Published as a Tiny Paper at ICLR 2024

TRACING FOOTPRINTS: NEURAL NETWORKS MEET
NON-INTEGER ORDER DIFFERENTIAL EQUATIONS
FOR MODELLING SYSTEMS WITH MEMORY

C. Coelho ', M. Fernanda P. Costa !, L.L. Ferras 12

!Centre of Mathematics (CMAT), University of Minho

2Department of Mechanical Engineering (Section of Mathematics), FEUP - University of Porto
cmartins@cmat.uminho.pt, mfc@math.uminho.pt, lferras@fe.up.pt

ABSTRACT

Neural Ordinary Differential Equations (Neural ODEs) have gained popularity for
modelling real-world systems, thanks to their ability to fit ODEs to data. However,
numerous systems in science and engineering often exhibit intricate memory be-
haviours, being classical ODEs inadequate for such tasks due to their inability to
handle strong and complex memory effects. In this work, we introduce the Neural
Fractional Differential Equation (Neural FDE), a Neural Network (NN) architec-
ture to fit a FDE to data. With this we leverage the capabilities of FDEs allowing
the architecture to take into account all past states and their influence on a system’s
current and future behaviours. Neural FDE inherently exhibits memory, providing
a more accurate representation of complex phenomena in systems with long-term
dependencies. Numerical experiments show Neural FDE generalises better and
has faster convergence than Neural ODE:s.

1 INTRODUCTION

Real-world systems in science and engineering exhibit intricate dynamics, nonlinear interactions,
and emergent phenomena. Mathematical models, often formulated as continuous-time functions us-
ing DEs, are essential for understanding and predicting these systems. DEs describe the dynamic
evolution of system variables over time, capturing interactions and external influences without the
need for time-consuming or expensive experiments. Building mathematical models is challenging
due to their complex and nonlinear relationships between variables. With the emergence of NN,
Chen et al.| (2018) proposed Neural ODEs, a NN with a continuous-depth that adjusts a ODE to
the dynamics of the data. Although ODEs effectively describe instantaneous rates of change, often
systems exhibit intricate memory or a complex dependence on past states beyond the immediate
previous state, making ODEs inadequate for modelling such dynamics. These complexities are
observed in various contexts, such as the interactions of molecules in a cell (Amilo et al.l [2023)),
turbulent flows (Ming et al., 2016), the fluctuations of financial markets (Ara et al., |2018) and the
dynamics of populations (Rivero et al.l[2011). In this work, we introduce Neural FDE, a NN that fits
a FDE to the dynamics of data. FDEs extend the concept of derivatives to noninteger (or fractional)
orders, having an inherent memory thus taking into account all past states of a system and its influ-
ence on the current and future behaviour (Herrmann| 2011). To the best of our knowledge, this is
the first time a NN architecture is proposed to fully model a FDE to the dynamics of data, including
the order of the fractional derivative.

2 METHOD

Neural FDE is an architecture composed of three components: an arbitrary NN fp that builds the
dynamics of the FDE, with parameters 8; an arbitrary NN ¢ that adjusts the fractional order of the
derivative o € (0, 1) by receiving as input the last value of «, with parameters ¢; a numerical solver
FDESolve(a, fo, ho, [to, tf]) that solves the FDE in times [to, ¢ ¢] with initial state ho given by the
first state of the training data at t = ¢(. For this purpose we implemented a Predictor-Corrector FDE

Published as a Tiny Paper at ICLR 2024

Table 1: Performance at modelling a population growth dynamics (MSE = std).

RECONSTRUCTION EXTRAPOLATION COMPLETION
DATASET Neural ODE Neural FDE Neural ODE Neural FDE Neural ODE Neural FDE
Pa—o.3 7.70E-03 = 2.15E-05 1.58E-03 = 7.34E-04 1.04E-02 + 1.54E-05 2.97E-03 + 9.06E-04 7.67E-03 £ 2.15E-05 1.96E-03 £ 7.33E-04
Pa=0.4 3.90E-02 £ 2.45E-02 4.03E-03 + 7.78E-04 4.17E-02 = 1.91E-02 7.36E-03 & 1.25E-03 3.90E-02 4+ 2.45E-02 5.01E-03 + 6.51E-04
Pa—=0.99 4.58E-02 + 1.50E-03 1.32E-02 £ 2.05E-03 3.45E-02 £ 4.44E-04 8.97E-03 + 9.89E-04 4.58E-02 & 1.50E-03 1.45E-02 + 1.91E-03
Pope 8.33E-02 + 5.19E-02 1.15E-02 + 1.49E-03 7.91E-02 + 6.29E-02 7.84E-03 + 9.49E-04 8.34E-02 + 5.19E-02 1.30E-02 + 1.37E-03

solver in Pytorch (see Diethelm et al.|(2002) for more details). The goal of Neural FDE is to fit the
curve of solutions of an initial value problem: ©Dh(t) = fo(h(t),t) (with h(0) = hg) where
D denotes the Caputo fractional derivative of order o (see Appendix (Herrmann, 2011). To
train the Neural FDE, the parameters 6, ¢ are jointly optimised, since both directly contribute to the
predictions of the model, by minimising a loss function defined by the error between the predicted
and ground-truth values, Algorithm[I] The result of training a Neural FDE is a FDE of order «. To
make predictions, a numerical solver is used with initial condition (hg, ¢y) in time interval (¢, t¢)

Algorithm 1 Neural FDE training process.

