in improvements over MLM pretraining. A CLM pre-trained on both small molecules and57

peptides, PeptideCLM [38], demonstrated that SMILES-based CLMs can capture sequence–structure58

relationships relevant to membrane interactions for cyclic peptides. We acknowledge the large field59

of molecular graph representations, but do not cover it in this work.60

3 Methods61

3.1 Kmer Tokenization Strategy62

Based on peptide tokenization methods in PeptideCLM [38] and the concepts from SmilesPE [39],63

we built a peptide tokenizer with a smaller vocabulary than related work and a higher compression64

ratio than a simple atomistic tokenizer. We first created a pretokenizer able to identify individual65

atoms. This included Br/Cl as separate from B/C and bracketed text, denoting chirality or ionic66

charge (e.g., [N+] or [C@@H]). We then evaluated all kmers of up to 6 characters from 200,00067

small molecules from PubChem and ChEMBL and 200,000 peptides from SmProt [40]. We filtered68

this list to select for the highest occurring kmers that followed several rules (Table 1), resulting in 16069

single atom tokens and 405 total tokens. Improved tokenization compression was achieved with our70

kmer tokenizer compared to the DeepChem tokenizer [41]. This method provides a 62% reduction in71

encoding length for a random sample of 10,000 small molecules from PubChem, and a 36% reduction72

for a random sample of 10,000 peptides from ESMAtlas (Figure S2).73

Table 1: Filtering rules applied during construc-
tion of the kmer vocabulary.

# Remove tokens:
1 with numbers
2 that start with ’)’
3 that end with ’(’
4 that contain ’)*’ w/o a leading ’*(’
5 with more than 4 atom characters
6 with fewer than 1,000 occurrences

Table 2: Transformer encoder configurations for
three sizes of models.

Model Small Base Large
Layers (l) 14 24 32
Hidden dim. (d) 512 768 1024
FF dim. 768 1024 2048
Heads (h) 8 12 16
Max length 2048 2048 2048
Parameters 32M 114M 337M
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3.2 BERT-style Model Architecture74

Our model follows a BERT-style transformer encoder. SMILES strings are tokenized with the kmer75

vocabulary and embedded into d dimensions. Each of l layers contains multi-head self-attention with76

rotational embeddings, SwiGLU feed-forward layers, Pre-LN normalization, residuals, and dropout.77

We trained three model sizes: small (32M), base (114M), and large (337M), with hidden dimension d78

scaling with model size and h attention heads, each with a dimension of 64 (Table 2).79

3.3 MLM and MTR Pretraining80

Pretraining datasets (Table S1) included PubChem, ESMAtlas and LMSD (Figure S1). Pubchem81

was filtered to remove molecules shorter than 20 characters and molecules containing silicon chains.82

Peptides included ESMAtlas [19] clustered at 30% sequence similarity, > 0.7 pTM and pLDDT, and83

length under 100 AA. Lipids were included from LMSD [42]. Balanced sampling per epoch was84

introduced, with lipids upsampled to 250k, peptides included the full dataset of nearly 10M, and85

small molecules down sampled to 10M.86

Masked language modeling (MLM) was performed with a 25% masking rate either randomly selected87

or in multiple spans drawn from a Gaussian distribution (µ = 3.5, σ = 1), with all selected sites88

replaced by the [MASK] token [43]. For multi-task regression (MTR), on the same masked input89

in parallel, an MTR head (two fully-connected layers with SiLU [44] activation) using a mean-90

pooled sequence embedding to predict physicochemical properties. The properties were a set of 9991

normalized physicochemical descriptors computed by RDKit (Table S3). We selected a subset of the92

total RDKit descriptors available based on run speed and features important for peptide chemistry.93

The total loss combined MLM and MTR as a weighted sum:94

L = λMLM · LMLM + λMTR · LMTR,

with weights set as λMLM = 0.6 and λMTR = 0.4, to balance convergence speed and downstream95

performance. SMILES strings were randomly canonicalized for improved generalization [45].96

3.4 Finetuning for Downstream Prediction of Labeled Data97

Finetuning was conducted using nested cross-validation, where an outer loop established a fixed98

holdout test set and an inner loop trained ensembles by sequentially holding out each non-test fold,99

as previously described [38]. This approach mimics prediction on unseen data, allowing for early100

stopping to prevent overfitting to the test distribution. Model checkpoints were selected by validation101

loss, and final predictions were an average of outputs from the ensemble. Finetuning for each model102

was repeated three times with performance reported as the mean and standard error across replicates.103

4 Experiments104

4.1 Effect of Tokenization, Pretraining Objective, Masking Strategy, and Model Scale on105

Prediction of Membrane Permeation for Cyclic Peptides106

Effects of pretraining on downstream finetuning were assessed with a dataset of measured membrane107

permeability for cyclic peptides [46]. Results show a marked increase in performance when using108

MTR in addition to MLM (Table 3). At small scale (32M parameters), atomistic tokenization using the109

DeepChem tokenizer matched the performance of kmer tokenization but had a higher computational110

cost due to an increased number of tokens. Span masking consistently outperformed random masking111

across larger model sizes (base/large), suggesting that masking longer contiguous fragments enables112

the model to better capture peptide motifs. Additionally, models trained with span masking had lower113

variance across multiple finetuning runs than models with random masking.114

Scaling model parameters from 32M to 337M yielded steady improvements across all metrics (Table115

3). While performance continued to increase with size on the cyclic peptide data, gains diminished at116

the largest scale, suggesting that dataset variance rather than model capacity becomes the limiting117

factor. The 337M span-masked model achieved the strongest results overall and outperformed118

PeptideCLM and ChemBERTa-2, which achieved AUROC of 0.78 and 0.74 on the same dataset in a119

previous study [38].120

3



Table 3: Ablation studies of PeptideMTR models on cyclic peptide permeability prediction, in
ascending order by AUROC. (* model randomly initialized prior to finetuning.)

