
Scalable Range Search over Temporal and Numerical Expressions

Anonymous Author(s)

Abstract

Natural language expressions of time and numbers can be ambigu-
ous (e.g., 2020s can refer to either 2021 or 2025), can be present
at different granularities, or can be unbounded (e.g., more than
ten percent). To match and retrieve such ambiguous temporal
and numerical expressions over millions of documents, we present
nash. Our experiments on collections amounting to more than 22
million documents show that nash provides significant speedups
in the order of 19.23 - 53.10× for contains and near queries. nash
manages this while using indexes that are 1.90 - 2.05× smaller than
the indexes utilized by baselines. We further demonstrate nash’s
scalability to the Web by indexing a subset of Common Crawl
amounting to more than 365 million documents.

CCS Concepts

• Information systems→ Search engine indexing.

Keywords

Indexing, Efficiency, Analytics, Temporal & Numerical Expressions

ACM Reference Format:

Anonymous Author(s). 2024. Scalable Range Search over Temporal and
Numerical Expressions. In Proceedings of ICTIR’24. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction

The Web is a knowledge-rich repository of real-world events as
they have unfolded over time. Event analytic tasks require retrieval
of documents containing combinations of words, entities, tempo-
ral and numerical expressions. Important events are marked by
the days, months, or years (e.g., recession in ’24) which they
spanned and are often characterized quantitatively by numbers
(e.g., 10% inflation). To retrieve documents that contain time
intervals and numerical values that are of relevance to the ones
mentioned in the query is challenging. The first challenge is of
performing a semantic match between the queried interval and the
intervals described by the temporal and numerical expressions in
text (e.g., matching the ambiguous expression around ten per-
cent to the query term 11%). The second challenge is that of
the design of a data model such that we can store the values of
the temporal and numerical expressions with their precise seman-
tics so as to accommodate their hierarchical (e.g., day ≺ month ≺
year) and proximate relationships. The third and final challenge
we face is that of performing the semantic match at scale across

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICTIR’24, July 13, 2024, Washington D.C., USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 2 3 4 5 6 7 8 9 10 11

[2024, 2024]> 10.0%

PERCENT DATE LOC

Inflation is more than ten percent this year in the US.

WORD LAYER

NAMED ENTITY (NE) LAYER

TIME AND NUMBER LAYER

Figure 1: The annotated text model [18, 19].

millions of documents. Specifically, the number of implicit intervals
referred by 2000s or around 10% can be arbitrarily large, how
can we match the time interval expressed in the query to these
numerous variations during query processing and avoid inspecting
irrelevant intervals (e.g., by naïvely scanning an interval index over
the begin and end of the temporal and numerical expressions)?

nash enables querying for temporal and numerical intervals us-
ing range-based operators (i.e., contains, containedBy, intersect,
and near). To do so, nashmodels ambiguous temporal or numerical
expression using two-dimensional geometry to overcome the chal-
lenge of semantic gap. To store these two-dimensional geometries
associated with temporal and numerical expressions, nash utilizes
z-order curves [26]. By utilizing z-order curves, we can query tem-
poral and numerical intervals at different levels of granularity by
simply truncating bits of the hash values. Finally, we describe the
concept of continuous hashes and an improved variant of bigmin
and litmax method [34] to optimize query processing for nash.

2 NASH

We now describe our system nash in detail.

2.1 Preliminaries

Annotated Text Model. We build upon the text model [18, 19],
where each document 𝑑 in a collection 𝐷 is modeled as a collection
of annotation layers: 𝑑L = ⟨ℓ[𝑖, 𝑗] . . . ℓ[𝑝,𝑞]⟩. The annotations ℓ are
drawn from the annotator’s (e.g., a named entity tagger) vocabulary
ΣL (e.g., person, organization, location, date, number). Further-
more, each annotation ℓ[𝑖, 𝑗] adorns a contiguous word sequence
⟨𝑤 [𝑖,𝑖] , . . . ,𝑤 [𝑗, 𝑗]⟩ in the word layer 𝑑W (see Figure 1).

Temporal and Numerical Expressions in text can be obtained
by annotators such as Stanford CoreNLP [25]. Specifically, coarse-
grained named entity annotations indicated by time, date, money,
number, percent, ordinal can be resolved to precise intervals with
the help of rule-based taggers, such as SUTime [13]. Thus, we can
resolve implicit, relative, and explicit mentions of time and numbers
to exact intervals based on document metadata or explicit dates or
numbers mentioned elsewhere in the document contents. Note that
unlike temporal expressions, resolved values for numerical expres-
sions can be unbounded (e.g., > 10%) or approximate (e.g., ∼ 5).

Uncertainty-Aware Model. Temporal and numerical expres-
sions in text (e.g., around millions) often convey an interval
[𝑏, 𝑒] which is ambiguous. The uncertainty-aware model [11] rep-
resents this ambiguity by allowing for lower and upper bounds to
the beginning and the end of intervals. Thus, we can model uncer-
tainty as a quadruple: ⟨𝑏𝑙 , 𝑏𝑢 , 𝑒𝑙 , 𝑒𝑢⟩, where, the lower 𝑙 and upper 𝑢
bounds allow ambiguity in the beginning 𝑏 and end 𝑒 of the interval
(𝑏 ≤ 𝑒). Thus, a temporal or numerical interval (e.g., early ‘20s) can

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICTIR’24, July 13, 2024, Washington D.C., USA Anon.

X

Y

0

1

2

3

4

0 1 2 3 4

B

T U

R
55 56

53 54

J K

M
27 28

25 26

P Q

N O

(a)

A

B

C

J

K

L

25

26

27

28
M

D

N

O

P

Q

E

R

S

53

54

55

56
T

U

(b)

Figure 2: (a) Modeling data in two-dimensional Cartesian plane, its

corresponding quad-regions, and (b) the corresponding quadtree.

be represented as a two-dimensional bounding box in a Cartesian
plane as shown in Figure 3a and refer to its intervals (e.g., [1922,
1925]) as a region in the Cartesian plane.

Space-Filling Curves provide a way of linearizing multidimen-
sional values by traversing every point of a 𝑛-dimensional region
and mapping the multidimensional data to a position on an one-
dimensional curve. Thus, any 𝑛-dimensional point can be described
by its unique 1-dimensional position on a linear curve. In this work,
our focus will be on space-filling curves and their applications in
two-dimensional space.

The Quadtree [17] is a common technique used for spatial
indexing. Quadtrees share some characteristics with space-filling
curves, such as: the space division into regions and visualization
of the hierarchical characteristics as a tree. The quadtree is a gen-
eralization of the binary tree for treating data in two dimensions.
A binary tree recursively splits a one-dimensional space in two,
resulting in a maximum of 2𝑛 nodes at each level, starting with
𝑛 = 0 at the top level. The quadtree functions similarly but in two
dimensions. Each dimension is split in two, resulting in four total
children and thus 4𝑛 nodes of each level. The region quadtree is a
variant of the quadtree where the space is divided into equal size
regions. Each region then represents a two-dimensional range, i.e.,
a minimum bounding rectangle. All points in the two dimensional
space will then belong to one of these regions. Figures 2a and 2b
show how a two-dimensional space can be broken into smaller
quadrants with the corresponding tree-representation. The tree-
representation also illustrates the hierarchical characteristic of the
quadtree. The parent-child relationship of nodesmeans that all child
nodes of the same parent node are all contained by the parent region.

2.2 Query Language

To retrieve documents for event-centric queries, we next explain
the range-based operators that are part of nash’s query language.

