
EventRL: Enhancing Event Extraction with Outcome Supervision for
Large Language Models

Anonymous ACL submission

Abstract

This study introduces EventRL, a reinforce-001
ment learning approach that significantly en-002
hances the event extraction capabilities of large003
language models (LLMs). EventRL addresses004
the challenges of instruction following and005
hallucination by introducing outcome super-006
vision, which provides direct feedback on the007
accuracy of event extraction. The method em-008
ploys specialized reward functions—Argument-009
F1, Average-F1, and Product-F1—to guide the010
model’s training and improve its understand-011
ing of event structures. Our experiments on012
the ACE05 dataset, which includes both Held-013
in Test (for seen event types) and Held-out014
Test (for unseen event types), demonstrate that015
EventRL outperforms Supervised Fine-Tuning016
(SFT) and Few-Shot Prompting (FSP) (based017
on GPT4) methods for event extraction. The re-018
sults further show that EventRL is particularly019
effective in handling unseen event types, and020
that the choice of reward function and the in-021
clusion of code data can significantly improve022
event extraction performance.023

1 Introduction024

Event extraction, a crucial task in natural language025

processing (NLP), aims at identifying and cate-026

gorizing events within texts (Chen et al., 2015;027

Nguyen et al., 2016; Liu et al., 2018; Yang et al.,028

2019; Lu et al., 2021; Gao et al., 2023a). Recently,029

large language models (LLMs) have demonstrated030

impressive capabilities in language understanding031

and generation for various tasks (Ouyang et al.,032

2022; Chen et al., 2021; Achiam et al., 2023; Zhao033

et al., 2023). However, they also encounter specific034

challenges, such as instruction following (Zhou035

et al., 2023; Zeng et al., 2023) and the generation036

of inaccurate or irrelevant content, often referred037

to as hallucinations (Li et al., 2023).038

In the context of event extraction tasks, these039

models encounter similar difficulties, including040

mismatches in event structure and the generation041

During the heated election, John Smith was elected as Mayor amidst 
protests. Suddenly, an unknown assailant attacked the crowd with 
pepper spray.

Elect Event
• Trigger: elected
• Person: [John Smith]
• Position: [Mayor]

Attack Event
• Trigger: attacked
• Attacker: [unknown assailant]
• Target: [the crowd]
• Instrument: [pepper spray]

Attack Event
• Trigger: attacked
• Attacker: [unknown assailant]
• Target: [the crowd]
• Instrument: [pepper spray]
• Entity: [voters]

Vote Event
• Trigger: elected
• Person: [John Smith]
• Position: [Mayor]

Mismatch in 
Event Structure

Generation of Undefined Event 
Types

Ø Gold Events

Input Text

Ø Predicted Events

Figure 1: Examples of common errors in LLM-Based
event extraction. The left side depicts an error of gen-
erating an undefined event type, specifically an unex-
pected “Vote” event not included in the guidelines. The
right side shows a structural mismatch error within an
“Attack” event, incorporating an "Entity" argument that
deviates from the pre-defined event schema.

of undefined event types (Gao et al., 2023a). As 042

illustrated in Figure 1, a mismatch in event struc- 043

ture refers to inaccuracies like incorrectly including 044

an irrelevant argument. For instance, an “Attack” 045

event erroneously featuring a non-existent “entity” 046

role. The generation of undefined event types refers 047

to the model’s prediction of event types that are not 048

predefined in the task instructions. For example, 049

in texts related to elections, the model might un- 050

predictably predict a “Vote” event type, which is 051

not defined in the original guidelines. These issues 052

can be seen as manifestations of instruction follow- 053

ing and hallucination problems within the realm 054

of event extraction. Recent studies (Wang et al., 055

2023a; Gao et al., 2023b; Sainz et al., 2023) have 056

attempted to address these challenges using Super- 057

vised Fine-Tuning (SFT) methods, but the perfor- 058

mance has been far from satisfactory. A potential 059
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reason for this is that event extraction demands too060

