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Abstract

Active Learning (AL) addresses the crucial challenge of enabling machines to efficiently
gather labeled examples through strategic queries. Among the many AL strategies, Un-
certainty Sampling (US) stands out as one of the most widely adopted. US queries the
example(s) that the current model finds uncertain, proving to be both straightforward and
effective. Despite claims in the literature suggesting superior alternatives to US, community-
wide acceptance remains elusive. In fact, existing benchmarks present conflicting conclu-
sions on the continued competitiveness of US. In this study, we review the literature on AL
strategies in the last decade and build the most comprehensive open-source AL benchmark
to date to understand the relative merits of different AL strategies. The benchmark sur-
passes existing ones by encompassing a broader coverage of strategies, models, and data.
Through our extensive evaluation, we uncover fresh insights into the often-overlooked is-
sue of model compatibility in the context of US to clarify the conflicting conclusions in
existing benchmarks. Notably, our findings affirm that when paired with compatible mod-
els, US maintains a competitive edge over other strategies. These findings have practical
implications and provide a concrete recipe for AL practitioners—by adopting compatible
query-oriented and task-oriented models for US as the first-hand choice, empowering them
to make informed decisions in their work.

1 Introduction

Supervised learning models can achieve competitive results with sufficient high-quality labeled data. How-
ever, acquiring such data can be costly in specific domains. This situation calls for Active Learning (AL),
a learning paradigm that strategically selects the most valuable unlabeled examples for labeling. AL has
the capability of achieving better performance with lower labeling costs, which has been widely studied and
applied in various domains, such as computer vision Li & Guo (2013); Demir et al. (2015); Beluch et al.
(2018), natural language processing Liu et al. (2021); Schröder et al. (2021); Kishaan et al. (2020), and
biology and medical fields Hao et al. (2020); Nath et al. (2020); Logan et al. (2022).

Among the many AL strategies, Uncertainty Sampling (US) stands out as a straightforward and efficient
query strategy by selecting the most uncertain examples for labeling based on the model’s prediction con-
fidence. US has demonstrated success across multiple applications Kishaan et al. (2020); Narayanan et al.
(2020); Nath et al. (2020); while US is widely used, several AL studies have developed more sophisticated
query strategies to address specific limitations in particular scenarios Donmez et al. (2007); Huang et al.
(2010); Li et al. (2015). However, these strategies often lack a fair and unified comparison across different
contexts.

Two large-scale benchmarks for pool-based AL have been developed to evaluate existing strategies for binary
classification on tabular data Yang & Loog (2018); Zhan et al. (2021). However, they present conflicting
conclusions regarding the preferred query strategies. While Yang & Loog (2018) suggested that the straight-
forward US strategy excels across the majority of datasets, Zhan et al. (2021) argued that Learning Active
Learning (LAL) Konyushkova et al. (2017) outperforms US.
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Table 1: Comparison between Yang & Loog (2018); Zhan et al. (2021) and our benchmark. (D) means
aspects of datasets; (M) means aspects of base models; (Q) means aspects of query strategies; (A) means
aspects of analysis; (O) means aspects of an open source tool. Our benchmark fetches up lacking query
strategies in Yang & Loog (2018) and lacking analysis in Zhan et al. (2021) to provide a comprehensive
comparison.

Yang & Loog (2018) Zhan et al. (2021) Ours

(D) More than 100K examples ✓ ✓
(D) More than 400 features ✓ ✓
(M) LR ✓ ✓
(M) RBFSVM ✓ ✓
(M) RF ✓
(Q) Model uncertainty ✓ ✓ ✓
(Q) Bayesian uncertainty ✓
(Q) Data diversity ✓ ✓
(Q) Hybrid criteria ✓ ✓ ✓
(Q) Redesigned learning

framework
✓ ✓

(A) AUBC ✓ ✓ ✓
(A) Average ranking ✓ ✓
(A) Comparison with Uniform ✓ ✓
(O) Released datasets ✓ ✓
(O) Unified AL protocol ✓
(O) Analysis tools ✓