Range-Based Operators. nash provides three important range-
based operators: contains and containedBy; intersect; and near.
We next define the semantics of each of the operators formally.
The contains operator allows for retrieval of those documents that
have an interval which lies completely within the queried interval.
Another variation of the operator is containedBy which retrieves
those documents having intervals which completely subsume the
queried interval. The semantics of contains (semantics of con-
tainedBy can be derived similarly) for a queried temporal or a

numerical interval [𝑏, 𝑒] can be defined as:

contains(ℓ) =
{
𝑑 ∈ 𝐷 | (ℓ′ ∈ 𝑑L) ∧ (ℓ′ ∩ ℓ = ℓ′)

}
. (1)

The intersect operator as the name suggests would retrieve
those documents that contain a temporal or numerical annotation
whose interval representation intersects with the queried interval.
The semantics of intersect operator can be formalized as:

intersect(ℓ) =
{
𝑑 ∈ 𝐷 | (ℓ′ ∈ 𝑑L) ∧ (ℓ′ ∩ ℓ ≠ ∅)

}
. (2)

The final operator near retrieves those documents that contain
a temporal or numerical annotation whose interval representation
is in proximity to the query interval. The proximity function (e.g.,
Euclidean distance) is defined during indexing of the document
collection and allows us to retrieve those documents quickly within
a given margin Δ. The semantics of the near operator is defined as:

near(ℓ) =
{
𝑑 ∈ 𝐷 | (ℓ′ ∈ 𝑑L) ∧ (distance(ℓ, ℓ′) ≤ Δ)

}
. (3)

2.3 Index Design

A naïve approach to searching temporal and numerical intervals
would be to index each dimension of the interval (e.g., begin and
end) and evaluate the range-based search predicates. However, ei-
ther with a naïve interval representation or the uncertainty-aware
interval representation this would require multiple scans over the
indexes to determine the result set. An alternative approach can be
to utilize known indexing techniques formultidimensional data [33].
However, these approaches are more involved and hard to accom-
modate in the query processing engine of a large scale search infras-
tructure that primarily relies on inverted indexes. To bring together
a unified indexing solution to annotated text documents we turn
to space-filling curves, which allow us to map multidimensional
data into one-dimensional summaries that can then be queried
using inverted indexes. Space-filling curves also exhibit locality-
preservation property such that geometries or data points in high
dimensional spaces that are close together are allocated proximate
hash values. This provides data locality on disk thereby aiding in
quick query processing. Furthermore, space-filling curves inher-
ently provide hierarchical relationship between coarser-granular
regions and finer-granular regions (similar to QuadTrees for index-
ing spatial data [17]). This property of space-filling curve is par-
ticularly important as it also allows us to capture the hierarchical
relationship in temporal expressions mentioned at different granu-
larities (i.e., day ≺ month ≺ year). For our purposes, as temporal
and numerical intervals are represented in the uncertainty-aware
representation, we are concerned with mapping two-dimensional
bounding boxes to one-dimensional summaries.

z-order Curves. We utilize z-order curves [26] for comput-
ing the hash values. Other space-filling curves such as Hilbert
curves [21] allow for higher precision and better locality preserva-
tion but at an increased computation cost. A z-order curve partitions
the Cartesian space recursively into four disjoint regions. To assign
a unique value to each of these regions the curve traverses through
each of them exactly once in a "z" manner. The z-order hash for
a region can be arrived by interleaving the bits representing the
coordinate positions spanning the partitions (see Figure 3b).

Using the z-order curve, we can now model the uncertainty-
aware representation of temporal and numerical expressions. This

Scalable Range Search over Temporal and Numerical Expressions ICTIR’24, July 13, 2024, Washington D.C., USA

begin(X)

e
n
d
(
Y

)

[b, e]

bl bu

el

eu

(a)

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

0(00)

0(
00
)

1(01)

1(
01
)

2(10)

2(
10
)

3(11)

3(
11
)

(b)

X

Y

begin(X)

e
n
d
(
Y

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Intersect

ContainedBy

Contains

(c)

Figure 3: (a) The uncertainty-aware model with an example temporal expression (yellow region) and an interval [𝑏, 𝑒]. (b) z-order hashes for
two temporal expressions. (c) Region-based query operations translated as MBRs for the queried red MBR.

Input: X: X-coordinate, Y: Y-coordinate, XR: range of X, YR: range of Y, p: precision.
Output: h: the calculated z-order value.
1: procedure calculateHash(X, Y, XR, YR, p)
2: h ← bit string with zero-bits, length of p
3: b ← 0 ⊲ Current bit position
4: while b < p do

5: if b is even then ⊲ Y-dimension
6: mid ← (YR[0] + YR[1]) / 2
7: if Y ≥ mid then

8: YR[0] = mid
9: h ← set current bit of h to 1
10: else

11: YR[1] = mid

12: else ⊲ X-dimension
13: mid ← (XR[0] + XR[1]) / 2
14: if X ≥ mid then

15: XR[0] = mid
16: h ← set current bit of h to 1
17: else

18: XR[1] = mid

19: // next bit
20: b ← b + 1
21: h ← left shift h by 1

22: return h

Algorithm 1: z-order Hash Computation.

is done by breaking down the bounding-box corresponding to the
expression and computing z-order hashes for the resulting regions.
The accuracy of the z-order hash representation of the bounding-
box is given by the size of the smallest possible region. The size
of a region can be computed by the number of bits and the size of
the dimensions being represented. For a range [𝑏, 𝑒] and 𝑛 bits to
describe one dimension, accuracy can be defined as:

Accuracy = (𝑒−𝑏)/2𝑛 . (4)

z-order Hash Computation is shown in Algorithm 1. The cal-
culateHash method takes as its input the co-ordinates for which
the z-order hash needs to be computed, the overall range for tempo-
ral or numerical expression in the entire document collection, and
the required precision of the hash. The overall range is defined by
an interval, where the begin is the earliest time point or the smallest
numerical value while the end is the latest time point or the largest
numerical value to occur in the entire document collection. The
z-order value is calculated one bit at a time, starting with the most
significant bit (MSB). This represents the first Y-value of the hash. A
counter 𝑏 is used to indicate the current bit position. If the position
is even, the current bit represents a part of the 𝑌 -value, and if not,
it represents a part of the 𝑋 -value. The calculation of the current
bit is the same for both dimensions. The mid-point of the current

dimension is calculated and compared against the mid-point of the
current range for that dimension. It starts as the𝑋 and𝑌 dimension
bounds and is halved for each bit being calculated. If the value is
larger than or equal to the midpoint, the current bit position is set
to 1, and if not, it stays at zero. The range of the current dimension
is then halved, keeping the half containing the value. This is done
alternately for the 𝑋 and 𝑌 dimension, until the desired number of
bits or precision is reached.

Decoding of the z-order hash is done in a similar manner. Starting
with the MSB, if the bit is a 1, the overall range of the dimension
(starting with Y) is split into the upper half, and if the bit is 0 into the
lower half. This is done for each bit, each time halving the range for
the current dimension being examined. The result is then an interval
for each dimension, indicating the region the z-order hash covers.

As the range search over the z-order curve is done at a minimum
of two bits at a time, a base 4 encoding is used. That is, each base 4
character represents one partition in both the X and the Y dimension.
This results in a shorter representation while still allowing for the
finest precision increment or reduction by adding or removing
from the hash. Moreover, it allows for any even level of z-order
precision while indexing and querying. The encoding is as simple
as translating each 𝑋 , 𝑌 pair into its base 10 representation: 002 →
010, 012 → 110, 102 → 210, 112 → 310.

z-order Hash Indexes. To leverage the benefits of the space-
filling curves outlined earlier, we instantiate an inverted index that
stores the z-order hash along with their positions. The positional
information can further help us to compute the shorter text regions
within documents that can contain them in sequence with other
annotations (e.g., named entities). With this index design choice, we
leverage the locality-preservation property of the z-order curves.
This is because the points close in the uncertainty-aware model
are also stored close together in the index (since the indexes are
sorted by the indexing units). Furthermore, we additionally index
the prefixes of each of the z-order hashes to leverage the hierarchi-
cal property of the space-filling curves. For example, for the hash
3300030030 corresponding to the range [1890, 1890], each prefix
330003003, 33000300, 3300030, etc. are indexed at the same posi-
tional span. Therefore, by truncating bits from a hash we can move
from fine granular representation of the interval (e.g., at day-level)
to a coarse-granular representation of the interval (e.g., at year-
level). Concretely, z-order hash indexes store for each occurrence of

ICTIR’24, July 13, 2024, Washington D.C., USA Anon.

3300030
indexing unit

: 1 | 4 | ⟨1, 2, 3, 3⟩ | ⟨2, 7, 10, 15⟩ | ⟨3, 8, 11, 16⟩
d-id freq. sentence ids begin positions end positions

Figure 4: The inverted index organization.

the hash and its prefixes, the following particulars in the document
collection: the document identifiers, the sentence identifiers, the
begin positions in the document, and the end positions in the docu-
ment (see Figure 4). The sentence identifiers and positional informa-
tion allows us to further compute concise text regions containing
temporal and numerical expressions in combination with other
word sequences and coarse-grained named entities (e.g., person,
organization, or location). The payloads for each of the hashes
are further compressed using patched frame of reference [6, 38].