Size Tokenizer Masking MTR R2 ↑ RMSE ↓ AUROC ↑ AUPRC ↑

Small Kmer * * −0.08± .03 0.80± .01 0.64± .01 0.67± .01
Small Kmer Span No 0.13± .09 0.72± .03 0.68± .01 0.69± .01
Small Kmer Random Yes 0.24± .08 0.68± .04 0.70± .02 0.74± .01
Small Kmer Span Yes 0.23± .05 0.68± .02 0.70± .01 0.74± .01
Small Atom Random Yes 0.25± .06 0.67± .03 0.71± .01 0.74± .01
Base Kmer Random Yes 0.39± .09 0.59± .04 0.79± .01 0.77± .01
Base Kmer Span Yes 0.52± .02 0.54± .01 0.81± .01 0.78± .01
Large Kmer Random Yes 0.57± .04 0.51± .03 0.83± .01 0.81± .01
Large Kmer Span Yes 0.58 ± .01 0.50 ± .01 0.83 ± .00 0.81 ± .00

4.2 Predicting Peptide Aggregation121

To further evaluate the applicability of the model to drug-like peptides, we finetuned the model122

to predict aggregation of chemically-modified linear peptides based on ThT assay data [47]. We123

compared the finetuned model against predictions from Morgan fingerprints [48] with a matching124

regression head (Table 4). ChemBERTa models will not work for these datasets as the length of125

the peptide SMILES is too large for the model context window. PeptideMTR outperformed the126

fingerprint baseline, with performance improving as model size increased (Figure S3). These results127

indicate that PeptideMTR learns transferable representations that generalize to important peptide128

endpoints, surpassing handcrafted descriptors.129

Table 4: Performance of PeptideMTR compared to Morgan fingerprint baseline on prediction of
peptide fibrillation. Results are mean of three runs on random seeds with standard error.

Dataset/Target MFP Small Base Large

Peptide Fibrillation (AUROC) 0.57± 0.003 0.71± 0.004 0.76± 0.004 0.83± 0.003

5 Limitations and Broader Impacts130

While this work demonstrates the utility of the developed models, several limitations remain. First,131

the models rely on SMILES encodings, which lack direct higher-order structure often critical for132

peptide activity. Second, the regression head is trained against a restricted set of RDKit-derived133

physicochemical descriptors. These descriptors omit peptide-specific features such as conformational134

flexibility, secondary-structure propensity, or solvent accessibility. Finally, our models are modest in135

size and may show improved performance with an increased parameter count.136

Despite these limitations, our results highlight the potential of foundation models focused on peptide137

chemistry. By jointly modeling SMILES sequences and continuous chemical descriptors, Pep-138

tideMTR demonstrates that multi-modal pretraining can improved representations for noncanonical139

peptide chemistry. More broadly, this work illustrates how foundation models can extend beyond140

canonical biomolecules, providing a roadmap for therapeutic peptide model development. While141

PeptideMTR has the potential for positive societal impacts in drug discovery and medicine, it is142

important to acknowledge the risk of dual-use concerns that may arise from its application.143

6 Conclusions144

We present PeptideMTR, a SMILES-based foundation model tailored for drug-like peptides that145

combines a chemically informed tokenizer with multi-objective pretraining. The model captures long-146

range dependencies, accommodates noncanonical residues, and produces transferable representations147

that outperform traditional molecular fingerprints after finetuning. These results demonstrate that148

peptide-specific language models can serve as a scalable and effective framework for advancing149

peptide drug discovery.150
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Appendix290

S1. Datasets and Curation291

All datasets were downloaded from the links in table S1. All databases were passed through292

RDKit, converted into a mol object, and then to a SMILES string. Any that failed were re-293

moved. Molecules already represented in the database as SMILES strings were converted using294

Chem.MolFromSmiles(Chem.MolToSmiles(SMILES)). Peptides represented as amino acid char-295

acters were converted using Chem.MolFromSequence(Chem.MolToSmiles(AMINO_ACIDS)).296

PubChem was filtered to remove any molecules that contained a SMILES string length of less than297

20. A second filter was done to remove anything following a ’.’ wholly contained in brackets (i.e.298

CCO.[Br]). Leading or trailing Br and Cl (salts) were removed from all molecules. All remaining299

lines with a ’.’ were split into two lines. Then, any duplicates were removed. Any molecules with300

a four silicon oxide repeat "[Si](=O)[Si](=O)[Si](=O)[Si](=O)" were removed. The resulting total301

dataset size was 108,583,157302

ESMAtlas was downloaded with the following prefilters: MGnify90 is clustered down to303

30% sequence similarity with mmseqs easy-linclust –kmer-per-seq 100 -cluster-mode304

2 –cov-mode 1 -c 0.8. Structures are filtered to > 0.7 pTM and pLDDT. Structures are sorted by305

pTM * pLDDT and the best from each cluster is chosen as the representative.306

We conducted further filtering to select sequences with 100 amino acids or less.307

Figure S1: Scatter plot of 10,000 sampled molecules from the three datasets used in pretraining.

