
Understanding LLM Behaviors via Compression: Data
Generation, Knowledge Acquisition and Scaling Laws

Zhixuan Pan1,∗ Shaowen Wang1,∗ Pengfei Liao2 Jian Li1,†
1Institute for Interdisciplinary Information Sciences, Tsinghua University

2School of Computer Science and Engineering, Beihang University
panzx24@mails.tsinghua.edu.cn, wangsw23@mails.tsinghua.edu.cn

liaopf22@buaa.edu.cn, lapordge@gmail.com

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities across
numerous tasks, yet principled explanations for their underlying mechanisms and
several phenomena, such as scaling laws, hallucinations, and related behaviors,
remain elusive. In this work, we revisit the classical relationship between compres-
sion and prediction, grounded in Kolmogorov complexity and Shannon information
theory, to provide deeper insights into LLM behaviors. By leveraging the Kol-
mogorov Structure Function and interpreting LLM compression as a two-part
coding process, we offer a detailed view of how LLMs acquire and store informa-
tion across increasing model and data scales – from pervasive syntactic patterns
to progressively rarer knowledge elements. Motivated by this theoretical perspec-
tive and natural assumptions inspired by Heap’s and Zipf’s laws, we introduce
a simplified yet representative hierarchical data-generation framework called the
Syntax-Knowledge model. Under the Bayesian setting, we show that prediction
and compression within this model naturally lead to diverse learning and scaling
behaviors of LLMs. In particular, our theoretical analysis offers intuitive and princi-
pled explanations for both data and model scaling laws, the dynamics of knowledge
acquisition during training and fine-tuning, factual knowledge hallucinations in
LLMs. The experimental results validate our theoretical predictions.

1 Introduction

Large Language Models (LLMs) have emerged as one of the most influential breakthroughs in
modern artificial intelligence, achieving impressive performance across a multitude of tasks, ranging
from fluent text generation, translations, and summarization to answering factual queries, and even
performing complex reasoning. Despite these remarkable achievements, a theoretical understanding
of what enables LLMs to generalize so effectively remains limited. Traditional learning theory
frameworks have not yet fully explained why certain scaling laws hold, why in-context learning
emerges, or when and why hallucinations arise in the output of these models.

One promising lens for gaining deeper insight into LLM behavior is the intrinsic connection between
prediction and compression. Kolmogorov complexity and Shannon information theory have long es-
tablished that optimal prediction of a data sequence is intimately tied to the most efficient compression
of that sequence (see e.g., [13, 47, 59, 34]). From this perspective, a predictive model, particularly
a large language model (LLM), can be viewed as a practical approximation of the Kolmogorov
compressor (see e.g., [69, 16, 48]) of training data. See Appendix C and Appendix B for more details.

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Following this line of thought, we build upon the Kolmogorov structure function [47, 61] and
interpret LLM training as constructing a two-part (data-to-model) code for the training data. The
first part (the model compressor part) corresponds to the LLM itself, which adjusts its parameters
to learn patterns and structural regularities for more efficient compression. The second part (the
data part) is the compressed code of the data, generated by using the LLM as the compressor. 3 As
already indicated by prior work on the structure function (see e.g., [71, 61, 46]), a model of low
complexity captures only the most prominent regularities in the data, whereas allowing model of
higher complexity captures more nuanced structures. In the context of compressing language corpus
under capacity constraints, the most efficient LLM-based compressor should initially focuses on
compressing frequently recurring regularities such as syntactic patterns, then integrates relatively
common knowledge, and eventually handles increasingly rare knowledge elements. Any “residual”
(such as factual knowledge exceeding the model’s capacity or unpredictable noise) must be left out
of the model and explicitly encoded in the second part. See Appendix C for formal definition of
Kolmogorov structure function and Figure 5(a) for a schematic illustration.

Motivated by the insight from the study of Kolmogorov Structure Function and natural assumptions
inspired by Heap’s law [30] and Zipf’s law [76, 77] (see Appendix A for more details), we propose
the Syntax-Knowledge model, a (simplified) hierarchical data-generative framework that decomposes
the generation process into two components (see Figure 5(b)). The first component, a parametric
Syntax Model, captures the syntactic structures of language, allowing for random syntactic variations.
The second component, a Knowledge Model, encodes relevant world knowledge and is modeled using
the nonparametric Pitman-Yor Chinese Restaurant Process. This choice reflects the growing nature
of human knowledge and captures the fact that certain pieces of information occur disproportionately
more frequently than others in the data. By examining how efficiently data generated by this model
can be compressed (specifically, by minimizing perplexity, or equivalently coding redundancy), we
clarify the learning behaviors of LLMs: highlighting that syntax model is learned first at a faster
rate, and the (factual) knowledge elements are acquired according to the order of their frequency.
Furthermore, we theoretically demonstrate how model performance scales with both data size and
model capacity, thus providing intuitive explanations for the scaling laws observed in real-world
LLM training. Our contributions are summarized as follows:

1. Kolmogorov Structure Function Perspective. By viewing LLM training as a two-part
coding process in the Kolmogorov Structure Function, we present a principled framework
for viewing LLMs as compressors that distinguish between structural regularities of varying
frequencies and residual randomness. See Appendix C.

2. A Non-Parametric Hierarchical Data Generation Model. In Section 3, we introduce the
Syntax-Knowledge model, a hierarchical generative framework that separates language
syntax (captured by a parametric model) from (factual) knowledge (represented by a non-
parametric Pitman-Yor Chinese Restaurant Process). This design naturally accommodates
the growing nature and power-law distributions of knowledge elements, motivated by Heap’s
law [30] and Zipf’s laws [77], reflecting their disproportionate frequency in real-world data.

3. Data Scaling Law. Within a Bayesian framework, we show that perplexity minimization
applied to data generated by our Syntax-Knowledge model naturally leads to data scaling
laws observed in real world LLMs. In particular, the Bayesian redundancy is equal to the
mutual information between the prior and the data, and we can bound the mutual information
by Õ

(
Cknw/N

1−α + Csyn/N
)
, where N is the size of the training data, Cknw and Csyn are

constants depending on the knowledge model and syntax model respectively, and α is
the discount parameter of the Pitman-Yor Chinese Restaurant Process employed in our
knowledge model. See Section 4.2.

4. Model Scaling Law. In Section 4.3, we extend our theoretical models to account for model
scaling laws, under a slightly different set of assumptions. As a consequence, we offer a
more fine-grained understanding of model scaling by decomposing the test loss according to
the frequency of knowledge elements. This allows us to accurately predict which knowledge
elements LLMs can acquire under capacity constraints during training, and which ones they
are more likely to hallucinate(even though the model may have encountered them many

3For details on using an LLM or any auto-regressive predictor to compress data via Arithmetic coding, see
[62, 13, 16] or Appendix B.1.

2

Figure 1: Decomposition of validation loss on knowledge tokens by frequency class, as model size
increases. (a) Empirical results on a power-law-distributed dataset: knowledge tokens are grouped
into four frequency classes (from most to least frequent) and colored accordingly. We observe the
following trend: smaller models capture only the most frequent knowledge (the loss of the most
frequent class decreases the first), while larger models gradually acquire less frequent knowledge.
Each vertical dashed line marks the model size beyond which further loss reduction for a given
frequency class becomes negligible, indicating the irreducible part of the loss. (b) Theoretical
prediction of the same loss decomposition (the optimal solution of the constrained optimization
problem (5) in Section 4.3) with irreducible loss part (i.e., the H(Pϕ) term in (3)), which reproduces
this frequency-dependent acquisition order and plateauing behavior.

times) as demonstrated in Figure 2. See Figure 1 for both our theoretical prediction and the
corresponding experimental results on model scaling behaviors. 4

2 Background

In this section, we review the necessary background on information theory, coding, perplexity
minimization, and scaling laws in LLMs. Let V denote the set of all possible tokens. We denote
the training corpus as X1:N := X1, X2, . . . , XN , where each Xi = x

(i)
1 x

(i)
2 · · ·x(i)li

is a sentence

represented as a sequence of tokens, with each token x(i)j ∈ V.

Perplexity Minimization in LLMs. In LLMs, the cross-entropy loss (or log-loss) serves as the
metric for measuring how well the model predicts a given sequence of tokens. A model M , which
induces a predictive distribution PM , estimates the conditional probability of each token xt given
the preceding context x1:t−1 for each sentence. We assume that all sentences in the training corpus
X1:N are independently drawn from the source distribution Pϕdata . Given the training corpus X1:N ,
the training objective is to minimize the empirical averaged cross-entropy loss:

L(M) = − 1

N
logPM (X1:N) = − 1

N

N∑
i=1

log PM (Xi) = EX∼P̂ϕ
[− logPM (X)]

= H(P̂ϕ∥PM) = − 1

N

N∑
i=1

∑
t

log PM (x
(i)
t | x(i)1:t−1), (1)

where P̂ϕ is the empirical measure of the underlying source distribution Pϕdata , and H(P∥Q) =
EX∼P [− logQ(X)] is the standard cross-entropy loss. The perplexity (PPL) is then defined as
PPL := exp

(
L(M)

)
, capturing the effective ”number of choices” the model has at each token.

4We follow the experimental setting of [2, 3], but use a power law distribution of individuals. The experimental
details can be found in Appendix G.

3

Figure 2: (a) Accuracy of sufficiently trained models with different sizes across varying input
frequencies. When the frequency falls below a model-specific threshold, small models inevitably
hallucinate and fail to learn the corresponding facts. (b) Accuracy of different frequency classes (split
into four quantiles) under varying model sizes. As model size increases, the model progressively
learns the more frequent data first, while infrequent data becomes learnable only at larger scales.

Lossless Compression and Redundancy. The goal of lossless compression is to encode a sequence
of tokens X = x1:n (sampled from the source distribution Pϕ parametrized by ϕ) into a binary
sequence y1:m of minimal expected length, such that x1:n can be recovered perfectly from y1:m. We
use a binary source code c : V∗ → {0, 1}∗, which encodes each possible sequence x1:n into a binary
codeword c(x1:n) of length ℓ

(
c(x1:n)

)
bits. The objective is to minimize the expected code length

L(Qc) := EX∼Pϕ

[
ℓ
(
c(X)

)]
= EX∼Pϕ

[
− logQc(X)

]
= H(Pϕ ∥Qc). (2)

where Qc(x) ∝ 2−ℓ(c(x)) is the predictive probability corresponding to the code c. According to
Shannon’s source coding theorem [64], the average length of any lossless code is bounded below by
the entropy H(Pϕ), and one can design an encoding scheme whose code length is H(Pϕ) + O(1)
if Pϕ is known. However, when the source distribution Pϕ is unknown, universal coding becomes
necessary (see Appendix B.2 for more details). In this setting, the extra code length beyond H(Pϕ),
referred to as the redundancy of the code c, is defined as follows:

Red(Qc, Pϕ) = L(Qc)−H(Pϕ) = H(Pϕ ∥Qc)−H(Pϕ) = DKL(Pϕ ∥Qc). (3)

where DKL(Pϕ ∥Qc) = Ex∼Pϕ
[log(Pϕ(x)/Qc(x))] is the Kullback–Leibler (KL) divergence be-

tween source distribution Pϕ and predicted distribution Qc. Comparing equations (1) and (2) reveals
that obtaining a predictive model that minimizes perplexity (or cross-entropy loss) is essentially
equivalent to finding a code with minimal expected length. (See Appendix B.1 for further details on
the equivalence between prediction and compression.) Moreover, one can see from (3) that H(Pϕ)
constitutes the irreducible part of the loss, corresponding to the minimum achievable code length
under Shannon’s source coding theorem. Therefore, the goal of minimizing the expected code length
is essentially equivalent to minimizing the redundancy.

Scaling Laws in LLMs. The performance of LLMs, particularly the cross-entropy loss L, has
been observed to improve predictably with increases in model size, dataset size, and computational
resources[42, 33]. These empirical relationships are known as scaling laws. A common formulation
for the loss as a function of dataset size D (e.g., number of tokens) and model size M (e.g., number of
parameters) L(D,M) ≈ (D/D0)

−α+(M/M0)−β+ε. In these formulations, D0 andM0 represent
characteristic scales for the dataset and model size respectively. The exponents α > 0 and β > 0
determine how quickly the loss decreases as the dataset size and model size increase. The term ε
represents the irreducible loss, which is the minimum achievable loss that cannot be reduced by
further scaling, potentially due to factors like the inherent entropy of the data.

3 A Hierarchical Data Generation Model
In this section, we propose a hierarchical data generation model, called the syntax-knowledge model.
In this model, where each sentence in the training corpus is generated by a syntax encoder that encode

4

a (factual) knowledge element, sampled from the knowledge model. The syntax model (encoder) is
parameterized by ϕsyn, the knowledge model is denoted as ϕknw, and the entire data model is denoted
as ϕdata = {ϕsyn, ϕknw}.

In our model, the syntax model ϕsyn (e.g., a probabilistic CFG, an English/code grammar, or even
a template-based format) does not grow with the size of the dataset and can be modeled using a
finite-dimensional parameterized model ϕsyn. On the other hand, the knowledge model employs
a non-parametric stochastic process to account for two empirically observed phenomena: 1) the
unbounded growth of factual information as datasets grow (mirroring Heap’s Law in lexical growth
patterns [30]), and 2) the long-tailed frequency distribution of factual occurrences, analogous to
Zipf’s law in natural language [76, 77].

Motivated by the above idea, we leverage the nonparametric Pitman–Yor process (PYP) [56] for
modeling the knowledge model ϕknw. A PYP is characterized by two real parameters, the discount
parameter 0 ≤ α < 1 and the concentration parameter β > −α, and a base probability measure
πknw. We denote it as PYP(α, β, πknw). A sample from the Pitman–Yor process PYP(α, β, πknw)
is a random probability measure ϕknw =

∑∞
i=1 piδϕi , which is a discrete distribution with count-

ably infinite atoms, where p = (p1, p2, . . .) are the weights generated by the Pitman–Yor Chinese
Restaurant Process (PYCRP) (described below); each atom ϕi ∼ πknw is the i-th cluster parameter
independently drawn from the base measure πknw.

The weights p = (p1, p2, . . .) are generated by the Pitman–Yor Chinese Restaurant Process (PYCRP),
denote as p = (p1, p2, . . .) ∼ PYCRP(α, β). PYCRP adopts a preferential attachment mechanism
that naturally captures both the sublinear scaling of new factual discoveries and the power-law
distributed frequencies of knowledge pieces (see Lemma H.2 in Appendix H.1). PYCRP works as
follows: Imagining a restaurant where customers arrive sequentially, each choosing either to join
an existing lively table or start their own. The first customer sits at a new table. Consider the n-th
customer who just come to the restaurant. Suppose Nk is the number of customers already at table k,
and K is the current number of occupied tables. The n-th customer either joins an existing table k or
starts a new table with the following probabilities: The n-th customer joins an existing table k
with probability (Nk −α)/(n− 1+β), or starts a new table with probability (β+αK)/(n− 1+β).
The weight p = (p1, p2, . . .) = lim

n→∞
(N1/n,N2/n, · · ·) are defined as the relative sizes of the tables

as the number of customers n→ ∞. More details of PYMM can be found in Appendix D.1.

Hierarchical Data Model: In the Pitman–Yor Mixture Model, the Pitman–Yor Process serves as a
prior defined over the set of mixture distributions. Recall that a sample from the Pitman–Yor Process
is a random probability measure of the form ϕknw =

∑∞
i=1 piδϕi , where {pi} are the mixture weights

and {ϕi} are the atoms. This can be viewed as a mixture distribution in which the i-th cluster is
chosen with probability pi, and the corresponding model is parameterized by ϕi, referred to as the
i-th knowledge cluster (table).

The parameters ϕi are drawn from a base measure πknw, which acts as a prior over the cluster
parameters. We assume πknw is supported on a bounded parameter space Φknw = {ϕ ∈ Rdknw :
∥ϕ∥2 ≤ 1}, ensuring that each ϕi ∈ Φknw for all i ∈ N+.

Now, it is ready to describe the Syntax-Knowledge model, which generates a sentence X according
to the following hierarchical framework:

1. We first independently sample the latent parameters of the knowledge and syntax models:
ϕknw ∼ PYP(α, β, πknw), ϕsyn = {ϕ(1)syn , ϕ

(2)
syn , . . . , ϕ

(ns)
syn }, ϕ

(i)
syn

i.i.d.∼ πsyn(ϕsyn), where
πsyn is the prior distribution of ϕ(i)syn and supported on a bounded parameter space Φsyn =

{ϕ ∈ Rdsyn : ∥ϕ∥2 ≤ 1}. ensuring that each ϕ(i)syn ∈ Φsyn for all 1 ≤ i ≤ ns. The value ns
denotes the number of distinct syntax parameter vectors, indicating that different types of
knowledge should be expressed through different syntactic patterns.

2. We generate the sentence from both ϕsyn and ϕknw. In fact, we first sample an (abstract)
knowledge element κ (corresponding to a customer) from a knowledge cluster (correspond-
ing to a table) in ϕknw, use κ to determine which syntax ϕ(i)syn (e.g., which template or
format) to use, and then use the syntax encoder to generate the corresponding sentence.
See Appendix D for details and Figure 7 for the data model schematic.

5

4 Explaining Scaling Laws

4.1 A Bayesian Sequential Prediction Framework

In this section, we explain LLM scaling laws by adopting the Bayesian sequential prediction frame-
work (also called online Bayesian coding game). This Bayesian setting has been studied extensively in
information theory (especially related to universal coding), statistics and machine learning literature
(see e.g., [11, 12] and more recent expositions [17, 37]). More details can be found in Appendix B.2.2.

