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Abstract

Foundation models for molecular science have significantly impacted small-
molecule and protein modeling, however there is a lack of models able to encode
therapeutic peptides. Existing chemical language models often operate with short
context windows, while protein language models are limited to canonical amino
acids and struggle with nonnatural residues, modifications, or cyclizations. We
present PeptideMTR, a SMILES-based foundation model with multimodal pretrain-
ing via descriptor alignment. PeptideMTR couples masked language modeling with
an auxiliary regression objective to RDKit-derived physicochemical descriptors,
aligning symbolic sequence representations with continuous chemical properties.
Our contributions are threefold: (i) a kmer tokenizer tailored to chemically co-
herent fragments and peptide motifs, (ii) a dual-objective pretraining scheme that
unifies symbolic and numeric modalities, and (iii) an empirical study of the impact
scaling from 32M to 337M parameters has on predicting peptide permeability
and aggregation. PeptideMTR consistently outperforms fingerprint baselines and
MLM-only pretraining, demonstrating that multimodal pretraining yields richer
peptide representations.

1 Introduction

Peptides are an increasingly important therapeutic class [[1, 2} 3] 14} 5, 6], occupying an intermediate
size range that falls between small molecules and proteins. Drug-like peptides frequently include
noncanonical residues [[7]], cyclization [8, 9], and backbone/side-chain modifications [[10]. These
features challenge standard machine-learning toolkits: protein language models are tied to amino-acid
alphabets and are unable to incorporate non-canonical amino acids [[11], and chemical language
models trained on small molecules require adaptation to peptide-specific motifs and long-range
interactions beyond steric hindrance [12, [13]].

Most prior work treats representation learning as single-modal, focused on either discrete sequence
modeling or purely numeric descriptors. For peptides, however, useful representations must reconcile
symbolic sequence context with continuous physicochemical behavior. We address this by coupling a
SMILES tokenizer tailored to chemically coherent peptide fragments with a dual pretraining objective
that aligns sequence predictions with molecule-level properties.

We introduce PeptideM TR, a BERT-style encoder [14]] trained with a dual objective: masked language
modeling (MLM) over kmer SMILES tokens and multi-task regression (MTR) [[15]] to RDK:it [[16]]
computed physicochemical descriptors. This blended pretraining ties local sequence syntax to global
chemical attributes, yielding embeddings that transfer to peptide property prediction. We study
scaling from 32M to 337M parameters and perform ablations over tokenizer, masking strategy, and
the inclusion of MTR. Empirically, PeptideMTR outperforms fingerprint baselines on multiple peptide
endpoints, improves over MLM-only pretraining, and achieves results that outclass prior literature.
Pretrained models of small, base, and large are availabe at https://huggingface.co/subm-123abc.
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2 Related work

2.1 Protein Language Models

Large-scale corpora such as UniProt [17] have enabled the training of protein language models
(pLMs) at the scale of hundreds of millions to billions of sequences. Representative models include
the ESM-family of models [18,19,[20] and ProtTrans [21], demonstrating that self-supervised training
objectives on large sequence databases can produce embeddings informative of protein structure
and function. It is hypothesized that MLM provides a method to learn long-range dependencies and
implicit biophysical constraints [22]. Beyond MLM, other pretraining strategies such as autoregressive
objectives [23]], contrastive learning [24} 25]], multi-task pretraining [26]], and multi-model inputs [20]]
have been explored. Finetuned pLMs achieve strong results on tasks including secondary-structure
prediction [27], mutation-effect estimation [28| |29]], protein-protein interaction [30]], and protein
structure prediction [[19].