Table S1: Datasets used in pretraining.

Dataset Modality Count Link

PubChem Small molecules 108,583,157 pubchem.ncbi.nlm.nih.gov
ESMAtlas Proteins / peptides 9,634,945 ESMAtlas Link
LMSD Lipids 50k lipidmaps.org/databases/lmsd

8
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S2. Tokenizer308

S2.1 Vocabulary and rules309

Full description of tokenization methods are in Table 1. Full token list can be seen by loading310

the tokenizer from https://huggingface.co/subm-123abc. Example tokens to highlight multi-atom311

tokenization:312

Table S2: Sample tokens from kmer tokenizer.

Tokens
=NC, #Cc, c(CO), n(C)c, n(C), CN=C, (CCO), CCO), C(C)N, C#C,
C(CC), CS(=O), NC(C), CSc, NN, CC(O), CNc, CCn

S2.2 Compression and efficiency313

To measure the differences in tokenized length between a naive atomistic tokenizer and our kmer314

strategy, we tokenized a random 10,000 peptides and a random 10,000 small molecules from the315

pretraining datasets. Compression rate between atomistic and kmer tokenizer for peptides was 0.36316

and for small molecules was 0.62.317

Figure S2: Comparison of tokenizers: (left) peptide length distribution, (b) small molecule length
distribution.

S3. Pretraining Objectives318

S3.1 Masking distributions319

The masking procedure employs a Gaussian distribution to determine the lengths of token spans to be320

masked within sequences. Each sequence’s length is used to calculate the total number of tokens to321

mask, based on a specified masking percentage.322

For each sequence, the procedure samples span lengths with a mean of 3.5 and a standard deviation323

of 1.0, ensuring a minimum span of 1 token. A random starting position is selected for each span, and324

the end position is adjusted to prevent exceeding the sequence length. The process includes checking325

for overlapping positions to avoid masking the same token multiple times.326

Masked positions are updated with a specified mask token ID, and the operation continues until the327

desired number of tokens is masked across all sequences.328

S3.2 Descriptor head and targets329

To produce logits for masked language modeling (MLM), a standard sequence head is applied to the330

last layer of the transformer.331

For the descriptor output, mean pooling is performed on the embedded representations. The embed-332

dings corresponding to valid (non-padded) tokens are summed, and the total count of these tokens is333

calculated. The mean of the embeddings is then computed by dividing the summed embeddings by the334

count of valid tokens, ensuring that only meaningful tokens contribute to the descriptor representation.335
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The descriptors are predicted with an MTR head that is made of two full-connected layers. The first336

is connected to a hidden vector of length that matches the embedding dimension. The second layer337

outputs a vector of length 99, matching that of the RDKit descriptors.338

Table S3: RDKit Descriptors Organized by Type

Descriptor Type Descriptors
1. Topological Indices Chi0, Chi0n, Chi0v, Chi1, Chi1n,Chi1v, Chi2n, Chi2v
2. Morgan Fingerprints FpDensityMorgan1, FpDensityMorgan2, FpDensityMor-

gan3
3. Kappa Indices Kappa1, Kappa2, Kappa3
4. Molecular Properties ExactMolWt, MaxAbsPartialCharge, MaxPartialCharge,

MinAbsPartialCharge, MinPartialCharge, MolLogP,
MolMR, MolWt

5. Structural Counts RingCount, HeavyAtomCount, HeavyAtomMolWt, Frac-
tionCSP3

6. SA Descriptor HallKierAlpha, LabuteASA, TPSA
7. Atom Count Descriptors NHOHCount, NOCount, NumHAcceptors, NumHDonors,

NumHeteroatoms
8. Ring Counts NumAliphaticCarbocycles, NumAliphaticHeterocycles,

NumAliphaticRings, NumAromaticCarbocycles, Nu-
mAromaticHeterocycles, NumAromaticRings

9. Electronic Descriptors NumRadicalElectrons, NumValenceElectrons
10. Rotatable Bonds NumRotatableBonds
11. Saturated Structure Counts NumSaturatedCarbocycles, NumSaturatedHeterocycles,

NumSaturatedRings
12. PEOE Descriptors PEOE_VSA1, PEOE_VSA2, PEOE_VSA3,

PEOE_VSA4, PEOE_VSA5, PEOE_VSA6,
PEOE_VSA7, PEOE_VSA8, PEOE_VSA9,
PEOE_VSA10, PEOE_VSA11, PEOE_VSA12,
PEOE_VSA13, PEOE_VSA14