much recognition for abstract concepts and rela-061

tions, and it suggests that there is a need to focus062

more on enhancing the high-level understanding063

for event comprehension (Huang et al., 2023a).064

A major limitation of SFT approaches in event065

extraction is their inability to accurately recognize066

errors in event structures, such as incorrect argu-067

ment inclusion or predicting events not defined068

in the guidelines. This issue may stem from the069

reliance on Negative Log Likelihood (NLL) loss,070

which, while effective for general language model-071

ing, falls short in capturing the intricacies of event072

extraction. Specifically, when it comes to event073

extraction, both types of errors—incorrect predic-074

tions of event types and incorrect predictions of075

an event argument’s role—often differ from the076

correct samples by just a single word in the text.077

However, in terms of NLL loss, these errors result078

in only minor differences, failing to reflect their079

significant impact on event extraction performance.080

This discrepancy is particularly critical because an081

error in predicting the event type can lead to a cas-082

cade of errors in the extraction of all associated083

arguments, drastically reducing the accuracy of the084

entire extraction process. Therefore, while NLL085

loss might marginally penalize these mistakes, their086

actual consequences are far more severe.087

One potential solution is to integrate feedback on088

the model’s performance in identifying and struc-089

turing events into its training process. This method,090

known as outcome supervision, draws inspiration091

from previous works in solving math problems (Ue-092

sato et al., 2022; Lightman et al., 2023). By incor-093

porating outcome-based feedback, the model can094

adjust and refine its strategies for more accurate095

event identification and structuring, addressing the096

specific challenges it faces in understanding and097

extracting events from text. To this end, we in-098

troduce EventRL, a novel approach that uses rein-099

forcement learning to integrate direct feedback on100

the accuracy of event extraction. Unlike current101

SFT approaches, EventRL focuses on the specific102

challenges of LLMs in event extraction, i.e., the103

mismatches in event structure and the generation of104

undefined event types. It leverages outcome perfor-105

mance as feedback to penalize errors, guiding the106

model to adjust its strategies for better performance.107

We explore three event-specific reward functions:108

Argument-F1, Average-F1, and Product-F1. These109

functions are designed to improve the model’s un-110

derstanding of event structures, ensuring more ac-111

curate and reliable event extraction. This approach 112

marks a significant step forward in addressing the 113

limitations of current LLMs in event extraction, 114

enhancing their ability to understand and extract 115

events from text accurately. Our contributions can 116

be summarized as follows: 117

• We introduce outcome supervision to LLMs for 118

event extraction, focusing on task outcomes to 119

improve event understanding and extraction. To 120

the best of our knowledge, we are the first to 121

incorporate outcome feedback on event structures 122

into the training process of LLMs for EE. 123

• We develop EventRL, a novel approach that im- 124

plements outcome supervision through reinforce- 125

ment learning with tailored reward functions, 126

to provide a more precise and targeted training 127

method for EE. 128

• Extensive experiments with LLMs of varying 129

sizes show that EventRL significantly outper- 130

forms standard SFT methods, confirming the ben- 131

efits of outcome supervision in enhancing LLMs’ 132

performance in EE. 133

2 Related Work 134

Event Extraction Event Extraction (EE) has 135

evolved from traditional sequence labeling meth- 136

ods to the integration of advanced machine learning 137

models, particularly large language models. The 138

initial approach to EE focused on word-level clas- 139

sification, capturing sentence dependencies (Chen 140

et al., 2015; Nguyen et al., 2016; Liu et al., 2018; 141

Yang et al., 2019; Wadden et al., 2019). A signif- 142

icant shift occurred with the introduction of Ma- 143

chine Reading Comprehension techniques, which 144

transformed EE into a question-answering task, en- 145

hancing event extraction (Chen et al., 2020; Du and 146

Cardie, 2020; Li et al., 2020; Zhou et al., 2021; 147

Wei et al., 2021). The subsequent development of 148

sequence-to-structure generation with Transformer- 149

based architectures further streamlined the pro- 150

cess by merging event detection and argument ex- 151

traction (Lu et al., 2021, 2022; Lou et al., 2023). 152

The latest advancement involves LLMs, which, 153

due to their extensive pre-training, demonstrate 154

exceptional generalization capabilities, advancing 155

traditional EE techniques and enabling zero-shot 156

event extraction, marking a notable progression in 157

NLP (Wei et al., 2023; Gao et al., 2023a; Wang 158

et al., 2023a; Sainz et al., 2023; Gao et al., 2023b). 159
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Figure 2: The EventRL framework architecture, demonstrating the process from initialization with an SFT Model
M0, through iterative model updates Mt to Mt+1 via Outcome Supervision. This includes using reinforcement
learning with reward functions based on Trigger-F1 and Argument-F1 scores, which guide policy gradient updates
for enhanced event extraction from text.

In contrast to previous work, our work focuses160

on utilizing outcome supervision to refine model161

training of LLMs for event extraction, thereby en-162

hancing performance. Notably, we are the first to163

incorporate outcome feedback into the LLM train-164

ing process for EE.165

Large Language Models and Outcome Super-166

vision Large language models has marked a sig-167

nificant advance in the field of NLP. Recent stud-168

ies have demonstrated the exceptional capability169

of LLMs, such as ChatGPT and GPT-4, to per-170

form with remarkable performance in event ex-171

traction (Gao et al., 2023a; Sainz et al., 2023).172

These models demonstrate notable performance173

gain even in zero-shot learning settings, indicating174

their potential to generalize across different types175

of event-related information without the need for176

task-specific training data. Despite the progress,177

LLMs continue to face challenges related to instruc-178

tion following (Ouyang et al., 2022) and hallucina-179

tions (Huang et al., 2023b; Zhang et al., 2023b; Li180

et al., 2024). To address these issues, researchers181

have explored a range of strategies, including Su-182

pervised Fine-Tuning (SFT) (Wang et al., 2022;183

Zhang et al., 2023a; Wang et al., 2023b), Reinforce-184

ment Learning from Human Feedback (RLHF) (Sti-185

ennon et al., 2020; Ouyang et al., 2022; Kaufmann186

et al., 2023), and more recently, approaches that187

combine outcome supervision with reinforcement188

learning techniques (Uesato et al., 2022; Lightman189

et al., 2023; Yu et al., 2023) for solving math prob-190

lems. Building on these seminal works, our work191

makes the first attempt to introduce outcome super-192

vision for event extraction tasks, which can harness193

the power of LLMs while directly address their194

limitations in instruction following and hallucina-195

tions, thus significantly improving the efficacy and196

reliability of event extraction.197

3 EventRL 198

3.1 Overview 199

EventRL aims to enhance event extraction through 200

outcome supervision with reinforcement learning 201

for LLMs. As depicted in Figure 2, EventRL begins 202

with an SFT phase to establish a baseline under- 203

standing of event extraction. It then progresses to 204

implement outcome supervision, leveraging reward 205

functions based on resulting performance (Trigger- 206

F1 and Argument-F1 scores) to guide the model’s 207

training via reinforcement learning techniques. To 208

ensure stable and effective learning, EventRL incor- 209

porates stabilization strategies, including a Teacher- 210

Force Threshold and Advantage Clipping, which 211

are critical for mitigating policy degradation and 212

preventing catastrophic forgetting. The subsequent 213

sections will delve into the detailed implementation 214

of these components. 215

3.2 Initialization 216

Input and Output Format In the Initialization 217

phase of EventRL, we adopt a hybrid input and out- 218

put format, building upon the work of Sainz et al. 219

(2023). As illustrated in Figure 3, our approach 220

combines structured Python dataclass formats for 221

event definitions with natural language instructions 222

for task descriptions. This allows for precise event 223

representation while maintaining user-friendly in- 224

structions. The output is a Python list of dataclass 225

instances, representing the extracted events in a 226

structured and programmatically accessible format. 227

This hybrid format enhances the model’s ability 228

to process and output complex event information 229

accurately, bridging the gap between structured 230

coding and natural language understanding. 231

Supervised Fine-tuning The SFT pro- 232

cess (Wang et al., 2022; Zhang et al., 2023a; Wang 233

et al., 2023b; Peng et al., 2023) in our approach 234
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# Event Definitions
```python
@dataclass
class Elect(Event):
"""An Elect Event takes place whenever a candidate is victorious in an election 
that is intended to establish the Person
role within a StartPosition Event."""

mention: str # The text span that most clearly expresses (triggers) the event
person: List[str] # The person elected
entity: List[str] # The voting agent(s)
position: List[str] # The JobTitle for the position being nominated to
time: List[str] # When the election takes place
place: List[str] # Where the election takes place

@dataclass
class Attack(Event):

...
```

# Instruction
Your task is to analyze the given text and extract any relevant events based on the 
provided event data structures. After analyzing the text, you should output the 
results as a Python list of dataclass instances, each representing an identified event. 
Ensure that each instance is properly filled with the corresponding attributes 
according to the event type. If certain information is not available in the text for 
any attribute, leave the corresponding list empty.
```python
text = "I didn't particularly like the the tone about the the religious uh -- side of --
the that election ."
```

# Response
The annotation instances that take place in the text above are listed here:
```python
result = [

Elect(mention=“election”, person=[], entity=[], position=[], time=[], place=[])
]

```

Figure 3: Illustration of the input-output format in Even-
tRL for event extraction. The input includes Event Def-
initions in Python dataclass format and a natural lan-
guage instruction. The output showcases a Python list
of dataclass instances as the Response, representing ex-
tracted events from the given text. The complete event
definitions can be found in Figure 12 in Appendix.