Input: initial condition (ho, to), time interval [to, ¢ f], maximum number of iterations MAXITER);
fo < DynamicsNN();
g < AlphaNN();
Initialise 0, ¢, ;
for k = 0 : MAXITER do
a — agla);
{hi}ion Ix= FDESolve(a, fg, ho, [to, tf]);
0, ¢ «+ Optimiser.Step(VL);
end for
Return: 6, a;

To evaluate the Neural FDE we developed four toy time-series datasets, that describe a synthetic pop-
ulation growth dynamics. Three were created by numerically solving a FDE with o = 0.3, 0.4, 0.99
and one by solving an ODE, denoted by Py 3, Py 4, Po.99, Popg respectively. Each dataset has avail-
able data for three experiments: reconstruction; extrapolation; completion. For comparison we
used the Neural ODE as a baseline (see Appendix [B| for details on the experimental setup). For
each model and dataset three independent runs were performed and the average Mean Squared Er-
ror (MSE) and respective standard deviations (std) were computed. The numerical results in TableT]
show that Neural ODE and Neural FDE exhibit similar performance in modelling the training dataset
(reconstruction) and inputting missing data within the training time interval (completion). Notably,
Neural FDE outperforms Neural ODE, particularly with respect to P,—¢ 4. However, when predict-
ing beyond the training time interval (extrapolation), Neural FDE is consistently better than Neural
ODE demonstrating higher generalisation capabilities. This outcome aligns with expectations, as
Neural FDE leverages the entirety of the historical information, thereby enhancing its modelling
capabilities. Furthermore, by analysing the training process (see Appendix [C), it becomes evident
that Neural FDE exhibits significantly accelerated convergence, attributable to the intrinsic memory
concept inherent in FDEs.

3 CONCLUSION

In this paper, we propose the Neural FDE, a novel architecture to adjust a continuous-depth NN to
data, by using a FDE. While Neural ODEs model the system behaviour instantaneously by adjusting
an ODE that relies solely on the immediate previous state, Neural FDEs take a different approach,
and consider the entire history of the system, establishing relationships between all past states and
the current or future states. This unique characteristic enables Neural FDE to effectively model
systems with memory or long-term dependencies. Preliminary numerical results show that Neural
FDE has greater generalisation capabilities being able to better extract the underlying dynamics of
a system. This is due to the influence of all historical past to a current or future state of a system.
The computational cost of the Neural FDE is inherently higher than that of the Neural ODE, due
to the need to store and use the complete past data, resulting in the creation of a memory effect.
Despite this, the Neural FDE exhibits faster convergence, reaching significantly lower training loss
values than the Neural ODE at a notably quicker pace. Analysing and addressing the increase of
computational cost is an important future direction.

Published as a Tiny Paper at ICLR 2024

ACKNOWLEDGEMENTS

The authors acknowledge the funding by Fundac@o para a Ciéncia e Tecnologia (Portuguese
Foundation for Science and Technology) through CMAT projects UIDB/00013/2020 and
UIDP/00013/2020 and the funding by FCT and Google Cloud partnership through projects CPCA-
TAC/AV/589164/2023 and CPCA-IAC/AF/589140/2023.

C. Coelho would like to thank FCT for the funding through the scholarship with reference
2021.05201.BD.

This work is also financially supported by national funds through the FCT/MCTES (PIDDAC),
under the project 2022.06672.PTDC - iMAD - Improving the Modelling of Anomalous Diffusion
and Viscoelasticity: solutions to industrial problems.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

David Amilo, Bilgen Kaymakamzade, and Evren Hincal. A fractional-order mathematical model
for lung cancer incorporating integrated therapeutic approaches. Scientific Reports, 13(1):12426,
August 2023. ISSN 2045-2322. doi: 10.1038/541598-023-38814-2.

Asmat Ara, Najeeb Alam Khan, Oyoon Abdul Razzaq, Tooba Hameed, and Muhammad Asif Zahoor
Raja. Wavelets optimization method for evaluation of fractional partial differential equations: An
application to financial modelling. Advances in Difference Equations, 2018(1):8, January 2018.
ISSN 1687-1847. doi: 10.1186/s13662-017-1461-2.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtgichen/
torchdiffeq

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Kai Diethelm, Neville J Ford, and Alan D Freed. A predictor-corrector approach for the numerical
solution of fractional differential equations. Nonlinear Dynamics, 29:3-22, 2002.

Richard Herrmann. Fractional calculus: an introduction for physicists. World Scientific, 2011.