13. SMR Descriptors SMR_VSA1, SMR_VSA2, SMR_VSA3, SMR_VSA4,
SMR_VSA5, SMR_VSA6, SMR_VSA7, SMR_VSA8,
SMR_VSA9, SMR_VSA10

14. SlogP Descriptors SlogP_VSA1, SlogP_VSA2, SlogP_VSA3, SlogP_VSA4,
SlogP_VSA5, SlogP_VSA6, SlogP_VSA7, SlogP_VSA8,
SlogP_VSA9, SlogP_VSA10, SlogP_VSA11,
SlogP_VSA12

15. Functional Groups fr_amide, fr_NH0, fr_NH1, fr_NH2, fr_COO,
fr_priamide, fr_guanido, fr_imidazole, fr_phenol,
fr_Al_OH, fr_C_O, fr_ether, fr_alkyl_halide,
fr_unbrch_alkane, fr_aryl_methyl, fr_benzene, fr_ester,
fr_ketone, fr_methoxy, fr_sulfide, fr_sulfonamd

S4. Training Setup and Efficiency339

Pretraining hyperparameters are outlined in Table S4.340

S5. Downstream Finetuning Protocol341

S5.1 Avoiding data leakage342

The pretraining data used in this study only contained linear, natural peptides. All finetuning data343

was either cyclic or modified peptides. This avoids any chance of data leakage from pretraining to344

evaluation datasets.345
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Table S4: Pretraining hyperparameters.

Setting Value

Architecture BERT-style encoder (Small/Base/Large)
Parameters 32M, 114M, 337M
Tokenizer kmer SMILES (vocab: 405)
Max sequence length 2048
Batch size 512 seqs (global)
Optimizer AdamW
AdamW (β1, β2, ϵ) (0.9, 0.999, 1e−8)
Weight decay 0.01
Learning rate (peak) 3e−4
LR schedule Cosine decay with linear warmup
Warmup steps 5,000
Training steps 100k
Dropout (attn/ffn) 0.1 / 0.1
Masking rate (MLM) 25%
Span masking N (µ=3.5, σ=1) spans
MTR heads 2-layer MLP, SiLU, mean-pooled embedding
Regression targets 99 RDKit descriptors (normalized)
Loss weights λMLM = 0.6, λMTR = 0.4
Precision bfloat16
Gradient clipping 0.1
Gradient accumulation 1–8 (as needed for memory)
Data aug. RDKit randomized SMILES

S5.2 Nested CV & ensembling diagram346

The fine-tuning process utilized a nested cross-validation approach to enhance the model’s perfor-347

mance on downstream tasks involving labeled data. This method entails two levels of cross-validation,348

an outer loop and an inner loop.349

Outer Loop: In the outer loop, a specified portion of the dataset is designated as a fixed holdout test350

set. This test set remains untouched throughout the training process to provide an unbiased evaluation351

of the model’s performance on unseen data.352

Inner Loop: The inner loop focuses on training the model by sequentially holding out each non-test353

fold of the data. This entails splitting the remaining data into multiple partitions, training the model on354

a combination of these partitions, and validating its performance on the held-out partition. The inner355

loop’s design permits the systematic assessment of model performance across various training subsets,356

ensuring that the model is robust and generalizes well. This nested structure of cross-validation not357

only allows for effective validation of model performance but also aids in early stopping to mitigate358

overfitting. Early stopping was conducted by monitoring validation loss and terminating training359

when performance ceases to improve for 5 validation steps (or 50% of an epoch).360

Model checkpoints are established for each fold based on validation loss, ensuring that the best-361

performing model configuration is retained for subsequent predictions. The final predictions for each362

test instance are generated by averaging outputs from the ensemble of models trained across all folds.363

To ensure consistency and robustness in results, the fine-tuning procedure for each model is repeated364

three times. Performance metrics, including mean and standard error, are reported across these365

replicates to provide a comprehensive evaluation of the model’s performance and variability.366

S5.3 Finetuning Hyperparameters367

Finetuning hyperparameters are detailed in Table S5.368
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Table S5: Finetuning hyperparameters (nested CV + ensembling).

Setting Value *(Small, Base, Large)

Task heads Regression / Binary classification
Loss MSE (regression), Binary CEL (classification)
Batch size 16, 16, 32*
Learning rate 3e−4, 1e−4, 5e−5*
Optimizer AdamW
Weight decay 0.01
LR schedule No decay; no warmup
Dropout (head) 0.1
Max epochs (per fold) 10
Evaluation 20% epoch (early stopping patience 3)
CV scheme Outer holdout + inner K-fold (K=5)
Ensembling Mean of checkpoints across inner folds
Class imbalance Equal sampling across bins
Input length No truncations required
Replicates 3 (report mean ± std)

S6. Ablations369

We performed ablations to isolate the effects of tokenizer choice, masking strategy, and model370

size on downstream performance. All experiments used identical training protocols and nested371

cross-validation.372

S6.1 Tokenization Strategy373

We compared the kmer tokenizer against a standard atomistic tokenizer. At small scale, both374

approaches achieved comparable accuracy, but atomistic tokenization resulted in significantly longer375

sequences, increasing computational cost. The kmer tokenizer offered more compact representations376

that enabled faster training and better scaling at larger model sizes.377

S6.2 Masking Strategy378

Random token masking was compared with span masking drawn from a Gaussian distribution379