2.2 Chemical Language Models (CLMs)

Chemical language models (CLMs) apply sequence modeling to small molecules, with examples
such as SMILES-BERT [31]], ChemBERTa [32} 33]], and MoLFormer [34]. Transformer-based CLMs
leverage string notations (e.g., SMILES, SELFIES) to represent molecules in a tokenizable form
[35,136]. Pretraining adopts NLP-style objectives, MLM or auto-regressive modeling, applied to large
molecular databases like PubChem [37]]. Multi-task regression (MTR) for CLMs was introduced
in ChemBERTa-2 [32]], predicting molecular properties for compounds during pretraining, and
resulting in improvements over MLM pretraining. A CLM pre-trained on both small molecules and
peptides, PeptideCLM [38]], demonstrated that SMILES-based CLMs can capture sequence—structure
relationships relevant to membrane interactions for cyclic peptides. We acknowledge the large field
of molecular graph representations, but do not cover it in this work.

3 Methods

3.1 Kmer Tokenization Strategy

Based on peptide tokenization methods in PeptideCLM [38]] and the concepts from SmilesPE [39],
we built a peptide tokenizer with a smaller vocabulary than related work and a higher compression
ratio than a simple atomistic tokenizer. We first created a pretokenizer able to identify individual
atoms. This included Br/Cl as separate from B/C and bracketed text, denoting chirality or ionic
charge (e.g., [N+] or [C@ @H]). We then evaluated all kmers of up to 6 characters from 200,000
small molecules from PubChem and ChEMBL and 200,000 peptides from SmProt [40]. We filtered
this list to select for the highest occurring kmers that followed several rules (Table[T)), resulting in 160
single atom tokens and 405 total tokens. Improved tokenization compression was achieved with our
kmer tokenizer compared to the DeepChem tokenizer [41]]. This method provides a 62% reduction in
encoding length for a random sample of 10,000 small molecules from PubChem, and a 36% reduction
for a random sample of 10,000 peptides from ESMAtlas (Figure[S2)).

Table 1: Filtering rules applied during construc-  Table 2: Transformer encoder configurations for

tion of the kmer vocabulary. three sizes of models.
# Remove tokens: Model Small Base Large
1 with numbers Layers ({) 14 24 32
2 that start with *)° Hidden dim. (d) 512 768 1024
3 thatend with *> (° FF dim. 768 1024 2048
4  that contain *)*’ w/o a leading ’>* (’ Heads (h) 8 12 16
5  with more than 4 atom characters Max length 2048 2048 2048
6  with fewer than 1,000 occurrences Parameters 32M 114M  33™
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3.2 BERT-style Model Architecture

Our model follows a BERT-style transformer encoder. SMILES strings are tokenized with the kmer
vocabulary and embedded into d dimensions. Each of [ layers contains multi-head self-attention with
rotational embeddings, SwiGLU feed-forward layers, Pre-LN normalization, residuals, and dropout.
We trained three model sizes: small (32M), base (114M), and large (337M), with hidden dimension d
scaling with model size and h attention heads, each with a dimension of 64 (Table .

3.3 MLM and MTR Pretraining

Pretraining datasets (Table [ST) included PubChem, ESMAtlas and LMSD (Figure [ST). Pubchem
was filtered to remove molecules shorter than 20 characters and molecules containing silicon chains.
Peptides included ESMAtlas [19] clustered at 30% sequence similarity, > 0.7 pTM and pLDDT, and
length under 100 AA. Lipids were included from LMSD [42]. Balanced sampling per epoch was
introduced, with lipids upsampled to 250k, peptides included the full dataset of nearly 10M, and
small molecules down sampled to 10M.

Masked language modeling (MLM) was performed with a 25% masking rate either randomly selected
or in multiple spans drawn from a Gaussian distribution (¢ = 3.5, o = 1), with all selected sites
replaced by the [MASK] token [43]]. For multi-task regression (MTR), on the same masked input
in parallel, an MTR head (two fully-connected layers with SiLU [44] activation) using a mean-
pooled sequence embedding to predict physicochemical properties. The properties were a set of 99
normalized physicochemical descriptors computed by RDKit (Table [S3). We selected a subset of the
total RDKit descriptors available based on run speed and features important for peptide chemistry.
The total loss combined MLM and MTR as a weighted sum:

L = Avim - Lvim + Amtr - LmTR,

with weights set as Ayipy = 0.6 and Ayrr = 0.4, to balance convergence speed and downstream
performance. SMILES strings were randomly canonicalized for improved generalization [45]].

