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Graph Anomaly Detection with Bi-level Optimization
Anonymous Author(s)∗

ABSTRACT
Graph anomaly detection (GAD) has various applications in finance,
healthcare, and security. Graph Neural Networks (GNNs) are now
the primarymethod for GAD, treating it as a task of semi-supervised
node classification (normal vs. anomalous). However, most tradi-
tional GNNs aggregate and average embeddings from all neighbors,
without considering their labels, which can hinder detecting actual
anomalies. To address this issue, previous methods try to selectively
aggregate neighbors. However, the same selection strategy is ap-
plied regardless of normal and anomalous classes, which does not
fully solve this issue. This study discovers that nodes with different
classes yet similar neighbor label distributions (NLD) tend to have
opposing loss curves, which we term it as “loss rivalry”. By introduc-
ing Contextual Stochastic Block Model (CSBM) and defining NLD
distance, we explain this phenomenon theoretically and propose a
Bi-level optimization Graph Neural Network (BioGNN), based on
these observations. In a nutshell, the lower level of BioGNN segre-
gates nodes based on their classes and NLD, while the upper level
trains the anomaly detector using separation outcomes. Our ex-
periments demonstrate that BioGNN outperforms state-of-the-art
methods and effectively mitigates “loss rivalry”. Codes are available
at https://anonymous.4open.science/r/BioGNN-12B4.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Graph Neural Networks, Anomaly Detection, Bi-level Optimization

1 INTRODUCTION
Graph anomaly detection (GAD) is a learning-to-detect task. The
objective is to differentiate anomalies from normal ones, assuming
that the anomalies are generated from a distinct distribution that
diverges from the normal nodes [22]. As demonstrated by [29],
GAD has various real-world applications including detecting spam
reviews in user-rating-product graphs [18], finding misinformation
and fake news in social networks [10], and identifying fraud in
financial transaction graphs [30, 40].

A primary method is to consider GAD as a semi-supervised node
classification problem, where the edges play a crucial role. By ex-
amining the edges, we can divide an ego node’s neighbors into two
groups: (1) homophilous neighbors that have the same labels as
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Figure 1: The ego normal node and anomaly (marked in red
circle) have comparable neighborhood label distributions
(NLD). The probability of neighbor labels being 0 or 1 is
denoted by 𝑝𝑐 and 𝑞𝑐 , where the subscript represents the class
label. For instance, 𝑝1 denotes the probability of a normal
neighbor for anomalies.

the ego node, and (2) heterophilous neighbors whose labels are
different from the ego node’s label. For instance, in the case of an
anomaly ego node, its interactions with anomaly neighbors dis-
play homophily, while its anomaly-normal edges demonstrate het-
erophily. Both homophily and heterophily are prevalent in nature.
In transaction networks, fraudsters have heterophilous connections
with their customers, while their connections with accomplices are
homophilous.

From the standpoint of neighbor relationships, we can briefly
describe the primary graph neural networks (GNNs)-based GAD
solutions and their limitations as follows:
• Early studies [26, 41] aggregate over all neighbors without con-

sidering the impact of homophily and heterophily. That is, the
representation of each node blindly aggregate the information
from all neighbors, without discriminating the neighbor relation-
ships. However, this approach can be disadvantageous to GAD
as anomalies are more likely to be hidden among a large number
of normal neighbors. Blindly aggregating information can dilute
the suspiciousness of anomalies with normal signals, making
them less discernible [18, 25, 30, 37].

• To address the above-mentioned problem, recent studies [3–5, 11,
17, 40] draw inspiration from graph signal processing (GSP). They
suggest that a low-pass filter may not be optimal for all graphs.
Instead, they manipulate eigenvalues of the normalized graph
Laplacian to amplify some frequency information and weaken
others. However, these studies optimize node representations
as a whole, without addressing differences in their distribution
regarding neighbor labels. For instance, as shown in Figure 1,
a normal node shares the same neighbors as an anomaly. Our
analysis in §3.2 reveals that nodes of different classes with the
same neighbors retain rather different frequency components.
While emphasizing a single frequency band can improve learning
for some nodes, it can hinder the learning of others.
Thus, it is crucial to understand the impact of neighbor label

distribution (NLD) on detector behavior. We introduce and reveal
the phenomenon of “loss rivalry”. Surprisingly, we observe opposite
loss curves for anomalies and normal nodes holding similar NLDs.
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(a) Amazon Loss (b) Yelp Loss

Figure 2: Illustration of the ‘loss rivalry’ phenomenon in YelpChi and Amazon Datasets with BWGNN [40]. From the same-color
circles around the maxima and minima, we observe that the two loss curves in the same dataset are opposite along the epochs.
The curves are plotted
These are separately highlighted around the maxima and minima
of the curves in Figure 2. Our analysis emphasizes the importance
of using distinct aggregation mechanisms for nodes with different
classes but similar NLD.

Based on this finding, we propose a bi-level optimization model
in §4, named BioGNN. Specifically, it consists of two key compo-
nents. The first component is a mask generator that separates nodes
into mutually exclusive sets based on their classes and NLD. The
second component contains two well-designed GNN encoders that
adopt different mechanisms to learn node representations sepa-
rately. In §3.1, we define the NLD distance based on the Contextual
Stochastic Block Model (CSBM) and verify its direct proportion to
representation expressiveness. Due to the proved superiority of
adaptive filters in heterophilic graphs[4, 11, 40], we approach the
problem in the spectral domain. Specifically, we first explain the
feasibility of acquiring NLD given the ego graph of a node in the
spectral domain in §3.2. Then, we distill the NLD of nodes from
filter performance through the bi-level optimization process, as
spectral filter performance depends on the concentration of spec-
tral label distribution [27, 9, 7]. In a nutshell, BioGNN distinguishes
nodes with similar NLD but likely belong to different classes and
feeds them into separate filters to prevent “loss rivalry”. Our code
is available at https://anonymous.4open.science/r/BioGNN-12B4.

Our contributions. (1) We reveal the “loss rivalry” phenomenon,
where nodes belonging to different classes but with similar NLD
tend to have opposite loss curves, which can negatively impact
model convergence. (2) We provide theoretical explanations regard-
ing the importance of NLD and the benefits of using polynomial-
based spectral filtering methods to capture the NLD of nodes. (3)
We propose a novel bi-level optimization framework to address the
problem, and the effectiveness of the proposed method is verified
through experiments.

2 PRELIMINARIES AND NOTATIONS
In GAD, anomalous and normal nodes can be modeled as an attrib-
uted graphG = (V, E,X), whereV represents the set of anomalous
and normal nodes, E denotes edges, and X is the attribute matrix.
The objective of GAD is to identify anomalous nodes by learning

from the attributes and structure of the graph. In §3.1, we will dis-
cuss the impact of NLD on GAD and demonstrate the superiority of
spectral filtering in addressing this issue. Therefore, we introduce
basic knowledge of graph spectral filtering in this section.