Given the data-generating distribution Pϕdata , the redundancy of the model M (recall the definition
from (3)) with respect to samples X1:N i.i.d. drawn from Pϕdata is:

RedN (M , ϕdata) = E
X1:N∼Pϕdata

[
− logPM (X1:N)

]
− E

X1:N∼Pϕdata

[
− logPϕdata(X1:N)

]
(4)

= DKL(P
N
ϕdata

∥PM),

where the first term represents the cumulative cross-entropy of the model M , and the second term
corresponds to the irreducible entropy of the ground-truth data distribution ϕdata.

In Bayesian generative models, the data-generating parameter ϕdata is treated as a random variable
drawn from a prior distribution π. Let Φdata denote the parameter space. The Bayesian redundancy
of a model M is defined as the expected redundancy under the prior π:

RedN (M ,Φdata) :=

∫
Φdata

π(ϕdata)RedN (M , ϕdata) dϕdata.

According to Lemma B.3 in Appendix B.2.2, the optimal Bayesian redundancy is given by:

inf
M

∫
Φdata

π(ϕdata)RedN (M , ϕdata)dϕdata =

∫
Φdata

π(ϕdata)DKL(P
N
ϕdata

∥Qπ)dϕdata = I(X1:N ;ϕdata),

where Qπ =
∫
PN
ϕdata

π(ϕdata) dϕdata denotes the marginal distribution over X1:N obtained by first

sampling ϕdata ∼ π, and then drawing X1:N
i.i.d.∼ Pϕdata conditioned on ϕdata.

4.2 Data Scaling Law (under the Bayesian framework)

Under the Bayesian sequential prediction framework, we derive an upper bound on the optimal
Bayesian redundancy (which is equal to the mutual information I(X1:N ;ϕdata) by Lemma B.3) of our
hierarchical data model ϕdata.

We make the following natural assumption of the knowledge model: if the parameters of two
knowledge clusters are close, the KL divergence between two induced distributions is small.
Assumption 4.1. The probability families Φsyn and Φknw satisfy the following: there exist positive
constants Lknw and Lsyn such that for all ϕ(1)knw, ϕ

(2)
knw ∈ Φknw and ϕ(1)syn , ϕ

(2)
syn ∈ Φsyn, we have:

DKL

(
P
ϕ
(1)
knw
||P

ϕ
(2)
knw

)
≤ Lknw∥ϕ(1)knw − ϕ

(2)
knw∥2, DKL

(
P
ϕ
(1)
syn
||P

ϕ
(2)
syn

)
≤ Lsyn∥ϕ(1)syn − ϕ(2)syn∥2.

The constants Lknw and Lsyn may depend on the concrete form of the parametrization of Pϕknw and
Pϕsyn , and are typically related to the Fisher information (See Lemma H.6 and Remark H.7). However,
the particular form of the parametrization is not important for our later development. The constants
Lknw and Lsyn appear in logarithmic order in the upcoming Theorem 4.2. For the sake of clarity, we
omit logarithmic terms in the statement of Theorem 4.2. Under the Bayesian setting and the above
assumption, we can derive the following upper bound of the optimal Bayesian redundancy.
Theorem 4.2. Under the Bayesian sequential prediction framework and Assumption 4.1, the averaged
optimal Bayesian redundancy (per sentence) of the hierarchical data model ϕdata satisfies:

inf
M

1

N
RedN (M ,Φdata) =

1

N
I(X1:N ;ϕdata) = Õ

(
dknw

N1−α
+
nsdsyn

N

)
.

where dknw and dsyn are the parameter dimensions of the knowledge and syntax clusters, respectively,
and ns is the number of distinct syntax clusters.

6

Figure 3: (a) Validation loss as a function of training data size. Models trained on data sampled from
pretrained knowledge under various power-law distributions (i.e., p(i) ∼ (x+ b)power) show clear
power-law scaling of loss with data size, while uniform sampling does not. A more skewed data
distribution leads to faster loss decay. (b) Loss decomposition by data frequency class: high-frequency
data is learned earlier, while lower-frequency data is acquired later during training.

Using (3), we can obtain the following decomposition of the optimal Bayesian cross-entropy loss.

Corollary 4.3. Suppose π is the prior of ϕdata. Under the same setting as Theorem 4.2, the averaged
optimal Bayesian loss (per sentence) can be bounded as:

inf
M

1

N
E

ϕdata∼π
E

X1:N∼Pϕdata

[
− logPM (X1:N)

]
= Õ

(
dknw

N1−α
+
nsdsyn

N

)
+

1

N
H(X1:N |Φdata).

where H(X1:N |Φdata) = Eϕdata∼π[H(X1:N | ϕdata)] is the irreducible part of the loss.

Note that the optimal Bayesian redundancy bound in Theorem 4.2 consists of two distinct terms, cor-
responding respectively to the syntax and knowledge models. These two models exhibit significantly
different learning behaviors: the redundancy for the syntax model decreases rapidly at a rate Õ(N−1),
whereas the redundancy for the knowledge model decreases more slowly at a rate Õ(Nα−1). These
differences highlight two distinct training phases: an early stage dominated by syntax redundancy
reduction, and a later stage dominated by knowledge redundancy reduction.

Such a behavior is quite intuitive: Initially, the model primarily learns syntactic structures, since
frequently recurring syntactic patterns yield substantial and immediate reductions in redundancy (and
thus test cross-entropy loss). Moreover, as the syntax model can be captured by a parametric model,
its redundancy decreases rapidly at the parametric learning rate Õ(N−1). This is also consistent with
standard Bayesian results for parametric models [60, 12]. As training progresses, the model gradually
incorporates factual knowledge; however, knowledge elements with lower frequencies receive fewer
training examples, resulting in a slower reduction in redundancy.

Finally, we note that a few recent studies have also derived the data scaling law from the power-law
data distribution in various stylized settings [35, 53, 8]. See Appendix A for more discussions.

Experimental Validations: We validate Theorem 4.2 through experiments using datasets sampled
from pretrained knowledge following various power-law distributions as well as a uniform distribution
(See the experimental details in Appendix G). In Figure 3(a), we observe that models trained with
power-law sampled data exhibit a strong power-law relationship between validation loss and data size,
accurately captured by the regression form loss = (x/x0)

−α + ϵ. The fitted exponent α increases
in magnitude as the data distribution becomes more skewed, indicating faster loss decay, which is
consistent with our conclusion in Theorem 4.2. In contrast, models trained with uniformly sampled
data deviate significantly from this power-law behavior. We note our theory does not cover such
uniform distribution, as it cannot arise from our data modeling based on the PYCRP.

Figure 3(b) further decomposes validation loss by data frequency class over training steps. We find
that during the initial training steps (from the topmost curve to the 2nd topmost curve), the loss
reduces for data of all frequencies (although the loss reduction for higher frequency data is slightly
larger). This indicates the syntax learning phase. Later, we observe that high-frequency data achieves

7

more rapid loss reduction early in training, while medium- and low-frequency data improve later.
This confirms a frequency-dependent learning dynamic: the model first captures more common
patterns and then gradually incorporates rarer knowledge as training progresses, which is consistent
from the insight gained from Kolmogorov structure function (see Appendix C).

4.3 Model Scaling Law

In this section, we derive a power-law characterization for the model scaling law. Our theoretical
results here are derived under slightly simplified assumptions (but retain essential insights). Specifi-
cally, we focus exclusively on the knowledge model and omit the syntax model, motivated by our
earlier findings in Theorem 4.2, where we showed (and empirical observations confirm) that the
syntax model is learned at a significantly faster rate.

We continue modeling the knowledge model ϕknw =
∑∞

i=1 piδϕi as an infinite mixture model but
now make the following assumption on the mixing probabilities pi.
Assumption 4.4. For the mixture model ϕknw =

∑∞
i=1 piδϕi

, the mixing probabilities pi follow a
power-law distribution: pi = ζ(1/α)−1 i−1/α, where ζ(1/α) =

∑∞
i=1 i

−1/α. 5

In this section, we consider the optimal redundancy achievable by an omniscient model M∗
C under

the constraint C. That is, we may construct the model M∗
C from the true data distribution ϕdata.

The only constraint of M∗
C is that the model capacity is at most C bits. Due to the finite capacity,

the model M∗
C cannot memorize all the data nor the true distribution Pϕdata , hence must apply

lossy compression to the true model. In particular, We denote by Di(mi) the redundancy incurred
by answering questions from knowledge cluster ϕi, and mi denotes the constraint of the mutual
information between the model and ϕi (one may think it as the memory allocated to compress ϕi).
The minimal achievable redundancy under a given memory constraint can be characterized by a
distortion-rate function, and we make the following assumption of Di(mi). For the formal definition
of Di(mi) and the justification of the assumption, see Appendix E.2.
Assumption 4.5. We assume that the distortion-rate function Di(R) satisfies
1. There exists c3, c4 such that for all i ∈ N+, R ≤ c3, the distortion-rate function Di(R) ≥ c4.

2. There exists cmax, bmax such that for all i ∈ N+, the distortion rate function Di(R) ≤ cmaxb
−R
max.

The redundancy minimization problem can be formulated as the following optimization problem:

minimize Ei[Di(mi)] =

∞∑
i=1

piDi(mi), (5)

subject to I(Φ0;M
∗
C) ≤ C, mi = I(ϕi;M∗

C) ≥ 0 for all i ∈ N+,

where Φ0 = (ϕ1, ϕ2, . . .). If we further assume that ϕi ⊥ Φ−i | M∗
C where Φ−i =

(ϕ1, . . . , ϕi−1, ϕi+1, . . .), i.e., ϕi is conditionally independent of the remaining cluster parameters
given the model M∗

C . In other words, conditional on the model M∗
C , knowing ϕi does not provide

any additional information about ϕj for j ̸= i. Under this natural assumption, the model capacity
constraint can be simplified as: I(Φ0;M

∗
C) =

∑∞
i=1 I(ϕi;M

∗
C) ≤ C. See Appendix E.2 for the

derivation. Let RedM (C) denote the optimal value of the optimization problem in (5), representing
the minimal achievable redundancy under the model capacity constraint.
Theorem 4.6. Under Assumption 4.5 and Assumption 4.4, the optimal value of the optimization
problem under the given model size constraint satisfies:

RedM (C) = Θ(C−1/α+1).

Moreover, if we further assume that Dk(R) = akb
−R
k for some constant bmin ≤ bk ≤ bmax, amin ≤

ak ≤ amax, the contribution of the k’s cluster is pkDk(m
∗
k) = Θ(min{k−1/α, C−1/α}), where

m∗
k is the solution of the optimization problem (5).

Experimental Validation: In Figure 1(a), we show the empirical decomposition of validation loss
by knowledge token frequency class as model size increases. Figure 1(b) presents the corresponding

5This choice of exponent 1/α aligns with the asymptotic behavior of mixing weights in the Pitman–Yor
Process PYP(α, β, πknw) (see Lemma H.2).

8

Figure 4: (a) Validation loss as a function of model size (excluding token embedding head). Re-
gression analysis of model scaling: using the fitting form loss = (x/x0)

−α + ϵ, we find that when
the data is generated from a power-law distribution, the loss decreases with model size following
a power-law trend. In contrast, the loss does not exhibit power-law scaling with model size when
the data is generated from a uniform distribution. (b) Validation loss for different frequency classes:
larger models are able to better fit lower-frequency (rarer) data, while for a fixed model size, more
frequent data is learned more effectively.

theoretical prediction, derived from the optimal solution to the constrained optimization problem (5).
The empirical results on power-law distributed data closely align with the theory: in both panels,
high-frequency classes exhibit loss reduction with smaller models, while low-frequency classes only
begin to improve as model capacity increases.

In Figure 4(a), we present the model scaling law across different data distributions. Consistent with
our theoretical predictions, we observe that the more skewed the data distribution (i.e., the heavier the
power-law tail), the larger the exponent in the fitted scaling law, indicating faster loss decay as model
size increases. In contrast, for data generated from a uniform distribution, the loss curve significantly
deviates from a power law: the loss remains nearly flat until the model reaches a critical capacity
threshold, after which it drops sharply, and then plateaus again. This pattern arises for the following
reason: initially, none of the individual items stand out and are fully learned, resulting in a flat loss.
As the model grows, it begins to capture a subset of properties for most individuals, causing a rapid
drop. Once all such properties have been learned, the loss flattens out again. A more detailed analysis
of the learning dynamics for each property is presented in Appendix G.2. We also note that Allen-Zhu
& Li [3] investigated factual knowledge acquisition using the bioS dataset consisting of uniformly
distributed individuals, and one of their main findings is that the amount of acquired knowledge (in
bits) scales linearly with the model size. However, they did not examine the scaling behavior in terms
of cross-entropy loss, which follows a very different scaling than power law (Figure 4(a)).

Comparing the learning curves of uniformly distributed data with those of power-law-distributed data
(across both data scaling and model scaling) suggests that it can be advantageous to have power-
law-distributed data, because the model can gradually learn knowledge in the order of frequency,
which is more effective than the uniform case, where no one element stands out and the model lacks
guidance on what to prioritize. Exploring how adjusting the frequency or mixing ratio of data can
enhance (or accelerate) learning performance is an intriguing direction for future research (see [27]
for a recent study in this direction).

Our theorem also implies that for a fixed model capacity C, if a knowledge element appears with a
frequency below a certain threshold, the model will choose not to learn it, despite that the model may
have seen it many times during training. This aligns with our experimental findings: hallucination
tends to occur when the total amount of knowledge exceeds the model’s capacity, specifically, when
higher-frequency knowledge already saturates the model’s capacity, lower-frequency elements are
ignored. As shown in Figure 2, for a 7.2M-sized model, knowledge that occurs fewer than 508 times
is consistently hallucinated, regardless of the number of pretraining epochs.

9

5 Concluding Remarks

There are several exciting directions to extend this work. First, while we focused on factual knowledge,
real-world datasets encompass more diverse forms of knowledge. It would be interesting to integrate
more knowledge structures, as well as compositional reasoning and inference mechanisms into
our theoretical model. Another interesting challenge is understanding how LLMs can approximate
universal predictors (e.g., the Solomonoff predictor, which is also based on Kolmogorov complexity)
within practical computational constraints (see, e.g., [25, 46]). Bridging these theoretical frameworks
with real-world LLMs could deepen our understanding of their behaviors and pave the way for
developing models that are more controllable and more reliable.

References
[1] James Aitchison. Goodness of prediction fit. Biometrika, 62(3):547–554, 1975.

[2] Zeyuan Allen-Zhu. ICML 2024 Tutorial: Physics of Language Models, July 2024. Project page:
https://physics.allen-zhu.com/.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. In ICLR 2025: International Conference on Learning Representations, 2024.

[4] Kevin Atteson. The asymptotic redundancy of bayes rules for markov chains. IEEE Transactions
on Information Theory, 45(6):2104–2109, 1999.

[5] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121,
2024.

[6] Andrew R Barron and Thomas M Cover. Minimum complexity density estimation. IEEE
transactions on information theory, 37(4):1034–1054, 1991.

[7] Kushagra Bhushan, Yatin Nandwani, Dinesh Khandelwal, Sonam Gupta, Gaurav Pandey, Dinesh
Raghu, and Sachindra Joshi. Systematic knowledge injection into large language models via
diverse augmentation for domain-specific rag. In Findings of the Association for Computational
Linguistics: NAACL 2025, pp. 5922–5943, 2025.

[8] Ari Brill. Neural scaling laws rooted in the data distribution. arXiv preprint arXiv:2412.07942,
2024.

[9] Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang,
and Minjoon Seo. How do large language models acquire factual knowledge during pretraining?
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[10] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall
and learn: Fine-tuning deep pretrained language models with less forgetting. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
7870–7881, 2020.

[11] Bertrand S Clarke and Andrew R Barron. Information-theoretic asymptotics of bayes methods.
IEEE Transactions on Information Theory, 36(3):453–471, 1990.

[12] Bertrand S Clarke and Andrew R Barron. Jeffreys’ prior is asymptotically least favorable under
entropy risk. Journal of Statistical planning and Inference, 41(1):37–60, 1994.

[13] Thomas Cover and Joy Thomas. Elements of information theory. John Wiley & Sons, 2006.

[14] Majid Daliri, Zhao Song, and Chiwun Yang. Unlocking the theory behind scaling 1-bit neural
networks. arXiv preprint arXiv:2411.01663, 2024.

[15] L Davisson, R McEliece, M Pursley, and Mark Wallace. Efficient universal noiseless source
codes. IEEE Transactions on Information Theory, 27(3):269–279, 1981.

10

https://physics.allen-zhu.com/

[16] Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. In The Twelfth International Conference on Learning
Representations, 2023.

[17] John Duchi. Statistics and information theory. Book Draft, 2024.

[18] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural
network grammars. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 199–209, San Diego, California, June 2016.
Association for Computational Linguistics.

[19] Meir Feder and Neri Merhav. Hierarchical universal coding. IEEE Transactions on Information
Theory, 42(5):1354–1364, 1996.

[20] Péter Gács, John T Tromp, and Paul MB Vitányi. Algorithmic statistics. IEEE Transactions on
Information Theory, 47(6):2443–2463, 2001.

[21] Robert G Gallager. Source coding with side information and universal coding. Laboratory for
Information Decision Systems, MIT, Cambridge, MA, 1979.

[22] Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. Producing power-law distributions
and damping word frequencies with two-stage language models. Journal of Machine Learning
Research, 12(7), 2011.

[23] Zixuan Gong, Jiaye Teng, and Yong Liu. Disentangling feature structure: A mathematically
provable two-stage training dynamics in transformers. arXiv preprint arXiv:2502.20681, 2025.