Chunying Ming, Fawang Liu, Liancun Zheng, Ian Turner, and Vo Anh. Analytical solutions of
multi-term time fractional differential equations and application to unsteady flows of generalized
viscoelastic fluid. Computers & Mathematics with Applications, 72(9):2084-2097, November
2016. ISSN 0898-1221. doi: 10.1016/j.camwa.2016.08.012.

Margarita Rivero, Juan J. Trujillo, Luis Vazquez, and M. Pilar Velasco. Fractional dynamics of
populations. Applied Mathematics and Computation, 218(3):1089-1095, October 2011. ISSN
0096-3003. doi: 10.1016/j.amc.2011.03.017.

A CAPUTO FRACTIONAL DERIVATIVE DEFINITION

Fractional derivatives are mathematical operators that extend the concept of traditional derivatives
to noninteger orders. Various definitions exist for fractional derivatives, which differ in their formu-
lations. The choice of a particular definition is often dictated by the specific problem at hand. In this
work we used Caputo’s definition (Herrmann, |2011)):

C nHa — 1 t_S(ofl—a[o[\SS
Dh(O) = =y [(=9)

In our work, we consider @ € (0, 1) since this is the case in many applications Diethelm et al.
(2002).

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

Published as a Tiny Paper at ICLR 2024

B EXPERIMENTAL SETUP

Population Growth Dynamics Datasets To create the toy datasets, the FDE (I)) that models the
dynamics of population growth was numerically solved with fractional orders oo = 0.3, 0.4, 0.99.

“DP(t) = rP(t) < — P;(“) , P(0) =100 (1)

where 7 = 0.1 is the rate of growth, K = 1000 is the carrying capacity of the environment and
P(0) = 100 is the initial condition.

To evaluate the performance of the Neural FDE at modelling data generated using an ODE we also
created a fourth toy dataset described by the ODE (2).

PO~ ey (1- 52 o) = 100 @

For each dataset, three distinct experiments were conducted:

* Reconstruction: to evaluate the performance of the models at learning the training data by
using the same set of data points for training and testing. The set has 200 regularly sampled
points in time interval (0, 300);

* Extrapolation: to evaluate the performance of the models at predicting for unseen time
horizons by using a larger time interval for testing. The training set has 200 regularly
sampled points in ¢ = (0,300) and the testing set has 200 regularly sampled points in
t = (0,400);

* Completion: to evaluate the performance of the models at inputting missing data by using
a higher time frequency for testing. The training set has 200 regularly sampled points in
t = (0,300) and the testing set has 300 regularly sampled points in ¢t = (0, 300).

Implementation and Training Details For the experimental results, a NN configuration was em-
ployed to model the dynamics of the right-hand side of the ODE and FDE, fg. This configuration
consisted of an input and an output layer with 1 neuron and hyperbolic tangent (tanh) activation
function. Additionally, 3 hidden layers with 64 neurons each and tanh activation functions were
used. The optimisation process used Adam optimiser with a learning rate of 1le — 3, and a total of
200 iterations were performed.

As for the NN that adjusts the « value, ag, the architecture featured an input layer with a tanh
activation function, an output layer with a sigmoid activation function, and one neuron in each
layer. Two hidden layers were included with 32 neurons each and tanh activation functions. The
initialisation of the ar value was set to 0.99.

For the optimisation of both neural networks, the Mean Squared Error (MSE) loss function was
employed.

All implementations were done in Pytorch, and we closely followed the work by |Diethelm et al.
(2002) to implement the Predictor-Corrector fractional solver (a fractional ordinary differential equa-
tions solver is not available in Python). Furthermore, Torchdiffeq library was used for the Neural
ODE |Chen| (2018).

C AUXILIARY PLOTS

As a preliminary analysis, the training loss evolution for the four datasets was plotted, Figure
This allows the study of the rate of convergence of the Neural ODE and Neural FDE architectures.
Out of the three runs executed, plots for the second run, chosen arbitrarily, are here presented. The
plots show that the Neural FDE is capable of achieving lower loss values in fewer iterations than the
Neural ODE. Also, the Neural FDE achieves lower loss values.

Published as a Tiny Paper at ICLR 2024

0.30

0.20

0.10

0.30

0.20

Training loss evolution for P;=0.3

==~ Neural ODE
—— Neural FDE

50 75 100 125 150 175 200
Iteration

Training loss evolution for P, - 0.99

\ —==- Neural ODE
—— Neural FDE

50 75 100 125 150 175 200
Iteration

0.30

Training loss evolution for P, - 0.4

0.2541

0.05 1

—==- Neural ODE
—— Neural FDE

25 50 75 100 125 150 175 200
Iteration

Training loss evolution for Pg= 1

Neural ODE
Neural FDE

25 50 75 100 125 150 175 200
Iteration

Figure 1: Evolution of the loss during training for the four datasets.

	Introduction
	Method
	Conclusion
	Caputo Fractional Derivative Definition
	Experimental Setup
	Auxiliary Plots