Graph-based Anomaly Detection. A primary approach for GAD
is to frame it as a semi-supervised node classification task [32]. The
goal is to train a predictive GNN model 𝑔 that achieves minimal
error in approaching the ground truth Y𝑡𝑒𝑠𝑡 for unobserved nodes
V𝑡𝑒𝑠𝑡 given observed nodesV𝑡𝑟𝑎𝑖𝑛 , whereV𝑡𝑟𝑎𝑖𝑛 ∪V𝑡𝑒𝑠𝑡 = V and
V𝑡𝑟𝑎𝑖𝑛 ∩V𝑡𝑒𝑠𝑡 = ∅:

𝑔(G,Y𝑡𝑟𝑎𝑖𝑛) → Ŷ𝑡𝑒𝑠𝑡 . (1)

Note that GAD is an imbalanced classification problem, which often
results in similar NLD for normal nodes and anomalies: anomalies
in the graph are rare, hence both normal nodes and anomalies are
surrounded by numerous normal nodes.

Graph Spectral Filtering. Let A be the adjacency matrix, and
L be the graph Laplacian, which can be expressed as D − A or as
I−D−1/2AD−1/2 (symmetric normalized), where I is the identityma-
trix, and D is the diagonal degree matrix. L is positive semi-definite
and symmetric, so it has an eigen-decompositionL = UΛU𝑇 , where
Λ = {𝜆1, · · · , 𝜆𝑁 } are eigenvalues, and U = [u1, · · · , u𝑁 ] are cor-
responding unit eigenvectors [40]. Assuming X = [x1, · · · , x𝑁 ]
is a graph signal, we call the spectrum U𝑇 X the graph Fourier
transform of the signal X [9, 44]. In graph signal processing (GSP),
the frequency is associated with Λ. Therefore, the goal of spectral
methods is to identify a response function 𝑔(·) on Λ to learn the
graph representation Z [8]:

Z = 𝑔(L)X = U[𝑔(Λ) ⊙ (U𝑇 X)] = U𝑔(Λ)U𝑇 X. (2)

3 THEORETICAL ANALYSIS
In this section, we introduce the Contextual Stochastic Block Model
(CSBM), a widely used model for describing node feature formation.
Based on CSBM, we define the NLD distance and verify its direct
proportion to representation expressiveness. Furthermore, because
adaptive filters have been shown to perform better in heterophilic
graphs, we explore the feasibility of expressing NLD in the spectral
domain to facilitate further study in later sections.
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3.1 Impact of NLD on Node classification
GNNs are widely used to learn node representations in networks,
as they can capture graph topological and structural information
effectively. However, GNNs distinguish nodes by averaging the
node features of their neighborhood [48]. Therefore, it is intuitive
that the neighbor label distribution has a significant impact on GNN
performance. To analyze NLD from a graph generation perspective,
we introduce the Contextual Stochastic Block Model (CSBM) [14].
CSBM is a random graph generative model commonly used to
measure the expressiveness of GNNs [33].

CSBM. The Contextual Stochastic Block Model (CSBM) makes the
following assumptions for an attributed graph G: (1) For a cen-
tral node 𝑢 with label 𝑐 ∈ {0, 1}, the labels of its neighbors are
independently sampled from a fixed distribution D𝑐 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑐 ).
𝑝𝑐 denotes the sampling probability of class 𝑐 , and the sampling
process continues until the number of neighbors matches the de-
gree of node 𝑢. In this work, we refer to the distribution D𝑐 as
the neighborhood label distribution (NLD). (2) Anomalies and
normal nodes have distinct node feature distributions, namely F𝑐 .

For simplicity, we define the NLD distance as follows:

Definition 3.1 (Neighborhood Label Distribution Distance) Given
a graph G with label vector y, the neighborhood label distribution
distance between nodes 𝑢 and 𝑣 is:

𝑑 (𝑢, 𝑣) = 𝑑𝑖𝑠 (D𝑢𝑐 (𝑢),D𝑣𝑐 (𝑣)), (3)

where 𝑑𝑖𝑠 (·, ·) measures the difference between distribution vectors,
such as cosine distance or Euclidean distance; 𝑢𝑐 and 𝑣𝑐 denote the
class of nodes 𝑢 and 𝑣 , respectively.

In this work, we focus on the binary GAD classification problem,
hence D𝑐 = {D0 = [𝑝0, 𝑞0],D1 = [𝑝1, 𝑞1]}, where the symbol
definitions are shown in Table 1. Furthermore, following previous
works [6, 15, 33], we suppose that F𝑐 are two Gaussian distributions
of 𝑛 variables, i.e., 𝑥0 ∼ 𝑁𝑛 (𝜇0, 𝜎2I), 𝑥1 ∼ 𝑁𝑛 (𝜇1, 𝜎2I). This problem
setting leads us to the following proposition, which indicates the
expressive power of GNNs.

Proposition 3.1 Given a graph G = (V, E, {F𝑐 }, {D𝑐 }), the dis-
tance between the means of the class-wise hidden representations
is proportional to their NLD distance.

Remark. The detailed proof can be found in Appendix A.1. This
proposition shows that the expressive power of the representation
depends on the neighborhood label distribution. Specifically, for
nodes 𝑢 and 𝑣 in different classes, a vanilla 2-layer GCN has the
following distance between their hidden representations:

| |𝜇𝑢 − 𝜇𝑣 | |2 =
[𝑑 (𝑢, 𝑣)]2

2
· | |𝜇1 − 𝜇0 | |2, (4)

where 𝜇𝑢 and 𝜇𝑣 are the mean values of the learned representations
of nodes 𝑢 and 𝑣 . Similarly, for spectral methods, whose general
polynomial approximation form can be written as

∑
𝑘 𝛼𝑘 L̃

𝑘X [48],
we can achieve a much larger NLD distance with a second-order
polynomial:

| |𝜇𝑢 − 𝜇𝑣 | |2 = [1 + [𝑑 (𝑢, 𝑣)]
√
2

+ [𝑑 (𝑢, 𝑣)]2
2

] · | |𝜇1 − 𝜇0 | |2 . (5)

Table 1: NLD Symbol Definition.