[24] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[25] Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Gregoire Deletang, Elliot
Catt, Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, et al. Learning
universal predictors. In Forty-first International Conference on Machine Learning, 2024.

[26] Peter D Grünwald and Paul MB Vitányi. Kolmogorov complexity and information theory.
Journal of Logic, Language and Information, 12:497–529, 2003.

[27] Xinran Gu, Kaifeng Lyu, Jiazheng Li, and Jingzhao Zhang. Data mixing can induce phase
transitions in knowledge acquisition. arXiv preprint arXiv:2505.18091, 2025.

[28] Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats Leon Richter, Quentin Gregory Anthony,
Eugene Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language
models: How to re-warm your model? In Workshop on Efficient Systems for Foundation
Models@ ICML2023, 2023.

[29] Alex Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In Proceedings of
the 38th International Conference on Neural Information Processing Systems, pp. 42162–42210,
2024.

[30] H.S. Heaps. Information retrieval: Computational and theoretical aspects, 1978.

[31] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[32] Jan Hoffbauer, Sylwester Sawicki, Marc Ulrich, Tolga Buz, Konstantin Dobler, Moritz Schnei-
der, and Gerard De Melo. Knowledge acquisition through continued pretraining is difficult: A
case study on r/askhistorians. In Proceedings of the 1st Workshop on Towards Knowledgeable
Language Models (KnowLLM 2024), pp. 96–108, 2024.

11

[33] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pp. 30016–30030, 2022.

[34] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media, 2005.

[35] Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

[36] Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory An-
thony, Eugene Belilovsky, Timothée Lesort, and Irina Rish. Simple and scalable strategies
to continually pre-train large language models. Transactions on Machine Learning Research,
2024.

[37] Hong Jun Jeon and Benjamin Van Roy. Information-theoretic foundations for neural scaling
laws. In NeurIPS 2024 Workshop on Mathematics of Modern Machine Learning, 2024.

[38] Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis
of in-context learning. In Forty-first International Conference on Machine Learning, 2024.

[39] Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024. URL https://github.com/KellerJordan/
modded-nanogpt.

[40] Adam Tauman Kalai and Santosh S Vempala. Calibrated language models must hallucinate. In
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pp. 160–171, 2024.

[41] Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar
finetuning examples control how language models hallucinate. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3600–3612, 2025.

[42] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[43] Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer. Neural
amr: Sequence-to-sequence models for parsing and generation. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
146–157, 2017.

[44] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In International conference on machine learning, pp. 1945–1954. PMLR, 2017.

[45] Faisal Ladhak, Esin Durmus, Mirac Suzgun, Tianyi Zhang, Dan Jurafsky, Kathleen McKeown,
and Tatsunori B Hashimoto. When do pre-training biases propagate to downstream tasks? a case
study in text summarization. In Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pp. 3206–3219, 2023.

[46] Yoonho Lee, Chelsea Finn, and Stefano Ermon. Relaxing the kolmogorov structure function
for realistic computational constraints. In NeurIPS 2022 Workshop on Information-Theoretic
Principles in Cognitive Systems, 2022.

[47] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications,
volume 3. Springer, 2008.

[48] Ziguang Li, Chao Huang, Xuliang Wang, Haibo Hu, Cole Wyeth, Dongbo Bu, Quan Yu, Wen
Gao, Xingwu Liu, and Ming Li. Lossless data compression by large models. Nature Machine
Intelligence, pp. 1–6, 2025.

[49] Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuan-Jing Huang, and Xipeng Qiu. Scaling
laws for fact memorization of large language models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 11263–11282, 2024.

12

https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt

[50] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[51] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When not to trust language models: Investigating effectiveness of parametric and
non-parametric memories. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 9802–9822, 2023.

[52] Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling
laws. arXiv preprint arXiv:2210.16859, 2022.

[53] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. Advances in Neural Information Processing Systems, 36:28699–28722, 2023.

[54] Yixin Ou, Yunzhi Yao, Ningyu Zhang, Hui Jin, Jiacheng Sun, Shumin Deng, Zhenguo Li, and
Huajun Chen. How do llms acquire new knowledge? a knowledge circuits perspective on
continual pre-training. arXiv preprint arXiv:2502.11196, 2025.

[55] Jim Pitman. Combinatorial stochastic processes: Ecole d’eté de probabilités de saint-flour
xxxii-2002. Springer Science & Business Media, 2006.

[56] Jim Pitman and Marc Yor. The two-parameter poisson-dirichlet distribution derived from a
stable subordinator. The Annals of Probability, pp. 855–900, 1997.

[57] Samuel Rathmanner and Marcus Hutter. A philosophical treatise of universal induction. Entropy,
13(6):1076–1136, 2011. doi: 10.3390/e13061076.

[58] Jorma Rissanen. A universal data compression system. IEEE Transactions on Information
Theory, 29(5):656–664, 1983.

[59] Jorma Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions
on Information Theory, 30(4):629–636, 1984.

[60] Jorma Rissanen. Stochastic complexity and modeling. The annals of statistics, pp. 1080–1100,
1986.

[61] Jorma Rissanen and Ioan Tabus. Kolmogorov’s structure function in mdl theory and lossy data
compression. Minimum, 2005.

[62] Jorma J Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research
and development, 20(3):198–203, 1976.

[63] Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive
prediction of the generalization error across scales. In International Conference on Learning
Representations, 2020.

[64] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[65] Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020.

[66] Herbert A Simon. On a class of skew distribution functions. Biometrika, 42(3/4):425–440,
1955.

[67] Ray J. Solomonoff. A formal theory of inductive inference. part i. Information and Control, 7
(1):1–22, 1964.

[68] Ray J. Solomonoff. A formal theory of inductive inference. part ii. Information and Control, 7
(2):224–254, 1964.

[69] Ilya Sutskever. An observation on generalization. Large Language Models and Transformers
Workshop, Simons Institute, 2023.

13

[70] Yee Whye Teh. A hierarchical bayesian language model based on pitman-yor processes. In
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, pp. 985–992, 2006.

[71] Nikolai K Vereshchagin and Paul MB Vitányi. Kolmogorov’s structure functions and model
selection. IEEE Transactions on Information Theory, 50(12):3265–3290, 2004.

[72] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[73] Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang,
and Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large
language models reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 25949–25957, 2025.

[74] Yuji Zhang, Jing Li, and Wenjie Li. Vibe: Topic-driven temporal adaptation for twitter classifi-
cation. In 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP
2023, pp. 3340–3354. Association for Computational Linguistics (ACL), 2023.

[75] Yuji Zhang, Sha Li, Cheng Qian, Jiateng Liu, Pengfei Yu, Chi Han, Yi R. Fung, Kathleen
McKeown, ChengXiang Zhai, Manling Li, and Heng Ji. The law of knowledge overshadowing:
Towards understanding, predicting and preventing LLM hallucination. In Findings of the
Association for Computational Linguistics: ACL 2025, pp. 23340–23358, July 2025. ISBN
979-8-89176-256-5.

[76] George Kingsley Zipf. The psycho-biology of language: An introduction to dynamic philology.
Routledge, 2013.

[77] George Kingsley Zipf. Human behavior and the principle of least effort: An introduction to
human ecology. Ravenio books, 2016.

[78] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE transactions on Information Theory, 24(5):530–536, 1978.

14

A Discussions and Related Work

Prediction and Compression: The link between prediction and compression is fundamental in
both Shannon’s probabilistic information theory and Kolmogorov’s algorithmic information theory,
forming the basis for efficient encoding and decoding of data [13, 50, 47]. In particular, the better
one can predict the distribution of next symbol, the better one can compress the data (via arithmatic
code) and vise versa [62, 58, 16, 48]. The connection of Kolmogorov’s theory to LLMs and artificial
intelligence was outlined in Hutter’s theory of universal intelligence [34] and Ilya Sutskever’s talk
at Simons institute [69]. [16] advocate viewing language prediction as a compression problem and
show that modern LLMs serve as powerful general-purpose compressors, outperforming traditional
text compression tools such as gzip.

Heap’s, Zipf’s Laws and Generative Models of Power Laws: Heap’s Law [30] an empirical
relationship stating that the vocabulary size grows sublinearly (∝ Nβ , for some β between 0.4 and
0.7) with the size of a corpus N , revealing that new words appear at a diminishing rate. Zipf’s Law
[77], meanwhile, states that f(r), the frequency of the rth frequent word, ∝ 1

rα , leading to a heavily
skewed distribution dominated by leading terms. These complementary observations expose the
disproportionate frequency of the words, especially “long tail” of rare words, and these long-tail
effects are observed not only in linguistics but also in phenomena like city populations, animal
populations, website traffic, etc.

One foundational theoretical model that produces power-law patterns is the classic Simon’s model
[66], which posits that each new element is more likely to replicate already-popular elements, thus
creating a “rich-get-richer” effect. Bayesian nonparametric models, such as the Chinese Restaurant
Process (CRP) and its generalization, the Pitman–Yor CRP (PYCRP), can also yield power-law
distributions while benefiting from the property of exchangeability (the probability of any particular
clustering remains unchanged by the order in which data points are observed).

Syntax-Knowledge Modeling of Language: There is a body of literature that explicitly separates
or conceptually distinguishes syntax and knowledge models within language models. Here we only
mention a few representive ones. [18] proposed a RNN-based model that learn syntactic structures
(in the form of parse trees) alongside the generation of words. They did not explicitly incorporate
a separate knowledge model.[23] models data as comprising disentangled two-type features, such
as syntax and semantics. Then they analyze the Transformer’s learning process, demonstrating that
a two-stage dynamic emerges where the syntax component is learned first, which aligns with our
Theorem 4.2. [44] proposed Grammar Variational Autoencoder combining variational autoencoders
(VAEs) with formal grammars to generate syntactically valid structured data, explicitly separates the
syntactic and semantic elements. [43] proposed the neural Abstract Meaning Representation model
that, in some pipelines, first generates a syntactic skeleton, then integrates semantic content from
AMR.

Scaling Laws: The study of neural scaling laws began with the observation that the population loss of
trained deep neural networks follows a power-law relationship with respect to dataset size and model
parameters. Early work by [63] introduced a joint error function that captured these dependencies,
laying the groundwork for empirical analyses. Henighan et al.[31] subsequently expanded scaling
laws to a broader range of architectures and tasks, while Kaplan et al.[42] demonstrated their
robustness at vastly larger scales, showing that the loss scales as L ∝ (N/Nmin)

−αN (D/Dmin)
−αD

where N is the number of parameters, D is the dataset size, and αN , αD are scaling exponents. The
Chinchilla study [33] later refined this framework by fitting their scaling law, and then identifying the
compute-optimal frontier, showing that many prior models were undertrained, and demonstrating
that scaling both parameters and data yields superior performance under fixed compute budgets. On
the theoretical front, Bahri et al.[5] distinguished between variance-limited and resolution-limited
regimes, identifying four distinct scaling behaviors. Sharma et al.[65] then linked scaling exponents
to the intrinsic dimension of data manifolds, highlighting the role of data geometry in performance.
More recently, Havrilla et al.[29] employed statistical and approximation theory to explain transformer
scaling laws for low-dimensional data, and Daliri et al.[14] established convergence guarantees for
1-bit quantized networks, extending scaling principles to extreme weight-precision settings. Several
works have also aimed to explain the origin of power-law behavior observed in scaling laws. Hutter
[35] analyzed data scaling law under a stylized setting and showed that when the data distribution
follows a power law, the resulting loss curve follows a power-law decay, rather than the common

15

1/N rate. Subsequent works [53, 8] extended the setting in [35] and include aspects of model scaling,
but still assumed a form for the loss on each data category, without considering the specifics of the
learning algorithm. Maloney et al. [52] derived a power-law form for data scaling of the loss using
random matrix theory, linking it to the power-law structure in the spectral properties of the data
distribution. As in earlier studies, we also derive that power-law data distribution is the primary driver
of the scaling law in our theoretical model. However, Our work differ in the following crucial aspects.
First, we explicitly link LLMs to compression, and the scaling laws to the Kolmogorov structure
function, a powerful view that can incorporate more complicated forms of language (rather than just
facts). Second, we enrich the data-generation process with a syntax component, separating from
underlying knowledge and yielding a more realistic model of language generation. Third, leveraging
the coding/compression view, we rigorously quantify the redundancy for both Bayes-optimal models
or any learning algorithm under mild regularity assumptions.

Bayesian Mixture Code: A common approach to constructing a universal code is to employ the
Bayesian mixture code. It is well known that this Bayesian mixture code minimizes the Bayes
risk/ redundancy [1] and the Bayes or minimax risk/redundancy can be characterized by the mutual
information I(θ;X), which is closely tied to channel capacity [21, 13] (see also [17]); in the fixed-
dimensional case, the worst (capacity-achieving) prior is the Jeffreys prior [12]. Recently, Jeon
et al. [38] derived a Bayes risk/redundancy upper bound for the family of deep transformers and
proposed a Bayesian meta-learning model to explain in-context learning. 6 Our data-generation
model draws inspiration from their meta-learning model but differs in two key aspects: we explicitly
separate the syntax model from the knowledge model, and we model the growing and power-law
nature of knowledge. Jeon and Roy [37] proposed to employ an infinitely wide neural network as a
nonparametric data-generation model to explain scaling laws, which is similar to our modeling in
spirit. However, their theory predicts that the loss scales as Õ(1/M) and Õ(1/N), where M denotes
the model size and N the data size, which does not capture the power-law scaling behavior observed
in LLM practice (with exponents less than 1).

Knowledge Acquisition: Researchers have explored multiple mechanisms for external knowledge
acquisition in LLMs, including pretraining on massive datasets [9], which further reveals a power-
law relationship between training steps and the forgetting of memorization and generalization of
factual knowledge, and shows that LLMs trained with duplicated training data are more prone to
forgetting. In addition, recent studies find that continued pretraining contributes little to factual
recall unless overfitting occurs [32], whereas targeted knowledge augmentation—via paraphrasing
and diverse retrieval contexts—can more reliably inject domain-specific knowledge into LLMs
for RAG applications [7]. Mallen et al. [51] also suggests that LLMs struggle to memorize less
popular, long-tail facts even at large scales, and that retrieval augmentation can outperform much
larger unassisted models while also improving efficiency. Recently, Gu et al. [27] demonstrated that
knowledge acquisition can exhibit phase transitions with respect to data mixing and model size. In
particular, their findings indicate that data with a mixing ratio below a certain threshold (depending on
the model size) cannot be effectively learned, a result that is consistent in spirit with our model scaling
law (see the proof of Theorem 4.6, in which there is a similar threshold). Furthermore, Ou et al.
[54] examined the internal representation of knowledge by introducing the concept of “knowledge
circuits,” while addressing challenges related to ensuring factual accuracy and mitigating biases in
scaled models. In addition, Allen-Zhu & Li [3] provide a quantitative perspective by estimating the
number of knowledge bits a model can store, showing that LLMs are capable of storing up to 2 bits
of factual knowledge per parameter and analyzing how architectural choices, training regimes, and
data properties influence this capacity. Lu et al. [49] also discussed the relationship between fact
knowledge capacity and model size and training epochs, finding they exhibit a linear and negative
exponential law relationship.

Cause of Hallucination: While we focus on hallucinations arising from limited model capacity, prior
work has identified a variety of causes. These include erroneous, outdated, or domain-incomplete data
in the pretraining corpus [74]; biased data distributions [45]; instruction fine-tuning on unfamiliar or
underrepresented data [41]; and knowledge shadowing [75], where dominant knowledge within the
model suppresses less prominent information, leading to the generation of fabricated or inaccurate

6Although their work did not mention universal coding explicitly, their main result can be interpreted in
terms of universal coding and redundancy.

16

details. [40] propose a distributional model (on facts) and prove that hallucinations must occur at a
certain rate if the model satisfies a statistical calibration condition.

Solomonoff’s Universal Predictor: We would like to mention that Solomonoff introduced a universal
Bayesian mixture over all Turing-computable predictors [67, 68], known as the Solomonoff predictor,
which is a major inspiration of the design of our knowledge model. It is known that Solomonoff’s
predictor achieves universally optimal prediction and compression rates in expectation for any
computable sequence-generation process [57]. The connection to LLMs and meta-learning is also
alluded in [16, 25]. However, this predictor remains a purely theoretical model and is not computable
in practice. Exploring how modern LLMs might approximate the Solomonoff predictor (or a
constrained version of it) is an intriguing direction for future research.

B Prediction and Compression

B.1 LLMs as Compressors

For completeness, we provide a brief introduction to arithmetic coding and explain how Large
Language Models (LLMs) can serve as lossless data compressors using this method. More details
can be found in, e.g., [62, 13, 16, 48].

Suppose we have an autoregressive LLM M that predicts the next-token probability PM (xn |
x1:n−1). Arithmetic coding is a popular method for lossless data compression, encoding each
symbol (or token) based on its predicted probability. Specifically, arithmetic coding represents a data
sequence as an interval within the real line between 0 and 1, sequentially refining this interval based
on conditional probabilities. The process is as follows:

1. Initialization: Start with the interval [0, 1).
2. Subdivision: Divide the current interval into subintervals, each proportional to the probabil-

ities assigned to symbols in the alphabet.
3. Encoding tokens: For each symbol in the input sequence, refine the current interval to the

corresponding subinterval associated with that symbol.
4. Output: After processing the entire sequence, select the shortest binary number (base 2)

that lies within the final interval as the encoded output.
Example B.1. Consider an alphabet with symbols A, B, and C, having probabilities 0.5, 0.3, and
0.2, respectively. The initial interval [0, 1) is divided as follows:

A : [0, 0.5), B : [0.5, 0.8), C : [0.8, 1).