3.4 Finetuning for Downstream Prediction of Labeled Data

Finetuning was conducted using nested cross-validation, where an outer loop established a fixed
holdout test set and an inner loop trained ensembles by sequentially holding out each non-test fold,
as previously described [38]. This approach mimics prediction on unseen data, allowing for early
stopping to prevent overfitting to the test distribution. Model checkpoints were selected by validation
loss, and final predictions were an average of outputs from the ensemble. Finetuning for each model
was repeated three times with performance reported as the mean and standard error across replicates.

4 Experiments

4.1 Effect of Tokenization, Pretraining Objective, Masking Strategy, and Model Scale on
Prediction of Membrane Permeation for Cyclic Peptides

Effects of pretraining on downstream finetuning were assessed with a dataset of measured membrane
permeability for cyclic peptides [46]. Results show a marked increase in performance when using
MTR in addition to MLM (Table[3). At small scale (32M parameters), atomistic tokenization using the
DeepChem tokenizer matched the performance of kmer tokenization but had a higher computational
cost due to an increased number of tokens. Span masking consistently outperformed random masking
across larger model sizes (base/large), suggesting that masking longer contiguous fragments enables
the model to better capture peptide motifs. Additionally, models trained with span masking had lower
variance across multiple finetuning runs than models with random masking.

Scaling model parameters from 32M to 337M yielded steady improvements across all metrics (Table
[3). While performance continued to increase with size on the cyclic peptide data, gains diminished at
the largest scale, suggesting that dataset variance rather than model capacity becomes the limiting
factor. The 337M span-masked model achieved the strongest results overall and outperformed
PeptideCLM and ChemBERTa-2, which achieved AUROC of 0.78 and 0.74 on the same dataset in a
previous study [38].
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Table 3: Ablation studies of PeptideMTR models on cyclic peptide permeability prediction, in
ascending order by AUROC. (* model randomly initialized prior to finetuning.)

Size  Tokenizer ~Masking MTR | RZ1 RMSE| AUROCT AUPRC 1
Small Kmer * * —0.08+.03 0.80+.01 0.64+.01 0.67+.01
Small Kmer Span No 0.13£.09 0.72+.03 0.68+£.01 0.69=£.01
Small Kmer Random  Yes 0.24+.08 0.68+.04 0.70£.02 0.74+.01
Small Kmer Span Yes 0.23+.05 0.68+.02 0.70+.01 0.74+.01

Small Atom Random  Yes 025+.06 067+.03 0.714+.01 0.74+.01
Base Kmer Random  Yes 0.39 £+ .09 0.59+.04 0.79+.01 0.77x.01

Base Kmer Span Yes 0.52£.02 054+.01 081+£.01 0.78*.01
Large Kmer Random  Yes 0.57£.04 051+.03 0.83+£.01 0.81+.01
Large Kmer Span Yes 058+.01 050+.01 0.83+.00 0.81+.00

4.2 Predicting Peptide Aggregation

To further evaluate the applicability of the model to drug-like peptides, we finetuned the model
to predict aggregation of chemically-modified linear peptides based on ThT assay data [47]. We
compared the finetuned model against predictions from Morgan fingerprints [48] with a matching
regression head (Table [d). ChemBERTa models will not work for these datasets as the length of
the peptide SMILES is too large for the model context window. PeptideMTR outperformed the
fingerprint baseline, with performance improving as model size increased (Figure [S3). These results
indicate that PeptideMTR learns transferable representations that generalize to important peptide
endpoints, surpassing handcrafted descriptors.

Table 4: Performance of PeptideMTR compared to Morgan fingerprint baseline on prediction of
peptide fibrillation. Results are mean of three runs on random seeds with standard error.