is an important initial phase that establishes a235

foundational understanding of the event extraction236

process in the model. During SFT, the model is237

trained using a labeled dataset that consists of238

examples, where each event is explicitly defined239

with its corresponding triggers and arguments.240

This dataset provides clear and structured examples241

of desired event extraction outputs.242

3.3 Outcome Supervision with RL243

Problem Formulation To implement outcome244

supervision, we leverage reinforcement learn-245

ing (Kaelbling et al., 1996). The RL method treats246

event extraction as a sequential decision-making247

process, where the model M , guided by its policy248

πθ, generates predictions Y , which include event249

triggers and their arguments, based on inputs X .250

The model’s parameters are updated to maximize251

expected rewards, leveraging an advantage-based252

policy optimization method to guide learning (Sut-253

ton and Barto, 2018). The update rule is as follows:254

∆θ ∝ ∇θ log πθ(Y |X) ·A, (1)255

where ∇θ log πθ(Y |X) is the gradient of the log-256

probability of taking action Y in state X under pol- 257

icy πθ. The advantage function is A = R(Y, Y ∗)− 258

b, where R(Y, Y ∗) is the reward function and b is a 259

baseline reward. This function calculates the differ- 260

ence between the reward R(Y, Y ∗) for the model’s 261

predictions and a baseline b, identifying actions 262

that yield above-average benefits. This approach 263

stabilizes policy gradient estimates by reducing 264

variance (Rennie et al., 2017). 265

Reward Function In our EventRL framework, 266

the reward function focuses on two primary as- 267

pects: Trigger Extraction and Argument Extrac- 268

tion. These aspects are quantified through Trigger- 269

F1 and Argument-F1 scores, respectively, which 270

serve as the basis for our reward function. The 271

Trigger-F1 score assesses the model’s ability to ac- 272

curately identify and classify event triggers, while 273

the Argument-F1 score evaluates the precision in 274

identifying and classifying the arguments asso- 275

ciated with those triggers. Following previous 276

work (Lu et al., 2021), we adopt the following crite- 277

ria of the evaluation: A trigger is correct if its event 278

type matches with the ground truth. Similarly, an 279

argument is considered correctly identified if its 280

event type and role match with the ground truth. 281

In our work, we explore three different reward 282

function designs, shown in the following equation: 283

R =


F1arg, Argument-F1
1
2(F1trig + F1arg), Average-F1
F1trig × F1arg, Product-F1

(2) 284

The Argument-F1 reward, F1arg, focuses on how 285

well the model can identify and classify the argu- 286

ments of events. Meanwhile, the Average-F1 re- 287

ward, 1
2(F1trig + F1arg), gives a balanced look by 288

combining Trigger-F1 and Argument-F1 scores, of- 289

fering a full view of the effectiveness of the model. 290

Lastly, the Product-F1 reward, F1trig×F1arg, high- 291

lights the importance of doing well in both trigger 292

detection and argument extraction by multiplying 293

these scores together, pushing the model to excel 294

in both areas for a better total reward. 295

In current approaches of instruction tuning, espe- 296

cially in response generation tasks, feedback often 297

comes from model scoring. This can involve pre- 298

dictions from a reward model trained on human 299

preference data (Ouyang et al., 2022) or direct scor- 300

ing by more advanced models like GPT-4 (Cui 301

et al., 2023). Although, for event extraction tasks, 302

we could train a reward model on positive and neg- 303

ative examples or have GPT-4 score the outputs, 304
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the necessity for such methods is reduced. This is305

because standard evaluation metrics for event ex-306

traction already provide a clear reflection of output307

quality. However, there is still value in the model308

generating natural language judgements (Xu et al.,309

2023) to further address and correct training issues.310

We leave this for future work.311

Advantage Calculation To calculate the advan-312

tage, we compare the rewards of two distinct strate-313

gies for extracting events: greedy decoding and nu-314

cleus sampling. When processing a given text, the315

model generates two outputs: one through greedy316

decoding (Ŷ ) and another via nucleus sampling317

(Y ). We then assess these outputs by calculating318

their rewards, R(Ŷ , Y ∗) for the greedy decoding319

output and R(Y, Y ∗) for the nucleus sampling out-320

put. The advantage function A(·) quantifies the321

benefit of the nucleus sampling strategy over the322

greedy decoding by measuring the difference in323

their rewards:324

A = R(Y, Y ∗)−R(Ŷ , Y ∗). (3)325

This comparison highlights the effectiveness of ex-326

ploratory actions in improving event extraction out-327

comes compared to the baseline approach.328

3.4 Stabilization Strategies in EventRL329

To ensure stable training, two key stabilization330

strategies are implemented: the Teacher-Force331

Threshold (Bengio et al., 2015) and Advantage332

Clipping (Schulman et al., 2017).333

Teacher-Force Threshold The Teacher-Force334

Threshold strategy is employed to mitigate pol-335

icy degradation, especially in instances where the336

model’s performance on certain samples is signif-337

icantly below par. This strategy involves setting338

a threshold value, denoted as τ , for the model’s339

performance score (typically measured using the340

outcome score from greedy decoding). When the341

model’s performance on a given sample falls below342

τ , the learning process is adjusted to “teacher forc-343

ing” mode. In this mode, the model is temporarily344

guided using the gold events Y ∗ instead of its own345

generated output Y , effectively providing a more346

reliable learning signal.347

Advantage Clipping Advantage Clipping in the348

EventRL is specifically designed to address the349

challenge of catastrophic forgetting, a phenomenon350

where the model’s performance on previously351

learned tasks deteriorates as it focuses on new ones.352

This issue often arises when the advantage values 353

for certain samples are too low, leading to negligi- 354

ble updates and causing the model to overlook these 355

samples during training. The strategy involves set- 356

ting a lower bound for the advantage values, de- 357

noted as Amin. This lower bound ensures that every 358

sample, regardless of its initial advantage value, 359

contributes a minimum threshold of influence to 360

the learning process. The advantage clipping pro- 361

cess is reformulated to focus solely on the lower 362

bound, as follows: Aclip = max(A,Amin). 363

4 Experimental Setup 364

4.1 Dataset and Data Splitting Strategy 365

To evaluate our model’s performance comprehen- 366

sively, we conducted experiments on the ACE05 367

dataset (Christopher et al.), known for its diversity 368

in event types. This allows us to test the model’s 369

capability in extracting both familiar (seen) and 370

novel (unseen) event types effectively. The ACE05 371

dataset, which contains a total of 33 event types, 372

was used to construct our experimental setup. We 373

selected 7 event types for the training set, valida- 374

tion set, and the held-in test set (seen event types). 375

We then chose 19 different event types to form 376

the held-out test set (unseen event types), ensuring 377

a rigorous evaluation of the model’s generaliza- 378

tion abilities. To maintain a balanced dataset, we 379

sampled 50 instances for each event type in the 380

training set, 10 for each in the validation set, and 381

20 for each in both the held-in and held-out test 382

sets. This strategy ensures that the model is trained 383

and evaluated under varied conditions, providing 384

a comprehensive understanding of its performance 385

across different event types. For detailed statistical 386

information, please refer to Appendix A.1. 387

4.2 Comparison Methods 388

In our study, we assess the efficacy of EventRL 389

against current methods like Few-Shot Prompting 390

(FSP) and Supervised Fine-Tuning (SFT), apply- 391

ing these methods across various LLMs to evalu- 392

ate performance in event extraction: (1) Few-Shot 393

Prompting (FSP): Implemented on the specific 394

version of GPT-4 (API version 2023-05-15), pro- 395

vided by the Azure OpenAI Service, this method 396

relies on the model’s intrinsic capabilities by pro- 397

viding a limited set of examples before task exe- 398

cution. (2) Supervised Fine-Tuning (SFT): This 399

approach involves direct training of models on spe- 400

cific datasets, with feedback provided via NLL 401
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Held-in test Held-out test

Method Trigger Argument AVG Trigger Argument AVG

GPT4 + FSP (0-Shot) 6.04 22.08 14.06 15.42 17.69 16.56
GPT4 + FSP (1-Shot) 23.02 22.82 22.92 19.32 17.83 18.58
GPT4 + FSP (2-Shot) 24.65 23.48 24.06 24.12 18.31 21.22
GPT4 + FSP (3-Shot) 31.58 23.53 27.55 27.07 18.61 22.84

LLaMa-7B + SFT 71.33 40.74 56.03 48.51 26.18 37.35
LLaMa-7B + EventRL (Arg-F1) 73.06 42.34 57.70 51.15 29.32 40.23
LLaMa-7B + EventRL (AVG-F1) 72.34 42.29 57.32 54.59 29.81 42.20
LLaMa-7B + EventRL (Prod-F1) 72.03 49.41 60.72 51.71 29.97 40.84

LLaMa-13B + SFT 76.23 51.16 63.69 51.61 32.46 42.04
LLaMa-13B + EventRL (Arg-F1) 77.61 51.93 64.77 53.07 32.83 42.95
LLaMa-13B + EventRL (AVG-F1) 77.26 54.55 65.90 51.53 34.93 43.23
LLaMa-13B + EventRL (Prod-F1) 76.23 51.66 63.94 53.79 35.03 44.41