Given the lack of consistent comparisons across diverse contexts and the contradictory conclusions drawn from
the previous two extensive benchmarks, there is a critical need for a benchmark that accurately represents
the current state of AL techniques in this field. Therefore, this work aims to build the most comprehensive
AL benchmark compared to previous benchmarks, focusing on datasets, base models, query strategies,
and analysis aspects, as highlighted in Table 1. Our benchmark could be the most comprehensive open-
source framework to date, crafted by integrating a transparent and unified interface. This unified interface
cooperates with existing GitHub repositories, such as libact Yang et al. (2017), Google AL playground Yilei
“Dolee” Yang (2017), ALiPy Tang et al. (2019), ModAL Danka & Horvath, scikit-activeml Kottke et al.
(2021), and sets a new standard for future research.

Subsequently, we assess the performance of query strategies specifically for binary classifications on tabular
data, which is widely used in various real-world applications due to its structured nature and the availability
of diverse datasets. Our benchmarking results show that US remains competitive on most datasets. Further-
more, we uncover the reason for the substandard performance of US in Zhan et al. (2021), the incompatibility
between a model used within US querying and a model being evaluated for the tasks degrades the perfor-
mance. Through careful study, we affirm that US maintains a competitive edge over other strategies when
used with compatible settings on Logistic Regression (LR), Radial Basis Function kernel Support Vector
Machine (RBFSVM), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). In summary, we
recommend adopting US with compatible settings as a first-hand choice for practitioners, providing a clear
baseline for AL in real-world usage from the community.

In this work, we make the following contributions:

• To our knowledge, our benchmark is the most comprehensive, surpassing existing benchmarks in
terms of datasets, models, query strategies, and analyses.
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• We re-benchmark existing strategies for tabular datasets, demonstrating the US’s competitiveness
on most datasets, and, importantly, uncover profound insights into the often-overlooked issue of
model compatibility in the context of US.

• We offer a reproducible and open-source benchmarking framework, which includes preparing
datasets, an active learning process, and analysis tools to facilitate future research in the community.

2 Preliminary

Settles’s literature survey initiated the study of pool-based active learning (AL) techniques. In this section,
we extend Settles (2012) to the current state of pool-based AL research, addressing the gap created by
the lack of an open-source benchmark and highlighting significant developments in query strategies over
the last decade. We also introduce the experimental protocol of our benchmark, which facilitates a deeper
understanding of the critical components involved in pool-based AL, helping readers to comprehensively
evaluate the efficacy of different query strategies in this domain.

2.1 Literature survey of pool-based active learning

Settles (2012) formalized the pool-based active learning protocol as follows:

Initial setup The process begins with a small labeled pool Dl = {(x1, y1), . . . , (xN , yN )}, where |Dl| = N
is the number of labeled examples, and a large unlabeled pool Du = {xN+1, . . . , xN+M}, where |Du| = M is
the number of unlabeled examples; and an oracle O that provides ground truth labels.

Execution setup The active learning algorithm operates over T rounds within a total query budget, where
each round involves querying the label of one unlabeled example from Du until the budget is exhausted.

Query steps in each round

1. Query: Employ the query strategy Q to select an example xj from Du.

2. Label: Acquire the label yj for xj from an oracle O(xj) = yj .

3. Update pools: Move the new labeled example from Du to Dl, i.e., Dl ← Dl ∪ {(xj , yj)},
Du ← Du \ {(xj)}.

4. Update the model: Retrain the model using the updated labeled pool Dl.

Prediction on the test set Finally, we train the model G on the latest labeled pool Dl and make
predictions on new examples from the unseen testing set Dte.