To encode the message “AB”, start with the interval [0, 1). First, narrow it to A’s range [0, 0.5).
When processing the second symbol B, subdivide the interval [0, 0.5) according to the conditional
probabilities:

A : [0, 0.25), B : [0.25, 0.4), C : [0.4, 0.5).

Thus, the interval for “AB” is [0.25, 0.4). We select the number 0.25, whose binary representation is
0.01.

The efficiency of arithmetic coding directly relates to the predictive accuracy of the underlying LLM.
Formally, we have the following proposition [62] (see also [13, Ch. 13]).
Proposition B.2. Let PM be the probability distribution predicted by an LLM M for a data sequence
x1:n. Using arithmetic coding, the code length L(x1:n) required to encode the sequence x1:n satisfies:

L(x1:n) ≤ − logPM (x1:n) +O(1) = −
n∑

i=1

logPM (xi | x1:i−1) +O(1).

Consequently, viewing an LLM M as a compressor, the total description length of the data x includes
two parts: the complexity K(M) required to describe the model itself (architecture and parameters),
and the data encoding length L(x), bounded as in Proposition B.2.

[16, 48] showed that modern LLMs (such as Chinchilla 70B) can serve as powerful general-purpose
compressors, significantly outperforming traditional text compression tools such as gzip and LZMA2.

17

B.2 Universal Coding and The Coding Game

In this appendix, we briefly introduce the concepts of universal coding and the coding game and how
these concepts are connected to perplexity minimization in LLMs.

B.2.1 Universal Coding

The celebrate Shannon’s source coding theorem ([64]) establishes a fundamental limit on achievable
code rates by stating that for any code, the average code length L is at least H(P), where H(ϕ) =
H(P) = Ex∼P

[
− log2 P (x)

]
is the Shannon entropy of the source distribution P . Moreover, if

we know the source distribution P , we can encode the source message with average code length
approaching H(P).

However, real-world data sources often cannot be fully characterized by a single, known distribution.
Designing coding schemes that adapt effectively to unknown distributions is known as universal
coding. Universal coding seeks a single coding scheme c that achieves near-optimal performance in
terms of average code length over every distribution in a given family Θ (see e.g. [13, Ch. 13]). The
additional cost compared to the entropyH(P) is called the redundancy of the code c. suppose ℓ(c(x))
is the length of the code c(x) and Qc(x) = 2−ℓ(c(x)) is defined to be the predictive probability
corresponding to code c (Qc is a valid probability distribution by Kraft inequality). The redundancy
of code c (or distribution Qc) is formally defined as follows:

Red(Qc, P) = Ex∼P

[
ℓ
(
c(x)

)]
−H(P) = Ex∼P

[
− logQc(x)

]
−H(P) (6)

= H(P ∥Qc)−H(P) = DKL(P ∥Qc).

Hence, finding an efficient universal code that minimizes the redundancy is equivalent to finding a
predictive probability that minimizes the cross-entropy. A central goal in the study of universal coding
is to design efficient universal coding schemes that can achieve sublinear redundancy (Red = o(n)
for sequence of length n). Efficient universal coding schemes and tight redundancy bounds have been
studied extensively in the information theory literature for a wide variety of distribution families (see,
for example, [13, 59, 12, 78, 15, 4, 19]).

B.2.2 A Coding Game and the Bayesian (Mixture) Strategy

In this subsection, we introduce a coding game that has many connections to online learning,
information theory and Bayesian statistics. We mostly follow the exposition in [17].

Consider the following online Bayesian coding game. Suppose Pθ is a distribution indexed by θ.
Here the set of indices is Θ and the prior distribution of θ is π(θ) defined over Θ. The player’s
goal is model the distribution Pθ as well as possible using a distribution Q. The nature chooses the
distribution Pθ (according to the prior) and sample n random variables xi ∼ Pθ sequentially. At step
i, the player observes the history x1:i−1, chooses the distribution Q(xi | x1:i−1), and suffers the log
loss − logQ(xi | x1:i−1). The overall objective is to minimize the Bayesian log-loss as follow:

inf
Q

∫
Θ

π(θ) E
x1:n∼Pθ

[
log

1

Q(x1:n)

]
dθ = inf

Q

∫
Θ

π(θ)

n∑
i=1

E
Pθ

[
log

1

Q(xi | x1:i−1)

]
dθ.

In view of Proposition B.2, the above objective can also be thought as minimizing the Bayesian code
length (hence the name of the game).

By Shannon’s source coding theorem, we can see that the average code length cannot be smaller than∫
Θ

π(θ) E
x1:n∼Pn

θ

[
log

1

Pn
θ (x1:n)

]
dθ =

∫
Θ

π(θ)H(Pn
θ)dθ.

Here the superscript n in Pn
θ indicates the distribution over a sequence of n random variables.

Subtracting this lower bound, the objective becomes minimizing the Bayesian redundancy:

inf
Q

∫
Θ

π(θ) E
x1:n∼Pθ

[
log

1

Qn(x1:n)
− log

1

Pn
θ (x1:n)

]
dθ

= inf
Q

∫
Θ

π(θ)DKL(P
n
θ ∥Qn)dθ = inf

Q

∫
Θ

π(θ)Red(Qn, Pn
θ)dθ

∆
= inf

Q
Redn(Q,Θ) (7)

18

Bayesian Strategy: For a probability family {Pθ}θ∈Θ, a common approach to constructing a
universal code is to employ the Bayesian strategy (also called Bayesian mixture code). We place
some prior distribution π defined over Θ, and consider the Bayesian mixture measure defined as

Qn
π(x1:n) =

∫
Θ

Pn
θ (x1:n)π(θ) dθ.

At time step i, the Bayesian strategy which uses the Bayes (posterior) estimator

Qπ(xk = x | x1:k−1) =
Qk

π(x1:k)

Qk−1
π (x1:k−1)

as the next-token predictor. It is a classic result that this Bayesian mixture code minimizes the
Bayesian redundancy Redn(Q,Θ) =

∫
Θ
DKL

(
Pθ

∥∥Q)π(θ) dθ [1]. In fact, the Bayes redundancy
can be characterized by the mutual information I(θ;X), which is closely tied to channel capacity
[21, 12, 13]. See also [17, Ch. 19] and [38]. For reader’s convenience, we summarize the results as
the following lemma.
Lemma B.3 ([12, 17, 37]). The minimum Bayesian redundancy is attained by the Bayesian mixture
code Qπ, and is equal to the mutual information between random variable θ (from the prior π over
Θ) and the data x1:n.

inf
Q

Redn(Q,Θ) = inf
Q

∫
Θ

π(θ)DKL(P
n
θ ∥Qn)dθ =

∫
Θ

π(θ)DKL(P
n
θ ∥Qn

π)dθ = I(x1:n; θ).

Here, θ ∈ Θ is sampled from the prior π, and x1:n are sampled from Pn
θ .

Proof. We provide a simple proof for completeness. The proof is given in the single-observation
case. The exact same argument applies in the n-observation case, by replacing x by x1:n. We first
show that minimum Bayesian redundancy is attained by the Bayesian mixture code Qπ. For any
distribution Q, we can see that

Redn(Qπ,Θ)− Redn(Q,Θ) =

∫
Θ

π(θ)
[
DKL

(
Pθ ∥Qπ

)
−DKL

(
Pθ ∥Q

)]
dθ

=

∫
Θ

π(θ)
∑
x

Pθ(x) ln
Q(x)

Qπ(x)
dθ =

∑
x

[
ln
Q(x)

Qπ(x)

] ∫
Θ

π(θ)Pθ(x) dθ

=
∑
x

Qπ(x) ln
Q(x)

Qπ(x)
= −DKL

(
Qπ ∥Q

)
≤ 0.

The second part is simply rewriting the the definition of mutual information, as follows:

I(X; θ) = E(θ,X)

[
ln P (X|θ)

P (X)

]
= Eθ∼π,X∼Pθ

[
ln

Pθ(X)∫
Θ
π(θ′)Pθ′(X) dθ′

]
=

∫
Θ

π(θ)

∫
X

Pθ(X) ln
Pθ(X)

Qπ(X)
dX dθ

=

∫
Θ

π(θ)DKL

(
Pθ

∥∥∥Qπ

)
dθ = Red(Qπ,Θ).

This proves the lemma.

C Kolmogorov Structure Function and LLMs

C.1 Basic Concepts

In this section, we briefly introduce the concepts of Kolmogorov complexity K(·) and Kolmogorov
structure function hX(·) (see the classic book [47] for more details), and how these concepts are
connected to LLMs. Although K(·) and hX(·) are not computable, their properties directly motivate
our theoretical modeling in latter sections.

Kolmogorov complexity: The Kolmogorov complexity K(X) of a string X is defined as the length
of the shortest binary program p that outputs X when run on a universal Turing machine U . Formally:

19

KU (X) := minp{|p| : U(p) = X} where U is a fixed universal Turing machine, p is a binary
program and |p| denotes the length of the program p in bits. When there is no confusion, we omit
the subscript U . The Kolmogorov complexity K(X) measures the information content of X and is
sometimes referred to as the algorithmic complexity of X . K(X) has been considered by many as the

“ultimate” notion for the compression of X 7 and modern LLMs can be thought as approximations of
the Kolmogorov compressor (e.g., Ilya Sutskever’s talk [69]).

While Shannon entropy H(Pϕ) defines the fundamental limit for the expected code length of se-
quences drawn from a source Pϕ, K(X) provides the ultimate, non-probabilistic compression limit
for a specific sequence X . The two concepts are deeply linked: for a sequence X that is typical
according to a source Pϕ, its Kolmogorov complexity K(X) is asymptotically close to its Shannon
code length − logPϕ(X). Consequently, the expected Kolmogorov complexity over the source,
EX∼Pϕ

[K(X)] approximates the Shannon entropy H(Pϕ)[26].

Two-part code description: One can describe the data X by a two-part description: the model
description, and the data-to-model code describing X using the model. In particular, for any given
lossless compressor M , one can see that

K(X) ≤ K(M) + LM (X) +O(1), (8)

where LM (X) represents the compressed length of X when using a lossless compressor M . When
viewing an LLM as the compressor, the two-part description of the data X consists of K(M), the
description of the LLM (the architecture and the parameters), and the data-to-model code of length
LM (X). Specifically, for an LLM that predicts the probability PM (xn | x1:n−1) of the next token
auto-regressively, the code length LM (X) can be bounded by − logPM (X) +O(1) since one can
encode X token by token using this many bits (via Arithmetic coding [62, 16]). See Appendix B.1
for details.

Then we briefly review Kolmogorov structure function and related concepts. See [47, Ch 5.5] or
[71, 61] for more details.

We treat a set S containing X as a model describing X . According to the two-part description
framework introduced earlier, one can describe every binary string X by a two-part description: The
model description in the form of a finite set S that contains X , and the data-to-model code describing
X given S (using K(X | S) bits).

In Kolmogorov complexity, we say that a binary string X of length n is random if its Kolmogorov
complexity K(X) = n± O(1) (i.e., it is impossible to compress X significantly). Extending this
idea, one can define the randomness deficiency of X with respect to a set S (such that X ∈ S) as

δ(X | S)=̇ log |S| −K(X | S).
Definition C.1 (“Best Fit” function). It is also called the minimal randomness deficiency function,
which is defined as:

βX(α) = minS{δ(X | S) : S ∋ X;K(S) ≤ α.}

We say X is a typical or random element of a finite set S, or S is a fitting model for X , if X ∈ S
and the randomness deficiency δ(X | S) = O(1). Basically, it says that to describe X in S, one
essentially needs log |S| ±O(1) bits (meaning X is not very special in S). This definition parallels
the concept of typical set in information theory [13, Ch. 3]. If δ(X | S) is small enough, X satisfies
all properties of low complexity with high probability for the elements of S (see [71] for the details).
Definition C.2 (Kolmogorov structure function). Formally, it is defined as:

hX(α) = minS{log |S| : S ∋ X;K(S) ≤ α, }
for any α > 0. The set S can be viewed as a candidate “typical set” for the data X . One may
understand S as the model of X (the complexity of S, should be at most α) and the term log|S|
measures how many bits are needed to single out X within S.

From the two-part description, it is easy to see that K(X) ≤ K(S) + log |S| + O(1). Hence, we
have that

K(X) ≤ α+ hX(α) +O(1).

7Kolmogorov complexity is universal in the following sense: If U is a universal TM, for any other TM A,
there is a constant cA such that KU (X) ≤ KA(X) + cA for all string X . See [47].

20

Model Size

Loss

|X|

K(X)

H(Pϕ∥Pθ) =

−Epϕ
[log pθ]

Irreducible Loss:

H(Pϕ)

Pure Randomness

Red = DKL(Pϕ∥Pθ)

Model:θ

hx(α)

K(X) = K(ϕ) +H(ϕ)
Minimal

Sufficient
Statistic:ϕ

Test Loss

K(X) Model-related redundancy

Data-related redundancy

Figure 5: Kolmogorov Structure Function View of LLMs: The x-axis represents model size, while
the y-axis represents the loss of the model, corresponding to code length of data given the model. The
anti-diagonal solid straight line is the sufficiency line (x+ y = K(X)), which is the lower bound of
the code length of all possible two-part codes. The upper solid curve represents hX(α). The dashed
blue curve is the test loss of some LLM. See more details about the test loss curve in Figure (b) in
Figure 6.

Hence, hX(α) cannot be below the sufficiency line L : L(α)+α = K(X) (by more than an additive
constant). For those α’s such that K(X) ≤ α + hX(α) + O(1), we say the corresponding model
sufficient statistics, and the smallest such α the minimum sufficient statistics [20]. The notion of
sufficient statistics here parallels the same notion in the probabilistic setting: a sufficient statistic for
the data captures all essential and relevant information and suffices for answering any downstream
questions. Any additional information beyond the sufficient statistic is treated as “random noise” with
respect to these tasks. For instance, the exact phrasing of a fact may be irrelevant for any downstream
tasks unless it is so widely quoted that the particular wording appears frequently in the data, in which
case it belongs to the the sufficient statistic, rather than the noise.

In this paper, we use the probabilistic extension of the above definition (see [26, 71]). As Kolmogorov
himself pointed out, the finite set model class is equivalent (up to small additive terms) to the model
class of probability density functions [71, 20] IfX is genuinely “typical” under the model distribution
PM (parametrized by M), then log|S| parallels the negative log-likelihood, − logPM (X) (which is
the code length of X under model M , ignoring the integer constraint). Hence, we define

hX(α) = minM{− logPM (X) : K(PM) ≤ α.}

The shape of the structure function hX(α) has been studied by several authors [71, 61, 47]. A major
results in this line of research is that hX(α) can essentially assume all possible shapes as along
as it satisfies monotonicity, hX(0) = |X|, hX(K(X)) = 0 and above the sufficiency line (up to
logarithmic additive terms).

C.2 Kolmogorov Structure Functions and LLMs

Recall from Eq. (1) that − logPM (X) is the empirical cross-entropy loss, which is also code length
of data X using predictive model M (up to an additive constant). See Figure 5 and Figure 6 for a
schematic diagram of Kolmogorov structure function in the context of LLMs (or any probabilistic
language models). We explain several key aspects that motivate our theoretical modeling in this
paper.

1. Kolmogorov Structure Function and Scaling Laws: The Kolmogorov Structure function
measures the performance of an optimal compressor under a given model-size constraint.
It provides deep insights into the structure of the data from the compression perspec-
tive as the complexity of compressor increases. Such relationship directly mirrors the
model scaling laws observed in the context of LLMs, where the training cross-entropy loss

21

Data Size

Model Size

Cumulative Loss

K(X)

K(X)

0

(0, |X|, 0)

K(X)
Minimal Sufficient

Statistics

Test Loss

Data Size

Model Size

Averaged Loss

K(X1:n′)

0

n′
K(X1:n)

n

K(X1:n)

n

Test Loss of Model trained with X1:n

≈

hα(X1:n′)

n′

Figure 6: The red dashed curve in Data Size-Model Size place represents the minimal sufficient
statistic, the blue dashed curve in Model Size-Loss place represents the test loss. (a) An overview
of the relationship among data size, model size, and loss. (b) An additional illustration of test loss
curve in Model Size-Loss place. We replace the cumulative loss with the average loss on the loss
axis to better align with the setting of scaling laws. The test loss of the model trained with X1:n

is approximately given by hα(X1:n′)
n′ , where α denotes the minimal sufficient statistics of X1:n and

n′ ≫ n so that the average loss on X1:n′ serves as a good approximation of the test loss.

(or perplexity) decreases as parameter count size grow [42, 33], and hX(α) can be viewed a
theoretical lower bound of the empirical scaling laws (for all possible LLM architectures).

2. Structure of the Data: From the perspective of the Kolmogorov structure function hX(α),
the structure of data X (the regularities and randomness in X) is gradually revealed as the
model size α (or complexity) increases. Initially, with relatively small α, a simple model
captures the most pervasive regularities – such as syntax in a linguistic dataset – because such
patterns recur across every sentences (and therefore yield the greatest immediate reduction in
coding cost or cross-entropy loss). As α grows, the model gains enough capacity to encode
less frequent regularities, including widely shared factual knowledge that appears relatively
frequently in the data, albeit less frequently than the universal syntax. Next, it captures rarer
forms of knowledge that appear in smaller subsets of the data. Finally, for very large α
exceeding the minimal sufficient statistics, the model starts to encode “random noise”. We
note that similar high-level ideas appeared in the study of the shape of the structure function
[71, 61, 47].

3. Minimal Sufficient Statistics and Randomness: The irreducible test loss (e.g., the
entropy term in (3) or (4)) corresponds to the lowest possible test loss, ideally achieved at
the minimal sufficient statistics. Beyond this point, any further drop in training loss merely
reflects memorizing only pure randomness, such as different re-phrasings of the same fact.
In our data generation model (see Section 3), we adopt a probabilistic syntax model to
capture such pure randomness in the language.