Index Combinations are often leveraged for Web-scale query
processing [18, 28, 36]. To evaluate event-oriented queries, we ad-
ditionally require indexes over n-grams (unigrams, bigrams, and
trigrams) and coarse-grained named entities (e.g., person, org.,
and loc.). To construct these indexes, we rely on the same index
structure as that of the z-order hash indexes.

2.4 Query Processing

Using the z-order hash-based indexes we can now convert search
over the uncertainty-aware model into a simple linear range search
over the hashes. This naïve approach entails, creating the query-
MBR (minimum bounding rectangle) that describes the interval
to be searched having been represented in the uncertainty-aware
model. The resulting matches can then be obtained by retrieving
all the z-order hashes that lie between the diagonally opposite
hashes describing the query-MBR. Due to the nature in which the
z-order curve jumps across partitions, there are bound to be some
false-positives. However, we are guaranteed to always retrieve all
of the relevant temporal or numerical expressions with this naïve
approach. We next describe the query-MBR generation for the four
query predicates (see also Figure 3c).

Query MBRs for contains and containedBy. A contains
query translates to the MBR described by 𝑋 ∈ [𝑏𝑥 , 𝑒𝑥] and 𝑌 ∈
[𝑏𝑦, 𝑒𝑦] with 𝑋 ≤ 𝑌 . The result set can be obtained by retrieving
all the hashes that lie between diagonally opposing corners of the
MBR, i.e., (𝑏𝑥 , 𝑏𝑦) and (𝑒𝑥 , 𝑒𝑦). A containedBy query translates
to the MBR described by 𝑋 ≤ 𝑏 and 𝑌 ≥ 𝑒 , where the lower bound
for 𝑋 and upper bound for 𝑌 is equal to the lower bound and upper
bound for the overall range of temporal or numerical annotations
being indexed for the document collection, respectively.

Query MBRs for intersect. A intersect query translates to a
MBR described by 𝑋,𝑌 ∈ [𝑏, 𝑒] with 𝑋 ≤ 𝑒 , 𝑌 ≥ 𝑏, where the lower
bound for 𝑋 and upper bound for 𝑌 is equal to the lower bound
and upper bound for the overall range of temporal or numerical
annotations being indexed for the document collection, respectively.
Thus, a intersect query includes results that would be obtained
from a containedBy and contains query with additional results
that intersect the queried interval.

Query MBRs for near.We use the Euclidean distance as a mea-
sure of proximity to process a near query. A near query translates
to a MBR described by the points [𝑏 − Δ, 𝑒 − Δ] and [𝑏 + Δ, 𝑒 + Δ]
as being the diagonally opposing points. In that MBR, Δ denotes
the distance within which an interval represented by a temporal or
a numerical expression is seen as being proximate to the queried
interval. With near query we can obtain those expressions of time

Input: T1 = [b𝑥 , e𝑥] and T2 = [b𝑦 , e𝑦]: MBR point tuples, H (=∅): list of hashes,GR: tuple
of the overall range in D, and p: precision.

Output: H: minimal set of hashes covering the input MBR.
1: procedure rangeSearch(T1,T2, H, GR, p)
2: cb ← number of common MSBs between T1 and T2
3: if T1 and T2 are continuous then ⊲ range within MBR
4: h ← bit string equal to the common MSBs
5: H.add(h) ⊲ hash shorter than p
6: return H

7: if cb = p then ⊲ at lowest level
8: H.add(T1) ⊲ Single partition, max hash length
9: return H

10: // Calculate bigmin B and litmax L
11: if cb is even then

12: B, L← calcBigminLitmax([T1.X, T2.X], [T1.Y, T2.Y], 1)
13: else

14: B, L← calcBigminLitmax([T1.Y, T2.Y], [T1.X, T2.X], 0)

15: rangeSearch(T1, L, H) ⊲ split
16: rangeSearch(B, T2, H) ⊲ split
17: return H

Algorithm 2: Compute minimal set of z-order hashes.

and numbers that may not intersect the queried interval but are in
its neighborhood.

The range-based query predicates can be combined by adding
or removing hashes to be searched in the index. For instance, if
we would like to have a result set for a intersect query that only
contains results that overlap without any subsumption, we can
compute the set of hashes for containedBy and contains and
remove them from the set of hashes for intersect. This can be
computed by the query processing engine without the need to scan
the index. The only parameters required are the overall ranges of
temporal and numerical expressions in the document collection
and the precision of the stored z-order hashes.

2.5 Query Optimizations

A naïve approach to process a query will be to perform a simple lin-
ear scan between pair of hashes corresponding to the query-MBRs.
However, as noted earlier this may result in false positive results
which can slow down the overall query processing. To reduce the
number of spurious hits, we next describe three optimizations that
can greatly speed up the overall query processing.

Pruning Hashes for Invalid Subranges. First, based on the
uncertainty-aware model, we can prune away those search sub-
ranges where the begin of the interval is greater than the end i.e.,
𝑋 > 𝑌 . The hashes corresponding to these invalid subranges follow
a recursive pattern. At the highest level of recursion, the entire
bottom-right quadrant can be ignored along with two smaller tri-
angles (see Figure 3). These triangles can be recursively broken
down into smaller quadrants until the hashes covering the entire
invalid area are found. The bottom-right quadrant is given by the
hash 012. Any value having this as its prefix is then invalid and can
be ignored. The number of ignored values at each recursion level
thus grows at a rate of 2𝑛 , where 𝑛 is the current recursion level
(with the initial level at 0). These values can be pre-computed and
stored in a lookup-table for pruning during query processing. The
total number of ignored values for a given level of precision is then:
2𝑛 + 2𝑛−1 + 2𝑛−2 + ... + 20 = ∑𝑛

𝑖=0 2
𝑛−𝑖 = 21+𝑛 − 1.

Adjusting Accuracy. Second optimization that we perform is
to reduce the precision of the z-order curve while still being within
a minimum range accuracy. The accuracy of representing a single
dimension on the z-order curve is given by Equation 4. Solving
that equation for 𝑛 and rounding up to the nearest integer gives

Scalable Range Search over Temporal and Numerical Expressions ICTIR’24, July 13, 2024, Washington D.C., USA

Input: K and U :tuples for known dimension and d: indicator of unknown dimension.
Output: litMax and bigMin: calculated values for unknown dimension.
1: procedure calcBigminLitmax(K,U,d)
2: cb ← number of common MSB between U[0] and U[1]
3: litMask ← bit-string equal to 011 . . . , total length equal cb
4: bigMask ← bit-string equal to 100 . . . , total length equal cb
5: litMask ← first cb MSBs of U[0] followed by litMask
6: bigMask ← first cb MSBs of U[1] followed by bigMask
7: if d = 0 then ⊲ Unknown dimension is Y
8: litMax ← bit interleave litMask and K[1], starting wtih mask
9: bigMin ← bit interleave bigMask and K[0], starting with mask
10: else ⊲ Unknown dimension is X
11: litMax ← bit interleave K[1] and litMask, starting with K
12: bigMin ← bit interleave K[0] and bigMask, starting with K

13: return litMax, bigMin

Algorithm 3: Computing bigmin and litmax values

the minimum number of bits needed to be certain that any hashes
calculated are not deviating more than the allowed maximum for
that dimension. This can be restated as:

(𝑒−𝑏)/2𝑛 ≤ Deviation (5)

As the range search is done over two dimensions, the calculated
precision must be multiplied by two. If the dimensions differ in
required accuracy, the precision required for the most accurate of
the dimensions is used. The calculated number of bits is only the
maximum precision needed and can be lowered for continuous
hashes (discussed next). For larger ranges, potentially more hashes
will be returned from the z-order curve, as the MBR may cover
multiple quadrants at different precision levels. At the same time,
searches over larger areas often require less precision to begin
with. For example, if queried interval lies in the range of [1900,
1999] , having a potential ±10 year deviation in each end is not of
great concern, compared to if the query was [1990, 1999] . This
is utilized by defining the maximum allowed deviation as a part of
the query processing. A larger range allows for a greater deviation,
while a smaller range requires a smaller deviation. By dividing the
smallest of the ranges by 10, a 10% deviation is achieved in the worst
case. For instance, [1900, 1999] would then potentially allow for
a ±10 year accuracy, while [1990, 1999] a ±1 year accuracy.