The critical element in pool-based active learning is the query strategy Q. A naïve uniform sampling
(Uniform) method randomly selects unlabeled examples for labeling. Uniform does not utilize active learning
strategies and serves primarily as a baseline. The overarching goal of active learning is to develop a query
strategy that outperforms the Uniform baseline, and there are already numerous query strategies available
today. Settles (2012) classifies these query strategies into three categories: model uncertainty, expected
model changing, and representation exploiting.

Model uncertainty Uncertainty Sampling (US) is a prevalent query strategy in pool-based active learning,
where it selects examples for labeling based on the degree of uncertainty regarding the model’s prediction. US
assumes that examples about which the model is most uncertain are likely to yield the highest information
gain upon being labeled. Various measures can be employed to quantify uncertainty, including the margin
score and entropy of the predictions of an examples in the unlabeled pool returned by the current model.
In binary classification scenarios, using margin and entropy scores are equivalent in terms of defining model
uncertainty (see Appendix B.5). Previous works have found that US is a strong baseline for most pool-based
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active learning problems Cawley (2011); Yang & Loog (2018); Karamcheti et al. (2021); Schröder et al.
(2021); Bahri et al. (2022).

In contrast to US, which relies on a single model to quantify uncertainty, Query By Committee (QBC) Seung
et al. (1992) quantifies uncertainty through multiple models to address the sampling bias in US Settles
(2012). QBC operates on the principle of disagreement among a committee of models, each representing a
different model derived from the training set. Specifically, QBC selects the unlabeled example where there
is the maximal disagreement among the committee members. Disagreement is measured by voting entropy,
defined as the entropy of the distribution of the committee’s votes. A higher voting entropy of an example
indicates more significant disagreement and, consequently, a higher value for querying.

Expected model changing Previous query strategies aim to query the most informative example for the
current model. In this category, we strive to query the most informative example to reduce the model’s error
in the future. For instance, Expected Error Reduction (EER) estimates the total future output uncertainty
over an unlabeled pool and queries the most uncertain example. Similarly, Variance Reduction (VR) esti-
mates the variance of the model’s output based on its Fisher information, which estimates the inverse of the
lower bound on the variance of the model’s parameters Cover (1999).

Representation exploiting US and QBC might perform poorly due to outliers or sampling bias that
results in querying a non-representative example during the query process Dasgupta & Hsu (2008); Yang
et al. (2015); Shui et al. (2020). Although EER and VR take the input distribution into account via estimat-
ing expected future error over all unlabeled examples, these methods are computationally expensive, making
them unsuitable for large datasets Settles (2012). Hierarchical Sampling (Hier) is a model-free representation
sampling method that exploits hierarchical clustering to explore the data structure of the unlabeled pool Das-
gupta & Hsu (2008). Hier randomly selects an example from the subtree of the hierarchical clustering tree
to obtain its label. Then, the tree structure is iteratively updated by making the labels in the cluster more
pure and focusing on the remaining impure clusters. In contrast with model-free approaches, Density-Weight
Uncertainty Sampling (DWUS) Nguyen & Smeulders (2004) assumes that informative examples should have
both high uncertainty and be representative of the data distribution. Therefore, DWUS designs a weighted
uncertainty score by averaging an example’s similarity to the remaining examples in the training set.

The query strategies mentioned in Settles (2012) are long-standing. However, the survey should be updated
with the latest approaches. Graph Density (Graph) is also a model-free representation sampling method
that exploits cluster structure by applying graph-based clustering techniques to the unlabeled pool without
depending on any model. Similar to Graph, Core-Set uses K-Means clustering on the embedding space
extracted from the data transformation (such as deep convolutional neural networks) and then queries
unlabeled examples closest to the centers of clusters. Sener & Savarese (2018) show that Core-Set works well
on image classification tasks. Besides Graph and Core-Set, we could categorize recent query strategies into
three categories: hybrid criteria, Bayesian method, and redesigned learning framework.