Symbol Definition (Probability of)

𝑝1 normal neighbor for anomalies

𝑞1 anomaly neighbor for anomalies

𝑝0 normal neighbor for normal nodes

𝑞0 anomaly neighbor for normal nodes

The larger the distance | |𝜇𝑢−𝜇𝑣 | |2, themore expressive the represen-
tation and the better capability of the downstream linear detector.
From (4) and (5), we observe two things: (1) the minimum value
of | |𝜇𝑢 − 𝜇𝑣 | |2 is achieved when 𝑑 (𝑢, 𝑣) is 0; (2) using second-order
polynomial graph filtering can improve the ability to distinguish
between nodes, especially when the NLD of nodes from differ-
ent classes are similar. This finding aligns with previous research
[49, 50] in this area.

3.2 NLD in the Spectral Domain
TheNLDof anomalous and normal nodes in four benchmark datasets
is statistically reported in Table 2. We observe that the NLD for
nodes from different classes are similar, especially in YelpChi and
Amazon datasets. Our analysis justifies the need to filter out anom-
alies sharing similar neighborhood labels with normal nodes, so that
the distribution of the remaining anomalies can be distinguished
from that of normal nodes. Proposition 3.1 suggests that spectral
methods are more effective. Therefore, we aim to address the prob-
lem in the spectral domain. To begin with, we express NLD in
the spectral domain by bridging the gap between it and frequency.
Specifically, we fragment a graph into a set of ego-graphs [46] and
define the spectral label distribution as follows:

Definition 3.2 (Spectral Label Energy Distribution) Given an ego
node 𝑢 and its one-hop neighbor set N𝑢 with size 𝑁 , the spectral
label energy distribution at 𝜆𝑘 is:

𝑓𝑘 (y,L) = 𝛼2
𝑘
/∑𝑁

𝑛=1 𝛼
2
𝑖
, (6)

where 𝑓 is a probability distribution with
∑𝑁
𝑘=1 𝑓𝑘 = 1, L is the

Laplacian matrix of the ego-graph, and {𝛼} denotes the ego-graph
spectrum of the one-hot label vector y. Since 𝛼𝑘 = u𝑇

𝑘
y, 𝑓𝑘 (y,L)

measures the weight of u𝑘 in y, a larger 𝑓𝑘 indicates that the spectral
label distribution concentrates more on 𝜆𝑘 . With Definition 3.2, we
now show the relationship between 𝑓 (y,L) and NLD.

Proposition 3.2 For a binary classification problem, the expecta-
tion of the spectral label energy distributionE[𝑓 (y,L)] is positively
associated with the NLD of the node. Specifically:

E[𝑓 (y,L)] =


|E | · (1 − 𝑝0)

𝑁
𝑦 = 0,

|E | · 𝑝1
𝑁

𝑦 = 1.
(7)

Remark. The detailed proof can be found in Appendix A.2. Propo-
sition 3.2 indicates that capturing the difference in spectral label
distribution is equivalent tomeasuring the similarity betweenNLDs.
Furthermore, the proposition elucidates that different nodes with
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Table 2: Summary of the dataset statistics and the neighbor label distributions.

Dataset Statistics Neighbor Label Distribution (NLD)
# Nodes # Edges # Features 𝑝0 𝑞0 𝑝1 𝑞1 Distance

YelpChi 11,944 4,398,392 25 0.8683 0.1317 0.8144 0.1856 0.0762
Amazon 45,954 3,846,979 32 0.9766 0.0234 0.9254 0.0746 0.0724
T-Finance 39,357 21,222,543 10 0.9850 0.0150 0.5280 0.4720 0.6462
T-Social 5,781,065 73,105,508 10 0.7634 0.2366 0.9161 0.0839 0.2159

Figure 3: The influence of NLD on model performance.

similar NLD retain rather different frequency components. Based
on this finding, separating nodes whose spectral label distributions
are different could bring two benefits: (1) separate nodes in the
same class but have different NLDs; (2) separate nodes in different
classes but have similar NLDs. Both of these benefits alleviate the
“loss rivalry” phenomenon and help with the convergence of GNNs.

3.3 Validation on Real-World Graphs
To verify the correctness of our theoretical findings, we report the
F1-macro and AUC performance of some general methods (triangle
marker) [26, 41, 49] and some polynomial spectral methods [11,
40, 50] (star marker) in Figure 3. We make two observations: (1)
As shown in Table 2, the NLD distance between the two classes
is 0.0762 and 0.6462 for YelpChi and T-Finance, respectively. From
Figure 3, we observe that most methods achieve better results on
T-Finance than on YelpChi, demonstrating the importance of NLD.
Moreover, the performance gap between models on YelpChi and
Amazon is much larger than that on T-Finance. This suggests that
we can achieve decent performance with less powerful models
on datasets with larger NLD distances. Our finding supports the
notion that NLD can influence the expressive power of the GNN
model, and separating nodes with specific NLDs can improve the
performance of the GNN model. (2) Spectral methods outperform
spatial methods by a large margin. These tailored heterophilic filters
further support our argument for the superiority of addressing the
problem in the spectral domain.

4 METHODOLOGY
Guided by the analysis in §3.1, we advocate for the necessity of
treating nodes with distinct spectral label distributions separately.
In this section, we introduce our bi-level optimization graph neural

network BioGNN. To begin with, we introduce the learning ob-
jectives in §4.1 and present the parameterization process in §4.2.
In §4.4, we validate the effectiveness of the framework on golden-
separated graphs.

4.1 The Learning Objectives
To start with, we introduce Lemma 4.1 which is widely agreed upon
in the literature [7, 9, 27]:

Lemma 4.1 The prediction performance of a spectral filter is better
when the spectral label energy distribution concentrates more on
the pass band of the filter.

Building on Lemma 4.1, we could identify nodes according to the
performance of different spectral filters through bi-level optimiza-
tion. As shown in Figure 4, our learning objective is twofold: (1)
Optimize the encoders {Φ(·), 𝜑1 (·), 𝜑2 (·)} to maximize the proba-
bility of correctly classifying nodes separated by 𝜃 (·); (2) Optimize
the encoder 𝜃 (·) which predicts the NLD of nodes and separate
nodes to two sets. We set all the encoders as MLP with learnable
parameters. Concretely, the learning objective of BioGNN is defined
as follows:

min
𝜑1,Φ,𝑀1

R(Φ(𝑔1 (L)𝜑1 (𝑀1 ◦ X)),Y)

+ min
𝜑2,Φ,𝑀2

R(Φ(𝑔2 (L)𝜑2 (𝑀2 ◦ X)),Y),

𝑠 .𝑡 . 𝑀1 +𝑀2 = 1,

(8)

where𝑀1 and𝑀2 are hard masks given by learnable encoder 𝜃 (·),
1 is an all-one vector, 𝑔1 (𝐿) and 𝑔2 (𝐿) are spectral filters, and ◦
denotes the element-wise multiplication.