Continuous z-order Values. Third optimization that we per-
form is to convert the computed query-MBRs to a minimal set of
hashes to query the inverted indexes. Specifically, we utilize a modi-
fied variant of bigmin and litmaxmethod [34] that does not need to
consult the inverted indexes for the minimal hash set computation.
This method takes as input the overall search range depicted by
the query-MBR (i.e., coordinates of the diagonally opposite corners
of the MBR) and recursively splits the search space into sub-ranges
verifying if z-order hash is continuous. The notion of continuity
here conveys if the hash is relevant to the search range or not. The
basis condition of recursion is reached when maximum precision
is obtained for the z-order hash. To determine continuity we check
if two hash values are continuous by determining the number of
common MSBs using a bitwise XOR. Every pair of common bits
in the count represents if the hash values lie in the same quadrant.
By counting such pairs of common bits we can determine the com-
mon parent quadrant the hash values occupy. Having counted the
common bits, a further verification is done to see if both the hash
values are same (either all 0s or all 1s based on the corner of the
diagonal) after the number of common bits to ensure they indeed
lie in the same quadrant. Otherwise, this indicates a discontinuity

and a split must occur. These optimizations together are described
in Algorithm 2. The third optimization of checking continuity is
done on line 2. If they are continuous, the search can stop, and the
common MSBs can be added to the return hash set (line 5). The
second optimization is applied between lines 7-9. There the method
checks if the number of common bits is equal to the maximum pre-
cision. If true, the search stops at the current recursion as the two
hashes are seen as equal for the given precision, and the common
bits are added to the return hashes. If none of the above terminating
conditions are reached, then a discontinuity has been discovered
and a split needs to be made (lines 10-14). The computation of this
split is described next.

If a discontinuity occurs then the search space needs to be split
into sub-ranges. To this end, we compute the split using a modified
variant of bigmin and litmax method [34]. The split in the search
space can either be horizontal or vertical. This is decided by the
number of common bits between the pair of hashes describing the
query-MBR. If there are an even number of common bits then the
next bit which is not common is a Y-value (horizontal). Similarly,
if there are an odd number of common bits then the next bit is an
X-value (vertical). We can readily identify the values for one of the
dimensions in the new split as they are already known and can be
extracted from the current corners of the MBR. A horizontal split
means that the search is split along the Y-axis and that the current
X-values are within the search space. The bigmin and litmax cal-
culation is then done to find the Y-values just to the left and to
the right of this split. Similarly, a vertical split means a split along
the X-axis, and the calculation is done to find the X-values just to
the left and to the right of the split. The computation takes the
values of the known dimension as one pair, and the values of the
unknown dimension as another. The values are the extracted bit
representation of each dimension of the hashes, i.e., starting with
the MSB and taking every other bit yields the Y-value for that hash.
The calculation differs based on which dimension the calculations is
to be done for. A horizontal split would then take in both X-values
as the known pair, and the Y-values as the unknown pair, with the
computation being done for the Y-dimension.

The computation (shown in Algorithm 3) is straight-forward and
requires appending a set of bits to the common MSBs of the values
of the unknown dimension (lines 3-6). The common bits indicate
where the dividing line of the split is. bigmin is the next (smallest)
value within the search range in the upper part of the split. litmax
is the largest value in the lower part of the split. bigmin’s value for
the unknown dimension is calculated by appending to the common
bits. A 1 is appended to indicate the upper part of the split, followed
by 0s such that it is the smallest value in this part. litmax’s value for
the unknown dimension is the inverse, appending a 0 followed by 1s.
The final litmax and bigmin value is calculated by interleaving the
values from the known dimension with the calculated litmax and
bigmin values from the unknown dimension. litmax is interleaved
with the largest of the known values, and bigmin with the smallest
(lines 7-12). The starting value of the final hash is always the Y-
value and a dimension bit indicator shows which dimension is the
unknown and which is known (line 7).

In Figure 5a, we illustrate how the range search is divided into
smaller sub-ranges. The two-dimensional range search is done
from point 𝑆 to point 𝑇 equals a z-order range search from the

ICTIR’24, July 13, 2024, Washington D.C., USA Anon.

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

0(00)

0(
00
)

1(01)

1(
01
)

2(10)

2(
10
)

3(11)

3(
11
)

53 54

51 52

49 50

27 28

25 26

31 32

29 30

S

T

(a)

A

C

L

25

26

27

28

M

29

30

31

32

E

R

49

50

51

52

S

53

54

55

56

(b)

Figure 5: (a) Example range search using the bigmin and litmax

algorithm for finding continuous z-order hashes depicted using the

z-order curve and (b) its corresponding quadtree.

hash in quadrant 25 (0110002) to the hash of quadrant 54 (1101012),
over a 6-bit z-order curve (only the four-bit hashes are shown). 𝑆
and 𝑇 are not continuous, as shown by the quadrants shaded red.
The algorithm finds the number of common bits, which is zero,
meaning a horizontal split and unknown Y-values. The extracted
Y-bits from quadrant 25’s hash is 0102 and from quadrant 54 1002.
As the current Y-values share no common bits, the Y-bits for bigmin
(the bigminmask) is simply 1002 and for litmax 0112 . Interleaving
1002 with the (known) X-bits of quadrant 25 (1002) results in a
bigmin of 1100002 , which is in quadrant 49. Similarly, interleaving
0112 with the X-values of quadrant 54 (1112) yields a litmax of
0111112 (quadrant 32). Based on these values, the search range is
split into two sub-ranges shown by the red line in Figure 5a. The
new ranges are quadrant 25 to quadrant 32 and quadrant 49 to
quadrant 54. The search from quadrant 25 (011002) to quadrant
32 (0111112) is done in the same manner. However, this time the
range is continuous. The hashes share three common bits, with the
one diagonally opposite corner’s hash having all zeroes following
the common bits, and the other’s hash having all ones. No further
searching is then needed, and the hash (0112) is added to the result
hashes. The same does not apply for the search from 49 to 54, as the
quadrants 51 and 52 are outside the search range, but between the
z-order interval. The number of common bits between quadrants
49 and 54 is three (1102), indicating a vertical split and unknown
X-values. The X-bits of quadrant 49 are 1002 and 1112 for quadrant
54. They share one common bit, resulting in a bigmin mask of 1102
and a litmax mask of 1012. Interleaving the bigmin mask with
the Y-bits of quadrant 49 (1002) yields the bigmin value 1101002
(quadrant 53). Similarly, interleaving the litmax mask with the
Y-values of quadrant 54 (1002) yields 1100012 (quadrant 50). The
new search ranges are then from quadrant 49 to 50 and from 53 to
54. The split is indicated by the blue vertical line in Figure 5a. Both
these new ranges are found to be continuous as they share common
bits, followed by all ones and all zeroes. The hashes added to the
result are then 110002 and 110102. However, nash will only allow
continuous ranges which have an even bit length, such that the
prefix properties can be utilized in a base 4 encoding. This would
result in two further vertical splits, and the hashes for 49, 50, 53,
and 54 would be added individually. Figure 5b shows the different
levels of the search in a quadtree. Only the visited subtrees are
included. The red lines illustrate the first range split, and the blue

Table 1: Raw collection sizes and their annotation statistics.

collection size (gb) #document #word #ne #time #number

nyt 3.06 1.86 M 1.06 B 107.77 M 15.41 M 21.72 M
wikipedia 33.44 6.34 M 3.81 B 626.27 M 150.89 M 115.14 M
c4-news 14.38 13.81 M 6.14 B 572.60 M 85.18 M 113.77 M
c4-en 304.64 365.07 M 133.59 B 8.36 B 1.28 B 2.17 B

Table 2: Index sizes for the document collections.

index type nyt wikipedia c4-news c4-en

n-gram 44.6 GB 152.7 GB 283.5 GB 2360.1 GB
annotation 588.2 MB 1.6 GB 2.3 GB —
z-order 4.9 GB 19.8 GB 26.3 GB 219.5 GB
direct 9.3 GB 40.6 GB 51.3 GB 880.6 GB

lines the second split. The green nodes indicate where the search
terminated, and are the hashes added to the result set. The yellow
nodes show the quadrants which were not visited as they were
within a continuous range. As can be seen, a total of 12 leaf nodes
are included in the search, but only 6 are needed to represent the
entire range (four if allowing odd hash lengths). If allowing for
some precision loss, even fewer hashes could be included in the
results. For example, only the hashes for 𝐸 and𝐶 could be included,
however, it would come at a cost of decreased search accuracy.