4. Redundancy and Scaling Laws: A central quantity in Figure 5 is the redundancy of
the code, given by the KL divergence DKL(Pϕdata∥PM) = H(Pϕdata∥PM) − H(Pϕdata),
where PM denotes the distribution predicted by the model and Pϕdata the true data distribu-
tion. Hence, characterizing the redundancy curveDKL(Pϕdata∥PM) (varying the description
length of the model M) provides the idealized model scaling law.

5. Growing Knowledge Models: Imagine that the data (consisting of sentences) has been
generated sequentially. As the data size increases, it is natural to assume that the minimal
sufficient statistics also grows, reflecting the expansion of “world knowledge” (e.g., newly
discovered species, proteins, facts etc.). See Figure 6 in the appendix for a three-dimensional
diagram (incorporating the K(X) axis) to illustrate the shape of hX(α) with increasing data
sizes. This insight motivates our subsequent data model, in which the knowledge model
grows as the data size (modeled using a nonparametric model).

To better understand the power-law behavior observed in empirical scaling laws of LLMs, an
instructive question to consider is: What structure in the data X causes the redundancy to follow

22

a power-law shape? Indeed, as pointed out by [35], different data structures can lead to different
learning curves. To build intuition, first consider the example below that naturally yield a staircase
shape.

Example C.3. Suppose x is a binary string composed of three segments: 1. A segment of alternating
bits (e.g., ‘010101. . . ‘ repeated many times). 2. A segment with a more subtle pattern (e.g., inserting
a ‘1‘ in every prime-numbered position). 3. A purely random segment.

At low model complexities α, the best model only captures the obvious alternating pattern in the
first segment, causing the first drop in log |S|. Beyond a certain α threshold (the size of a Turing
machine capable of generating prime numbers), the model learns the more nuanced pattern, resulting
in a second drop. Beyond this point, hX(α) meets the sufficiency line, and further increases in α
merely allow the model to memorize the random segment almost bit by bit.

Then we intuitively answer the question What structure in the data X causes the redundancy to
follow a power-law shape?. Figure 5 illustrates the Kolmogorov structure function in a classical,
finite setting. In this setting, we consider a finite-length sequence X and the model code length for X
in its two-part code description is also finite. However, natural language exhibits a property where
knowledge scales with data, compelling us to consider the case when model code length grows with
the data size. To build intuition, we consider a simplified scenario that satisfies the above condition:
data generated by an infinite-dimensional mixture model. We also assume the components of this
model are encoded independently (i.e., the code length for a set of components is approximately
the sum of their individual code lengths) for simplicity. We explore the intuition for model scaling
in the asymptotic regime where data size grows infinitely large relative to the model size. Given a
model size sufficient to encode M components, the redundancy induced by this model size constraint
corresponds to the sum of the tail mixture probabilities (i.e., the sum of all mixture probabilities
excluding the M largest). If the mixture probabilities of this model with infinite dimensions follow a
power law, then the resulting redundancy (the sum of a tail that also follows a power law) also follows
a power law. Conversely, if the sum of the tail probabilities follows a power law, we can also deduce
that the mixture probabilities themselves follow a power law. This bidirectional relationship provides
the intuition for our model scaling theory in Appendix E.2, and it can also serve as a theoretical
bridge connecting empirically observed phenomena in language, such as Zipf’s Law and Heaps’ Law,
with the model scaling observed in large language models.

We also note that Kolmogorov structure function is closely related to the rate-distortion function
in Shannon’s information theory. Specifically, the expected Kolmogorov structure function can be
shown to be approximately equal to the rate-distortion function, see e.g., [26]. In our study of model
scaling law in Appendix E.2, we leverage the concept of rate-distortion function as well.

As illustrated above, the Kolmogorov structure function provides insights into model scaling. In
Figure 6, we extend this concept to incorporate the data scaling. Following the intuition provided
earlier for the question What structure in the data X causes the redundancy to follow a power-law
shape?, we consider that the data is generated from an infinite-dimensional power-law mixture model.
In this case, the minimal sufficient statistics with respect to the model size also exhibit a power law,
as shown in the left panel of Figure 6.

The right panel of Figure 6 illustrates the relationship between the Kolmogorov structure function
and the test loss of an LLM training with finite data. Crucially, the test loss represents the expected
loss of a trained model on unseen data, effectively an average loss over an infinitely large test set. In
the right panel, this is approximated using a test set of size n′ much larger than the training set size
n (i.e., n′ ≫ n). To maintain consistency with this approximation, the y-axis in the right panel of
Figure 6 represents average loss(hα(X1:n)/n) rather than cumulative loss(hα(X1:n)).

Intuitively, guided by the two-part code description and Kolmogorov structure function, the behavior
of the test loss as a function of model size can be segmented into two phases around the minimal
sufficient statistics. The connection is as follows: Before the model capacity reaches the minimal
sufficient statistics for the training dataX1:n, the optimal test loss corresponds to the average structure
function evaluated on a much larger dataset X1:n′ . As model size increases in this region, the test loss
decreases because the model is capturing more of the data’s true, generalizable structure. However,
once the model capacity surpasses the minimal sufficient statistics, it begins to overfit by memorizing
pure noise specific to the training set X1:n. At this point, further increases in model size no longer
improve generalization, causing the optimal test loss to plateau.

23

Therefore, the optimal redundancy achievable given the training dataX is equivalent to the redundancy
obtained with infinite data, but under a model size constraint determined by the minimal sufficient
statistics of X . We have previously established that for infinite data, the redundancy exhibits a
power-law relationship with the model size constraint. Furthermore, as we show in the left panel of
Figure 6 and demonstrated before, the size of the data (|X|) and the size of its minimal sufficient
statistics also follow a power-law relationship. Combining these two factors implies that the optimal
redundancy for training data X also follows a power-law relationship with respect to the size of X .

D Details of the Syntax-Knowledge Model

In this section, we propose a hierarchical data generation model, called the syntax-knowledge model.
In this model, where each sentence in the training set is generated by a syntax encoder that encode a
(factual) knowledge element, sampled from the knowledge model. In our model, the syntax model
(e.g., a probabilistic CFG or English grammar) does not grow indefinitely with the size of the dataset.
Therefore, we assume that the distribution of the syntax model can be parametrized using a finite-
dimensional parameter ϕsyn. On the other hand, the knowledge model employs a non-parametric
stochastic process to account for two empirically observed phenomena: 1) the unbounded growth
of factual information as datasets grow (mirroring Heap’s Law in lexical growth patterns [30]), and
2) the long-tailed frequency distribution of factual occurrences, analogous to Zipf’s law in natural
language [76, 77].

To operationalize this above idea, we leverage the Pitman–Yor Mixture Model(PYMM) [56] for
modeling the knowledge model. The preferential attachment mechanism in Pitman-Yor Process
naturally captures both the sublinear scaling of new factual discoveries and the power-law distributed
frequencies of knowledge pieces.

Notations: We denote the conditional probability p(x | ϕ) as pϕ(x), where ϕ is the latent variable that
determines this probability distribution. The syntax model is parameterized by ϕsyn, the knowledge
model is denoted as ϕknw, and the entire data model is denoted as ϕdata = {ϕsyn, ϕknw}.

The syntactic elements generated by the syntax model are denoted by ξ1:N , and the knowledge
elements generated by the knowledge model are denoted by κ1:N . The corpus consists of sentences
X1:N , where each sentence Xi is generated by the syntax model from a syntax–knowledge pair
(ξi,κi). Now, we provide the details below.

D.1 The Non-Parametric Knowledge Model

We model the knowledge model as a Pitman-Yor Mixture Model (PYMM), which is a nonparametric
Bayesian model. We first introduce the Pitman-Yor Process, from which the PYMM is constructed.

Pitman-Yor Process: The Pitman-Yor Process (PYP), also known as the Pitman-Yor two-parameter
Poisson–Dirichlet process, extends the Dirichlet Process (DP) and the Chinese Restaurant Process
[56]. It has been applied to model a growing number of topics in the literature of topic modeling
[70, 22]. A Pitman–Yor Process (PYP) is characterized by two real-valued parameters: the discount
parameter 0 ≤ α < 1 and the concentration parameter β > −α, along with a base probability
measure πknw. We denote the process as PYP(α, β, πknw).

A sample from the Pitman–Yor process PYP(α, β, πknw) is a random probability measure ϕknw =∑∞
i=1 piδϕi , which is a discrete distribution with countably infinite atoms, where:

• Each atom ϕi ∼ πknw is the i-th cluster parameter, independently drawn from the base
measure πknw;

• δϕi
denotes the Dirac delta measure centered at ϕi;

• p = (p1, p2, . . .) are the weights generated by the Pitman–Yor Chinese Restaurant Process
(PYCRP) (described below).

Imagining a restaurant where customers arrive sequentially, each choosing either to join an existing
lively table or start their own, resulting in a naturally evolving clustering structure.

• The first customer sits at a new table.

24

• Suppose Nk is the number of customers already at table k, and K is the current number of
occupied tables. The n-th customer either joins an existing table k or starts a new table with
the following probabilities:

For the n-th customer:


Nk − α

n− 1 + β
, if joining an existing table k,

β + αK

n− 1 + β
, if starting a new table,

As the number of customers n→ ∞, the relative sizes of the tables (i.e., the proportion of customers
at each table) converge in distribution to a random probability vector([55],Lemma H.1), denoted as:

p = (p1, p2, . . .) = lim
n→∞

(N1/n,N2/n, · · ·) ∼ PYCRP(α, β)

This probability vector p = (p1, p2, . . .) asymptotically exhibits a power-law distribution(see
Lemma H.2).

Pitman–Yor Mixture Model (PYMM): In the Pitman–Yor Mixture Model, the Pitman–Yor Process
PYP(α, β, πknw) serves as a prior over the space of mixture distributions. In particular, a random
probability measure ϕknw =

∑∞
i=1 piδϕi

, sampled from PYP(α, β, πknw), can be interpreted as a
discrete mixture model: to generate a knowledge element from ϕknw, one first selects index i ∈ N
with probability pi, then draws a sample from the conditional distribution Pϕi , where ϕi ∼ πknw is
the i-th cluster parameter.

The knowledge elements generated by the knowledge model are abstract representations that capture
the factual component underlying a sentence. We assume that the support of the knowledge element
lies in a discrete set K (i.e., each knowledge element κ ∈ K). Although the cardinality |K| may be
potentially very large, we assume that log |K| is quite small (since log |K| is roughly the number of
bits or tokens required to encode the knowledge element), and particularly much smaller compared to
Nα for any α > 0.

We assume that the base measure πknw, from which the knowledge cluster parameters ϕi are drawn,
is supported on the bounded parameter space Φknw = {ϕknw ∈ Rdknw : ∥ϕknw∥2 ≤ 1}. Given the
parameter spaces Φknw, we define corresponding parametric families of probability distributions:
PΦknw = {P (· | ϕknw) : ϕknw ∈ Φknw} , where P (· | ϕknw) denotes the conditional distribution of the
knowledge model given parameter ϕknw.

D.2 Parametric Syntax Model

The syntax model generates syntactic elements conditioned on knowledge elements. Each knowledge
element κ ∈ K deterministically selects an index i ∈ {1, . . . , ns}, corresponding to a latent variable
ϕ
(i)
syn that parameterizes the conditional syntax model.

Conditioning the generation of syntax on a knowledge element κ is thus equivalent to conditioning
on the corresponding latent variable:

P (· | ϕsyn,κ) = P (· | ϕ(i)syn).

Accordingly, the overall syntax model is parameterized as:

ϕsyn = {ϕ(1)syn , ϕ
(2)
syn , . . . , ϕ

(ns)
syn }.

The syntactic elements are abstract representations capturing surface-level variation such as word
choice (e.g., synonyms), phrase structure (e.g., active vs. passive voice), and other randomness that
does not affect the underlying semantics.

We assume that the prior distribution πsyn, from which the conditional syntax model parameters ϕ(i)syn

are drawn, is supported on the bounded parameter space Φsyn = {ϕsyn ∈ Rdsyn : ∥ϕsyn∥2 ≤ 1} for
all 1 ≤ i ≤ ns. Given the parameter spaces Φsyn, we define corresponding parametric families of
probability distributions:

PΦsyn = {P (· | ϕsyn) : ϕsyn ∈ Φsyn} ,
where P (· | ϕsyn) denotes the conditional distribution of the syntax model given parameter ϕsyn.

25

�1 �2

Knowledge �~��2

Syntax �~��syn(∙ |�)= �����
(1)

�syn
(1) �syn

(2) �syn
(��)

�� ……

……

……

Syntax Model Φsyn

Knowledge Model Φknw (PYMM）

(�, �) Sentence
 �

�3 ……

Figure 7: An illustration of the hierarchical Syntax-Knowledge data model

D.3 Hierarchical Syntax-Knowledge Data Model

We propose that the Syntax–Knowledge model generates a sentence X according to the following
hierarchical Bayesian framework (see Figure 5):

1. Sample the latent variables for the knowledge and syntax models:

ϕknw ∼ PYP(α, β, πknw), ϕsyn = {ϕ(1)syn , ϕ
(2)
syn , . . . , ϕ

(ns)
syn }, ϕ(i)syn

i.i.d.∼ πsyn(ϕsyn).

2. Sample a knowledge element κ:

κ ∼ P (κ | ϕknw).

3. Sample a syntactic element ξ conditioned on the sampled knowledge element κ:

ξ ∼ P (ξ | ϕsyn,κ).

4. The syntax encoder generates the sentence X from the syntax–knowledge pair (ξ,κ). We
assume that the syntactic element ξ has already captured the randomness in the syntax,
and there is a one-to-one mapping between the sentence X and the syntax–knowledge
pair (ξ,κ). Note that we do not assume the one-to-one mapping to be explicitly known or
learnable. For the purpose of our theoretical analysis, it is sufficient to assume the existence
of such a mapping, which ensures identifiability of the observed sentence with respect to its
underlying syntax and knowledge elements.

By independently repeating steps 2, 3, 4 for N times, we obtain a corpus X1:N consisting of N i.i.d.
sentences generated from the Syntax–Knowledge model.

We now illustrate how our data model generates data through a simple bioS dataset example. Note
that our data model is not limited to such examples.
Example D.1. A concrete example is the generation of the bioS dataset designed in [3]. For
example, a knowledge element κ encodes the factual knowledge about an individual: [Person: Alice],
[Event: Birth], [Date: January 1, 2000]. A syntax element ξ corresponding to a sentence template.
Conditioned on the knowledge element κ, the syntax model chooses a syntax element ξ, such as
“[Subject] was born on [Date]”. By composing (ξ,κ), the resulting sentence is: “Alice was born on
January 1, 2000.” Alternatively, the syntax model may select a different syntax element, “[Subject]
entered the world on [Date]”, yielding the sentence: “Alice entered the world on January 1, 2000.”
Note that the choice of syntax element is dependent on the knowledge element; for instance, if the
knowledge element pertains to an animal, a different syntax element would be chosen.

E Explaining Scaling Laws

In Section 4.2, we established a data scaling law under the Bayesian setting for our Syntax-Knowledge
model, showing that the optimal Bayesian redundancy decreases according to a power law with

26

respect to data size, with an exponent larger than −1. Given our earlier results from Section 4.2, we
know the syntax model is learned at a significantly faster rate (also observed empirically), and thus the
scaling law is primarily driven by the knowledge model. For simplicity, we ignore the syntax model
in this section and focus exclusively on the knowledge model. In this section, we derive a similar
power-law behavior under a slightly different set of assumptions. The key differentiating assumption
is that knowledge is represented in a question-answering format, which ensures the identifiability of
the mixture knowledge model. These assumptions greatly simplify the theoretical proof and allows us
to derive both upper and lower bounds on redundancy, as long as the model satisfies Assumption E.3
(without requiring it to be an optimal Bayesian predictor). The central insight of this section is that
the empirically observed scaling laws primarily stem from the power-law-distributed structure in the
data. As a result, the assumptions made here do not affect the validity of our main conclusion. We
also provide the omitted details from the model scaling law part (Section 4.3) in the main text.

We continue modeling the knowledge model ϕknw =
∑∞

i=1 piδϕi
as an infinite mixture model but

now make the following assumption on the mixing probabilities pi.

Assumption E.1. For the mixture model ϕknw =
∑∞

i=1 piδϕi
, the mixing probabilities pi follow a

power-law distribution: pi = ζ(1/α)−1 i−1/α, where ζ(1/α) =
∑∞

i=1 i
−1/α is the Riemann zeta

function.

Note that the choice of exponent 1/α aligns with the asymptotic behavior of mixing weights in the
Pitman–Yor Process PYP(α, β, πknw) (see Lemma H.2).

In this section, we represent knowledge as question-answer pairs. We assume knowledge is given by
pairs (ψ, ω), where ψ denotes the question description, and ω is the answer of the question. Each
knowledge cluster corresponds to a set of question descriptions Ψi, and generates knowledge pairs
(ψ, ω) ∼ Pϕi

where ψ ∈ Ψi. We assume that the sets of question descriptions corresponding to
different knowledge clusters are pairwise disjoint, i.e., Ψi ∩Ψj = ∅ for i ̸= j.

Here, we are only concerned with whether the model can provide the corresponding answer given
a specific question. Consequently, the redundancy of the model with respect to the i-th knowledge
cluster is defined as follows:

Definition E.2. The redundancy of the model M associated with the i-th knowledge cluster and
conditioned on knowledge being drawn from this cluster, is defined as

Red(i) := Eq∼Pϕi
[DKL (Pϕi

(ω | ψ = q) ∥PM (ω | ψ = q))] ,

where Pϕi denotes the data distribution induced by the cluster-specific parameter ϕi, and PM is the
predictive distribution defined by the model M .