4.2 Instantiation of BioGNN
Given the two-fold objective, we propose to parameterize the en-
coder 𝜃 (·) and {Φ(·), 𝜑1 (·), 𝜑2 (·)}.

Parameterizing 𝜃 (·). The encoder 𝜃 (·) serves as a separator that
predicts the NLD of nodes and feeds nodes into different branches
of filters. Consequently, to obtain informative input for 𝜃 , we em-
ploy a label-wise message passing layer [12] which aggregates the
labeled neighbors of the nodes label-wise. Concretely, for node 𝑢,
the aggregated feature ℎ𝑢,𝑐 for class 𝑐:

ℎ𝑢,𝑐 =
1

|N𝑙,𝑐 (𝑢) |
∑︁

𝑣∈N𝑙,𝑐 (𝑢 )
𝑥𝑣, (9)

where N𝑙,𝑐 (𝑢) is the set of neighbors labeled with 𝑐 . When there
are no labeled neighbors belonging to class 𝑐 , we assign a zero
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Figure 4: BioGNN Framework. Mask generator 𝜃 (·) identifies subsets of nodes according to equation (10). Two projection heads
𝜑1 (·) and 𝜑2 (·) and two spectral filters 𝑔1 (𝐿) and 𝑔2 (𝐿) assign labels to according subset of nodes. Mask generator and filters are
optimized iteratively according to equation (11) and equation (12).

embedding to ℎ𝑢,𝑐 . Then we set

𝑀1 (𝑢) = argmax(MLP𝜃 ( [𝑥𝑢 ;ℎ𝑢,0;ℎ𝑢,1])) . (10)

To ensure smoothed and well-defined gradients 𝜕𝑦

𝜕𝜃
, we apply a

straight-through (ST) gradient estimator [2] to make the model
differentiable. Note that BioGNN is trained in an iterative fashion,
the encoders {Φ(·), 𝜑1 (·), 𝜑2 (·)} are fixed as {Φ∗ (·), 𝜑∗1 (·), 𝜑

∗
2 (·)},

the objective function in this phase is:

min
𝑀1

R(Φ∗ (𝑔1 (L)𝜑∗1 (𝑀1 ◦ X)),Y)

+min
𝑀2

R(Φ∗ (𝑔2 (L)𝜑∗2 (𝑀2 ◦ X)),Y)

𝑠 .𝑡 . 𝑀1 +𝑀2 = 1.

(11)

Parameterizing {Φ(·), 𝜑1 (·), 𝜑2 (·)}. These three encoders serve
as a predictor that assigns labels to input nodes. As we aim to
distinguish between different spectral label distributions, which
are closely related to the performance of filters with correspond-
ing band-pass, we adopt low-pass and high-pass filters as 𝑔1 (𝐿)
and 𝑔2 (𝐿), respectively. Here, we choose to use two branches and
leave the multi-branch framework for future work. Therefore, the
functions of 𝑀1 and 𝑀2 become the masking of nodes with high-
frequency and low-frequency ego-graphs, respectively. In this iter-
ative training phase, we freeze the masks as 𝑀∗

1 and 1 −𝑀∗
1 , and

set the objective function as:

min
Φ,𝜑1

R(Φ(𝑔1 (L)𝜑1 (𝑀∗
1 ◦ X)),Y)

+min
Φ,𝜑2

R(Φ(𝑔2 (L)𝜑2 ((1 −𝑀∗
1 ) ◦ X)),Y).

(12)

A similar training process has also been used in graph contrastive
learning [39]. For the choice of 𝑔1 (L) and 𝑔2 (L), we adopt Bern-
stein polynomial-based filters [23, 40] for their convenience to
decompose low-pass and high-pass filters:

𝑔(L) = 1
2
𝑈 𝛽𝛼,𝛽 (Λ)𝑈𝑇 =

(L/2)𝛼 (𝐼 − L/2)𝛽

2
∫ 1
0 𝑡𝛼−1 (1 − 𝑡)𝛽−1d𝑡

, (13)

where 𝛽𝛼,𝛽 is the standard beta distribution parameterized by 𝛼

and 𝛽 . When 𝛼 → 0, we acquire 𝑔(L) as a low-pass filter; similarly,
𝑔(L) acts as a high-pass filter when 𝛽 → 0. For the choices of 𝛼
and 𝛽 on the specific benchmark and more training details, please
refer to Appendix B.1 and B.2.

4.3 Initialization of BioGNN
To embrace a more stable process of the bi-level optimization, we
initialize the encoders before iterative training.

Initialization of 𝜃 (·). 𝜃 (·) is initialized in a supervised fashion,
where the supervision signal is obtained by counting the labeled
inter-class neighbors:

𝑌𝑠𝑒𝑝 (𝑢) = 𝑟𝑜𝑢𝑛𝑑 ( 1
|N𝐿 (𝑢) |

∑︁
𝑣∈N𝐿 (𝑢 )

|{𝑦𝑢 ≠ 𝑦𝑣}|), (14)

then the cross-entropy is minimized:

min
𝜃

−[Y𝑠𝑒𝑝 ◦ 𝑙𝑜𝑔(𝜃 (X)) + (1 − Y𝑠𝑒𝑝 ) ◦ 𝑙𝑜𝑔(1 − 𝜃 (X))] . (15)

Note that in our experiments, although the supervision signal are
calculated with ego-graphs, the input data is a complete graph
rather than ego-graphs extracted from a larger graph. Each node in
the complete graph connects directly to all other nodes, ensuring
that all interactions are considered during the learning process.
As nodes with high-frequency ego-graph are rare, to shield the
separator from predicting all nodes as low-frequency ego nodes, we
regularize the ratio of two sets of nodes by enforcing the following
constraint: we treat Y𝑠𝑒𝑝 as the optimal known mask, and one term
Y𝑠𝑒𝑝 − 𝜃 (X) is added to the objective. The final objective is:

min
𝜃

−[Y𝑠𝑒𝑝◦𝑙𝑜𝑔(𝜃 (X))+(1−Y𝑠𝑒𝑝 )◦𝑙𝑜𝑔(1−𝜃 (X))]+𝛾 (Y𝑠𝑒𝑝−𝜃 (X)) .
(16)

Initialization of {Φ(·), 𝜑1 (·), 𝜑2 (·)}. In this phase, we treat 𝑌𝑠𝑒𝑝
as the optimal known mask:

min
Φ,𝜑1

R(Φ(𝑔1 (L)𝜑1 (𝑌𝑠𝑒𝑝 ◦ X),Y)

+min
Φ,𝜑2

R(Φ(𝑔2 (L)𝜑2 ((1 − 𝑌𝑠𝑒𝑝 ) ◦ X),Y) . (17)

4.4 Validation on Golden-separated Graphs
From an omniscient perspective, we can validate the effectiveness
of BioGNN. Assuming that we know all the labels of the nodes, we
have access to the accurate NLD of all the nodes. In this case, we
can separate the nodes ideally, i.e., , we train them separately in
sequence.