CodeLLaMa-7B + SFT 74.31 44.16 59.23 62.21 37.26 49.74
CodeLLaMa-7B + EventRL (Arg-F1) 75.35 50.84 63.09 61.64 37.93 49.78
CodeLLaMa-7B + EventRL (AVG-F1) 77.14 47.06 62.10 61.62 39.01 50.32
CodeLLaMa-7B + EventRL (Prod-F1) 76.60 48.39 62.49 60.34 39.69 50.01

CodeLLaMa-13B + SFT 77.70 47.21 62.46 61.40 41.98 51.69
CodeLLaMa-13B + EventRL (ARG-F1) 80.88 50.51 65.69 62.56 41.39 51.97
CodeLLaMa-13B + EventRL (AVG-F1) 76.98 48.18 62.58 60.86 42.37 51.62
CodeLLaMa-13B + EventRL (Prod-F1) 77.03 50.78 63.91 62.57 42.14 52.35

CodeLLaMa-34B + SFT 74.65 56.69 65.67 57.98 39.52 48.75

Table 1: Performance comparison of different Large Language Models (LLMs), including LLaMa, CodeLLaMa,
and GPT4 on the ACE05 dataset. We highlight the best performance in dark gray and the second-best in light gray.
We evaluate FSP method with GPT4 using 0, 1, 2, 3 example settings, where examples are randomly sampled from
the training set. For FSP (0-Shot), both Held-in and Held-out tests involve unseen event types, while for other FSP
methods with examples, Held-in tests use seen event types, and Held-out tests use unseen event types. Additionally,
we compare the performance of CodeLLaMa-34B with SFT, noting that due to limited computational resources, the
EventRL method was not applied to CodeLLaMa-34B.

loss. SFT experiments were primarily conducted402

on LLaMa variants (LLaMa2-7B and LLaMa2-403

13B) and CodeLLaMa models (7B, 13B, and 34B404

versions). (3) EventRL with Proposed Reward405

Functions: Our proposed EventRL framework was406

evaluated in three distinct configurations, each uti-407

lizing a different reward function designed to op-408

timize the model’s performance in event extrac-409

tion: EventRL (Arg-F1) utilizes Argument-F1410

as feedback, EventRL (Avg-F1) aims to balance411

Trigger-F1 and Argument-F1, and EventRL (Prod-412

F1) seeks to maximize the product of Trigger-413

F1 and Argument-F1. These variants were tested414

across LLaMa (Touvron et al., 2023) and CodeL-415

LaMa (Roziere et al., 2023) models to investigate416

their effectiveness in event extraction.417

Implementation details of different methods can418

be found in Appendix A.2.419

5 Experimental Results420

5.1 Main Results421

Overall Performance Table 1 presents a com-422

prehensive performance comparison of different423

LLMs, including GPT4, LLaMa, and CodeLLaMa 424

variants, across various training approaches such 425

as SFT (Supervised Fine-Tuning), FSP (Few-Shot 426

Prompting), and our proposed EventRL methods. 427

The table reports Trigger and Argument F1 scores, 428

alongside their averages (denoted as AVG), which 429

are calculated as the mean of the respective Trig- 430

ger and Argument F1 scores for each method, both 431

for events seen during training (Held-in test) and 432

for novel, unseen event types (Held-out test). Our 433

findings show that EventRL outperforms both SFT 434

and FSP methods in event extraction. Specifically, 435

when comparing the AVG scores, EventRL demon- 436

strates superior overall performance. For example, 437

in the Held-in test, the EventRL (Prod-F1) method 438

using the LLaMa-7B model achieves an AVG score 439

of 60.72, surpassing the SFT method’s 56.03. Simi- 440

larly, in the Held-out test, EventRL (Prod-F1) with 441

LLaMa-7B reaches an AVG score of 40.84, com- 442

pared to 37.35 by SFT. This indicates EventRL’s 443

effectiveness in accurately identifying event struc- 444

tures and predicting events. 445

Moreover, EventRL shows remarkable general- 446
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ization capabilities, especially in handling unseen447

event types. Using the LLaMa-13B model, Even-448

tRL (Prod-F1) scores an AVG of 44.41 in the Held-449

out test, outperforming the SFT method’s 42.04.450

These results highlight EventRL’s robustness and451

its ability to adapt to new, unseen event types better452

than the other methods. The success of EventRL453

can be attributed to its specialized reward functions454

(Arg-F1, AVG-F1, and Prod-F1), which provide tar-455

geted feedback for refining the model’s understand-456

ing and extraction of events. This tailored approach457

ensures that EventRL not only excels in extracting458

events from texts but also adapts effectively across459

different model sizes and architectures, including460

LLaMa and CodeLLaMa variants.461

Impact of Different Reward Functions As462

shown in Table 1, the choice of reward functions463

significantly influences the performance of LLMs464

in event extraction, with AVG-F1 and Prod-F1 re-465

wards demonstrating clear advantages. For the466

LLaMa-7B model, the Prod-F1 reward function467

yielded the best AVG Score, reaching 60.72 in468

Held-in test and 40.84 in Held-out test. This indi-469

cates that focusing on the interdependence of trig-470

ger and argument performance through the Prod-F1471

reward enhances the model’s overall ability to ac-472

curately extract events. In the case of the larger473

LLaMa-13B model, the AVG-F1 reward function474

achieved an AVG Score of 65.90 in Held-in test,475

while the Prod-F1 function excelled in Held-out476

test with an AVG Score of 44.41. This performance477

trend is also reflected in the CodeLLaMa models,478

where the Prod-F1 reward again demonstrated its479

effectiveness, particularly achieving a 52.35 AVG480

Score in the Held-out test for the CodeLLaMa-13B481

model. These results underline the importance of482

carefully selecting reward functions to optimize the483

event extraction capabilities of LLMs, with Prod-484

F1 and AVG-F1 rewards proving to be particularly485

beneficial in fostering a deeper understanding and486

extraction of events from texts.487

5.2 Further Analysis488

Ablation Study Table 2 presents an ablation489

study focusing on key features of the EventRL ap-490

proach, particularly looking at the impact of re-491

moving Teacher-Forcing and Advantage-Clipping492

on event extraction performance using the ACE05493

dataset. As can be seen, removing Teacher-Forcing494

led to a significant performance drop, with the495

Trigger-F1 score decreasing from 73.06 to 65.38496

Held-in test Held-out test

Method Trig. Arg. Trig. Arg.

SFT 71.33 40.74 48.51 26.18

EventRL (Arg-F1) 73.06 42.34 51.15 29.32
w/o Tearcher-Force 65.38 27.25 47.34 19.28
w/o Advantage-Clip 67.60 39.68 46.37 24.21

EventRL (Prod-F1) 72.03 49.41 51.71 29.97
w/o Tearcher-Force 67.81 36.01 46.24 16.12
w/o Advantage-Clip 72.20 44.60 49.11 21.24

Table 2: Ablation Study on ACE05 dataset using
LLaMa-7B.