The total expected redundancy of the model M under the prior over knowledge clusters is then given
by:

Red :=

∞∑
i=1

piEϕi∼πknw

[
Red(i)

]
.

E.1 Data Scaling Laws

In this section, we derive the data scaling law under the assumption that there is no model capacity
constraint. There are two key differences between this section and Section 4.2. First, we analyze the
redundancy of a potentially suboptimal model under certain assumptions, whereas Section 4.2 focuses
on the optimal case. Second, we study the test redundancy, in contrast to the Bayesian redundancy
considered in Section 4.2, which corresponds to the averaged cumulative redundancy. Moreover,
unlike Section 4.2, which provides only an upper bound, this section establishes both upper and lower
bounds. The effect of dataset size on Red(i) primarily arises from the number of occurrences of the
question description q ∈ Ψi in the training data. Accordingly, we express Red(i) as RedD(ti), where
ti is the number of such occurrences in the training data. The expected redundancy under data size
constraint is then given by

RedD(N) = Eti

[∞∑
i=1

piEϕi∼πknw

[
Red

(i)
D (ti)

]]
,

27

where ti denotes a random variable representing the number of occurrences of the i-th knowledge
cluster in a training dataset of size N .

Next, we present the assumptions on Red
(i)
D and derive the upper and lower bound for RedD under

these assumptions.
Assumption E.3. (I) The expected redundancy of unseen cluster of knowledge (i.e., ti = 0) exceeds
a certain constant c1, i.e., Eϕi∼πknw

[
Red

(i)
D (0)

]
> c1 for all k ∈ N+.

(II) For all cluster of knowledge, there exists a constant c2 such that Eϕi∼πknw

[
Red

(i)
D (t)

]
≤ c2
t+ 1

for all i, t ∈ N+.

Assumption (I) posits that the model exhibits constant redundancy when encountering unseen
knowledge, which we consider reasonable. We now turn to the validity of Assumption (II). During
language model training, the objective is to minimize the negative log-likelihood, which is equivalent
to maximizing the likelihood function. When the model is viewed as a maximum likelihood estimator
(MLE), the asymptotic normality of the MLE implies that the redundancy, in the asymptotic regime,
is of the same order as specified in Assumption (II).
Lemma E.4 (Asymptotic Normality of MLE). Let X1, X2, . . . , Xn be n i.i.d. samples drawn from
a distribution Pθ∗ , and let θ̂n = argmaxθ ℓ(θ) denote the maximum likelihood estimator. Then, as
n→ ∞, the MLE satisfies √

n(θ̂n − θ∗)
d−→ N (0, J(θ∗)−1),

where J(θ∗) is the Fisher information matrix evaluated at θ∗.

Combining this conclusion with the result in Lemma H.6, we conclude that, under the asymptotic
regime, the redundancy of the MLE matches the order assumed in Assumption (II). We assume that
this order holds in all cases. Note that the assumption is stated with 1/(t + 1) instead of 1/t to
include the case where t = 0.
Theorem E.5. Under (I) in Assumption E.3, the total expected redundancy RedD satisfies

RedD(N) = Ω(N−1+α).

Under (II) in Assumption E.3, the total expected redundancy RedD satisfies

RedD(N) = O(N−1+α).

Proof of Theorem E.5. Denote fi(ti) = Eϕi∼πknw [Red
(i)
D (ti)].

We begin by proving the first part of the theorem.

RedD(N) =

∞∑
k=1

pkEtk [fk(tk)]

≥
∑

k>Nα

pkEtk [fk(tk)]

(1)
=

∑
k>Nα

N∑
l=0

pl+1
k (1− pk)

N−l

(
N

l

)
fk(l)

(2)

≥
∑

k>Nα

pk(1− pk)
Nfk(0)

(3)

≥ c1
ζ(1/α)

∑
k>Nα

1

k1/α

(
1− 1

ζ(1/α)N

)N

≥ c1
2eζ(1/α)

∑
k>Nα

1

k1/α

= Ω(N−1+α).

28

(1) is obtained by expanding the expectation; (2) corresponds to taking the term with l = 0; and (3) is

derived by substituting the value of pk =
1

k1/αζ(1/α)
.

Next, we prove the second part. For all k ∈ N+, we know that

pkEtk [fk(tk)]
(1)
= pk

N∑
l=0

plk(1− pk)
N−l

(
N

l

)
fk(l)

=

N∑
l=0

pl+1
k (1− pk)

N−l l + 1

N + 1

(
N + 1

l + 1

)
fk(l)

≤
max

l
(l + 1)fk(l)

N + 1

N∑
l=0

pl+1
k (1− pk)

N−l

(
N + 1

l + 1

)
(2)

≤
max

l
(l + 1)fk(l)

N + 1

≤ c2
N + 1

.

(1) is obtained by expanding the expectation, and (2) is derived by utilizing
N∑
l=0

pl+1
k (1− pk)

N−l
(
N+1
l+1

)
≤

N∑
l=−1

pl+1
k (1− pk)

N−l
(
N+1
l+1

)
= 1.

Therefore, ∑
k≤Nα

pkEtk [fk(tk)] ≤
c2

N + 1
Nα = O(N−1+α).

For k > Nα, we have

∑
k>Nα

pkEtk [fk(tk)] =
∑

k>Nα

N∑
l=0

pl+1
k (1− pk)

N−l

(
N

l

)
fk(l)

(1)

≤
∑

k>Nα

N∑
l=0

(
1

ζ(1/α)k1/α

)l+1(
N

l

)
fk(l)

(2)

≤
∑

k>Nα

N∑
l=0

(
1

k1/α

)(
1

N

)l(
N

l

)
fk(l)

(3)

≤
∑

k>Nα

N∑
l=0

(
1

k1/α

)
fk(l)

l!

=

N∑
l=0

fk(l)

l!

∑
k>Nα

1

k1/α

≤ c2

N∑
l=0

1

(l + 1)!

∑
k>N1/α

1

k1/α

≤ c2e
∑

k>Nα

1

k1/α
= O(N−1+α).

(1) is obtained by substituting pk =
1

k1/αζ(1/α)
and using the inequality (1 − pk)

N−l ≤ 1; (2)

follows from the fact that ζ(1/α) > 1 and k > Nα; (3) uses the bound
(
N
l

)
≤ N l

l!
.

29

Therefore, we can see that

RedD(N) = Ek,tk

[∞∑
k=1

pkfk(tk)

]
≤ O(N−1+α).

This completes the proof.

E.2 Model Scaling Laws

In this section, we consider the optimal redundancy achievable by an omniscient model M∗
C under

a model capacity constraint. (That is, the model M∗
C has access to the true data distribution ϕdata.)

Due to the finite capacity, the model M∗
C must apply lossy compression to each ϕi, resulting in a

corresponding redundancy Red
(i)
M (mi), where mi denotes the constraint of the mutual information

between the model and ϕi (one may think it as the memory allocated to compress ϕi). The minimal
achievable redundancy under a given memory constraint conditioned on a given cluster of knowledge
is characterized by the distortion-rate function:

Di(R) = min
I(ϕi;M∗

C)≤R
Eϕi∼πknw

[
Eq∼Pϕi

[
DKL

(
Pϕi

(ω | ψ = q) ∥PM∗
C
(ω | ψ = q)

)]]
,

where I(ϕi;M∗
C) represents the information retained about ϕi after compression.

Furthermore, the omniscient model M∗
C allocates memory to each ϕi in a manner that minimizes the

expected redundancy. Formally, the memory allocation corresponds to the solution of the following
optimization problem:

minimize Ei[Di(mi)] =

∞∑
i=1

piDi(mi),

subject to I(Φ0;M
∗
C) ≤ C, mi = I(ϕi;M∗

C) ≥ 0 for all i ∈ N+,

where Φ0 = (ϕ1, ϕ2, . . .) and I(Φ0;M
∗
C) ≤ C represents the model capacity constraint.

If we further assume that ϕi ⊥ Φ−i | M∗
C , i.e., ϕi is conditionally independent of the remaining

cluster parameters given the model M∗
C , where Φ−i = (ϕ1, . . . , ϕi−1, ϕi+1, . . .). In other words,

conditional on the model M∗
C , knowing ϕi does not provide any additional information about ϕj for

j ̸= i. Under this assumption, the model capacity constraint can be decomposed as follows:

C ≥ I(Φ0;M
∗
C) = I(Φ−1;M

∗
C) + I(ϕ1;M∗

C | Φ−1)

= I(Φ−1;M
∗
C) + I(ϕ1;M∗

C)

= I(Φ−2;M
∗
C) + I(ϕ2;M∗

C) + I(ϕ1;M∗
C)

=

∞∑
i=1

I(ϕi;M∗
C).

Therefore, the optimization problem can be rewritten as:

minimize
∞∑
i=1

piDi(mi), (9)

subject to
∞∑
i=1

mi ≤ C, mi ≥ 0 for all i ∈ N+.

Let RedM (C) denote the optimal value of the problem in (9), representing the minimal achievable
redundancy under the model capacity constraint.

In general, the distortion-rate function is hard to express analytically. Here, we make the following
assumptions.
Assumption E.6. We assume that the distortion-rate function Di(R) satisfies

• there exists positive constant c3, c4 such that for all i ∈ N+, R ≤ c3, the distortion-rate
function Di(R) ≥ c4,

30

• there exists positive constant cmax, bmax such that for all i ∈ N+, the distortion rate function
Di(R) ≤ cmaxb

−R
max.

The first assumption states that when the rate is small, the distortion cannot drop below a threshold,
which is a natural property of rate-distortion theory for general sources.

The second assumptions can be formally justified within the framework of rate-distortion theory
when the distortion function is the mean squared error (MSE) [13]. Although the distortion function
in our setting is not MSE but rather the KL divergence between the probability distributions induced
by the parameters, Lemma H.6 shows that the two distortion measures exhibit similar behavior in a
local neighborhood.

• Distortion Rate Function of Gaussian Distribution: Let X ∼ N (0, σ2) be a zero-mean
Gaussian source, and let the distortion measure be the mean squared error (MSE). The
distortion-rate function D(R) is defined as the minimum achievable distortion under a given
rate R:

D(R) = min
p(x̂|x):I(X;X̂)≤R

E[(X − X̂)2]

For the Gaussian source with MSE distortion, the closed-form solution is:

D(R) = σ2 · 2−2R, R ≥ 0

• Distortion-Rate Upper Bound via Maximum Entropy of Gaussian Distribution Among
all real-valued random variables with fixed variance, the Gaussian distribution achieves the
maximum differential entropy:

h(X) ≤ 1

2
log(2πeσ2),

with equality if and only if X ∼ N (0, σ2). This implies that under a fixed distortion
constraint and mean squared error (MSE) as the distortion measure, the Gaussian source
requires the highest rate among all sources with the same variance.
Therefore, the distortion-rate function of any real-valued source with variance σ2 must
satisfy:

D(R) ≤ σ2 · 2−2R, R ≥ 0,

with equality achieved only when the source is Gaussian. This provides a universal lower
bound on achievable distortion under MSE for a given rate R.

Theorem E.7 (Resteatement of Theorem 4.6). Under Assumption 4.5 and Assumption 4.4, the
optimal value of the optimization problem under the given model size constraint satisfies:

RedM (C) = Θ(C−1/α+1).

Moreover, if we further assume that Dk(R) = akb
−R
k for some constant bmin ≤ bk ≤ bmax, amin ≤

ak ≤ amax, the contribution of the k-th cluster is

pkDk(m
∗
k) = Θ(min{k−1/α, C−1/α}).

where m∗
k is the solution of the optimization problem.(9).

Proof of Theorem 4.6. We first provide a lower bound for the optimal value. By Assumption 4.5, we

have Dk(mk) ≥ c4 whenever mk ≤ c3. Since
∞∑
k=1

mk ≤ C, there can be at most ⌊C/c3⌋ indices k

such that Dk(mk) < c4. Due to the monotonicity of pk, we know that

∞∑
k=1

pkDk(mk) ≥
∞∑

k>⌊C/c3⌋

pkc4 = Ω(C−1/α+1). (10)

31

Next, we solve the optimization problem (E.2) under assumption Dk(R) = akb
−R
k using KKT

condition. First consider the Lagrangian dual:

L(k, λ, µ) =
∞∑
k=1

pkDk(mk) + λ

(∞∑
k=1

mk − C

)
−

∞∑
k=1

µkmk.

We list the KKT conditions below:
Stationarity: pkD′

k(m
∗
k) + λ− µk = 0, ∀k ≥ 1. (11)

Primal feasibility:
∞∑
k=1

m∗
k ≤ C, m∗

k ≥ 0, ∀k ≥ 1. (12)

Dual feasibility: λ ≥ 0, µk ≥ 0, ∀k ≥ 1. (13)

Complementary slackness: λ

(∞∑
k=1

m∗
k − C

)
= 0, µkm

∗
k = 0, ∀k ≥ 1. (14)

Due to monotonicity, we know that
∞∑
k=1

m∗
k = C. By the Stationary condition (11), we know that

D′
k(m

∗
k) =

µk − λ

pk
.

Due to the convexity of Dk[13], we know that D′
k is monotonically increasing. Therefore, the inverse

of D′
k exists, and we denote it as gk.

For m∗
k > 0, we have µk = 0, thus we know that

m∗
k = max

{
gk

(−λ
pk

)
, 0

}
.

Next, we estimate the value of λ. Since we have assumed that Dk(R) = akb
−R
k for some bmin ≤

bk ≤ bmax, amin ≤ ak ≤ amax, so there exists r′1, r
′
2, d1, d2 such that

−r′1 ln(d1x) ≤ gk(−x) ≤ −r′2 ln(d2x).
Then, we know that

max

{
0, r1 ln

d1k
−1/α

λ

}
≤ m∗

k ≤ max

{
0, r2 ln

d2k
−1/α

λ

}
.

where r1 = r′1 ln ζ(1/α), r2 = r′2 ln ζ(1/α).

Assume l1 is the maximum integer such that d1l
−1/α
1 > λ. We know that d1(l1 + 1)−1/α ≤ λ <

d1l
−1/α
1 . Therefore, we have

C ≥
∞∑
k=1

max

{
0, r1 ln

d1k
−1/α

λ

}
= r1

l1∑
k=1

ln
k−1/α

λ

≥ r1

l1∑
k=1

ln
k−1/α

l
−1/α
1

=
r1
α

(
ln ll11 − ln l1!

)
.

By Stirling’s formula, we know that ln ll11 − ln l1! = Θ(l1). So we know that

C ≥ Θ(l1) = Θ(λ−1/α).

Similarly, assume l2 is the maximum integer such that d2l
−1/α
2 > λ. We know that d2(l2+1)−1/α ≤

λ < d2l
−1/α
2 . Therefore, we have

C ≤
∞∑
k=1

max

{
0, r2 ln

d2k
−1/α

λ

}
= r2

l2∑
k=1

ln
k−1/α

λ

≤ r2

l2∑
k=1

ln
k−1/α

(l2 + 1)−1/α
=
r2
α

(
ln(l2 + 1)l2+1 − ln l2!

)
.

32

By Stirling’s formula, we know that ln ll22 − ln l2! = Θ(l2). So we know that

C ≥ Θ(l2) = Θ(λ−1/α).

Since we know that Θ(l1) = Θ(λ−1/α) = Θ(l2), we have that

C = Θ(l1) = Θ(l2) = Θ(λ−1/α).

For k ≤ l1, we have that

m∗
k ≥ max

{
0, r1 ln

d1k
−1/α

λ

}
≥ r1 ln

d1k
−1/α

λ
> 0.

For k > l2, we have that

m∗
k ≤ max

{
0, r2 ln

d2k
−1/α

λ

}
= 0.

Thus m∗
k = 0 for k > l2. Hence, we have that

pkDk(m
∗
k) = Θ(min{k−1/α, C−1/α}).

Finally, we prove that RedM (C) ≥ Θ(M−1/α+1). Since we have assumed that Dk(R) = akb
−R
k

for some bmin ≤ bk ≤ bmax, amin ≤ ak ≤ amax, we know that there exists constant d3, d4 such that

d3D′
k(m

∗
k) ≤ Dk(m

∗
k) ≤ d4D′

k(m
∗
k)

Thus we know that
∞∑
k=1

pkDk(m
∗
k) ≥ d3

∑
k≤l2

λ+ c3
∑
k>l2

pk

= Θ(λl2) + Θ(l
−1/α+1
2) = Θ(M−1/α+1). (15)

Similarly,
∞∑
k=1

pkDk(m
∗
k) ≤ d4

∑
k≤l1

λ+ c4
∑
k>l1

pk (16)

= Θ(λl1) + Θ(l
−1/α+1
1) = Θ(C−1/α+1) (17)

Combining Equation (15) and Equation (16) together, we have that
∞∑
k=1

pkDk(m
∗
k) = Θ(C−1/α+1).

Note that the above solution is carried out under a strong assumption Dk(R) = akb
−R
k . Thus under

Assumption 4.5, we have RedM (C) ≤ Θ(C−1/α+1). Combining this and (10), we have that

RedM (C) = Θ(C−1/α+1).

F Fine-Tuning

Fine-tuning an LLM is typically used for two broad purposes: (1) instruction-following or (2)
knowledge injection. Here, we focus on a standard instruction fine-tuning scenario. Consider, for
instance, in our experiment, a model that has been pretrained on a bioS (multi+permute) dataset [3]
and has already learned factual knowledge about specific individuals. During fine-tuning, our goal
is to fine-tune the model to be able to answer the questions about these individuals, and thus the
fine-tuning dataset consists of question–answer pairs with facts drawn from the same distribution as
the pretraining data.