(µ = 3.5, σ = 1). Span masking consistently produced higher mean performance and reduced380

variance across replicates. The improvement suggests that masking chemically coherent spans helps381

the model learn peptide motifs more effectively than masking isolated tokens.382

S6.3 Model Size383

Scaling model parameters from 32M (Small) to 337M (Large) yielded steady improvements across384

regression and classification metrics. While performance continued to increase with size, gains385

diminished at the largest scale, indicating dataset variability rather than model capacity may be the386

limiting factor.387

S7. Reproducibility388

Three model weights for small, base, and large are released on huggingface at389

https://huggingface.co/subm-123abc. Required compute for training is outlined in Table S6.390

S8. Broader Impacts (Extended Discussion)391

S8.1 Positive Applications392

Peptide-based therapeutics are an important and growing drug class, with applications in areas such393

as oncology, metabolic disease, and antimicrobial design. By developing a foundation model that394

accommodates noncanonical residues and chemical modifications, PEPTIDEMTR has the potential395

to accelerate early-stage drug discovery. In particular, improved predictive models can help reduce396

12



Table S6: Compute resources, all used in cloud, by stage. (* = including unsuccessful
runs/hyperparam sweeps/ablation grid)

Stage GPU Hardware VRAM GPU hours/model Precision

Pretraining (Small) 8xH100 80GB 40 bf16-mixed
Pretraining (Base) 8xH100 80GB 96 bf16-mixed
Pretraining (Large) 8xH100 80GB 192 bf16-mixed
Finetune: Permeability 1xH100 80GB <1 bf16-mixed
Finetune: Fibrillation 1xH200 120GB <1 bf16-mixed
Finetune: Albumin binding 1xH200 120GB <1 bf16-mixed

Est. Total GPU hours* 10,000

experimental costs, prioritize promising candidates, and decrease animal use in preclinical testing.397

Beyond drug discovery, peptide-specific embeddings may also enable advances in materials science398

(e.g., peptide-based biomaterials) and fundamental research into sequence–structure relationships.399

S8.2 Limitations and Risks400

While the model captures symbolic and physicochemical features of peptides, it does not incorporate401

explicit 3D structural information. As a result, its predictions are limited to coarse molecular402

properties rather than detailed biophysical mechanisms. Moreover, the training data are drawn403

from publicly available corpora that may contain errors, imbalances, or biases; these limitations can404

propagate into downstream predictions.405

S8.3 Dual-Use Considerations406

As with any generative or predictive model for biomolecules, there is some risk of misuse, such as the407

design of harmful peptides. Several mitigating factors reduce this concern: (i) the model is trained408

only on public corpora, (ii) it focuses on coarse physicochemical descriptors rather than activity409

labels, and (iii) it is intended for transfer learning rather than end-to-end generation of bioactive410

sequences. Nevertheless, careful consideration should be given to responsible release, including411

dataset documentation, usage terms, and community guidelines.412

S8.4 Equity and Access413

Foundation models require substantial computational resources to train. This raises concerns about414

equitable access, as smaller labs or groups without cloud resources may face barriers to adoption. To415

mitigate this, we are releasing trained checkpoints, tokenizers, and code to enable broader use by the416

community without the need for large-scale compute.417

S8.5 Conclusion418

Overall, we believe that the potential benefits of PEPTIDEMTR outweigh the risks. We encourage the419

community to adopt careful release practices and to consider downstream applications responsibly.420
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Figure S3: Violin plots depict the density of predicted values for fibril-forming versus non-fibril-
forming peptides across three models: Small, Base, and Large. Each subplot shows distinct distribu-
tion profiles with varying overlap. The width of each violin indicates the density of predicted values,
illustrating significant differences in prediction behavior across model sizes.
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NeurIPS Paper Checklist421

1. Claims422

Question: Do the main claims made in the abstract and introduction accurately reflect the423

paper’s contributions and scope?424

Answer: [Yes]425

Justification: The main claims, denoted i, ii, and iii in the abstract are reflect the main contri-426

butions of this work to the field. Evaluations of these contributions are in the experiments.427

Guidelines:428

• The answer NA means that the abstract and introduction do not include the claims429

made in the paper.430

• The abstract and/or introduction should clearly state the claims made, including the431

contributions made in the paper and important assumptions and limitations. A No or432

NA answer to this question will not be perceived well by the reviewers.433

• The claims made should match theoretical and experimental results, and reflect how434

much the results can be expected to generalize to other settings.435

• It is fine to include aspirational goals as motivation as long as it is clear that these goals436

are not attained by the paper.437

2. Limitations438

Question: Does the paper discuss the limitations of the work performed by the authors?439

Answer: [Yes]440

Justification: Limitations are outlined in the conclusion of the paper and highlight future441

work that could aid in solving some of the limitations.442

Guidelines:443

• The answer NA means that the paper has no limitation while the answer No means that444

the paper has limitations, but those are not discussed in the paper.445

• The authors are encouraged to create a separate "Limitations" section in their paper.446