Hybrid criteria Several works study the combination of uncertainty and diversity information to improve
previous query strategies. For example, Hinted Support Vector Machine (HintSVM) Li et al. (2015) focused
on selecting an example of an updated decision boundary that passes through unqueried regions instead
of reducing its margin only. QUerying Informative and Representative Examples (QUIRE) Huang et al.
(2010) formulated the informativeness and representativeness with kernel matrices, which characterizes the
similarity between labeled examples and unlabeled examples, to select an example with large self-similarity
and large similarity to most remaining examples in the unlabeled pool. Representative Marginal Cluster
Mean Sampling (MCM) Xu et al. (2003) queries examples within the model’s margin closest to the K-Means
centers in the embedding space, which inherits the benefits from Core-Set and US. Recently, Batch Mode
Discriminative and Representative (BMDR) and Self-Paced Active Learning (SPAL) have been designed
to query examples with elaborated empirical risk minimization Wang & Ye (2015); Tang & Huang (2019).
BMDR queries the example that expects to minimize the empirical risk on the labeled and unlabeled pools
using a self-learning approach and distribution difference between the labeled pool and training set. Following
the objective function of BMDR, SPAL modifies the constraint of the objective function (1) to improve
BMDR’s performance. Please refer to Appendix B.5 for the detailed formulation of BMDR and SPAL.
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Bayesian method Although QBC aims to query the most disagreeable example, the voter entropy might
ignore each model’s confidence regarding its predictions, potentially reducing efficiency. To address this
issue, Bayesian Active Learning by Disagreement (BALD) Houlsby et al. (2011) queries the most uncertain
example across the ensemble models but confident in the single model. This approach can be interpreted
as the conditional mutual information between the model’s prediction and its parameters. BALD aims to
query the example with high conditional mutual information, where the model’s prediction is uncertain, but
the model’s parameters are certain.

Redesigned learning framework As the number of query strategies increases, some are designed to
automatically select the optimal strategy from multiple heuristic query strategies. For example, Active
Learning By Learning (ALBL) treats the learning problem as a multi-armed bandit problem Hsu & Lin
(2015). It thus selects the optimal strategy from a set of query strategies and queries the example based on
this strategy that maximizes the estimated reward at each round. Learning Active Learning (LAL) formulates
the query process as a regression problem to learn the strategy from various types of toy data Konyushkova
et al. (2017). LAL queries the example from the learned regression function, which predicts the potential
error reduction.

Besides previous query strategies for conventional machine learning models, such as Logistic Regression
(LR), and Radial Basis Function kernel Support Vector Machine (RBFSVM), Beck et al. (2021) and Zhan
et al. (2022) compared additional query strategies designed for deep learning models used in computer vision
classification tasks. Their results show that US outperforms data diversity-based sampling strategies (Core-
Set, Variational Adversarial Active Learning) Sinha et al. (2019). Moreover, hybrid criteria query strategies,
such as Batch Active learning by Diverse Gradient Embeddings (BADGE) Ash et al. (2019), Learning Loss
for Active Learning (LPL) Yoo & Kweon (2019), and Wasserstein Adversarial Active Learning (WAAL) Shui
et al. (2020), achieve competitive results better than US. Although modern techniques such as BADGE,
LPL, and WAAL demonstrate outstanding performance for deep active learning scenarios, they cannot be
directly applied to the current implementation of tree-based models such as Random Forest (RF) Pedregosa
et al. (2011), XGBoost Chen & Guestrin (2016). Therefore, our work excludes these query strategies and
encourages future work to extend the benchmark to deep learning models.

2.2 Experimental protocol for the benchmark

Section 2.1 depicts an abstract process of pool-based active learning. To concretize the experimental protocol
for the benchmark, we illustrate the framework in Figure 1. In this framework, we define the training set
as the union of the labeled pool and unlabeled pool, denoted as Dtr = Dl ∪Du. First, we split the dataset
into disjoint training and testing sets, i.e., Dtr ∩Dte = ∅, to simulate a real-world learning scenario. After
splitting the dataset, we sample from the labeled pool Dl within Dtr and leave the remaining examples as
the unlabeled pool Du to set up the initial environment. Furthermore, we isolate a query-oriented model
H from the task-oriented model G in Section 2.1. The query-oriented model is used for selecting the most
informative example during the query step while the task-oriented model is used for prediction on the test
set, as depicted in Figure 1.