From Figure 5a, we observe that the loss decreases smoothly,
demonstrating our argument that mixed nodes are the main cause
of the “loss rivalry” phenomenon. Based on this finding, BioGNN
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(a) Golden Separated Loss (b) BioGNN Training Loss

Figure 5: Golden separated loss and real loss curves on YelpChi.

can alleviate the problem and boost the performance of GAD. We
discovered that the training order is significant in achieving bet-
ter performance. Training nodes with high-frequency ego-graphs
before those with low-frequency ones leads to better results. One
possible reason for this is the shared linear classifier Φ between the
two branches. Embeddings learned from the high-pass filter are
noisier, and a classifier that performs well on noisy embeddings
would most likely perform well on the whole dataset [24]. We con-
sider this to be an intriguing discovery, yet leaving a comprehensive
theoretical examination for future research.

5 EXPERIMENT
In this section, we conduct experiments on four benchmarks and
report the results of our models as well as some state-of-the-art
baselines to demonstrate the effectiveness of BioGNN.

5.1 Experimental Setup

Datasets. Following previous works [18, 40], we conduct experi-
ments on four datasets introduced in Table 2. For more details about
the datasets, please refer to Appendix B.3.

Baselines. Our baselines can be roughly categorized into three
groups. The first group includes general methods, such as MLP,
GCN [26], GAT [41], ChebyNet [13], GWNN [47], and JKNet
[49]. As our focus is GAD, the second group considers tailored
GAD methods including CAREGNN [18], PCGNN [30], GDN
[20], and BWGNN [40]. The third group includes methods that
consider neighbor labels, such as H2GCN [50], GPRGNN [11],
andMixHop [1]:

• GCN [26]: GCN is a traditional graph convolutional network in
spectral space.

• GAT [41]: GAT leveragesmasked self-attentional layers toweight
the neighbors.

• ChebyNet [13]: ChebyNet generalizes CNN to graph data in the
context of spectral graph theory.

• GWNN [47]1: GWNN leverages graph wavelet transform to
address the shortcomings of spectral graph CNN methods that
depend on graph Fourier transform.

1https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork

• JKNet [49]: The jumping-knowledge network which concate-
nates or max-pooling the hidden representations.

• Care-GNN [18] 2: Care-GNN is a camouflage-resistant graph
neural network that adaptively samples neighbors according to
the feature similarity, and the optimal sampling ratio is found
through an RL module.

• PC-GNN [30] 3: PC-GNN consists of two modules “pick” and
“choose”, and maintains a balanced label frequency around fraud-
sters by downsampling and upsampling.

• H2GCN [50] 4: H2GCN is a tailored heterophily GNN which
identifies three useful designs.

• BWGNN [40] 5: BWGNN is a spectral filter addressing the “right-
shift" phenomenon in anomaly detection.

• GDN [20] 6: GDN deals with heterophily by leveraging con-
straints on original node features.

• MixHop [1] 7: Mixhop repeatedly mixes feature representations
of neighbors at various distances to learn relationships.

• GPRGNN [11] 8: GPR-GNN learns a polynomial filter by directly
performing gradient descent on the polynomial coefficients.

5.2 Performance Comparison
The main results are reported in Table 3. Note that we search for
the best threshold to achieve the best F1-macro in validation for all
methods. In general, BioGNN achieves the best F1-macro score in all
datasets, empirically verifying that it has a larger distance between
predictions and the decision boundary, benefiting from measuring
the NLD distance. For AUC, BioGNN did not achieve the best score
in T-Social. We suppose the reason is that T-social has a complex
frequency composition since the best performance is achievedwhen
the frequency order is high according to BWGNN [40]. We believe
this issue could be alleviated if multi-branch filters are adopted,
which we leave for future work. Furthermore, some methods could
achieve high AUC while maintaining a low F1-Macro, indicating
that the instances can be distinguished but hold tightly in the space.

2https://github.com/YingtongDou/CARE-GNN
3https://github.com/PonderLY/PC-GNN
4https://github.com/GemsLab/H2GCN
5https://github.com/squareRoot3/Rethinking-Anomaly-Detection
6https://github.com/blacksingular/wsdm_GDN
7https://github.com/samihaija/mixhop
8https://github.com/jianhao2016/GPRGNN
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Table 3: Performance Results. The best results are in boldface, and the 2nd-best are underlined.

Dataset YelpChi Amazon T-Finance T-Social
Metric F1-Macro AUC F1-Macro AUC F1-Macro AUC F1-Macro AUC

MLP 0.4614 0.7366 0.9010 0.9082 0.4883 0.8609 0.4406 0.4923
GCN 0.5157 0.5413 0.5098 0.5083 0.5254 0.8203 0.6550 0.7012
GAT 0.4614 0.5459 0.5675 0.7731 0.8816 0.9388 0.4921 0.4923

ChebyNet 0.4608 0.6216 0.8070 0.9187 0.8017 0.8001 OOM
GWNN 0.4608 0.6246 0.4822 0.9319 0.4883 0.9670 OOM
JKNet 0.5805 0.7736 0.8270 0.8970 0.8971 0.9554 0.4923 0.7226

CAREGNN 0.5015 0.7300 0.6313 0.8832 0.7261 0.9105 0.4868 0.7939
PCGNN 0.6925 0.8118 0.8367 0.9555 0.4462 0.9200 0.4536 0.8917
GDN 0.7545 0.8904 0.9068 0.9709 0.8474 0.9462 0.7401 0.9287

BWGNN 0.7568 0.8967 0.9204 0.9706 0.8899 0.9599 0.7494 0.9275

H2GCN 0.6575 0.8406 0.9213 0.9693 0.8824 0.9553 OOM OOM
MixHop 0.6534 0.8796 0.8093 0.9723 0.4880 0.9569 0.6471 0.9597
GPRGNN 0.6423 0.8355 0.8059 0.9358 0.8507 0.9642 0.5976 0.9622
BioGNN 0.7606 0.8947 0.9462 0.9766 0.9059 0.9670 0.8140 0.9325

(a) YelpChi (b) Amazon (c) T-Finance (d) T-Social

Figure 6: The NLD distance between two separated sets of nodes.

In such cases, it is hard to identify a classification threshold, which
we consider unstable.