3 Evaluation

We next describe the evaluation setup for our experiments.
Annotated Document Collections. We instantiate indexes

for four document collections. The first document collection we
use is the New York Times Annotated corpus [7] which consists
of news articles published the New York Times between the pe-
riod 1987 to 2007. This document collection consists of approxi-
mately 1.8 million documents. The second document collection is
the complete English Wikipedia [1], which consists of the collabo-
ratively authored documents regarding notable entities and events.
A recent snapshot of the entire English Wikipedia comprises of
around 6.34 million documents. The third document collection we
use is a news subset of the English Common Crawl, published
as C4 [30]. This document collection consists of approximately
13.81 million documents. The fourth and final document collection
we use is the entire C4-En corpus derived from the English Com-
mon Crawl. This is the largest collection in our evaluation setup
amount to more than 365 million documents. We annotated each
document collection using the Stanford’s CoreNLP toolkit [25] for
coarse-grained named entities and resolved temporal and numer-
ical expressions. The temporal and numerical expressions were
then mapped to our z-order based hashes. Complete statistics re-
garding the document collection statistics are given in Table 1.

Implementation and Indexes. We implemented the entire
codebase for the indexing infrastructure from ground up in Java.
The z-order hashes for temporal expressions were done with 40-bit
precision so as to accommodate the hierarchical property of z-order
curves. With 40-bit precision, we can query temporal expressions
precisely at the day-level granularity. The z-order hashes for nu-
merical expressions were done at 20-bit precision to accommodate
large global numerical ranges. The z-order indexes store both the
hashes of the temporal and numerical expressions along with their
prefixes to leverage the hierarchical properties of the space-filling
curves. In order to process event-oriented queries, we created a
suite of indexes over the word layer, the coarse-grained named

Scalable Range Search over Temporal and Numerical Expressions ICTIR’24, July 13, 2024, Washington D.C., USA

entity layer, and the z-order hashes of the resolved values of tem-
poral and numerical expressions as discussed in Section 2.3. Due to
the size of the C4-En collection, we only instantiate unigram and
bigram indexes for locating n-grams. Moreover, we omit the anno-
tation only indexes for C4-En as the posting lists for a very small
coarse-grained named entity vocabulary grow prohibitively long.
Similarly, to reduce the size of C4-En direct index, we only store
the word layer along with two other sentence-level annotations.

The document collections were pre-processed, annotated, and
indexed on our Hadoop cluster of twenty five machines. Each
machine in the cluster consists of the following minimal specifi-
cations: an Intel Xeon CPU with 16 cores and processing speed
of 2.20 GHz and 128 GB of physical memory. The indexes are
stored in HBase, a scalable distributed key-value store, which runs
on our Hadoop cluster. HBase provides fault-tolerance and al-
lows us to scale our query processing over millions of documents
with ease. A summary of the indexes that we have created with
their sizes are shown in Table 2. All our experiments were car-
ried out on a compute node that is part of the Hadoop cluster.

Query Testbed. To construct a testbed of event-oriented queries,
we extracted important historical event descriptions for each day
of the year from the New York Times Learning Network — "On
This Day" portal [5]. Each event-oriented query in the testbed con-
tains combinations of annotations and the textual surface forms.
For each query, we ensure that each query has at least one coarse-
grained named entity and at least one temporal expression (i.e.,
its event date). In total, we have 4,548 queries with approximately
2.50 coarse-grained named entities (i.e., person, location, orga-
nization, and misc.) on average per query and approximately 1.54
temporal and numerical expressions on average per query. As an
example, for the event: “April 17, 1961, about 1,500 CIA-
trained Cuban exiles launched an invasion at the Bay
of Pigs on the southwestern coast of Cuba in a failed
attempt to overthrow Fidel Castro” [5]. The correspond-
ing event query in the testbed is: {(April 17, 1961)⊕([1961-04-
17 , 1961-04-17]), (1,500)⊕(∼1500.0), (cuban)⊕(misc),(bay of
pigs)⊕(loc.), (cuba)⊕(loc.), (fidel castro)⊕(person)}. Where,
⊕ shows the combination of the word sequences corresponding to
the named entity annotations.

Setup. We evaluate our system and the baselines for end-to-end
query processing runtimes. To do so, we sample 100 queries from
the testbed and run them three times with cold-cache setup. Cold-
caches are simulated by shuffling the queries in between rounds.We
report here results based on cold-cache settings as the results are
similar to that of warm-cache setup. We issue each event-oriented
query along with their event date. We evaluate each query in the
sample as a conjunctive query, i.e., the matched documents must
contain all the coarse-grained named entities with its event date
and accompanying numerical and temporal expressions. We further
evaluate the effect the query optimizations have on nash by varying
the search accuracy by 5%, 10%, and 25%.

Baselines.We first establish a naïve baseline of the total time
required to perform a distributed scan over the document collec-
tions on our Hadoop cluster. With the scan baseline, we obtain a
worst case bound on query runtimes. We further compare our sys-
tem to two additional baselines: texti and anni. The texti baseline
processes a query by first identifying a candidate set of documents

Table 3: Indexes used by the baselines and nash.

system n-gram annotation z-order direct

scan × × × ×
texti • × × •
anni • • × •
nash • × • ×
nash-opt • × • ×

Table 4: Runtimes in seconds for a distributed scan.

nyt wikipedia c4-news c4-en

76 330 291 5698

corresponding to the event coarse-grained named entities by re-
trieving the results using their phrases from the word layer. The
texti baseline then ensures that the candidate set of documents
indeed contain the event date and accompanying temporal and
numerical values by referring to the resolved annotation layers for
each of the candidate documents by using the direct index. The anni
baseline, works similar to the texti baseline but differs in how it
matches the temporal and numerical expressions. The anni baseline,
identifies potential matches for the event date and accompanying
temporal and numerical expressions by using an inverted index
over coarse-grained named entity annotation layer. Having identi-
fied the potential matches, it ensures that the resolved values for the
coarse-grained named entities are indeed correct using the direct
index. Note that the anni baseline is functionally similar to a base-
line utilizing indexes over numerical intervals. This baseline would
be slower than anni as it would entail scanning the interval in-
dexes multiple times for the range search predicates. For the C4-En
collection, evaluating the baselines texti and anni is prohibitively
expensive as it may entail scanning the entire document collec-
tion using the direct index. Thus, for the C4-En collection we pro-
vide comparative results using the distributed scan baseline (scan).

We evaluate two variations of our proposed system: nash and
nash-opt. Both variations of our proposed system, nash and nash-
opt, utilize only the z-order based indexes to match the event dates
and the accompanying temporal and numerical expressions. For
nash we disable the query optimizations and ensure that sets of
hashes generated are at full precision for retrieval of temporal and
numerical expressions. While for nash-opt we leverage the query
optimizations that further adjust the accuracy (deviation set to 1%)
during query processing. We evaluate both the baselines and our
system for all four of the range-based search predicates: contains,
containedBy, intersect, and near (Δ = 0). A summary of the
indexes the systems utilize is given in Table 3. As the baselines, texti
and anni, utilize the direct indexes we can ensure that the results
sets obtained are equivalent to nash. However, when applying the
additional optimizations during query processing for nash-opt, e.g.,
adjusting accuracy, we may obtain additional matches that contain
temporal and numerical ranges in the proximity of queried intervals.

Distributed Scan Results for each of the four document col-
lections are shown in Table 4. As can be seen the time taken for
scanning each collections is proportional to its size. For Wikipedia
the time taken is more than C4-News (even though it is larger than
Wikipedia). This is because Wikipedia documents are longer than
the documents contained in C4-News archive. The average num-
ber of words per document for Wikipedia is approximately 600.95
words as compared to 444.61 words per document for C4-News. For
New York Times, Wikipedia, and C4-News the distributed scan over
our Hadoop cluster can be done in the order of several minutes.
For the Web-scale English C4-En collection, the distributed scan

ICTIR’24, July 13, 2024, Washington D.C., USA Anon.