We view the generation of pretraining data and instruction fine-tuning data as a two-stage data
generation process. The first stage, corresponding to the generation of pretraining data, follows the

33

data model introduced in Appendix D. In the second stage, i.e., the instruction fine-tuning stage, the
knowledge model and the generation process of knowledge elements in the data remain unchanged;
however, the syntactic elements are produced by a different syntax model (e.g., the question–answer
format), which we denote by ϕins.

Let X1:N denote the pretraining corpus, which is generated by (ϕsyn, ϕknw) and XN+1:N+n the
instruction fine-tuning corpus, generated by (ϕins, ϕknw). The full corpus is denoted by X1:N+n.
Following the same reasoning as in Section 4.2, the Bayesian redundancy of the full corpus X1:N+n

is given by the mutual information

I(X1:N+n;ϕsyn, ϕins, ϕknw).

In the following, we present a (somewhat heuristic) decomposition of the redundancy over the full
corpus. The ≈ in the derivation below requires certain independence assumption, which may not
hold exactly in real world, and bounding the approximation error is left as a future work.

As in our data generation process, there is a one-to-one mapping between a sentence X and its
syntax-knowledge element pair (ξ,κ). Hence, using the chain rule of mutual information, we can
write

I(X1:N+n;ϕsyn, ϕins, ϕknw) = I(κ1:N+n;ϕsyn, ϕins, ϕknw) + I(ξ1:N+n;ϕsyn, ϕins, ϕknw | κ1:N+n)

Also note that the first and second terms in the RHS can be decomposed as

I(κ1:N+n;ϕsyn, ϕins, ϕknw) = I(κ1:N+n;ϕknw) + I(κ1:N+n;ϕsyn, ϕins | ϕknw),

I(ξ1:N+n;ϕsyn, ϕins, ϕknw | κ1:N+n) = I(ξ1:N+n;ϕsyn, ϕins | κ1:N+n)+I(ξ1:N+n;ϕknw | ϕsyn, ϕins,κ1:N+n).

Note that I(κ1:N+n;ϕsyn, ϕins | ϕknw) = 0 since the knowledge elements are generated independently
of the syntax model, and I(ξ1:N+n;ϕknw | ϕsyn, ϕins,κ1:N+n) = 0 since ϕknw – κ – ξ form a Markov
chain. Hence, we can see that

I(X1:N+n;ϕsyn, ϕins, ϕknw) =I(κ1:N+n;ϕknw) + I(ξ1:N+n;ϕsyn, ϕins | κ1:N+n)
(1)≈ I(κ1:N+n;ϕknw) + I(ξ1:N+n;ϕsyn, ϕins)

=I(κ1:N+n;ϕknw) + I(ξ1:N ;ϕsyn, ϕins) + I(ξN+1:N+n;ϕsyn, ϕins | ξ1:N)

=I(κ1:N+n;ϕknw) + I(ξ1:N ;ϕsyn) + I(ξ1:N ;ϕins | ϕsyn)

+I(ξN+1:N+n;ϕins | ξ1:N) + I(ξN+1:N+n;ϕsyn | ϕins, ξ1:N)
(2)≈I(κ1:N+n;ϕknw) + I(ξ1:N ;ϕsyn) + I(ξN+1:N+n;ϕins)

In the above, approximation
(1)≈ relies on the assumption ξ1:N+n ⊥ κ1:N+n, and

(2)≈ requires
ξN+1:N+n ⊥ ξ1:N and ξN+1:N+n ⊥ ϕsyn | ϕins, ξ1:N , both of which can be induced by the
same assumption ξ1:N+n ⊥ κ1:N+n. Under the same assumption, the redundancy of the pretraining
corpus can also be decomposed as follows:

I(X1:N ;ϕsyn, ϕknw) =I(κ1:N ;ϕsyn, ϕknw) + I(ξ1:N ;ϕsyn, ϕknw | κ1:N)

=I(κ1:N ;ϕknw) + I(ξ1:N ;ϕsyn | κ1:N)

≈I(κ1:N ;ϕknw) + I(ξ1:N ;ϕsyn).

The redundancy of the instruction fine-tuning corpus can be written as the difference between the
redundancy of the full corpus and the redundancy of the pretraining corpus:

I(X1:N+n;ϕsyn, ϕins, ϕknw)− I(X1:N ;ϕsyn, ϕknw) ≈ I(κ1:N+n;ϕknw)− I(κ1:N ;ϕknw)︸ ︷︷ ︸
Redknw

+ I(ξN+1:N+n;ϕins)︸ ︷︷ ︸
Redins

The two terms in the above equation correspond to the redundancy of knowledge elements Redknw,
and the redundancy of syntactic elements Redins in the instruction fine-tuning corpus, respectively.

Following the same arguments in the proof of Theorem 4.2, we can see that I(κ;ϕknw) = Õ(Nα),
and hence for simplicity, we further assume that I(κ;ϕknw) = cNα for some constant c > 0. Then,
the average redundancy of the instruction fine-tuning corpus satisfies:

1

n
Redknw = I(κ1:N+n;ϕknw)− I(κ1:N ;ϕknw) =

(N + n)α −Nα

n

(1)
= O(Nα−1),

1

n
Redins = I(SN+1:N+n;ϕins) = Õ(n−1).

34

where
(1)
= relies on the natural assumption that the size of pretrain corpus N is much larger than the

size of instruction fine-tuning corpus n. Similar to Theorem 4.2, the primary effect of fine-tuning in
this scenario is that the model learns the new syntax to reduce the fine-tuning loss (i.e., redundancy)
with fast rate Õ(n−1), hence requiring relative fewer samples, while allowing the model to retain the
factual knowledge it has already acquired (N is large and the redundancy for the knowledge elements
O(Nα−1) is quite small).

On the other hand, consider the setting where our objective is to inject new knowledge via fine-tuning.
Suppose the fine-tuning data uses a drastically different syntax or format from that used in pretraining,
as well as completely new knowledge. Now, the Bayesian redundancy is equal to

I(X1:N+n;ϕsyn, ϕins, ϕknw, ϕnknw) (18)

where ϕnknw is the new knowledge model. If the new syntax component is very different from the
original one, and the knowledge component is also quite new (i.e., nearly independent from the
pretraining), the mutual information (18) can be approximately decomposed into

I(X1:N+n;ϕsyn, ϕins, ϕknw, ϕnknw) ≈ I(X1:N ;ϕsyn, ϕknw) + I(XN+1:N+n;ϕins, ϕnknw).

The first term corresponds to the redundancy of the pretraining phase, and the second term corresponds
to finetuning and the redundancy (per sentence) can be bounded as Õ(c1/n+ c2/n

1−α) according to
the same argument in Theorem 4.2. As n is much smaller than N , we can see that the fine-tuning
would experience a significant perplexity shift (even the entropy, which is the irreducible part of
the loss, may also shift). Moreover, the additional syntax learning step not only slows down the
learning, but also risks occupying the model’s limited capacity, leading to forgetting of the pretrained
knowledge, especially when the model’s capacity is constrained. See the experimental results in
Appendix G.2. Therefore, two practical recommendations are in order (consistent with good practices
in prior empirical works [73, 24, 72]).

• Knowledge Injection: When injecting new knowledge during fine-tuning, avoid drastically
different formats or syntaxes that deviate significantly from the original pretraining data,
especially in the capacity constrained setting. By preserving familiar structures, the model
can focus on absorbing new facts rather than first learning an unfamiliar syntax. Moreover,
it is beneficial to adopt a gradual approach that mixes the pretrained data with a portion of
new knowledge during finetuning, which helps mitigate large perplexity shifts and makes
the optimization more stable [28, 36].

• Instruction Fine-Tuning. For instruction fine-tuning (e.g., adapting a model to ques-
tion–answer formats), use a knowledge set that closely aligns with the data distribution seen
during pretraining. This ensures that most of the fine-tuning effort is spent on learning new
syntax or style. Moreover, if we use completely a new set of knowledge in the SFT stage,
the model only focuses on compressing the SFT dataset, which slows down the learning and
may lead to forgetting of pretrained knowledge as well.

G Experimental Setting and Additional Experimental Results

G.1 Experiment Setting

Following the experimental setting from [2, 3], we generate profiles for 400,000 individuals. Each
profile contains six attributes: date of birth, birth city, university, major, employer, and employer city.
These attributes are used to populate a diverse set of templates (each type of information/instruction
has 50 different templates), forming both pretraining and instruction fine-tuning datasets, as shown in
Table 1. In the instruction tuning, we use data instances with odd indices (e.g., 1, 3, 5, 7, ...) as the
training set and those with even indices (e.g., 2, 4, 6, 8, ...) as the test set.

As discussed in our theoretical section, the occurrence frequency of individuals in the pretrain-
ing/instruction fine-tuning dataset follows a power-law distribution, formulated as Equation 19:

P (i) =
(i+ bias)−a∑N
j=1(j + bias)−a

(19)

35

Table 1: Examples of Pretraining and Instruction Fine-Tuning Data
Dataset Type Example

Pretraining “Gracie Tessa Howell was
born in Camden, NJ. He stud-
ied Biomedical Engineering
and worked at UnitedHealth
Group. He entered the world
on April 15, 2081, and is em-
ployed in Minnetonka. He is
an alumnus/alumna of Buena
Vista College.”

Instruction Fine-Tuning “Q: What area of study did
Gracie Tessa Howell focus
on? A: Biomedical Engineer-
ing”

where i denotes the index of the individual, N is the total number of individuals, and a is the exponent
parameter. Note that the frequency of data occurrence generated by a power-law distribution exhibits
asymptotic behavior similar to that produced by the PYCRP(1/a, β) (See Lemma H.2).

We set bias = 1000 and vary the parameter a over {0, 1.05, 1.20, 1.35, 1.50}. If not specified, we
choose a = 1.20. The final pretraining dataset contains 1.45B tokens (tokenized using the GPT-2
tokenizer), and the instruction fine-tuning dataset consists of 258M tokens. Pretraining is conducted
for 4 epochs, totaling 5.8B tokens processed—almost twice the amount suggested by the Chinchilla
scaling law.

Model Configuration We conduct experiments with RoPE-encoded GPT-like models [39] of
various sizes. The model configurations are detailed in Table 3.

Training Procedure For training, we use a sequence length of 512 and batch size of 128. We apply
a warmup ratio of 0.05 and a warmdown ratio of 0.9. Pretraining runs for 4 epoch with a learning rate
of 0.0003, while fine-tuning runs for 1 epochs with a reduced learning rate of 0.00003. We employ
weight decay of 0.1 and bf16 precision. To enhance parallelism, multiple sequences are packed into
512-token sequences, but cross-sequence attention is masked out.

G.2 Experiment Results

Data Heterogeneity We evaluate the accuracy of various properties under two different data
distributions—uniform and power-law—to examine the heterogeneous nature of model learning. For
each setting, we train models of varying sizes and measure their accuracy across multiple properties,
revealing how capacity constraints influence what types of knowledge are learned first.

As shown in Figure 8, both settings demonstrate that models with limited capacity exhibit selective
learning behavior—some properties are prioritized over others. Properties with lower entropy, such as
Major, are easier to learn, as they contain less variability and thus can be compressed more efficiently
by small models. In contrast, high-entropy properties require more capacity to capture and generalize.
A notable example is the property company city. In both settings, this attribute starts with a non-trivial
accuracy of approximately 7%, even when other properties remain close to zero. This is due to New
York appearing with 7% frequency in the dataset. Small models, unable to generalize meaningfully,
default to outputting the most frequent token—an effect more visible in the uniform setting where
each person appears the same number of times in the pretraining corpus, i.e. no person is inherently
easier.

However, the dynamics of this heterogeneity differ across the two distributions. Under the power-
law setting (right), model accuracy for each property increases gradually as capacity grows. This
suggests a smooth transition in learning, where dominant and compressible properties are acquired
first, followed by rarer or more complex ones as capacity permits. In contrast, the uniform setting
(left) reveals a more abrupt phase transition: most properties remain near-zero in accuracy until the
model reaches a critical capacity threshold, after which multiple properties are rapidly acquired.
This implies that, for capacity-constrained models, structuring knowledge injection with a skewed

36

Figure 8: Accuracy of different properties across varying model sizes. The left panel shows the
results under the uniform setting, while the right panel corresponds to the power-law setting. In
both cases, model accuracy across properties exhibits heterogeneity—i.e., models prioritize certain
properties over others. However, the trend differs: under the power-law setting, accuracy improves
gradually across all properties as model size increases, whereas the uniform setting displays a sharp
phase transition—accuracy remains low until a critical model size is reached, after which it rapidly
improves.

distribution—rather than uniform—may ensure partial acquisition of salient knowledge, rather than
risking a complete failure to learn under uniform allocation.

Instruction Fine-Tuning We investigate how different instruction tuning strategies affect knowl-
edge retention and acquisition under varying model capacities. We use uniform distribution in this
experiment. Based on a shared pretrained model, we inject new knowledge using both Supervised
Fine-Tuning (SFT) and Continued Pretraining (CPT), mixing in 80% of the original pretraining data
to mitigate catastrophic forgetting following [10]. The underlying pretrained model is trained up to
50%, 90%, 100%, and 120% of its maximum capacity.

Figure 9: Training loss comparison between SFT and CPT. Due to format differences, SFT initially
exhibits a higher loss.

While both SFT and CPT achieve perfect accuracy on new knowledge across all settings, they differ
in how well they preserve prior knowledge. As shown in Table 2, SFT suffers from more severe
forgetting, particularly in models trained at or beyond capacity (100% and 120%), where old accuracy
drops significantly. This degradation is likely due to format-induced syntactic overhead in SFT, which
consumes model capacity and leads to abrupt loss spikes (Figure 9). In contrast, CPT introduces new

37

Table 2: Accuracy on old and new knowledge after instruction tuning. New knowledge is learned
equally well by both methods, but old knowledge is better retained with CPT, especially when the
model is near or beyond capacity.

Accuracy on Old Knowledge (%)

50% 90% 100% 120%

SFT (on old) 100.0 93.25 89.9 78.5
SFT (on new) 100.0 100.0 100.0 100.0
CPT (on old) 99.6 96.5 94.5 85.1
CPT (on new) 100.0 100.0 100.0 100.0

knowledge more seamlessly, resulting in more stable loss and better retention of previously learned
content. Interestingly, for under-capacity models (e.g., 50%), the difference is negligible—suggesting
that forgetting primarily emerges when the model’s capacity is saturated.

Table 3: Model Configurations with Parameter Counts
Model Size Layers Heads Emb Dim Params (M)
6xs2 4 4 64 3.4
6xs 3 4 80 4.3
5xs 3 4 96 5.2
5xs2 3 4 112 6.1
5xs1 3 4 128 7.0
4xs 4 4 128 7.2
4xs2 4 4 144 8.2
4xs1 4 4 192 11.4
3xs 5 4 192 11.9
3xs2 5 4 224 14.3
3xs1 5 4 256 16.8
xxs 6 4 256 17.6
xxs3 6 4 288 20.5
xxs2 6 8 352 26.6
xxs4 6 8 416 33.4
xxs1 6 8 448 37.0
xs 7 8 448 39.4
xs3 8 8 448 41.8
xs2 8 8 512 50.9
xs1 9 8 512 54.1
s 10 8 512 57.2
s3 10 8 704 94.9
s2 10 12 768 109.4
s1 11 12 768 116.5
base 12 12 768 123.6
m5 12 16 896 160.7
m4 12 16 1024 202.5
m3 13 16 1024 215.1
m2 14 16 1024 227.7
m1 15 16 1024 240.3
m 16 16 1024 252.8

G.3 Real-world Data Validation

To validate the applicability of our theoretical framework to real-world scenarios, we conducted
a series of experiments. We employed the same model architecture used in the synthetic data
experiments and pre-trained our models on the large-scale Fineweb-edu dataset. We then analyzed
and fitted the data scaling law and model scaling law observed during training. Furthermore, we
evaluated the models’ grasp of factual knowledge using the PopQA dataset, a popular question-

38

Figure 10: Experimental validation on real-world data. (a) Data scaling law on Fineweb-edu:
Validation loss as a function of training data size. The fit indicates a power-law relationship, consistent
with a power-law distribution of knowledge in the dataset. The estimated exponent for this power-law
distribution of knowledge is between 1.35 and 1.5. (b) Model scaling law on Fineweb-edu: Validation
loss as a function of model size. The plot shows a power-law decrease in loss with increasing model
parameters, and also suggests a substantially larger irreducible loss component for natural language
compared to synthetic data. (c) Knowledge cutoff on PopQA: Model performance (e.g., accuracy)
on PopQA questions, categorized by the frequency of the underlying knowledge in the Fineweb-
edu training set. Smaller models exhibit a clear inability to answer questions about low-frequency
knowledge, while larger models demonstrate improved performance on rarer knowledge, effectively
lowering the frequency cutoff for knowledge acquisition.

answering benchmark focusing on long-tail knowledge. In our PopQA experiments, we used the
object popularity (o pop) of a knowledge item in the training set as a proxy for its frequency.