H2GCN, MixHop, and GPRGNN are three state-of-the-art spec-
tral heterophilous GNNs that shed light on the relationship between
the ego node and neighbor labels. We observe that they consistently
outperform other groups of methods, including some tailored GAD
methods. We ascribe this large performance gap to two reasons: (1)
the harmfulness of heterophily where vast normal neighborhoods
attenuate the suspiciousness of the anomalies; (2) the superiority of
spectral filters to distinguish nodes with different NLD. However,
they optimize the node representations as a whole, while BioGNN
outperforms these methods, especially in F1-Macro, where the im-
provement ranges from 2.7% to 25.8%. This supports our analysis
that different class nodes with similar NLD should be treated sepa-
rately to alleviate “loss rivalry”. Furthermore, among the tailored
GNN methods (CAREGNN, PCGNN, GDN, BWGNN, and BioGNN),
BWGNN and BioGNN are polynomial-based filters that perform
better than others, further suggesting that spectral filtering is more
promising in GAD.

In several datasets, MLP outperforms some GNN-based methods,
indicating that blindly mixing neighbors can sometimes degrade the
prediction performance. Therefore, structural information should

be used with care, especially when the neighborhood label distri-
butions for nodes are complex.

5.3 Analysis of BioGNN
In this section, we take a closer look in BioGNN. We first verify the
smoothness of the BioGNN loss curve to demonstrate its effective-
ness in alleviating “loss rivalry”. Then we plot the distribution of
the separated nodes to elucidate that our model can successfully
discriminate nodes with different NLD and set them apart. Making
it more clear, we visualize some high-frequency ego-graphs.

Loss Rivalry Addressing. To answer the question of whether
BioGNN can alleviate the “loss rivalry”, we plot the training loss
of BioGNN in Figure 5b. Similar to Section 4.4, two separate sets
of nodes are trained in a specific order: high-frequency nodes are
trained first, followed by low-frequency nodes. Comparing Figure
2, 5a, and 5b, we find that the smoothness of BioGNN’s training
curve lies between golden-separate and mixed training, indicating
that the new framework is effective in alleviating “loss rivalry” and
improves the overall performance of GAD.

Distribution of the separated nodes. The core of BioGNN is
node separation. To further validate its effectiveness, we report the
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Figure 7: The ego-graph of some yellow-circled ego nodes classified as high-frequency by BioGNN in YelpChi. The anomalies
are represented in red, while normals are represented in blue.

empirical histogram of the NLD in four benchmarks in Figure 6. The
x-axis represents the edge homophily, which explicitly represents
the NLD around the ego node. The y-axis denotes the density, and
the distribution curves are shown in dashed lines. From Figure 6,
we observe that the two histograms seldom overlap, and the mean
of two curves maintains a separable distance, demonstrating that
BioGNN successfully sets the nodes apart.

Visualization. To show the results in an intuitive way, we report
the ego-graph of some nodes in Figure 7. These nodes are assigned
to the high-pass filter by 𝜃 (·). As observed from the figure where
color denotes the class of the nodes, the ego node (red-circled) has
more inter-class neighbors compared to the nodes assigned to the
low-pass filter. This finding provides support for Equation 7 and ver-
ifies the effectiveness of our novel framework. More visualizations
are in Appendix C.

Time complexity analysis. The time complexity of BioGNN is
𝑂 (𝐶 |E |), where𝐶 represents a constant and |E | denotes the number
of edges in the graph. This is due to the fact that the BernNet-based
filter is a polynomial function that can be computed recursively, as
explained in [40].

6 RELATEDWORK
In this section, we introduce some static GADnetworks and polynomial-
based spectral GNNs.

6.1 Static Graph Anomaly Detection
On static attributed graphs, GNN-based semi-supervised learning
methods are widely adopted. For example, GraphUCB [16] adopts
contextual multi-armed bandit technology, and transforms graph
anomaly detection into a decision-making problem; DCI [45] de-
couples representation learning and classification with the self-
supervised learning task. Recent methods realize the necessity of
leveraging multi-relation graphs into GAD. FdGars [43] and Graph-
Consis [31] construct a single homo-graph with multiple relations.
Likewise, Semi-GNN [42], CARE-GNN [18], and PC-GNN [30] con-
struct multiple homo-graphs based on node relations. In addition,
some works discover that heterophily should be addressed properly
in GAD. Semi-GNN and IHGAT [28] employ hierarchical attention
mechanisms for interpretable prediction, while based on camou-
flage behaviors and imbalanced problems, CARE-GNN, PC-GNN,
and AO-GNN [25] prune edges adaptively according to neighbor

distribution. GDN [21] andH2 -FDetector [38] adopt different strate-
gies for anomalies and normal nodes.

6.2 Graph Spectral Filtering
Spectral GNNs simulate filters with different passbands in the spec-
tral domain, enabling GNNs to work on both homophilic and het-
erophilic graphs [44]. GPRGNN [11] adaptively learns the General-
ized PageRank weights, regardless of whether the node labels are
homophilic or heterophilic. FSGNN [34] designs a feature selec-
tion graph neural network. FAGCN [3] adaptively fuses different
signals in the process of message passing by employing a self-
gating mechanism. BernNet [23] expresses the filtering operation
with Bernstein polynomials. BWGNN [40] observes the “right-shift”
phenomenon and designs a band-pass filter to aggregate differ-
ent frequency signals simultaneously. AdaGNN [17] captures the
varying importance of different frequency components to alleviate
over-smoothing problem. AMNet [5] aims to capture both low-
frequency and high-frequency signals, and adaptively combine sig-
nals of different frequencies. GHRN [19] design an edge indicator
to distinguish homophilous and heterophilous edges.

7 LIMITATION AND CONCLUSION

Limitation. Although we propose a novel network that treats
nodes separately, it has some limitations. Our work only separates
the nodes into two sets, and we hope to extend it to more fine-
grained multi-branch neural networks in the future. Furthermore,
our theoretical result largely relies on CSBM’s assumptions; hence
our model may fail in some cases where the graph generation
process doesn’t follow these assumptions.

Conclusion. This work starts with “loss rivalry”, expressing the
phenomenon that some nodes tend to have opposite loss curves
from others. We argue that it is caused by the mixed training of
different class nodes with similar NLD. Furthermore, we discover
that spectral filters are superior in addressing the problem. To this
end, we propose BioGNN, which essentially discriminates nodes
that share similar NLD but are likely to be in different classes and
feeds them into different filters to prevent “loss rivalry”.
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A PROOFS
In this section, the proofs of propositions are listed.