Table 5: End-to-end runtimes (in seconds) for cold caches.

runtime results for predicate containedBy.
system nyt wikipedia c4-news c4-en

texti 51.25 ± 220.94 175.02 ± 603.75 182.03 ± 647.92 —
anni 47.21 ± 192.25 202.92 ± 562.58 224.03 ± 580.49 —
nash 2.87 ± 2.53 62.69 ± 52.13 16.54 ± 15.29 235.27 ± 267.74
nash-opt 2.29 ± 3.25 11.56 ± 10.18 10.86 ± 13.66 202.93 ± 242.54

runtime results for predicate contains.
system nyt wikipedia c4-news c4-en

texti 46.17 ± 204.68 170.52 ± 587.82 177.86 ± 628.58 —
anni 47.77 ± 194.30 202.35 ± 561.09 222.37 ± 578.65 —
nash 0.90 ± 1.14 4.85 ± 5.26 6.16 ± 9.61 122.81 ± 174.81
nash-opt 0.77 ± 1.06 4.11 ± 4.61 6.02 ± 9.49 121.81 ± 177.89

runtime results for predicate intersect.
system nyt wikipedia c4-news c4-en

texti 45.75 ± 203.90 170.39 ± 587.65 176.07 ± 622.11 —
anni 47.30 ± 193.24 201.70 ± 554.79 224.21 ± 580.00 —
nash 2.96 ± 2.78 62.82 ± 52.76 16.99 ± 16.63 245.87 ± 299.20
nash-opt 2.53 ± 3.69 12.00 ± 10.82 10.78 ± 13.38 206.93 ± 245.22

runtime results for predicate near.
system nyt wikipedia c4-news c4-en

texti 45.77 ± 202.45 170.14 ± 586.16 176.11 ± 622.89 —
anni 47.44 ± 192.75 201.16 ± 555.28 222.54 ± 580.13 —
nash 1.11 ± 1.59 5.72 ± 6.59 9.16 ± 15.91 130.78 ± 182.41
nash-opt 1.02 ± 1.54 4.98 ± 6.06 9.44 ± 16.67 130.52 ± 186.24

Table 6: End-to-end runtimes (in seconds) by adjusting accuracy.

runtime results for predicate containedBy using nash-opt.

deviation nyt wikipedia c4-news c4-en

5 % 2.29 ± 3.35 11.36 ± 10.14 10.74 ± 13.69 202.59 ± 242.81
10 % 2.65 ± 3.88 12.19 ± 10.10 11.16 ± 13.48 205.31 ± 239.92
25 % 2.47 ± 3.34 14.47 ± 12.57 18.35 ± 22.30 307.89 ± 330.17

runtime results for predicate contains using nash-opt.

deviation nyt wikipedia c4-news c4-en

5 % 0.78 ± 1.14 4.04 ± 4.53 6.26 ± 10.13 119.72 ± 175.30
10 % 0.77 ± 1.09 4.00 ± 4.39 6.07 ± 9.62 118.95 ± 174.43
25 % 0.68 ± 0.94 3.64 ± 3.92 5.54 ± 8.59 120.07 ± 176.46

runtime results for predicate intersect using nash-opt.

deviation nyt wikipedia c4-news c4-en

5 % 2.58 ± 3.81 11.49 ± 10.31 11.24 ± 14.25 205.39 ± 244.61
10 % 2.51 ± 3.70 12.06 ± 10.06 11.57 ± 13.80 207.77 ± 240.88
25 % 2.59 ± 3.59 14.79 ± 12.90 18.24 ± 21.83 308.02 ± 328.19

runtime results for predicate near using nash-opt.

deviation nyt wikipedia c4-news c4-en

5% 0.99 ± 1.53 4.91 ± 6.01 9.46 ± 16.67 127.23 ± 182.80
10% 0.85 ± 1.34 4.85 ± 5.83 9.19 ± 16.09 124.98 ± 179.04
25% 0.81 ± 1.19 4.13 ± 4.58 6.93 ± 11.25 124.81 ± 180.03

takes the longest: approximately 1 hour and 35 minutes. When
comparing the results of a distributed scan to that of the baselines
(texti and anni) in Table 5, we observe that their runtimes are in
the same neighborhood of minutes for New York Times, Wikipedia,
and C4-News document collections.

End-to-End Runtime Results of our experiments are reported
in Table 5. We first discuss the results for the range-based query
predicates containedBy and intersect. These predicates are chal-
lenging for nash to compute as they require computing query-
MBRs for temporal and numerical expressions that can subsume
(containedBy) or intersect the queried intervals. The results for the
range-based query predicates containedBy and intersect show
our system nash outperforms the texti baseline by a factor in the
range of 15.46 - 17.86× for the New York Times document collection.
For Wikipedia, which contains the most number of temporal and
numerical expressions, and C4-News our system outperforms the
most competitive baseline texti by a factor in the range of 2.71 -
11.01×. This speedup can be attributed to the fact that the texti
baseline needs to consult the direct index for each document in the
candidate result set to ensure that the predicate conditions of each
of the range-based search operations are satisfied.

When comparing our system nash to anni baseline our system
performs 3.24 - 16.45× faster for containedBy queries and 3.21 -
15.98× faster for intersect queries. This speedup can be attributed
to smaller posting lists corresponding to the z-order hashes as com-
pared to lengthier posting lists corresponding to coarse-grained
named entities types of number and date. Therefore, it takes longer
for the anni baseline to process a conjunctive event-oriented query.
Whereas, for nashmultiple hashes corresponding to the query-MBR
can help prune irrelevant documents early in the query processing.
When further adjusting for accuracy, we can further lower our
runtimes with nash-opt and obtain speedups in the range of 15.14 -
22.38× for containedBy predicate and 14.20 - 20.80 × for intersect
predicate. Also, we observe that nash-opt significantly reduces the
query runtimes for Wikipedia, which contains the maximum aver-
age number of temporal and numerical expressions per document.

We next discuss the results for the range-based query predi-
cates contains and near. These predicates are more probable to
be requested by users such as journalists and scholars in digital
humanities as they enable a proximity and containment search
around a query interval. The results for the range-based query
predicates contains and near show that nash, provides speedups
in the range of 41.23 - 51.30× when compared to the texti baseline
for the New York Times collection. For Wikipedia and C4-News, we
obtain speedups in the range of 28.87 - 35.16× for contains queries
and speedups in the range of 19.23 - 29.75× for near queries. When
comparing our system nash to anni baseline, our system performs
36.10 - 53.10× faster for contains queries and 24.30 - 42.74× faster
for near queries. Again, the speedup in this case can be attributed to
the larger posting lists associated with coarse-grained named enti-
ties when compared to the posting lists for z-order indexes. Overall,
for nash we observe that it is quicker to execute the queries cor-
responding the predicates contains and near when compared to
executing same queries with the predicates containedBy and in-
tersect. This is because the number of hashes needed to describe
the query-MBRs for contains and near queries are fewer than those
needed to describe containedBy and intersect. When further ad-
justing for accuracy using nash-opt we observe a less significant
improvement. This can be attributed to the observation that a set
of more precise (longer) hashes are required for proximity queries
when compared to intersection queries and therefore are least af-
fected by the adjustment for accuracy. Overall, for nash-opt, we
see speedups in the range of 29.55 - 62.04× for contains and 18.66
- 46.51× for near queries.

For the C4-En document collection, we draw comparative results
based on the scan baseline. As we have seen before, the scan
baseline is competitive for the task of range search and performs
similarly when comparing to texti and anni that leverage n-gram
and annotation indexes for the smaller three document collections.
We observe that nash provides a speedup in the order of 23.18 -
24.22× for the containedBy and intersect query predicates over
scan. While nash-opt provides a speedup in the range of 27.54
- 28.08× for the same query predicates. For the query predicates
contains and near, nash provides speedups in the range of 43.57
- 46.40× over scan. Whereas nash-opt provides speedups in the
range of 43.66 - 46.78× for contains and near query predicates.
These speedups are similar to the speedups for other collections in

Scalable Range Search over Temporal and Numerical Expressions ICTIR’24, July 13, 2024, Washington D.C., USA

our evaluation setup and thus demonstrate that our system nash
can reliably scale to the Web for event-analytics.