SFT Arg-F1 AVG-F1 Prod-F1
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Figure 4: This chart quantifies the error counts for un-
defined event types and structural mismatches in event
extraction on the LLaMa-7B model, comparing SFT
with three EventRL training methods: Arg-F1, AVG-F1,
and Prod-F1.

and the Argument F1 score from 42.34 to 27.25 for 497

the Argument-F1. Similarly, excluding Advantage- 498

Clipping resulted in a decline, notably in the 499

Argument-F1 score, from 42.34 to 39.68. These 500

results highlight the critical role of both strategies 501

in ensuring EventRL’s effectiveness and stability 502

for event extraction. More analysis of these two 503

components can be found in Appendix A.3. 504

Error Analysis Figure 4 presents a comparative 505

analysis of error types in event extraction when 506

utilizing different training methods on the LLaMa- 507

7B model. The Supervised Fine-Tuning (SFT) 508

method resulted in a notably high occurrence of 509

undefined event type errors, totaling 133, and struc- 510

tural mismatch errors, at 51. In contrast, the Even- 511

tRL (Arg-F1) reduced “Undefined” errors to 99 512

and marginally decreased “Mismatch” errors to 513

50. A more significant improvement is observed 514

with the EventRL (AVG-F1) approach, which cut 515

down “Undefined” errors to 87 and “Mismatch” 516

errors to the lowest count of 35, indicating a su- 517

perior balance in error mitigation. The EventRL 518
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(Prod-F1) also demonstrated improvement, lower-519

ing “Undefined” errors to 78 and “Mismatch” er-520

rors to 43, although not as effectively as AVG-F1.521

These numbers highlight the effectiveness of the522

EventRL training methods in reducing errors in523

large language model training for event extraction.524

Code Data Pretraining Enhances Event Extrac-525

tion Performance Table 1 reveals that models526

enhanced with code data, notably CodeLLaMa,527

significantly outperform their counterparts with-528

out code enhancement, like LLaMa, in event ex-529

traction. Specifically, at the 7B scale, CodeL-530

LaMa (SFT) achieved an AVG score of 59.23 in531

Held-in test and 49.74 in Held-out test, surpass-532

ing LLaMa’s 56.03 and 37.35, respectively. This533

improvement illustrates the positive impact of cod-534

ing capabilities on the model’s ability to extract535

events, both seen and unseen. When scaling up536

to 13B, the gap in performance between CodeL-537

LaMa and LLaMa widens further, especially in the538

Held-out test, where CodeLLaMa (SFT) scores an539

AVG of 51.69, compared to LLaMa’s 42.04. Ad-540

ditionally, employing the EventRL method with541

CodeLLaMa leads to superior outcomes across dif-542

ferent reward function setups, demonstrating that543

code data enhancement not only boosts the model’s544

understanding of structured information but also545

enhances its adaptability and accuracy in complex546

tasks like event extraction.547

Analysis on Model Scale From Table 1, we ob-548

serve a clear trend that increasing model scale pos-549

itively impacts event extraction performance. For550

instance, when comparing the EventRL (Prod-F1)551

approach, the performance in terms of the AVG552

score improves significantly as we move from a 7B553

parameter model to a 13B parameter model, from554

60.72 to 65.90 in the Held-in test. This indicates555

that larger models have enhanced capabilities in556

processing and understanding complex language557

structures, which leads to more accurate event ex-558

traction. However, scaling the model size further to559

34B parameters introduces the risk of overfitting,560

especially evident in the Held-out test. For exam-561

ple, the CodeLLaMa-34B model, under the SFT562

approach, shows an AVG score of 65.67 in Held-in563

test but drops to 48.75 in Held-out test, indicating564

a decline in the model’s ability to generalize to565

unseen event types.566

Case Study Figure 5 showcases a comparison be-567

tween the results of LLaMa-7B + SFT and LLaMa-568

result = [
ArrestJail(

mention="arrested", person=["people"], agent=[],
time=[], place=["Derbyshire", "London"],

),
]

result = [
ArrestJail(

mention="arrested", person=["people"], agent=["police"], 
crime=[], time=[], place=["Derbyshire", "London"],

),
]

British anti - terror police arrested six people altogether in 
Derbyshire , central England , and London on May 2 and 3 .

Input Text

Ø LLaMa-7B + SFT

Ø LLaMa-7B + EventRL (Prod-F1)

Figure 5: A comparison of event extraction results be-
tween LLaMa-7B + SFT and LLaMa-7B + EventRL
(Prod-F1). Note that here the results of EventRL (Prod-
F1) are totally accurate.

7B + EventRL (Prod-F1). The input text describes 569

the arrest of six individuals by British anti-terror 570

police in Derbyshire and London. While both 571

methods correctly identified the “ArrestJail” event, 572

the location (“Derbyshire”, “London”), and the ac- 573

tion (“arrested”), LLaMa-7B + EventRL (Prod-F1) 574

demonstrated a significant improvement by accu- 575

rately including “police” as the agent conducting 576

the arrest. Unlike LLaMa-7B + SFT, which missed 577

the agent’s role and the “crime” argument, LLaMa- 578

7B + EventRL (Prod-F1)’s result reflects a com- 579

prehensive understanding of the event’s structure, 580

indicating its superior capability in capturing cru- 581

cial aspects of events. More case studies can be 582

found in Appendix A.3. 583

6 Conclusion 584

In this work, we demonstrated that EventRL, a 585

reinforcement learning approach, significantly en- 586

hances the performance of LLMs in event extrac- 587

tion. By focusing on outcome supervision and 588

utilizing specialized reward functions, EventRL ef- 589

fectively addresses the challenges of instruction fol- 590

lowing and hallucination in event extraction, lead- 591

ing to more accurate and reliable event extraction. 592

The method’s success is evident in its superior per- 593

formance across various model sizes and architec- 594

tures, particularly in handling novel event types. 595

The importance of selecting appropriate reward 596

functions and the positive impact of code data en- 597

hancement on event extraction capabilities have 598

also been highlighted. Furthermore, our findings 599

suggest that while increasing model scale can im- 600

prove performance, there is a need to balance this 601

with the ability to generalize to avoid overfitting. 602
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Limitations603

While EventRL is effective in event extraction for604

LLMs, it faces certain limitations. Firstly, the605

success of this method heavily depends on the606

availability of high-quality, well-balanced datasets607

and meticulous annotation efforts, which can be608

challenging and resource-intensive. Secondly, as609

the data volume increases, the training process610

becomes more time-consuming, necessitating ad-611

vanced training frameworks and superior hardware612

capabilities to manage the computational demands613

efficiently. Lastly, EventRL is specifically designed614

to address the intricacies of event extraction tasks615

and does not inherently enhance the general capa-616

bilities of large models across a broader spectrum617

of NLP tasks. This focus on a niche area, while618

beneficial for its intended purpose, means that the619

improvements in event understanding and extrac-620

tion may not translate to a broader enhancement of621

the models’ overall performance in diverse linguis-622

tic tasks.623
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A Appendix 878

A.1 Dataset 879

Dataset Count
Train 285
Dev 64
Held-in Test 125
Held-out Test 380

Table 3: Dataset sample counts based on our partition-
ing of the ACE05 dataset, with a focus on maintaining
balance across event types. It is important to note that in-
dividual samples may contain multiple event types, lead-
ing to shared samples among different event types. This
approach ensures a balanced representation of event
types, despite variations in sample counts for each type.

Event Type Count
Conflict.Attack 1244
Movement.Transport 608
Life.Die 515
Contact.Meet 254
Personnel.End-Position 170
Transaction.Transfer-Money 167
Personnel.Elect 153
Life.Injure 121
Contact.Phone-Write 112
Transaction.Transfer-Ownership 109
Personnel.Start-Position 107
Justice.Charge-Indict 101
Justice.Trial-Hearing 97
Justice.Sentence 93
Justice.Arrest-Jail 79

Table 4: Top 15 event types by sample count in the
ACE05 dataset.