Dataset/Target \ MFP Small Base Large
Peptide Fibrillation (AUROC) | 0.57 £0.003 0.71+0.004 0.76 +0.004 0.83 £ 0.003

5 Limitations and Broader Impacts

While this work demonstrates the utility of the developed models, several limitations remain. First,
the models rely on SMILES encodings, which lack direct higher-order structure often critical for
peptide activity. Second, the regression head is trained against a restricted set of RDKit-derived
physicochemical descriptors. These descriptors omit peptide-specific features such as conformational
flexibility, secondary-structure propensity, or solvent accessibility. Finally, our models are modest in
size and may show improved performance with an increased parameter count.

Despite these limitations, our results highlight the potential of foundation models focused on peptide
chemistry. By jointly modeling SMILES sequences and continuous chemical descriptors, Pep-
tideMTR demonstrates that multi-modal pretraining can improved representations for noncanonical
peptide chemistry. More broadly, this work illustrates how foundation models can extend beyond
canonical biomolecules, providing a roadmap for therapeutic peptide model development. While
PeptideMTR has the potential for positive societal impacts in drug discovery and medicine, it is
important to acknowledge the risk of dual-use concerns that may arise from its application.

6 Conclusions

We present PeptideMTR, a SMILES-based foundation model tailored for drug-like peptides that
combines a chemically informed tokenizer with multi-objective pretraining. The model captures long-
range dependencies, accommodates noncanonical residues, and produces transferable representations
that outperform traditional molecular fingerprints after finetuning. These results demonstrate that
peptide-specific language models can serve as a scalable and effective framework for advancing
peptide drug discovery.
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Appendix

S1. Datasets and Curation

All datasets were downloaded from the links in table [ST| All databases were passed through
RDKit, converted into a mol object, and then to a SMILES string. Any that failed were re-
moved. Molecules already represented in the database as SMILES strings were converted using
Chem.MolFromSmiles (Chem.MolToSmiles (SMILES)). Peptides represented as amino acid char-
acters were converted using Chem.MolFromSequence (Chem.MolToSmiles (AMINO_ACIDS)).
PubChem was filtered to remove any molecules that contained a SMILES string length of less than
20. A second filter was done to remove anything following a ’.” wholly contained in brackets (i.e.
CCO. [Br]). Leading or trailing Br and Cl (salts) were removed from all molecules. All remaining
lines with a ’.” were split into two lines. Then, any duplicates were removed. Any molecules with
a four silicon oxide repeat "[Si](=0)[Si](=0)[Si](=0)[Si](=0)" were removed. The resulting total
dataset size was 108,583,157

ESMAtlas was downloaded with the following prefilters: MGnify90 is clustered down to
30% sequence similarity with mmseqs easy-linclust -kmer-per-seq 100 -cluster-mode
2 -cov-mode 1 -c 0.8. Structures are filtered to > 0.7 pTM and pLDDT. Structures are sorted by
pTM * pLDDT and the best from each cluster is chosen as the representative.

We conducted further filtering to select sequences with 100 amino acids or less.

75 1
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h 0
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© 25
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LMSD
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-100 -50 0] 50 100

t-SNE1

Figure S1: Scatter plot of 10,000 sampled molecules from the three datasets used in pretraining.

Table S1: Datasets used in pretraining.

Dataset Modality Count Link

PubChem  Small molecules 108,583,157 jpubchem.ncbi.nlm.nih.gov
ESMAtlas Proteins / peptides 9,634,945 |ESMAtlas Link
LMSD Lipids 50k [lipidmaps.org/databases/Imsd



https://pubchem.ncbi.nlm.nih.gov
https://github.com/facebookresearch/esm/blob/main/scripts/atlas/README.md#high-confidence-mgnify30-structures
https://www.lipidmaps.org/databases/lmsd
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S2. Tokenizer

S2.1 Vocabulary and rules

Full description of tokenization methods are in Table [I] Full token list can be seen by loading
the tokenizer from https://huggingface.co/subm-123abc. Example tokens to highlight multi-atom
tokenization:

Table S2: Sample tokens from kmer tokenizer.