End-to-End Runtime Results by Adjusting Accuracy.We
further evaluate nash-opt for end-to-end query execution by ad-
justing for accuracy (see Table 6). To that end, we execute the same
sample of 100 queries in cold cache setup while setting deviations of
5%, 10%, and 25% in search accuracy of the ranges (see Equation 5).
We first discuss the results for the query predicates containedBy
and intersect. We observe that as we increase the deviation, the run-
times overall increase across the document collections. We see the
most significant increase in runtimes when executing the queries
with deviation at 25%. The trend of increasing runtimes with in-
creasing deviation percentages can be attributed to shorter hashes
that describe the query-MBRs. As discussed in Section 2.5, shorter
hashes correspond to larger search regions that intersect a larger
number of temporal and numerical expressions when compared to
longer hashes (indicative of higher search accuracy) that describe
a precise search region referring to only the required intervals.
This is because they describe a larger search region that subsume
and intersect the query interval (see Figure 3c). Since, the query
predicates containedBy and intersect require looking up of such
shorter hashes as compared to the query predicates contains and
near they consume more time as the deviation is increased.

We next discuss the results for the query predicates contains
and near. For these query predicates, we observe that as we in-
crease the deviation percentage the overall query execution time
decreasesmarginally. The insignificant decrease query runtimes can
be attributed to three factors. First, contains and near query predi-
cates implicitly require longer hashes to describe the neighborhood
of the search region and thus are least affected by the reduction
in the search accuracy. Second, for the proximity-based queries
since the search region is described by longer hashes it entails
lookup of shorter posting lists of temporal and numerical expres-
sions. Third and finally, the deviation in search accuracy has a more
pronounced effect when indexing temporal and numerical hashes
with a higher-precision z-order curve. Such a requirement may
arise when indexing financial documents containing a higher num-
ber of numerical expressions located closer to to each other in the
search space. ForWeb search, where temporal and numerical expres-
sions are less densely located in the search space a lower-precision
z-order curve is sufficient and may provide reliable performance.

Index Sizes. nash utilizes z-order indexes that are a factor of
at least 1.90× and at most 2.05× smaller than storing the direct
index. For extracting text regions corresponding for event-oriented
queries, we need to only maintain a smaller direct index that records
only the word layer. For instance, the C4-En z-order indexes are
4.01× smaller than the direct index, where fewer layers are stored.

4 Related Work

Earliest works in search and indexing using space-filling curves
are [23, 34]. Tropf and Herzog [34] showed that query processing
using z-order curves results in a logarithmic speed up with the
number of indexed records. Lawder and King [23] demonstrated
methods for utilizing space-filling curves for multi-dimensional
indexing. Their approach, which is similar to the bigmin and lit-
max method [34], utilized Hilbert curves to implement a search
infrastructure with three dimensions.

Space-filling curves have found wide applicability for indexing
geo-spatial data as demonstrated in several works and publicly avail-
able systems [2–4, 15, 20, 24, 27, 35, 37]. Examples of systems lever-
aging space-filling curves are GeoWave [35] and MD-HBase [27].
Both GeoWave and MD-HBase utilize space-filling curves to index
geo-spatial data over distributed key-value stores to speed up query
processing. geohash.org [2] is a publicly available API that allows
users to represent latitude and longitude pairs into base-32 z-order
hashes (geohashes). Similar approaches have been widely adopted
in open-source NoSQL database systems such as ElasticSearch [3]
and MongoDB [4]. A more recent work [24] combines both these
threads of research. Lee et al. [24] show how to index geo-spatial
data using geohashes in HBase such that it can support the funda-
mental spatial query operations. The authors are able to perform
these spatial operations by leveraging the hierarchical characteris-
tics that geohashses implicitly model. Prior works on combining
spatial and text search has resulted in approaches that combine
spatial indexing methods such as R-Trees with inverted indexes
over words [15]. However, such approaches are less flexible and
not scalable as there is redundant storage of location-based data
for each word in the collection. Similarly, prior works such as [37]
present approaches that do not support complete set of range-based
operations and rely only on efficient top-k query processing based
on proximity scores.

Earlier works on range-based search in uncertain metric-spaces
[16], interval-based data [9], and temporal databases [22] all rely on
B+-trees as their underlying data structure which can not immedi-
ately be utilized in large-scale search infrastructures that primarily
rely on inverted indexes for query processing. In [12], the authors
index versioned document collections, where versions correspond
to timestamps. They utilize a partition-based approach to split
posting lists corresponding to different timestamps enabling quick
execution of timepoint-based queries. While in [8], the authors
propose a query optimization framework to extend querying to
time intervals with an additional I/O constraint to retrieve a sub-
set of the relevant result set using hash-based KMV synopsis. A
comprehensive survey of semantic search using text and knowl-
edge graphs [10] shows that most storage techniques for annotated
document collections ignore to support advanced capabilities for
document retrieval that contain temporal and numerical expres-
sions. Even modern transformer-based large language models fall
short of learning semantics of numbers present in large document
collections [31].

5 Conclusion

We described nash, a search system that provides the capability to
perform range-based search over intervals that can be implicitly
contained within natural language expressions of time and num-
bers. To do so, nash utilizes z-order curves that enable us to search
for intervals at different levels of granularity. Furthermore, we
described the concept of continuous hashes and an improved opti-
mization based on the bigmin and litmax approach to speedup the
query processing. Our results show that nash provides impressive
speedups in the order of 19.23 - 53.10× for more probable contains
and near queries. Moreover, nash provides these speedups by uti-
lizing z-order indexes that are 1.90 - 2.05× smaller than the direct
index required otherwise.

ICTIR’24, July 13, 2024, Washington D.C., USA Anon.

References

[1] English Wikipedia.
www.wikipedia.org/.

[2] Geohash.org.
www.blog.labix.org/2008/02/26/geohashorg-is-public.

[3] Geopoint Field Type in ElasticSearch.
www.elastic.co/guide/en/elasticsearch/reference/current/geo-
point.html.

[4] Geospatial Indexes in MongoDB.
www.mongodb.com/docs/manual/core/geospatial-indexes/.

[5] The New York Times — On This Day.
www.learning.blogs.nytimes.com/on-this-day/.

[6] JavaFastPFOR: A Simple Integer Compression Library in Java.
www.github.com/lemire/JavaFastPFOR.

[7] The New York Times Annotated Corpus.
www.catalog.ldc.upenn.edu/LDC2008T19.

[8] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, and Ralf Schenkel. 2010.
Efficient temporal keyword search over versioned text. In Proceedings of the
19th ACM Conference on Information and Knowledge Management, CIKM 2010,
Toronto, Ontario, Canada, October 26-30, 2010, Jimmy Huang, Nick Koudas, Gareth
J. F. Jones, Xindong Wu, Kevyn Collins-Thompson, and Aijun An (Eds.). ACM,
699–708. https://doi.org/10.1145/1871437.1871528

[9] Lars Arge and Jeffrey Scott Vitter. 1996. Optimal Dynamic Interval Manage-
ment in External Memory (extended abstract). In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 Octo-
ber, 1996. IEEE Computer Society, 560–569. https://doi.org/10.1109/SFCS.
1996.548515

[10] Hannah Bast, Björn Buchhold, and Elmar Haussmann. 2016. Semantic Search
on Text and Knowledge Bases. Found. Trends Inf. Retr. 10, 2-3 (2016), 119–271.
https://doi.org/10.1561/1500000032

[11] Klaus Berberich, Srikanta J. Bedathur, Omar Alonso, and Gerhard Weikum. 2010.
A Language Modeling Approach for Temporal Information Needs. In Advances
in Information Retrieval, 32nd European Conference on IR Research, ECIR 2010,
Milton Keynes, UK, March 28-31, 2010. Proceedings (Lecture Notes in Computer
Science), Cathal Gurrin, YulanHe, Gabriella Kazai, Udo Kruschwitz, Suzanne Little,
Thomas Roelleke, Stefan M. Rüger, and Keith van Rijsbergen (Eds.), Vol. 5993.
Springer, 13–25. https://doi.org/10.1007/978-3-642-12275-0_5

[12] Klaus Berberich, Srikanta J. Bedathur, Thomas Neumann, and Gerhard Weikum.
2007. A time machine for text search. In SIGIR 2007: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Amsterdam, The Netherlands, July 23-27, 2007, Wessel Kraaij, Arjen P.
de Vries, Charles L. A. Clarke, Norbert Fuhr, and Noriko Kando (Eds.). ACM,
519–526. https://doi.org/10.1145/1277741.1277831

[13] Angel X. Chang and Christopher D. Manning. 2012. SUTime: A library for
recognizing and normalizing time expressions. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation, LREC 2012, Istanbul,
Turkey, May 23-25, 2012, Nicoletta Calzolari, Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios
Piperidis (Eds.). European Language Resources Association (ELRA), 3735–3740.
http://www.lrec-conf.org/proceedings/lrec2012/summaries/284.html

[14] Kang-Tsung Chang. 2008. Introduction to geographic information systems (4. ed.).
McGraw-Hill.