Dataset Details To provide a detailed and com- 880

prehensive evaluation of our model, we conducted 881

a series of experiments using the ACE05 dataset, 882

widely recognized for its variety in event types. 883

This diversity enables us to rigorously test the 884

model’s ability to recognize and extract both fa- 885

miliar (seen) and novel (unseen) event types with 886

precision. The ACE05 dataset comprises 33 dis- 887

tinct event types, serving as a robust foundation for 888

our experimental framework. 889

Our experimental design involved the careful 890

selection of event types for different portions of 891

the dataset: the training set, validation set, and 892

the test sets. Specifically, we chose 7 event types 893

for inclusion in the training and validation sets, as 894
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well as the held-in test set. These event types were895

selected based on their prevalence in the dataset,896

as indicated by the Table 4. This decision was897

informed by the observation that the dataset ex-898

hibits a significant imbalance in the distribution of899

event types, with the top 7 event types each having900

more than 150 samples, while the least represented901

event type has as few as 2 samples. To ensure a902

rigorous evaluation of the model’s generalization903

capabilities, we selected 19 different event types to904

construct the held-out test set, focusing on unseen905

event types.906

To address the challenge of data imbalance and907

to maintain a balanced dataset, we adopted a sam-908

pling strategy that ensures equitable representation909

of each event type across different sets. Specifi-910

cally, we sampled 50 instances for each event type911

in the training set, 10 for each in the validation set,912

and 20 for each in both the held-in and held-out913

test sets. This balanced approach ensures that the914

model is exposed to and evaluated under a variety915

of conditions, offering a comprehensive insight into916

its performance across a wide range of event types.917

Table 3 shows the statistics of our ACE05 dataset918

split. We aimed for balance among event types, al-919

though some samples might include several events.920

This method ensures a fair representation across921

the dataset.922

Event Extraction Guidelines Our work is built923

upon the foundational work of Sainz et al. (2023),924

which introduced a Python code-based representa-925

tion for input and output in information extraction926

tasks. The essence of this work lies in the inte-927

gration of event type extraction guidelines into the928

prompt, enhancing zero-shot generalization capa-929

bilities.930

Our model operates on a schema defined in931

Python classes, with docstrings providing guide-932

lines and comments outlining representative anno-933

tation candidates. This structured format ensures934

clarity, facilitates parsing, and aligns with modern935

Large Language Models’ (LLMs) pretraining on936

code datasets. The output, beginning after “result937

=”, comprises a list of class instances, yielding938

a transparent and easily parsable structure when939

executed in Python.940

A complete example of our event definitions941

is displayed in Figure 12 within the Held-in Test,942

showcasing the guidelines used for extracting event943

types. We have adapted and refined the data pro-944

cessing code, originally available on the GitHub945

repository 1, to accommodate our specific needs 946

for event extraction. 947

A.2 Implementation Details 948

Our implementation of EventRL comprises three 949

pivotal components: Few-Shot Prompting (FSP) 950

with GPT-4, Supervised Fine-Tuning (SFT), and 951

the EventRL framework. 952

GPT-4 and Few-Shot Prompting (FSP) For 953

the Few-Shot Prompting experiments, we utilized 954

the GPT-4 API provided by Azure OpenAI Ser- 955

vice 2, version dated 2023-05-15. Our experiments 956

spanned four settings: 0-shot, 1-shot, 2-shot, and 957

3-shot. In the 0-shot setup, we did not include any 958

demonstration examples in the instructions. For the 959

1-shot, 2-shot, and 3-shot setups, we introduced 1, 960

2, and 3 demonstration examples into the instruc- 961

tions, respectively. We tested across three distinct 962

instruction templates and chose the one that showed 963

the best overall performance for our results’ pre- 964

sentation. 965

Supervised Fine-Tuning (SFT) The SFT experi- 966

ments were conducted on various models: LLaMa- 967

7B/13B and CodeLLaMa-7B/13B/34B. We used 968

the ColossalAI 3 framework on two A100 servers. 969

The training setup was as follows: learning rate 970

set to 2e-5, with a minimum learning rate of 2e-6, 971

weight decay at 0.1, micro batch size of 2, global 972

batch size of 64, using bf16 for mixed precision, 973

over 10 training epochs. For the 7B and 13B mod- 974

els, the parallel strategy involved a Tensor Parallel 975

Size of 2 and a Pipeline Parallel Size of 2. The 34B 976

model’s strategy was adjusted to a Tensor Parallel 977

Size of 4 and a Pipeline Parallel Size of 2. We 978

selected the best model checkpoint for final use 979

based on its average Trigger-F1 and Argument-F1 980

scores on the validation set. 981

EventRL Leveraging the SFT groundwork, we 982

proceeded to further train LLaMa-7B/13B and 983

CodeLLaMa-7B/13B models using the EventRL 984

method. The EventRL training was not applied to 985

the 34B model due to computational limits. For the 986

base model selection in EventRL training, we con- 987

sidered the 7B model’s lower overfitting risk and 988

the 13B model’s higher risk, ultimately choosing 989

the best SFT model for the 7B and the checkpoint 990

1https://github.com/hitz-zentroa/GoLLIE
2https://learn.microsoft.com/en-us/azure/

ai-services/openai/overview
3https://github.com/hpcaitech/ColossalAI/tree/

main
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from the previous epoch of the best SFT model for991

the 13B. The EventRL was implemented with the992

Huggingface transformers 4 framework, setting the993

training parameters as follows: a learning rate of994

5e-6, a global batch size of 32, a micro batch size995

of 2, spanning 10 training epochs, using bf16 for996

mixed precision, and applying advantage clipping997

at 10. We set the teacher forcing threshold at 70998

for the 7B model and 30 for the 13B model. The999

parameters for generating results with the sampling1000

method were a temperature of 0.5 and a top p of1001

0.95.1002
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Figure 6: Training performance of LLama-7B model on
EventRL with and without Advantage Clipping. Figure
(a) shows the results for EventRL (Arg-F1) process, and
Figure (b) for EventRL (Prod-F1) process. Both graphs
compare the Trigger Extraction (Trig. F1) and Argu-
ment Extraction (Arg. F1) F1 scores over 10 epochs,
illustrating the impact of Advantage Clipping on model
stability and learning consistency.

A.3 More Analysis on EventRL1003

Analysis on Teacher Force Threshold The1004

Teacher-Force Threshold appears to be a pivotal1005

strategy for stabilizing the training process in Even-1006

tRL. By examining the Figure 7a and Figure 7b, we1007

can infer that the models with Teacher-Force (de-1008

4https://github.com/huggingface/transformers
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Figure 7: Training performance of the LLama-7B model
employing EventRL strategies over epochs. Figure (a)
shows the results using the EventRL (Arg-F1) method,
while Figure (b) utilizes the EventRL (Prod-F1) method.
Both figures track the Trigger F1 (Trig. F1) and Ar-
gument F1 (Arg. F1) metrics across ten epochs. The
performance is measured on a validation set

noted by “w/ Teacher-Force” in the legends) main- 1009

tain or improve performance consistently across 1010

epochs, as opposed to models trained without 1011

Teacher-Force (denoted by “w/o Teacher-Force”), 1012

which exhibit more significant fluctuations and gen- 1013

erally lower performance scores. 1014

In Figure 7a, which shows the EventRL (Arg- 1015

F1) model’s performance, the presence of Teacher- 1016

Forcing corresponds with higher and more stable 1017

Argument F1 scores. The stability is particularly 1018

notable in the later epochs, suggesting that Teacher- 1019

Forcing aids the model in retaining knowledge 1020

over time, likely mitigating the effects of catas- 1021

trophic forgetting. Similarly, in Figure 7b for the 1022

EventRL (Prod-F1) method, we see that the use of 1023

Teacher-Forcing correlates with more stable Trig- 1024

ger F1 scores. The Trigger F1 performance without 1025

Teacher-Force drops noticeably after the first few 1026

epochs, while with Teacher-Force, the performance 1027

remains relatively stable. 1028
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result = [
Sue(

mention=“lawsuits”, defendant=[“Troy Brennan”],
adjudicator=[], crime=[], time=[], place=[],

),
]

result = [
Sue(

mention=“lawsuits”, plaintiff=[], defendant=[],
adjudicator=[], crime=[], time=[], place=[],

),
]

NADER Actually , Troy Brennan , the same doctor at Harvard 
Public School of Health said the issue is not to fuel lawsuits 
, it 's too many .