Tokens

=NC, #Cc, ¢(CO), n(C)c, n(C), CN=C, (CCO), CCO), C(C)N, C#C,
C(CC), CS(=0), NC(C), CSc, NN, CC(0), CNc, CCn

S2.2 Compression and efficiency

To measure the differences in tokenized length between a naive atomistic tokenizer and our kmer
strategy, we tokenized a random 10,000 peptides and a random 10,000 small molecules from the
pretraining datasets. Compression rate between atomistic and kmer tokenizer for peptides was 0.36
and for small molecules was 0.62.
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Figure S2: Comparison of tokenizers: (left) peptide length distribution, (b) small molecule length
distribution.

S3. Pretraining Objectives
S3.1 Masking distributions

The masking procedure employs a Gaussian distribution to determine the lengths of token spans to be
masked within sequences. Each sequence’s length is used to calculate the total number of tokens to
mask, based on a specified masking percentage.

For each sequence, the procedure samples span lengths with a mean of 3.5 and a standard deviation
of 1.0, ensuring a minimum span of 1 token. A random starting position is selected for each span, and
the end position is adjusted to prevent exceeding the sequence length. The process includes checking
for overlapping positions to avoid masking the same token multiple times.

Masked positions are updated with a specified mask token ID, and the operation continues until the
desired number of tokens is masked across all sequences.

S3.2 Descriptor head and targets

To produce logits for masked language modeling (MLM), a standard sequence head is applied to the
last layer of the transformer.

For the descriptor output, mean pooling is performed on the embedded representations. The embed-
dings corresponding to valid (non-padded) tokens are summed, and the total count of these tokens is
calculated. The mean of the embeddings is then computed by dividing the summed embeddings by the
count of valid tokens, ensuring that only meaningful tokens contribute to the descriptor representation.



sss The descriptors are predicted with an MTR head that is made of two full-connected layers. The first
337 is connected to a hidden vector of length that matches the embedding dimension. The second layer
s3s outputs a vector of length 99, matching that of the RDKit descriptors.

Table S3: RDKit Descriptors Organized by Type

Descriptor Type Descriptors

1. Topological Indices Chi0, ChiOn, ChiOv, Chil, Chiln,Chilv, Chi2n, Chi2v

2. Morgan Fingerprints FpDensityMorgan1, FpDensityMorgan2, FpDensityMor-
gan3

3. Kappa Indices Kappal, Kappa2, Kappa3

4. Molecular Properties ExactMolWt, MaxAbsPartialCharge, MaxPartialCharge,

MinAbsPartialCharge, MinPartialCharge, MolLogP,
MoIMR, MolWt

5. Structural Counts RingCount, HeavyAtomCount, Heavy AtomMolWt, Frac-
tionCSP3

6. SA Descriptor HallKierAlpha, LabuteASA, TPSA

7. Atom Count Descriptors NHOHCount, NOCount, NumHAcceptors, NumHDonors,
NumHeteroatoms

8. Ring Counts NumAliphaticCarbocycles, NumAliphaticHeterocycles,

NumAliphaticRings, NumAromaticCarbocycles, Nu-
mAromaticHeterocycles, NumAromaticRings

9. Electronic Descriptors NumRadicalElectrons, NumValenceElectrons

10. Rotatable Bonds NumRotatableBonds

11. Saturated Structure Counts NumSaturatedCarbocycles, NumSaturatedHeterocycles,
NumSaturatedRings

12. PEOE Descriptors PEOE_VSALI, PEOE_VSA2, PEOE_VSA3,
PEOE_VSAA4, PEOE_VSAS, PEOE_VSAG®,
PEOE_VSA7, PEOE_VSAS, PEOE_VSA9,