By comparing the empirical exponents from the data and model scaling laws on Fineweb-edu against
those from our synthetic experiments (which were generated using knowledge distributions with
varying underlying power-law exponents, see discussions surrounding Figure 3 and Figure 4), we
infer that the knowledge distribution in Fineweb-edu is effectively characterized by a power-law
exponent between 1.35 and 1.5. This observation provides a potential estimate for the exponent range
of real-world knowledge distributions and is consistent with the priors in our theoretical model (e.g.,
Assumption 4.4). When fitting the model scaling law, we observed that the inherent irreducible loss
for real human language (English, in this case) is considerably larger than that observed for synthetic
language. This is intuitive, as the complexity and inherent stochasticity of natural language far exceed
the synthetic setting. Note that the irreducible loss values derived from the model scaling law and
the data scaling law differ due to our finite model and dataset sizes. In practice, the observed loss
can be expressed as L = (D/D0)

−α + (M/M0)
−β + ε, so when fitting the model scaling law (by

fixing data size), the estimated irreducible term effectively includes the data-dependent component,
i.e., (D/D0)

−α + ε; similarly, when fitting the data scaling law, the irreducible loss includes the
model-dependent term, (M/M0)

−β + ε. In other words, the discrepancy in irreducible loss arises
from the limited model size or data size in each respective setting.

Tests on the PopQA dataset further illuminated the characteristics of knowledge acquisition in real
models. Consistent with findings from our synthetic data experiments (see Figure 4(b) and discussion
around Figure 2), we observed a “knowledge cutoff” phenomenon in real models as well. Specifically,
even with sufficient training, smaller models struggle to learn knowledge that appears with low
frequency in the training data. As model size increases, they become capable of learning knowledge
at progressively lower frequencies.

H Omitted Proofs

H.1 Properties of Pitman-Yor Mixture Model

Lemma H.1 (Theorem 4.3 in [55]). The mixing weights p = (p1, p2, · · ·) ∼ PYCRP(α, β) can be
represented as a stick-breaking process:

pj =Wj

j−1∏
i=1

(1−Wi),

where Wi are independent and Wi ∼ Beta(1− α, β + iα).

39

Lemma H.2 (Theorem 3.13 in [55]). Let p = (p1, p2, . . .) ∼ PYCRP(α, β) be the sequence of
mixing weights drawn from a Pitman–Yor process. Then, the following limit almost surely exists:

Sα,β = lim
i→∞

i1/αpi.

Lemma H.3. Denote the remaining stick length of the stick-breaking process in Lemma H.1 as

Lenj :=

j∏
i=1

(1−Wi) =

∞∑
i=j+1

pi.

Then the expectation of the remaining stick length satisfies:

E[Lenn] = Θ(n1−1/α).

Proof. Since Wi ∼ Beta(1− α, β + iα), we know that

E[Wi] =
β + iα

1 + β + (i− 1)α
.

Moreover, Wi are independent. Thus we have

E[Lenn] =
n∏

i=1

β + iα

1 + β + (i− 1)α
=

∏n
i=1(β + iα)∏n

i=1(1 + β + (i− 1)α)

=
αn ·∏n

i=1

(
β
α + i

)
αn ·∏n−1

i=0

(
1+β
α + i

) =
Γ
(
n+ 1 + β

α

)
Γ
(
1 + β

α

) ·
Γ
(

1+β
α

)
Γ
(
n+ 1+β

α

)
= C ·

Γ
(
n+ 1 + β

α

)
Γ
(
n+ 1+β

α

) , where C =
Γ
(

1+β
α

)
Γ
(
1 + β

α

) .
Then by Stirling’s approximation, we know that that E(Lenj) = Θ(n1−1/α).

H.2 KL-divergence of Mixtures

Lemma H.4. Let ϕ =
n∑

i=1

piδϕi
, θ =

n∑
i=1

qiδθi be two mixtures. Then we have

DKL(Pϕ(x)||Pθ(x)) ≤
n∑

i=1

pi log
pi
qi

+

n∑
i=1

piDKL(Pϕi
(x)||Pθi(x)).

Proof. By the log-sum inequality, we know that

DKL(Pϕ(x)||Pθ(x)) =
∑
x

(
n∑

i=1

piPϕi
(x)

)
log

∑n
i=1 piPϕi

(x)∑n
i=1 Pθi(x)

≤
∑
x

n∑
i=1

(
piPϕi

(x) log
piPϕi(x)

qiPθi(x)

)

=

n∑
i=1

pi log
pi
qi

+

n∑
i=1

piDKL(Pϕi
(x)||Pθi(x))

H.3 KL-divergence and Fisher Information

Definition H.5 (Fisher Information). Let X be a random variable with probability density function
(PDF) Pθ(x). The Fisher information is given by:

J(θ) = EX

[(
∂

∂θ
logPθ(X)

)2
]
= −EX

[
∂2

∂θ2
logPθ(X)

]
.

40

Lemma H.6 (Exercise 11.7 in [13]). For a parametric family {Pθ(x)} that

lim
θ′→θ

DKL(Pθ∥Pθ′)

(θ − θ′)TJ(θ)(θ − θ′)
=

1

2
.

Proof. We provide a proof for completeness. We perform a second-order Taylor expansion of the KL
divergence with respect to its second argument θ′, around the first term θ.

DKL(Pθ||Pθ′) = Ex∼Pθ

[
log

Pθ(x)

Pθ′(x)

]
= −Ex∼Pθ

[
(θ − θ′)∇θ logPθ +

1

2
(θ − θ′)T∇2

θ logPθ(θ − θ′)

]
+ o(|θ − θ′|2)

= −Ex∼Pθ
[(θ − θ′)∇θ logPθ]−

1

2
Ex∼Pθ

[
(θ − θ′)T∇2

θ logPθ(θ − θ′)
]
+ o(|θ − θ′|2)

= −(θ − θ′)Ex∼Pθ
[∇θ logPθ]−

1

2
(θ − θ′)TEx∼Pθ

[
∇2

θ logPθ

]
(θ − θ′) + o(|θ − θ′|2)

= −(θ − θ′)Ex∼Pθ
[∇θ logPθ] +

1

2
(θ − θ′)TJ(θ)(θ − θ′) + o(|θ − θ′|2)

The first-order term (θ − θ′)Ex∼Pθ
[∇θ logPθ] = 0 since the KL divergence attains its minimum

value of zero at θ′ = θ.

Thus we know that

lim
θ′→θ

DKL(Pθ∥Pθ′)

(θ − θ′)TJ(θ)(θ − θ′)
=

1

2
.

Remark H.7. The conclusion of this lemma indicates that the Assumption 4.1 is essentially analogous
to requiring the Fisher Information of the distribution family to be bounded. Such assumptions are
common in related literature. For instance, Conditions 1 and 4 in [11] impose similar requirements.
Notably, [11] also points out that these assumptions are widely satisfied within a class of exponential
family distributions.

H.4 Proofs of Section 4.2

Theorem H.8 (Restatement of Theorem 4.2). Under the Bayesian sequential prediction framework
and Assumption 4.1, the averaged optimal Bayesian redundancy (per sentence) of the hierarchical
data model ϕdata satisfies:

inf
M

1

N
RedN (M ,Φdata) =

1

N
I(X1:N ;ϕdata) = Õ

(
dknw

N1−α
+
nsdsyn

N

)
.

Proof. We use the index of resolvability approach similar to [6] to prove the theorem, by constructing
a covering of the parameter space in terms of KL-divergence. However, we cannot directly apply
the conclusion, as we are unable to explicitly construct a KL-divergence covering for PΦdata . Instead,
we can construct a set of probability distributions Q such that, for every specific ϕdata ∈ Φdata, there
exists a Q ∈ Q satisfying DKL(ϕdata ∥Q) ≤ f(ϕdata), where f(ϕdata) is a value dependent on ϕdata.

Define the KL-covering number of the probability family P and the L2 norm covering number of the
parameter space Φ as:

Nkl(ϵ,P) := inf

{
n ∈ N | ∃Qi, i = 1, . . . , n, sup

P∈P
min
i
Dkl(P∥Qi) ≤ ϵ2

}
.

NL2
(ϵ,Φ) := inf

{
n ∈ N | ∃ϕi, i = 1, . . . , n, sup

ϕ∈Φ
min
i

∥ϕ− ϕi∥2 ≤ ϵ

}
.

41

We first construct KL-divergence coverings for the probability families PΦsyn and PΦknw , as well
as a KL-divergence covering for the n-dimensional discrete simplex. We subsequently construct a
point-wise approximate covering set Q for PΦdata based on these coverings. By Assumption 4.1, we
know that

Nkl(ϵ, PΦsyn) ≤ NL2(ϵ/Lsyn,Φsyn) and Nkl(ϵ, PΦknw) ≤ NL2(ϵ/Lknw,Φknw).

Then we consider the L2 norm covering number of the parameter space Φsyn. We simply divide each

coordinate into ⌈ 2Lsyn
√

dsyn

ϵ ⌉ equal parts. It is easy to see that this results in an L2 covering of the
parameter space with a resolution of approximately ϵ

Lsyn
. Thus we know that

Nkl(ϵ, PΦsyn) ≤ NL2
(ϵ/Lsyn,Φsyn) ≤

(
2Lsyn

√
dsyn

ϵ

)dsyn

.

Similarly, we know that

Nkl(ϵ, PΦknw) ≤
(
2Lknw

√
dknw

ϵ

)dknw

.

Next, we consider a KL-covering of the n-dimensional simplex.

Denote Pn = {(p1, · · · , pn); pi ≥ 0,
n∑

i=1

pi = 1}. Consider the discretization of the simplex

Qn,ϵ = {(q1, · · · , qn); ⌊n/ϵ2⌋qi ∈ N+,
n∑

i=1

qi = 1}.

We prove that Qn,ϵ is an ϵ2-KL-covering Then for any (p1, p2, · · · , pn) ∈ Pn, there exists

(q1, · · · , qn) ∈ Qn,ϵ such that |pi − qi| ≤
ϵ2

n
. Therefore, we know that

n∑
i=1

pi log
pi
qi

≤
n∑

i=1

pi
pi − qi
qi

=

n∑
i=1

(pi − qi)
2

qi
≤

n∑
i=1

ϵ2

n
≤ ϵ2.

Note that a simple upper bound for |Qn,ϵ| is |Qn,ϵ| ≤ ⌊n/ϵ2⌋n.

For notational simplicity, we denote

nsyn =

(
2Lsyn

√
dsyn

ϵ

)dsyn

, nknw =

(
2Lknw

√
dknw

ϵ

)dknw

,

as upper bounds on the ϵ−KL-covering numbers of PΦsyn and PΦknw , respectively.

Assume that distributions
{Q(1)

syn(ξ), . . . , Q
(nsyn)
syn (ξ)}

form an ϵ-KL-covering of PΦsyn , and distributions

{Q(1)
knw(κ), . . . , Q

(nknw)
knw (κ)}

form an ϵ-KL-covering of PΦknw . Let m = ⌊Nα⌋ denote the truncation point used subsequently in
the truncated estimation of PΦknw . Then we construct the covering of PΦdata . Denote by Q the set of
joint distributions over knowledge element κ and syntax element ξ. A distribution Q(κ, ξ) ∈ Q if
and only if it satisfies all of the following conditions:

• There exist q = (q1, . . . , qm+1) ∈ Qm+1,ϵ and indices k1, . . . , km, such that

Q(κ) =

m∑
i=1

qiQ
(ki)
knw + qm+1Qu,

where Qu is the uniform distribution over the support of knowledge element K.

• There exist indices s1, . . . , sns , such that for each i ∈ {1, . . . , ns},

Q(ξ | κ ∈ Ki) = Q(si)
syn ,

where Ki is the set of knowledge corresponding to the syntax model ϕ(i)syn.

42

Next we prove that, for any Pϕdata ∈ PΦdata , we have that

min
Q∈Q

DKL(Pϕdata(κ, ξ)||Q(κ, ξ)) ≤ Lenm log |K|+ 3ϵ2,

where Lenj =
∞∑

i=j+1

pj is the remaining stick length of ϕknw. (See Lemma H.3.)

We rewrite ϕknw as:

ϕknw =

m∑
i=1

piδϕi
+ Lenmδϕ′ ,

where ϕ′ =
1

Lenm

∞∑
i=m+1

piδϕi
. By the definition of Q, there exists a distribution Q∗ ∈ Q such that

Q∗(κ) =

m∑
i=1

q∗iQ
(k∗

i)
knw + q∗m+1Qu, Q∗(ξ | κ ∈ Ki) = Q

(s∗i)
syn ,

and Q∗ satisfies the following three conditions:

• DKL(Pϕi
(κ)||Q(k∗

i)
knw (κ)) ≤ ϵ2 for all 1 ≤ i ≤ m.

•
m∑
i=1

pi log
pi
q∗i

+ Lenm log
Lenm
q∗m+1

≤ ϵ2.

• DKL(Pϕ
(i)
syn
(ξ)||Q(s∗i)

syn (ξ)) ≤ ϵ2 for all 1 ≤ i ≤ ns.

Then by the chain rule of KL-divergence and Lemma H.4, we know that

DKL(Pϕdata(κ, ξ)||Q∗(κ, ξ)) =DKL(Pϕknw(κ)||Q∗(κ)) + EK

[
DKL

(
Pϕsyn(ξ|κ)||Q∗(ξ|κ)

)]
≤

m∑
i=1

pi log
pi
q∗i

+ Lenm log
Lenm
q∗m+1

+

m∑
i=1

piDKL(Pϕi
(κ)||Q(k∗

i)
knw (κ))

+LenmDKL(Pϕ′(κ)||Qu(κ)) +

ns∑
i=1

P (κ ∈ Ki)DKL(Pϕ
(i)
syn
(ξ)||Q(s∗i)

syn (ξ))

≤ϵ2 +
m∑
i=1

piϵ
2 + Lenm log |K|+

ns∑
i=1

P (κ ∈ Ki)ϵ
2

≤3ϵ2 + Lenm log |K|

Subsequently, we derive an upper bound for the associated covering number. We know that |Q| ≤
|Qm+1,ϵ|nmknwn

ns
syn. That is to say

log |Q| ≤ log |Qm+1,ϵ|+m log nknw + ns log nsyn

≤ 2m log
m

ϵ2
+mdknw log

Lknwdknw

ϵ
+ nsdsyn log

Lsyndsyn

ϵ
.

43

Finally, we prove the conclusion in this theorem. Consider Q0 =
1

|Q|
∑

Q∈Q
QN . We can bound the

redundancy as follows:

inf
M

RedN (M ,Φdata) ≤RedN (Q0,Φdata) =

∫
Φdata

P(ϕdata)DKL(P
N
ϕdata

||Q0)dϕdata

=

∫
Φdata

P(ϕdata)E

log PN
ϕdata∑

Q∈Q
QN

+ log |Q|

 dϕdata

≤ log |Q|+
∫
Φdata

P(ϕdata)E

log PN
ϕdata

max
Q∈Q

QN

 dϕdata

≤ log |Q|+N

∫
Φdata

P(ϕdata) min
Q∈Q

E
[
log

Pϕdata

Q

]
dϕdata

= log |Q|+N

∫
Φdata

P(ϕdata) min
Q∈Q

DKL(Pϕdata ||Q)dϕdata

≤ log |Q|+N

∫
Φdata

(Lenm log |K|+ 3ϵ2)dϕdata

= log |Q|+ 3Nϵ2 +NE[Lenm] log |K|
Plugging in the bound of |Q| and K, we can see the above is upper bounded by

NE[Lenm] log |K|+ 3Nϵ2 + 2m log
m

ϵ2
+ 2mdknw log

Lknwdknw

ϵ
+ nsdsyn log

Lsyndsyn

ϵ
.

Choosing ϵ = N−1 and applying the result in Lemma H.3, we know that

inf
M

RedN (M ,Φdata) ≤ O(Nα(log |K|+ dknw(logN + logLknw + log dknw)))

+O(nsdsyn(logLsyn + log dsyn + logN)).

Therefore, we know that

inf
M

1

N
RedN (M ,Φdata) =

1

N
I(X1:N ;ϕdata) = Õ

(
dknw

N1−α
+
nsdsyn

N

)
.

This completes the proof.

44

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we derive theoretical results corresponding to the empirical
scaling laws. Experimental validations further support our theoretical findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

45

Justification: See Appendix H.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All our theoretical results are supported by detailed experimental validation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

46

Answer: [Yes]
Justification: This paper provides a thorough theoretical analysis, complemented by exten-
sive empirical validation conducted under standard settings. The complete source code will
be released publicly to ensure full reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental setups are described in detail in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard experimental methods are used, with detailed descriptions provided
in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

47

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: While our work is primarily theoretical and the computational demands are
modest, all experiments were conducted on a single machine equipped with 8 NVIDIA
GeForce RTX 3090 GPUs, each with 24GB of memory. The entire experimental process
took approximately two weeks, with each individual experiment taking about 4 hours on
average.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

48

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is primarily theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide experimental details and properly credit the original creators or
owners of all assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

49

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work is primarily theoretical.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work is primarily theoretical.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work is primarily theoretical.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

50

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

51

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	A Hierarchical Data Generation Model
	Explaining Scaling Laws
	A Bayesian Sequential Prediction Framework
	Data Scaling Law (under the Bayesian framework)
	Model Scaling Law

	Concluding Remarks
	Discussions and Related Work
	Prediction and Compression
	LLMs as Compressors
	Universal Coding and The Coding Game
	Universal Coding
	A Coding Game and the Bayesian (Mixture) Strategy

	Kolmogorov Structure Function and LLMs
	Basic Concepts
	Kolmogorov Structure Functions and LLMs

	Details of the Syntax-Knowledge Model
	The Non-Parametric Knowledge Model
	Parametric Syntax Model
	Hierarchical Syntax-Knowledge Data Model

	Explaining Scaling Laws
	Data Scaling Laws
	Model Scaling Laws

	Fine-Tuning
	Experimental Setting and Additional Experimental Results
	Experiment Setting
	Experiment Results
	Real-world Data Validation

	Omitted Proofs
	Properties of Pitman-Yor Mixture Model
	KL-divergence of Mixtures
	KL-divergence and Fisher Information
	Proofs of 4.2