Input Text

Ø LLaMa-7B + SFT

Ø LLaMa-7B + EventRL (Prod-F1)

result = [
DeclareBankruptcy(

mention=“discharge”, org=[], time=[], place=[],
),

]

result = [
DeclareBankruptcy(

mention=“bankruptcy”, org=[], time=[], place=[],
),

]

Yes , but according to the facts you first gave , he had not 
yet received the bankruptcy discharge when you gave him the 
shares .

Input Text

Ø LLaMa-7B + SFT

Ø LLaMa-7B + EventRL (Prod-F1)

Figure 8: Comparative analysis of event extraction outcomes between LLaMa-7B + SFT and LLaMa-7B + EventRL
(Prod-F1) on two distinct cases. Case 1 involves a discussion on lawsuits without explicitly assigning roles, where
EventRL accurately avoids misattributing roles unlike SFT. Case 2 focuses on bankruptcy proceedings, with
EventRL correctly identifying the primary event mention as “bankruptcy”. Note that here the results of EventRL
(Prod-F1) are totally accurate.

Held-in test Held-out test

Method Trigger Argument AVG Trigger Argument AVG

GPT4+FSP (0-shot) + Prompt1 4.65 22.43 13.54 0.00 5.66 2.83
GPT4+FSP (0-shot) + Prompt2 6.04 22.08 14.06 15.42 17.69 16.56
GPT4+FSP (0-shot) + Prompt3 1.47 21.36 11.41 3.59 18.39 10.99

GPT4+FSP (1-shot) + Prompt2 + Example1 23.02 22.82 22.92 19.32 17.83 18.58
GPT4+FSP (1-shot) + Prompt2 + Example2 8.63 24.37 16.50 8.87 19.08 13.97
GPT4+FSP (1-shot) + Prompt2 + Example3 15.44 23.33 19.38 12.62 19.50 16.06

Table 5: Performance comparison of GPT-4 with Few-Shot Prompting (FSP) using different prompts and examples
across “Held-in test” and “Held-out test” settings. The table showcases the Trigger and Argument F1 scores, along
with the average (AVG) performance for each method.

Analysis on Advantage Clipping For both Argu-1029

ment Extraction (Arg. F1) and Trigger Extraction1030

(Trig. F1), the results suggest that Advantage Clip-1031

ping contributes to more consistent performance1032

across epochs. Specifically, in Figure 6a, the use1033

of Advantage Clipping appears to maintain higher1034

F1 scores for Argument Extraction throughout the1035

training epochs, with less variability compared to1036

the setting without Advantage Clipping. The pres-1037

ence of Advantage Clipping seems to prevent dras-1038

tic drops in performance, which could be indicative1039

of the model retaining previously learned informa-1040

tion better, thus mitigating catastrophic forgetting.1041

Similarly, in Figure 6b, for Trigger Extraction, the1042

application of Advantage Clipping demonstrates a1043

more stable and consistently higher performance1044

curve than without it. The variance is visibly re-1045

duced, which suggests that Advantage Clipping1046

allows each sample to influence the learning pro-1047

cess enough to be remembered, but not so much1048

that it causes significant performance swings. 1049

The most notable observation is the presence 1050

of fewer and less severe dips in performance for 1051

both Argument and Trigger F1 scores when Ad- 1052

vantage Clipping is applied. This smoothing effect 1053

implies that Advantage Clipping indeed sets a floor 1054

for learning contributions from each sample, en- 1055

suring that all training data is utilized effectively, 1056

which is particularly crucial for a model that might 1057

otherwise focus too heavily on the most recent or 1058

the most rewarding examples. 1059

Case Study As shown in Figure 8, we analyze 1060

two instances where the EventRL (Prod-F1) model 1061

outperforms the LLaMa-7B + SFT approach. In the 1062

first case, the input text discusses a statement made 1063

by Troy Brennan from Harvard Public School of 1064

Health regarding lawsuits. The LLaMa-7B + SFT 1065

model inaccurately identifies Troy Brennan as a 1066

defendant in a lawsuit, reflecting a misunderstand- 1067

ing of the context. In contrast, the LLaMa-7B + 1068
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EventRL (Prod-F1) model provides a more accu-1069

rate representation by not assigning specific roles1070

to the entities involved in the “Sue” event. This1071

output aligns better with the input text, which does1072

not explicitly define plaintiffs or defendants but1073

rather discusses the broader issue of lawsuits.1074

The second input text refers to a situation in-1075

volving bankruptcy proceedings. The LLaMa-7B +1076

SFT model incorrectly identifies “discharge” as the1077

event mention, which misrepresents the text’s focus.1078

The term "discharge" in the context of bankruptcy1079

refers to the legal process of releasing a debtor1080

from certain obligations, but the key event is the1081

declaration of bankruptcy itself. The LLaMa-7B1082

+ EventRL (Prod-F1) model correctly identifies1083

“bankruptcy” as the event mention, providing a1084

more accurate and relevant extraction.1085

A.4 More Analysis on GPT4+FSP1086

Analyzing Various Prompts for GPT4+FSP (0-1087

shot) The performance of GPT-4 with Few-Shot1088

Prompting (0-shot) varies significantly across dif-1089

ferent prompt templates, illustrating the impact of1090

instructional design on the model’s ability to extract1091

events. Prompt 2 (See Figure 10), which provides1092

a clear and structured task description along with1093

an explicit output format, yields the highest overall1094

performance, especially noticeable in the “Held-1095

out test” section with a notable average score of1096

16.56. This suggests that the clarity and specificity1097

of the instructions can significantly enhance the1098

model’s understanding and execution of the task.1099

In contrast, Prompts 1 (See Figure 9) and 3 (See1100

Figure 11), despite offering detailed instructions,1101

do not match the effectiveness of Prompt 2, poten-1102

tially due to differences in how the task and output1103

format are communicated.1104

Analyzing Different Examples for GPT4+FSP1105

(1-shot) Introducing examples in the Few-Shot1106

Prompting (1-shot) setup with GPT-4 shows a nu-1107

anced effect on performance, underscoring the in-1108

fluence of example selection. The inclusion of1109

Example 1 with Prompt 2 significantly boosts per-1110

formance across both “Held-in test” and “Held-out1111

test”, achieving an average score of 18.58 in the1112

latter. This improvement indicates that the right1113

example can enhance the model’s understanding1114

of the task, leading to better event extraction out-1115

comes. However, the impact of different examples1116

varies, with Example 2 and Example 3 leading to1117

mixed results.1118

A.5 Discussion 1119

One key observation from our study is the differ- 1120

ence in performance between large and small mod- 1121

els. Large models tend to perform better because 1122

they have more capacity to understand and pro- 1123

cess complex information. This means they can 1124

better identify the events in texts and figure out 1125

the relationships between different parts of the in- 1126

formation. However, not everyone can use large 1127

models because they need a lot of computing power 1128

and resources. This is where our EventRL frame- 1129

work comes into play. EventRL is designed to help 1130

smaller models perform better on complex tasks. 1131

It does this by focusing on the outcomes of the 1132

task and using reinforcement learning to guide the 1133

model towards better performance. 1134

With EventRL, even smaller models can improve 1135

their ability to extract events from texts. The ap- 1136

proach helps these models pay closer attention to 1137

the final goal of the task and learn from each at- 1138

tempt. This way, they get better over time at under- 1139

standing what’s important in the text and how to 1140

accurately identify events and their details. 1141
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# Event Definitions
{definitions}