PEOE_VSAIOQ, PEOE_VSALI, PEOE_VSA12,
PEOE_VSAI13, PEOE_VSA14

13. SMR Descriptors SMR_VSAI1, SMR_VSA2, SMR_VSA3, SMR_VSAA4,
SMR_VSAS, SMR_VSA6, SMR_VSA7, SMR_VSAS,
SMR_VSA9, SMR_VSA10

14. SlogP Descriptors SlogP_VSAL, SlogP_VSA2, SlogP_VSA3, SlogP_VSA4,
SlogP_VSAS, SlogP_VSA®6, SlogP_VSA7, SlogP_VSAS,
SlogP_VSA9, SlogP_VSAIO, SlogP_VSAIL,
SlogP_VSAI12

15. Functional Groups fr_amide, fr NHO, fr NH1, fr NH2, fr_COO,
fr_priamide, fr_guanido, fr_imidazole, fr_phenol,
fr_Al_OH, fr_ C_O, fr_ether, fr_alkyl_halide,
fr_unbrch_alkane, fr_aryl_methyl, fr_benzene, fr_ester,
fr_ketone, fr_methoxy, fr_sulfide, fr_sulfonamd

339 S4. Training Setup and Efficiency

ss0 Pretraining hyperparameters are outlined in Table[S4]

341 S5. Downstream Finetuning Protocol
s42  S5.1 Avoiding data leakage
343 The pretraining data used in this study only contained linear, natural peptides. All finetuning data

344 was either cyclic or modified peptides. This avoids any chance of data leakage from pretraining to
a45 evaluation datasets.
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Table S4: Pretraining hyperparameters.

Setting Value

Architecture BERT-style encoder (Small/Base/Large)
Parameters 32M, 114M, 337M

Tokenizer kmer SMILES (vocab: 405)

Max sequence length 2048

Batch size 512 seqs (global)

Optimizer AdamW

AdamW (81, B2, €) (0.9,0.999, 1e—8)

Weight decay 0.01

Learning rate (peak) 3e—4

LR schedule Cosine decay with linear warmup
Warmup steps 5,000

Training steps 100k

Dropout (attn/ffn) 0.1/0.1

Masking rate (MLM) 25%

Span masking N(u=3.5,0=1) spans

MTR heads 2-layer MLP, SiLU, mean-pooled embedding
Regression targets 99 RDK:it descriptors (normalized)
Loss weights Avem = 0.6, Amrr = 0.4
Precision bfloat16

Gradient clipping 0.1

Gradient accumulation  1-8 (as needed for memory)

Data aug. RDKit randomized SMILES

S5.2 Nested CV & ensembling diagram

The fine-tuning process utilized a nested cross-validation approach to enhance the model’s perfor-
mance on downstream tasks involving labeled data. This method entails two levels of cross-validation,
an outer loop and an inner loop.

Outer Loop: In the outer loop, a specified portion of the dataset is designated as a fixed holdout test
set. This test set remains untouched throughout the training process to provide an unbiased evaluation
of the model’s performance on unseen data.

Inner Loop: The inner loop focuses on training the model by sequentially holding out each non-test
fold of the data. This entails splitting the remaining data into multiple partitions, training the model on
a combination of these partitions, and validating its performance on the held-out partition. The inner
loop’s design permits the systematic assessment of model performance across various training subsets,
ensuring that the model is robust and generalizes well. This nested structure of cross-validation not
only allows for effective validation of model performance but also aids in early stopping to mitigate
overfitting. Early stopping was conducted by monitoring validation loss and terminating training
when performance ceases to improve for 5 validation steps (or 50% of an epoch).

Model checkpoints are established for each fold based on validation loss, ensuring that the best-
performing model configuration is retained for subsequent predictions. The final predictions for each
test instance are generated by averaging outputs from the ensemble of models trained across all folds.

To ensure consistency and robustness in results, the fine-tuning procedure for each model is repeated
three times. Performance metrics, including mean and standard error, are reported across these
replicates to provide a comprehensive evaluation of the model’s performance and variability.