• The paper should point out any strong assumptions and how robust the results are to447

violations of these assumptions (e.g., independence assumptions, noiseless settings,448

model well-specification, asymptotic approximations only holding locally). The authors449

should reflect on how these assumptions might be violated in practice and what the450

implications would be.451

• The authors should reflect on the scope of the claims made, e.g., if the approach was452

only tested on a few datasets or with a few runs. In general, empirical results often453

depend on implicit assumptions, which should be articulated.454

• The authors should reflect on the factors that influence the performance of the approach.455

For example, a facial recognition algorithm may perform poorly when image resolution456

is low or images are taken in low lighting. Or a speech-to-text system might not be457

used reliably to provide closed captions for online lectures because it fails to handle458

technical jargon.459

• The authors should discuss the computational efficiency of the proposed algorithms460

and how they scale with dataset size.461

• If applicable, the authors should discuss possible limitations of their approach to462

address problems of privacy and fairness.463

• While the authors might fear that complete honesty about limitations might be used by464

reviewers as grounds for rejection, a worse outcome might be that reviewers discover465

limitations that aren’t acknowledged in the paper. The authors should use their best466

judgment and recognize that individual actions in favor of transparency play an impor-467

tant role in developing norms that preserve the integrity of the community. Reviewers468

will be specifically instructed to not penalize honesty concerning limitations.469

3. Theory assumptions and proofs470

Question: For each theoretical result, does the paper provide the full set of assumptions and471

a complete (and correct) proof?472
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Answer: [NA]473

Justification: The paper does not include theoretical results; therefore, a full set of assump-474

tions and proofs are not applicable.475

Guidelines:476

• The answer NA means that the paper does not include theoretical results.477

• All the theorems, formulas, and proofs in the paper should be numbered and cross-478

referenced.479

• All assumptions should be clearly stated or referenced in the statement of any theorems.480

• The proofs can either appear in the main paper or the supplemental material, but if481

they appear in the supplemental material, the authors are encouraged to provide a short482

proof sketch to provide intuition.483

• Inversely, any informal proof provided in the core of the paper should be complemented484

by formal proofs provided in appendix or supplemental material.485

• Theorems and Lemmas that the proof relies upon should be properly referenced.486

4. Experimental result reproducibility487

Question: Does the paper fully disclose all the information needed to reproduce the main ex-488

perimental results of the paper to the extent that it affects the main claims and/or conclusions489

of the paper (regardless of whether the code and data are provided or not)?490

Answer: [Yes]491

Justification: All model architectures, pretraining hyperparameters & data, and model492

weights are released. Hyperparameters and methods for finetuning are also outlined in detail493

in both the main text and in the supplement.494

Guidelines:495

• The answer NA means that the paper does not include experiments.496

• If the paper includes experiments, a No answer to this question will not be perceived497

well by the reviewers: Making the paper reproducible is important, regardless of498

whether the code and data are provided or not.499

• If the contribution is a dataset and/or model, the authors should describe the steps taken500

to make their results reproducible or verifiable.501

• Depending on the contribution, reproducibility can be accomplished in various ways.502

For example, if the contribution is a novel architecture, describing the architecture fully503

might suffice, or if the contribution is a specific model and empirical evaluation, it may504

be necessary to either make it possible for others to replicate the model with the same505

dataset, or provide access to the model. In general. releasing code and data is often506

one good way to accomplish this, but reproducibility can also be provided via detailed507

instructions for how to replicate the results, access to a hosted model (e.g., in the case508

of a large language model), releasing of a model checkpoint, or other means that are509

appropriate to the research performed.510

• While NeurIPS does not require releasing code, the conference does require all submis-511

sions to provide some reasonable avenue for reproducibility, which may depend on the512

nature of the contribution. For example513

(a) If the contribution is primarily a new algorithm, the paper should make it clear how514

to reproduce that algorithm.515

(b) If the contribution is primarily a new model architecture, the paper should describe516

the architecture clearly and fully.517

(c) If the contribution is a new model (e.g., a large language model), then there should518

either be a way to access this model for reproducing the results or a way to reproduce519

the model (e.g., with an open-source dataset or instructions for how to construct520

the dataset).521

(d) We recognize that reproducibility may be tricky in some cases, in which case522

authors are welcome to describe the particular way they provide for reproducibility.523

In the case of closed-source models, it may be that access to the model is limited in524

some way (e.g., to registered users), but it should be possible for other researchers525

to have some path to reproducing or verifying the results.526
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5. Open access to data and code527

Question: Does the paper provide open access to the data and code, with sufficient instruc-528

tions to faithfully reproduce the main experimental results, as described in supplemental529

material?530

Answer: [Yes]531

Justification: We made every effort to release all available resources to facilitate reproduction532

of the main experimental results. Model weights and open datasets, specifically the cyclic533

peptide PAMPA data, are made available. However, one dataset used for further evaluation534

of the model is unavailable due to proprietary intellectual property restrictions. We believe535

the resources to reproduce the main evaluation on PAMPA data are sufficient for evaluating536

model performance.537

Guidelines:538

• The answer NA means that paper does not include experiments requiring code.539

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/540

public/guides/CodeSubmissionPolicy) for more details.541

• While we encourage the release of code and data, we understand that this might not be542