# Instruction
Your task is to analyze the given text and extract any relevant events based on the 
provided event data structures. After analyzing the text, you should output the 
results as a Python list of dataclass instances, each representing an identified 
event. Ensure that each instance is properly filled with the corresponding 
attributes according to the event type. If certain information is not available in 
the text for any attribute, leave the corresponding list empty. 
The output should be in the following format:
```python
result = [

Elect(mention="election", person=[], entity=[], position=[], time=[], place=[])
]
```

- Input:
{input}
- Output:

Figure 9: Template 1 illustrates a structured approach to event extraction, combining Python dataclass definitions
with clear natural language instructions. It emphasizes a precise output format, guiding users on how to represent
extracted events as a list of dataclass instances.
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# Event Definitions
{definitions}

# Instruction
Your task is to analyze the given text and extract any relevant events based on the 
provided event data structures. After analyzing the text, you should output the 
results as a Python list of dataclass instances, each representing an identified 
event. Ensure that each instance is properly filled with the corresponding 
attributes according to the event type. If certain information is not available in the 
text for any attribute, leave the corresponding list empty. 
The output should be in the following format:
```python
result = [

EventDataClass(mention="", arg1=[], arg2=[], ...)
]
```
In this template, replace EventDataClass with the actual class name for the event, 
fill in the mention with the event trigger from the text, and populate arg1, arg2, 
etc., with the relevant information as lists, according to the details extracted from 
the text.

- Input:
{input}
- Output:

Figure 10: Template 2 presents a hybrid format that merges programming structure with user-friendly instructions
for event extraction. It details how to fill out dataclass instances based on text analysis, with a focus on maintaining
a clear and standardized output format.
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# Event Definitions
{definitions}

# Instruction
Your task involves analyzing a provided text to identify and extract specific events, 
using predefined data structures for different event types. For each identified 
event, you are to create an instance of the appropriate data class, accurately 
populating its fields based on the information extracted from the text. The 
mention field, a string, should describe the key phrase or term that indicates the 
event, while other fields, which will vary depending on the event type, should be 
filled with lists of relevant details (e.g., names, places, times) as extracted from 
the text. If the text does not supply information for a particular field, you should 
leave that field's list empty.

Compile your findings into a Python list of these data class instances, following the 
format below:
```python
result = [
EventDataClass(mention="trigger phrase", arg1=["detail1", "detail2"], 
arg2=["detail1"], ...)
]
```
In this template, replace EventDataClass with the specific class name that 
corresponds to the identified event. The mention should be filled with the text 
that clearly indicates the event, and arg1, arg2, etc., should be populated with the 
extracted details, formatted as lists, according to the data structure of the event 
type identified.

- Input:
{input}
- Output:

Figure 11: Template 3 offers a comprehensive guide for identifying and extracting events from text, using predefined
data structures. It specifies how to populate data class fields with extracted details, aiming to enhance clarity and
accuracy in representing events through a list of dataclass instances.
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@dataclass
class Attack(ConflictEvent):
    """An Attack Event is defined as a violent physical act causing harm or damage. Attack Events include any
    such Event not covered by the Injure or Die subtypes, including Events where there is no stated agent.
    """
    mention: str  # The text span that most clearly expresses (triggers) the event
    attacker: List[str]  # The attacking/instigating agent
    target: List[str]  # The target of the attack (including unintended targets)
    instrument: List[str]  # The instrument used in the attack
    time: List[str]  # When the attack takes place
    place: List[str]  # Where the attack takes place

@dataclass
class Transport(MovementEvent):
    """A Transport Event occurs whenever an Artifact (Weapon or Vehicle) or a Person is moved from one Place
    (GPE, Facility, Location) to another."""
    mention: str  # The text span that most clearly expresses (triggers) the event
    agent: List[str]  # The agent responsible for the transport Event
    artifact: List[str]  # The person doing the traveling or the artifact being traveled
    vehicle: List[str]  # The vehicle used to transport the person or artifact
    price: List[str]  # The price of transporting the person or artifact
    origin: List[str]  # Where the transporting originated
    destination: List[str]  # Where the transporting is directed
    time: List[str]  # When the transporting takes place

@dataclass
class Die(LifeEvent):
    """A Die Event occurs whenever the life of a Person Entity ends. Die Events can be accidental, intentional
    or self-inflicted"""
    mention: str  # The text span that most clearly expresses (triggers) the event
    agent: List[str]  # (Optional) The attacking agent / The killer
    victim: List[str]  # The person(s) who died
    instrument: List[str]  # The device used to kill
    time: List[str]  # When the death takes place
    place: List[str]  # Where the death takes place

@dataclass
class Meet(ContactEvent):
    """A Meet Event occurs whenever two or more Entities come together at a single location and interact with
    one another face-to-face. Meet Events include talks, summits, conferences, meetings, visits, and any
    other Event where two or more parties get together at some location."""
    mention: str  # The text span that most clearly expresses (triggers) the event
    entity: List[str]  # The agents who are meeting
    time: List[str]  # When the meeting takes place
    place: List[str]  # Where the meeting takes place

@dataclass
class TransferMoney(TransactionEvent):
    """TransferMoney Events refer to the giving, receiving, borrowing, or lending money when it is not in the
    context of purchasing something. The canonical examples are: (1) people giving money to organizations
    (and getting nothing tangible in return); and (2) organizations lending money to people or other orgs.
    """
    mention: str  # The text span that most clearly expresses (triggers) the event
    giver: List[str]  # The donating agent
    recipient: List[str]  # The recipient agent
    beneficiary: List[str]  # The agent that benefits from the transfer
    money: List[str]  # The amount given, donated or loaned
    time: List[str]  # When the amount is transferred
    place: List[str]  # Where the transation takes place

@dataclass
class EndPosition(PersonnelEvent):
    """An EndPosition Event occurs whenever a Person Entity stops working for (or changes offices within) an
    Organization or GPE."""
    mention: str  # The text span that most clearly expresses (triggers) the event
    person: List[str]  # The employee
    entity: List[str]  # The employer
    position: List[str]  # The JobTitle for the position being ended
    time: List[str]  # When the employment relationship ends
    place: List[str]  # Where the employment relationship ends

@dataclass
class Elect(PersonnelEvent):
    """An Elect Event occurs whenever a candidate wins an election designed to determine the Person argument
    of a StartPosition Event."""
    mention: str  # The text span that most clearly expresses (triggers) the event
    person: List[str]  # The person elected
    entity: List[str]  # The voting agent(s)
    position: List[str]  # The JobTitle for the position being nominated to
    time: List[str]  # When the election takes place
    place: List[str]  # Where the election takes place

Figure 12: ACE05 Event definitions in Held-in test.
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