A.1 Proof of Proposition 1
Proof. In the spectral domain, the hidden representation of the
spectral filter can be expressed as:

𝐻 =
∑︁
𝑘

𝛼𝑘 L̃
𝑘X =

∑︁
𝑘

𝛼𝑘 (I − D−1/2AD−1/2)𝑘X (18)

Taking the second-order spectral filter as an example,

𝐻2 = 𝛼0X+𝛼1 (I−D−1/2AD−1/2)X+𝛼2 (I−D−1/2AD−1/2)2X (19)

The representation of node 𝑖 is given as:

ℎ𝑖 = 𝛼0𝑥𝑖 + 𝛼1 (𝑥𝑖 −
1

𝑑𝑒𝑔(𝑥𝑖 )
∑︁
𝑗∈N𝑖

𝑥 𝑗 )+

𝛼2 (𝑥𝑖 − 2
1

𝑑𝑒𝑔(𝑥𝑖 )
∑︁
𝑗∈N𝑖

𝑥 𝑗 +
1

𝑑𝑒𝑔(𝑥𝑖 )
∑︁
𝑗∈N𝑖

1
𝑑𝑒𝑔(𝑥 𝑗 )

∑︁
𝑘∈N𝑗

𝑥𝑘 )

= (𝛼0 + 𝛼1 + 𝛼2)𝑥𝑖 −
𝛼1 + 2𝛼2
𝑑𝑒𝑔(𝑥𝑖 )

∑︁
𝑗∈N𝑖

𝑥 𝑗

+ 𝛼2
𝑑𝑒𝑔(𝑥𝑖 )

∑︁
𝑗∈N𝑖

1
𝑑𝑒𝑔(𝑥 𝑗 )

∑︁
𝑘∈N𝑗

𝑥𝑘

(20)
Here we only focus on the aggregation process, hence the non-

linear activation is ignored. Furthermore, to simplify the calculation
and the analysis, we set 𝛼0 as 1, 𝛼1 as -1, and 𝛼2 as 1. In this case the
coefficients or the numerators of the coefficients equal to 1. Suppose
𝑢 and 𝑣 are nodes with different labels (i.e., anomalies and normal
nodes), along with their NLD as D𝑢 = [𝑝1, 𝑞1] and D𝑣 = [𝑝0, 𝑞0],
where 𝑝1 + 𝑞1 = 𝑝0 + 𝑞0 = 1. From previous analysis, we assume
𝑥𝑢 ∼ 𝑁 (𝜇1, I) and 𝑥𝑣 ∼ 𝑁 (𝜇0, I), hence we know ℎ𝑢 and ℎ𝑣 should
obey Gaussian distribution, whose mean can be acquired as:

𝜇𝑢 = 𝜇1 − (𝑝1𝜇0 + 𝑞1𝜇1) + 𝑝1 (𝑝0𝜇0 + 𝑞0𝜇1) + 𝑞1 (𝑝1𝜇0 + 𝑞1𝜇1)
= 𝜇1 + 𝑝1 (𝑝0𝜇0 + 𝑞0𝜇1 − 𝑝1𝜇0 − 𝑞1𝜇1)
= 𝜇1 + 𝑝1 [(𝑝0 − 𝑝1)𝜇0 + (𝑞0 − 𝑞1)𝜇1]

𝜇𝑣 = 𝜇0 − 𝑞0 [(𝑝0 − 𝑝1)𝜇0 + (𝑞0 − 𝑞1)𝜇1]
(21)

Hence the distance between the mean of these two distributions
is:

| |𝜇𝑢 − 𝜇𝑣 | |2 = | |𝜇1 − 𝜇0 | |2 + (𝑝1 + 𝑞0) | | (𝑝0 − 𝑝1)𝜇0 + (𝑞0 − 𝑞1)𝜇1 | |2
= | |𝜇1 − 𝜇0 | |2 + (1 + 𝑞0 − 𝑞1) · |𝑞0 − 𝑞1 | · | |𝜇1 − 𝜇0 | |2
= [1 + |𝑞0 − 𝑞1 | + |(𝑝0 − 𝑝1) (𝑞0 − 𝑞1) |] · | |𝜇1 − 𝜇0 | |2

(22)
Similarly, since |𝑞0 − 𝑞1 | = |𝑝0 − 𝑝1 | , we have:

| |𝜇𝑢 − 𝜇𝑣 | |2 = [1+ |𝑝0−𝑝1 | + |(𝑝0−𝑝1) (𝑞0−𝑞1) |] · | |𝜇1− 𝜇0 | |2 (23)

In our paper, we adopt Euclidean distance between vectors as
NLD:

𝑑 (𝑢, 𝑣) =
√︃
(𝑝0 − 𝑝1)2 + (𝑞0 − 𝑞1)2 (24)

Joining equations (23) and (24), we can rewrite the distance between
distribution mean values as:

| |𝜇𝑢 − 𝜇𝑣 | |2 = [1 + [𝑑 (𝑢, 𝑣)]
√
2

+ [𝑑 (𝑢, 𝑣)]2
2

] · | |𝜇1 − 𝜇0 | |2 . (25)

Likewise, the mean values of hidden represenation given by a
2-layer vanilla GCN are:

𝜇𝑢 = 𝑝1 (𝑝0𝜇0 + 𝑝1𝜇1) + 𝑞1 (𝑝1𝜇0 + 𝑝0𝜇1)
= 𝜇0 + 𝑝21 (𝜇1 − 𝜇0) + 𝑞1𝑝0 (𝜇1 − 𝜇0)

𝜇𝑣 = 𝑝0 (𝑝0𝜇0 + 𝑝1𝜇1) + 𝑞0 (𝑝1𝜇0 + 𝑝0𝜇1)
= 𝜇0 + 𝑝1𝑝0 (𝜇1 − 𝜇0) + 𝑞0𝑝0 (𝜇1 − 𝜇0)

(26)

Hence we have the distance between them:

| |𝜇𝑢 − 𝜇𝑣 | |2 = 𝑝1 · |𝑝1 − 𝑝0 | · | |𝜇1 − 𝜇0 | |2 − 𝑝0 · |𝑞1 − 𝑞0 | · | |𝜇1 − 𝜇0 | |2
(27)

Since |𝑝1 − 𝑝0 | = |1 − 𝑞1 − (1 − 𝑞0) | = |𝑞0 − 𝑞1 |

| |𝜇𝑢 − 𝜇𝑣 | |2 = | (𝑝0 − 𝑝1) (𝑞0 − 𝑞1) | · | |𝜇1 − 𝜇0 | |2 (28)

Joining Equations (24) and (28), we can rewrite the distance as:

| |𝜇𝑢 − 𝜇𝑣 | |2 =
[𝑑 (𝑢, 𝑣)]2

2
· | |𝜇1 − 𝜇0 | |2, (29)

Finish the proof.