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not543

including code, unless this is central to the contribution (e.g., for a new open-source544

benchmark).545

• The instructions should contain the exact command and environment needed to run to546

reproduce the results. See the NeurIPS code and data submission guidelines (https:547

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.548

• The authors should provide instructions on data access and preparation, including how549

to access the raw data, preprocessed data, intermediate data, and generated data, etc.550

• The authors should provide scripts to reproduce all experimental results for the new551

proposed method and baselines. If only a subset of experiments are reproducible, they552

should state which ones are omitted from the script and why.553

• At submission time, to preserve anonymity, the authors should release anonymized554

versions (if applicable).555

• Providing as much information as possible in supplemental material (appended to the556

paper) is recommended, but including URLs to data and code is permitted.557

6. Experimental setting/details558

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-559

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the560

results?561

Answer: [Yes]562

Justification: Yes, the paper specifies all relevant training and testing details, including data563

splits, hyperparameters, the method for their selection, and the type of optimizer used. This564

information is presented to ensure a comprehensive understanding of the results.565

Guidelines:566

• The answer NA means that the paper does not include experiments.567

• The experimental setting should be presented in the core of the paper to a level of detail568

that is necessary to appreciate the results and make sense of them.569

• The full details can be provided either with the code, in appendix, or as supplemental570

material.571

7. Experiment statistical significance572

Question: Does the paper report error bars suitably and correctly defined or other appropriate573

information about the statistical significance of the experiments?574

Answer: [Yes]575

Justification: In our experiments, we conducted triplicate fine-tuning with random seed to576

ensure the reliability of our results. We report the standard error of the mean (SEM) for each577

model evaluated, providing a clear depiction of variability within our data.578
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Guidelines:579

• The answer NA means that the paper does not include experiments.580

• The authors should answer "Yes" if the results are accompanied by error bars, confi-581

dence intervals, or statistical significance tests, at least for the experiments that support582

the main claims of the paper.583

• The factors of variability that the error bars are capturing should be clearly stated (for584

example, train/test split, initialization, random drawing of some parameter, or overall585

run with given experimental conditions).586

• The method for calculating the error bars should be explained (closed form formula,587

call to a library function, bootstrap, etc.)588

• The assumptions made should be given (e.g., Normally distributed errors).589

• It should be clear whether the error bar is the standard deviation or the standard error590

of the mean.591

• It is OK to report 1-sigma error bars, but one should state it. The authors should592

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis593

of Normality of errors is not verified.594

• For asymmetric distributions, the authors should be careful not to show in tables or595

figures symmetric error bars that would yield results that are out of range (e.g. negative596

error rates).597

• If error bars are reported in tables or plots, The authors should explain in the text how598

they were calculated and reference the corresponding figures or tables in the text.599

8. Experiments compute resources600

Question: For each experiment, does the paper provide sufficient information on the com-601

puter resources (type of compute workers, memory, time of execution) needed to reproduce602

the experiments?603

Answer: [Yes]604

Justification: Yes, the supplementary table provides detailed information on the computer605

resources required for each experiment, including the type of compute resources used and606

memory specifications, supporting reproducibility.607

Guidelines:608

• The answer NA means that the paper does not include experiments.609

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,610

or cloud provider, including relevant memory and storage.611

• The paper should provide the amount of compute required for each of the individual612

experimental runs as well as estimate the total compute.613

• The paper should disclose whether the full research project required more compute614

than the experiments reported in the paper (e.g., preliminary or failed experiments that615

didn’t make it into the paper).616

9. Code of ethics617

Question: Does the research conducted in the paper conform, in every respect, with the618

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?619

Answer: [Yes]620

Justification: No human subjects; all datasets are public and used under their licenses; we621

considered dual-use and document mitigations in appendix.622

Guidelines:623

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.624

• If the authors answer No, they should explain the special circumstances that require a625

deviation from the Code of Ethics.626

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-627

eration due to laws or regulations in their jurisdiction).628

10. Broader impacts629
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Question: Does the paper discuss both potential positive societal impacts and negative630

societal impacts of the work performed?631

Answer: [Yes]632

Justification: We discuss the potential positive societal impacts of our chemical language633

model for peptides, such as advancements in drug discovery and personalized medicine,634

while also acknowledging the ethical concerns and negative societal impacts, particularly635

regarding dual-use risks.636

Guidelines:637

• The answer NA means that there is no societal impact of the work performed.638

• If the authors answer NA or No, they should explain why their work has no societal639

impact or why the paper does not address societal impact.640

• Examples of negative societal impacts include potential malicious or unintended uses641

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations642

(e.g., deployment of technologies that could make decisions that unfairly impact specific643

groups), privacy considerations, and security considerations.644

• The conference expects that many papers will be foundational research and not tied645

to particular applications, let alone deployments. However, if there is a direct path to646

any negative applications, the authors should point it out. For example, it is legitimate647

to point out that an improvement in the quality of generative models could be used to648

generate deepfakes for disinformation. On the other hand, it is not needed to point out649

that a generic algorithm for optimizing neural networks could enable people to train650

models that generate Deepfakes faster.651

• The authors should consider possible harms that could arise when the technology is652

being used as intended and functioning correctly, harms that could arise when the653

technology is being used as intended but gives incorrect results, and harms following654

from (intentional or unintentional) misuse of the technology.655

• If there are negative societal impacts, the authors could also discuss possible mitigation656

strategies (e.g., gated release of models, providing defenses in addition to attacks,657