S5.3 Finetuning Hyperparameters

Finetuning hyperparameters are detailed in Table

11



369

370
371
372

373

374
375
376
377

378

380
381
382

383

384
385
386
387

388

389
390

391

Table S5: Finetuning hyperparameters (nested CV + ensembling).

Setting Value *(Small, Base, Large)

Task heads Regression / Binary classification

Loss MSE (regression), Binary CEL (classification)
Batch size 16, 16, 32*

Learning rate 3e—4, le—4, be—5*

Optimizer AdamW

Weight decay 0.01

LR schedule No decay; no warmup

Dropout (head) 0.1

Max epochs (per fold) 10

Evaluation

20% epoch (early stopping patience 3)

CV scheme Outer holdout + inner K-fold (K=5)
Ensembling Mean of checkpoints across inner folds
Class imbalance Equal sampling across bins

Input length No truncations required

Replicates 3 (report mean = std)

S6. Ablations

We performed ablations to isolate the effects of tokenizer choice, masking strategy, and model
size on downstream performance. All experiments used identical training protocols and nested
cross-validation.

S6.1 Tokenization Strategy

We compared the kmer tokenizer against a standard atomistic tokenizer. At small scale, both
approaches achieved comparable accuracy, but atomistic tokenization resulted in significantly longer
sequences, increasing computational cost. The kmer tokenizer offered more compact representations
that enabled faster training and better scaling at larger model sizes.

S6.2 Masking Strategy

Random token masking was compared with span masking drawn from a Gaussian distribution
(u = 3.5, 0 = 1). Span masking consistently produced higher mean performance and reduced
variance across replicates. The improvement suggests that masking chemically coherent spans helps
the model learn peptide motifs more effectively than masking isolated tokens.

S6.3 Model Size

Scaling model parameters from 32M (Small) to 337M (Large) yielded steady improvements across
regression and classification metrics. While performance continued to increase with size, gains
diminished at the largest scale, indicating dataset variability rather than model capacity may be the
limiting factor.

S7. Reproducibility

Three model weights for small, base, and large are released on huggingface at
https://huggingface.co/subm-123abc. Required compute for training is outlined in Table [S6]

S8. Broader Impacts (Extended Discussion)

S8.1 Positive Applications

Peptide-based therapeutics are an important and growing drug class, with applications in areas such
as oncology, metabolic disease, and antimicrobial design. By developing a foundation model that
accommodates noncanonical residues and chemical modifications, PEPTIDEMTR has the potential
to accelerate early-stage drug discovery. In particular, improved predictive models can help reduce

12



397
398
399

400

401
402
403
404
405

406

407
408

410
411
412

413

414
415
416
417

418

419
420

Table S6: Compute resources, all used in cloud, by stage. (* = including unsuccessful
runs/hyperparam sweeps/ablation grid)

Stage GPU Hardware VRAM  GPU hours/model Precision
Pretraining (Small) 8xH100 80GB 40 bfl6-mixed
Pretraining (Base) 8xH100 80GB 96 bfl6-mixed
Pretraining (Large) 8xH100 80GB 192 bfl6-mixed
Finetune: Permeability 1xH100 80GB <1 bfl6-mixed
Finetune: Fibrillation 1xH200 120GB <1 bfl6-mixed
Finetune: Albumin binding 1xH200 120GB <1 bfl6-mixed
Est. Total GPU hours* 10,000

experimental costs, prioritize promising candidates, and decrease animal use in preclinical testing.
Beyond drug discovery, peptide-specific embeddings may also enable advances in materials science
(e.g., peptide-based biomaterials) and fundamental research into sequence—structure relationships.

S8.2 Limitations and Risks

While the model captures symbolic and physicochemical features of peptides, it does not incorporate
explicit 3D structural information. As a result, its predictions are limited to coarse molecular
properties rather than detailed biophysical mechanisms. Moreover, the training data are drawn
from publicly available corpora that may contain errors, imbalances, or biases; these limitations can
propagate into downstream predictions.