[15] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial
Keyword Query Processing: An Experimental Evaluation. Proc. VLDB Endow. 6,
3 (2013), 217–228. https://doi.org/10.14778/2535569.2448955

[16] Lu Chen, Yunjun Gao, Xinhan Li, Christian S. Jensen, Gang Chen, and Bai-
hua Zheng. 2015. Indexing Metric Uncertain Data for Range Queries. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sel-
lis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 951–965. https:
//doi.org/10.1145/2723372.2723728

[17] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for
Retrieval on Composite Keys. Acta Informatica 4 (1974), 1–9. https://doi.org/
10.1007/BF00288933

[18] Dhruv Gupta and Klaus Berberich. 2018. GYANI: An Indexing Infrastructure
for Knowledge-Centric Tasks. In Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh
Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk
Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM,
487–496. https://doi.org/10.1145/3269206.3271745

[19] Dhruv Gupta and Klaus Berberich. 2019. Structured Search in Annotated Docu-
ment Collections. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February
11-15, 2019, J. Shane Culpepper, Alistair Moffat, Paul N. Bennett, and Kristina
Lerman (Eds.). ACM, 794–797. https://doi.org/10.1145/3289600.3290618

[20] Herman J. Haverkort and Freek van Walderveen. 2010. Locality and bounding-
box quality of two-dimensional space-filling curves. Comput. Geom. 43, 2 (2010),
131–147. https://doi.org/10.1016/j.comgeo.2009.06.002

[21] David Hilbert. 1891. Ueber die stetige Abbildung einer Linie auf ein Flächenstück.
Math. Ann. 38 (1891), 459–460. http://eudml.org/doc/157555

[22] Vram Kouramajian, Ibrahim Kamel, Ramez Elmasri, and Syed Waheed. 1994.
The Time Index+: An Incremental Access Structure for Temporal Databases. In
Proceedings of the Third International Conference on Information and Knowledge
Management (CIKM’94), Gaithersburg, Maryland, USA, November 29 - December 2,
1994. ACM, 296–303. https://doi.org/10.1145/191246.191298

[23] Jonathan K. Lawder and Peter J. H. King. 2000. Using Space-Filling Curves
for Multi-dimensional Indexing. In Advances in Databases, 17th British National
Conferenc on Databases, BNCOD 17, Exeter, UK, July 3-5, 2000, Proceedings (Lecture
Notes in Computer Science), Brian Lings and Keith G. Jeffery (Eds.), Vol. 1832.
Springer, 20–35. https://doi.org/10.1007/3-540-45033-5_3

[24] Kisung Lee, Raghu K. Ganti, Mudhakar Srivatsa, and Ling Liu. 2014. Efficient
spatial query processing for big data. In Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
Dallas/Fort Worth, TX, USA, November 4-7, 2014, Yan Huang, Markus Schneider,
Michael Gertz, John Krumm, and Jagan Sankaranarayanan (Eds.). ACM, 469–472.
https://doi.org/10.1145/2666310.2666481

[25] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA,
System Demonstrations. The Association for Computer Linguistics, 55–60. https:
//doi.org/10.3115/v1/p14-5010

[26] GuyMMorton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. (1966).

[27] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware
Services. In 12th IEEE International Conference on Mobile Data Management, MDM
2011, Luleå, Sweden, June 6-9, 2011, Volume 1, Arkady B. Zaslavsky, Panos K.
Chrysanthis, Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mohamed F.
Mokbel, and Chi-Yin Chow (Eds.). IEEE Computer Society, 7–16. https://doi.
org/10.1109/MDM.2011.41

[28] Kiril Panev and Klaus Berberich. 2014. Phrase Queries with Inverted + Direct
Indexes. In Web Information Systems Engineering - WISE 2014 - 15th International
Conference, Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part I. 156–169.
https://doi.org/10.1007/978-3-319-11749-2_13

[29] Giuseppe Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math.
Ann. 36 (1890), 157–160.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. https:
//doi.org/10.48550/ARXIV.1910.10683

[31] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A Primer in BERTology:
What We Know About How BERT Works. Trans. Assoc. Comput. Linguistics 8
(2020), 842–866. https://doi.org/10.1162/tacl_a_00349

[32] Hans. Sagan. 1994. Space-Filling Curves by Hans Sagan. (1st ed. 1994. ed.). Springer
New York, New York, NY.

[33] Hanan Samet. 2006. Foundations of multidimensional and metric data structures.
Academic Press.

[34] Hermann Tropf and Helmut Herzog. 1981. Multimensional Range Search in
Dynamically Balanced Trees. Angew. Inform. 23, 2 (1981), 71–77.

[35] Michael A. Whitby, Rich Fecher, and Chris Bennight. 2017. GeoWave: Utilizing
Distributed Key-Value Stores for Multidimensional Data. In Advances in Spatial
and Temporal Databases - 15th International Symposium, SSTD 2017, Arlington, VA,
USA, August 21-23, 2017, Proceedings (Lecture Notes in Computer Science), Michael
Gertz, Matthias Renz, Xiaofang Zhou, Erik G. Hoel, Wei-Shinn Ku, Agnès Voisard,
Chengyang Zhang, Haiquan Chen, Liang Tang, Yan Huang, Chang-Tien Lu, and
Siva Ravada (Eds.), Vol. 10411. Springer, 105–122. https://doi.org/10.1007/
978-3-319-64367-0_6

[36] Hugh E. Williams, Justin Zobel, and Dirk Bahle. 2004. Fast Phrase Querying
with Combined Indexes. ACM Trans. Inf. Syst. 22, 4 (Oct. 2004), 573–594. https:
//doi.org/10.1145/1028099.1028102

[37] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. 2014. Processing spatial
keyword query as a top-k aggregation query. In The 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14,
Gold Coast , QLD, Australia - July 06 - 11, 2014, Shlomo Geva, Andrew Trotman,
Peter Bruza, Charles L. A. Clarke, and Kalervo Järvelin (Eds.). ACM, 355–364.
https://doi.org/10.1145/2600428.2609562

[38] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22Nd International
Conference on Data Engineering (ICDE ’06). IEEE Computer Society, Washington,
DC, USA, 59–. https://doi.org/10.1109/ICDE.2006.150

www.wikipedia.org/
www.blog.labix.org/2008/02/26/geohashorg-is-public
www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html
www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html
www.mongodb.com/docs/manual/core/geospatial-indexes/
www.learning.blogs.nytimes.com/on-this-day/
www.github.com/lemire/JavaFastPFOR
www.catalog.ldc.upenn.edu/LDC2008T19
https://doi.org/10.1145/1871437.1871528
https://doi.org/10.1109/SFCS.1996.548515
https://doi.org/10.1109/SFCS.1996.548515
https://doi.org/10.1561/1500000032
https://doi.org/10.1007/978-3-642-12275-0_5
https://doi.org/10.1145/1277741.1277831
http://www.lrec-conf.org/proceedings/lrec2012/summaries/284.html
https://doi.org/10.14778/2535569.2448955
https://doi.org/10.1145/2723372.2723728
https://doi.org/10.1145/2723372.2723728
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933
https://doi.org/10.1145/3269206.3271745
https://doi.org/10.1145/3289600.3290618
https://doi.org/10.1016/j.comgeo.2009.06.002
http://eudml.org/doc/157555
https://doi.org/10.1145/191246.191298
https://doi.org/10.1007/3-540-45033-5_3
https://doi.org/10.1145/2666310.2666481
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.1109/MDM.2011.41
https://doi.org/10.1109/MDM.2011.41
https://doi.org/10.1007/978-3-319-11749-2_13
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1007/978-3-319-64367-0_6
https://doi.org/10.1007/978-3-319-64367-0_6
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/2600428.2609562
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 NASH
	2.1 Preliminaries
	2.2 Query Language
	2.3 Index Design
	2.4 Query Processing
	2.5 Query Optimizations

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