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from658

feedback over time, improving the efficiency and accessibility of ML).659

11. Safeguards660

Question: Does the paper describe safeguards that have been put in place for responsible661

release of data or models that have a high risk for misuse (e.g., pretrained language models,662

image generators, or scraped datasets)?663

Answer: [NA]664

Justification: The paper does not involve personal information or datasets that pose signifi-665

cant risks of misuse. Given the very low likelihood of dangerous applications arising from666

our model, no additional safeguards are necessary for its release.667

Guidelines:668

• The answer NA means that the paper poses no such risks.669

• Released models that have a high risk for misuse or dual-use should be released with670

necessary safeguards to allow for controlled use of the model, for example by requiring671

that users adhere to usage guidelines or restrictions to access the model or implementing672

safety filters.673

• Datasets that have been scraped from the Internet could pose safety risks. The authors674

should describe how they avoided releasing unsafe images.675

• We recognize that providing effective safeguards is challenging, and many papers do676

not require this, but we encourage authors to take this into account and make a best677

faith effort.678

12. Licenses for existing assets679

Question: Are the creators or original owners of assets (e.g., code, data, models), used in680

the paper, properly credited and are the license and terms of use explicitly mentioned and681

properly respected?682
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Answer: [Yes]683

Justification: All credit for databases was given through citation. All data that is made684

available was previously released open source. Examples are PubChem, ESMAtlas, LMSD,685

and SmProt. All code is newly developed.686

Guidelines:687

• The answer NA means that the paper does not use existing assets.688

• The authors should cite the original paper that produced the code package or dataset.689

• The authors should state which version of the asset is used and, if possible, include a690

URL.691

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.692

• For scraped data from a particular source (e.g., website), the copyright and terms of693

service of that source should be provided.694

• If assets are released, the license, copyright information, and terms of use in the695

package should be provided. For popular datasets, paperswithcode.com/datasets696

has curated licenses for some datasets. Their licensing guide can help determine the697

license of a dataset.698

• For existing datasets that are re-packaged, both the original license and the license of699

the derived asset (if it has changed) should be provided.700

• If this information is not available online, the authors are encouraged to reach out to701

the asset’s creators.702

13. New assets703

Question: Are new assets introduced in the paper well documented and is the documentation704

provided alongside the assets?705

Answer: [Yes]706

Justification: Yes, appendix contains pretraining information, links to datasets used in707

pretraining, and license will be released as MIT open source with final released under708

the (currently anonymous) user https://huggingface.co/subm-123abc. Current huggingface709

release is anonymized and temporary for double-blind submission.710

Guidelines:711

• The answer NA means that the paper does not release new assets.712

• Researchers should communicate the details of the dataset/code/model as part of their713

submissions via structured templates. This includes details about training, license,714

limitations, etc.715

• The paper should discuss whether and how consent was obtained from people whose716

asset is used.717

• At submission time, remember to anonymize your assets (if applicable). You can either718

create an anonymized URL or include an anonymized zip file.719

14. Crowdsourcing and research with human subjects720

Question: For crowdsourcing experiments and research with human subjects, does the paper721

include the full text of instructions given to participants and screenshots, if applicable, as722

well as details about compensation (if any)?723

Answer: [NA]724

Justification: No human subjects were used in this work.725

Guidelines:726

• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Including this information in the supplemental material is fine, but if the main contribu-729

tion of the paper involves human subjects, then as much detail as possible should be730

included in the main paper.731

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,732

or other labor should be paid at least the minimum wage in the country of the data733

collector.734
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15. Institutional review board (IRB) approvals or equivalent for research with human735

subjects736

Question: Does the paper describe potential risks incurred by study participants, whether737

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)738

approvals (or an equivalent approval/review based on the requirements of your country or739

institution) were obtained?740

Answer: [NA]741

Justification: No human subjects were used in this work.742

Guidelines:743

• The answer NA means that the paper does not involve crowdsourcing nor research with744

human subjects.745

• Depending on the country in which research is conducted, IRB approval (or equivalent)746

may be required for any human subjects research. If you obtained IRB approval, you747

should clearly state this in the paper.748

• We recognize that the procedures for this may vary significantly between institutions749

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the750

guidelines for their institution.751

• For initial submissions, do not include any information that would break anonymity (if752

applicable), such as the institution conducting the review.753

16. Declaration of LLM usage754

Question: Does the paper describe the usage of LLMs if it is an important, original, or755

non-standard component of the core methods in this research? Note that if the LLM is used756

only for writing, editing, or formatting purposes and does not impact the core methodology,757

scientific rigorousness, or originality of the research, declaration is not required.758

Answer: [NA]759

Justification: Use of LLMs were not an important/original component of this work.760

Guidelines:761

• The answer NA means that the core method development in this research does not762

involve LLMs as any important, original, or non-standard components.763

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)764

for what should or should not be described.765
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