S8.3 Dual-Use Considerations

As with any generative or predictive model for biomolecules, there is some risk of misuse, such as the
design of harmful peptides. Several mitigating factors reduce this concern: (i) the model is trained
only on public corpora, (ii) it focuses on coarse physicochemical descriptors rather than activity
labels, and (iii) it is intended for transfer learning rather than end-to-end generation of bioactive
sequences. Nevertheless, careful consideration should be given to responsible release, including
dataset documentation, usage terms, and community guidelines.

S8.4 Equity and Access

Foundation models require substantial computational resources to train. This raises concerns about
equitable access, as smaller labs or groups without cloud resources may face barriers to adoption. To
mitigate this, we are releasing trained checkpoints, tokenizers, and code to enable broader use by the
community without the need for large-scale compute.

S8.5 Conclusion

Overall, we believe that the potential benefits of PEPTIDEMTR outweigh the risks. We encourage the
community to adopt careful release practices and to consider downstream applications responsibly.

13
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Figure S3: Violin plots depict the density of predicted values for fibril-forming versus non-fibril-
forming peptides across three models: Small, Base, and Large. Each subplot shows distinct distribu-
tion profiles with varying overlap. The width of each violin indicates the density of predicted values,
illustrating significant differences in prediction behavior across model sizes.

14



421

422

423
424

425

426
427

428

429
430
431
432

434
435
436
437

439

440

441
442

443

444
445

446

447
448
449
450
451
452
453
454

456
457
458
459
460
461
462
463

464

466
467
468
469

470

471
472

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims, denoted i, ii, and iii in the abstract are reflect the main contri-
butions of this work to the field. Evaluations of these contributions are in the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are outlined in the conclusion of the paper and highlight future
work that could aid in solving some of the limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results; therefore, a full set of assump-
tions and proofs are not applicable.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All model architectures, pretraining hyperparameters & data, and model
weights are released. Hyperparameters and methods for finetuning are also outlined in detail
in both the main text and in the supplement.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We made every effort to release all available resources to facilitate reproduction
of the main experimental results. Model weights and open datasets, specifically the cyclic
peptide PAMPA data, are made available. However, one dataset used for further evaluation
of the model is unavailable due to proprietary intellectual property restrictions. We believe
the resources to reproduce the main evaluation on PAMPA data are sufficient for evaluating
model performance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper specifies all relevant training and testing details, including data
splits, hyperparameters, the method for their selection, and the type of optimizer used. This
information is presented to ensure a comprehensive understanding of the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments, we conducted triplicate fine-tuning with random seed to
ensure the reliability of our results. We report the standard error of the mean (SEM) for each
model evaluated, providing a clear depiction of variability within our data.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the supplementary table provides detailed information on the computer
resources required for each experiment, including the type of compute resources used and
memory specifications, supporting reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: No human subjects; all datasets are public and used under their licenses; we
considered dual-use and document mitigations in appendix.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts of our chemical language
model for peptides, such as advancements in drug discovery and personalized medicine,
while also acknowledging the ethical concerns and negative societal impacts, particularly
regarding dual-use risks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve personal information or datasets that pose signifi-
cant risks of misuse. Given the very low likelihood of dangerous applications arising from
our model, no additional safeguards are necessary for its release.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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14.

Answer: [Yes]

Justification: All credit for databases was given through citation. All data that is made
available was previously released open source. Examples are PubChem, ESMAtlas, LMSD,
and SmProt. All code is newly developed.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, appendix contains pretraining information, links to datasets used in
pretraining, and license will be released as MIT open source with final released under
the (currently anonymous) user https://huggingface.co/subm-123abc. Current huggingface
release is anonymized and temporary for double-blind submission.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were used in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were used in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Use of LLMs were not an important/original component of this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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