A.2 Proof of Proposition 2
The Rayleigh quotient is widely adopted as the smoothness index
which plays the role of frequency in classical spectral analysis.
Here we adopt this metric to bridge two variables. Specifically, the
Rayleigh quotient of the one-hot label vector y is:

𝐸 [y] = y𝑇Ly = y𝑇 Dy − y𝑇 Ay =

𝑁∑︁
𝑖=1

𝑑𝑖y2𝑖 −
𝑁∑︁

𝑖, 𝑗=1
y𝑖y𝑗A𝑖 𝑗

=
1
2
(
𝑁∑︁
𝑖=1

𝑑𝑖y2𝑖 − 2
𝑁∑︁

𝑖, 𝑗=1
y𝑖y𝑗𝐴𝑖 𝑗 +

𝑁∑︁
𝑗=1

𝑑 𝑗y2𝑗 )

=
1
2

∑︁
(𝑖, 𝑗 ) ∈E

(y𝑖 − y𝑗 )2

=
∑︁

(𝑖, 𝑗 ) ∈E
I{y𝑖 ≠ y𝑗 }

= |E | · (1 − ℎ(G))

(30)

On the other hand, the Rayleigh quotient can also be acquired as:

𝐸 [y] = y𝑇 UΛU𝑇 y = 𝛼𝑇 Λ𝛼

=

𝑁∑︁
𝑖=1

𝜆𝑖𝛼
2
𝑖

=

𝑁∑︁
𝑖=1

𝛼2𝑖 E[𝑓 (y,L)]

= 𝑁E[𝑓 (y,L)]

(31)

Joining Equations (30) and (31), we have:

E[𝑓 (y,L)] = |E | · (1 − ℎ(G))
𝑁

(32)
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Table 4: Model Hyperparameters and their search ranges

Dataset YelpChi Amazon T-Finance T-Social

𝛼 {0,1,2} {0,1,2} {0,1,2} {0,1,2}
𝛽 {0,1,2} {0,1,2} {0,1,2} {0,1,2}

Learning Rate (lr) for 𝜃 {1e-3, 5e-3, 1e-2}
Learning Rate (lr) for Φ {1e-3, 5e-3, 1e-2}

Learning Rate (lr) for 𝜑1 and 𝜑2 {1e-3, 5e-3, 1e-2}
weight decay for Φ 1e-3

(a) Amazon (b) T-Finance (c) T-Social

Figure 8: More training curves of BioGNN.

Figure 9: The ego-graph of some yellow-circled ego nodes classified as high-frequency by BioGNN in Amazon.

(a) yelp-1 (b) yelp-2 (c) amazon-1 (d) amazon-2

Figure 10: The ego-graph of some yellow-circled ego nodes classified as low-frequency by BioGNN.

Note that G is the ego-graph of the node, hence 1 − ℎ(G) is the
ratio of inter-class edges, which is 𝑞0 for negative nodes and 𝑝1 for
positive nodes. Finish the proof.

B REPRODUCIBILITY
In this section, some details for reproducibility are listed.
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Table 5: Performance with limited label information or (and) small percentage of abnormal nodes

BWGNN(F1-Macro %) BWGNN(AUC %) BioGNN(F1-Macro %) BioGNN(AUC %)

Yelp (anomaly=5%, training=40%) 76.44 89.67 74.71 88.17
Yelp(anomaly=14.53%, training=1%) 67.02 79.65 67.12 80.20
Yelp (anomaly=5%, training=1%) 66.27 78.49 64.93 74.57

Amazon (anomaly=5%, training=40%) 91.20 96.55 90.98 96.60
Amazon (anomaly=6.87%, training=1%) 90.69 91.24 84.36 92.46
Amazon (anomaly=5%, training=5%) 89.69 94.20 86.90 93.60

TFinance (anomaly=4.58%, training=1%) 84.89 91.15 83.14 92.53
TSocial (anomaly=3.01%, training=1%) 75.93 88.06 83.07 93.75

B.1 Model Hyperparameters
According to [40], a Bernstein Polynominal-Based filter is parame-
terized by 𝛼 and 𝛽 . The choice of 𝛼 and 𝛽 on datasets are presented
in Table 4. In addition, some basic learning hyperparameters are
reported.

B.2 Datasets
The YelpChi dataset [36] focus on detecting anomalous recommen-
dations from Yelp.com. The Amazon dataset [35] includes product
reviews under the Musical Instruments category from Amazon.com.
Both of the datasets have three relations, hence we treat them as
multi-relation graphs. T-Social and T-Finance [40] are two large-
scale datasets released recently. The T-Finance dataset aims to
detect anomalous accounts in a transaction network where the
nodes are annotated as anomaly if they are likely fraud, money
laundering and online gambling. The nodes are accounts with 10-
dimension features whereas the edges connecting them denote
they have transaction records. The T-social dataset aims to detect
human-annotated anomaly accounts in a social network. The node
annotations and features are the same as T-Finance, whereas the
edges connecting the nodes denote they maintain the friendship
for more than 3 months.

C LIMITED LABEL AND ANOMALIES
In the real-world case, the percentage of the anomaly is usually
quite low, even less than 5% or even 1%; also human annotation
is expensive which leads to limited label information. Hence we
have conducted additional experiments to address this concern and
provide insights into the performance in such scenarios in Table 5.

Limited Label Information: We experimented with reduced la-
beled data to 1%. Despite the reduced amount of labeled information,
our proposed method still achieved good performance, demonstrat-
ing its ability to effectively leverage limited label information for
accurate detection.

Small Percentage of Abnormal Nodes: We also examined the
performance when the dataset contained a small percentage of
abnormal nodes. In this scenario, our proposed method maintained
a high level of f1 and auc in detecting the abnormal instances, even
amidst the imbalanced class distribution.

Small Percentage of Abnormal Nodes with limited label in-
formation: In this case, the performance of the proposed method
drops a little due to the inaccurate prediction of the NLD of the
nodes.

12


	Abstract
	1 Introduction
	2 Preliminaries and Notations
	3 Theoretical Analysis
	3.1 Impact of NLD on Node classification
	3.2 NLD in the Spectral Domain
	3.3 Validation on Real-World Graphs

	4 Methodology
	4.1 The Learning Objectives
	4.2 Instantiation of BioGNN
	4.3 Initialization of BioGNN
	4.4 Validation on Golden-separated Graphs

	5 Experiment
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Analysis of BioGNN

	6 Related Work
	6.1 Static Graph Anomaly Detection
	6.2 Graph Spectral Filtering

	7 Limitation and Conclusion
	References
	A Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2

	B Reproducibility
	B.1 Model Hyperparameters
	B.2 Datasets

	C Limited Label and Anomalies