In most cases, the same models are used for both the query and the task. However, several query strategies
are model-free or do not require the use of the same models. For instance, advanced query strategies by Yoo &
Kweon (2019); Sinha et al. (2019) have been shown to be beneficial when using different models for querying
informative examples and for training a classifier. To distinguish the relationship between models, we define
model compatibility as the setting where the example obtained by the query-oriented model might or
might not be the same when using the task-oriented model. In this work, we denote the compatible query-
oriented and task-oriented models for Uncertainty Sampling as US-Compatible (US-C) and non-compatible
models as US-Non-Compatible (US-NC). Section 5.1 studies the impact of model compatibility on US to
clarify the conflicting conclusion in previous benchmarks.

The benchmark aims to provide a standardized framework for evaluating and comparing different query
strategies in a fair manner. Following Guyon et al. (2010; 2011); Desreumaux & Lemaire (2020); Zhan et al.
(2021), we utilize the Area Under the Budget Curve (AUBC) as a summary metric to quantify the results
of learning curves. A learning curve tracks the performance of model G at each round of the active learning
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Label
O(xj) = yj

training set Dtr
Dl = {(xn, yn)}
Du = {(xm)}

active learning algorithm
A(Dl, Du, h)

1. Update Model train(Dl, h)
2. Query Q(Du, h)

query-oriented
model
H

task-oriented
model
G

evaluation
1. train(Dl, g)
2. eval(Dte, g)

testing set Dte

Dl

h g

xj

Update Pools
Dl, Du

Figure 1: The Framework of Active Learning Experiments. Rectangles represent datasets including labeled
pool, unlabeled pool, and test set. Rounded rectangles represent processes including an active learning
algorithm, labeling, and evaluation. Circles represent models. In this work, we differentiate the relationship
between two models: task-oriented and query-oriented.

process, typically using evaluation metrics such as accuracy. AUBC provides a concise way to compare
the overall performance of different learning curves of query strategies. Figure 2 demonstrates that US,
BALD, and LAL achieve higher accuracy more quickly than Uniform, corresponding to the mean AUBC of
US (85.78%) and BALD (85.72%), which are better than LAL (85.52%), Uniform (84.77%), and Core-Set
(84.47%) in detail. Furthermore, we report the accuracy of the task-oriented model under different labeled
data sizes and data utilization rates of the query strategy for more detail.
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Figure 2: The learning curves (test accuracy vs. number of labeled examples) of query strategies on Australian
dataset.

6



Under review as submission to TMLR

Table 2: Settings of query-oriented models H for specific query strategies Q.
Q H Reason of choice

HintSVM RBFSVM the implementation in libact
QUIRE RBFSVM the implementation in libact
QBC LR(C = 0.1), RBFSVM, RF,

Linear Discriminant Analysis
the inheritance of Zhan et al.
(2021)

ALBL Combination of multiple Q with
same H: US, HintSVM

the default settings in libact

LAL RF the implementation in ALiPy

3 Experimental settings

We employ most of the settings outlined in the prior benchmark Zhan et al. (2021). For each dataset D,
we reserve 40% as the unseen test set Dte for performance evaluation. Then, for the remaining 60%, we
randomly sample 20 examples as the initial labeled pool Dl and leave the others as the unlabeled pool Du.

D = Dtr ∪Dte, |Dte| = 0.4|D|,
Dtr = Dl ∪Du, |Dl| = 20.

In the following, we clarify the differences and expansions in our benchmark compared to the previous
benchmarks Yang & Loog (2018); Zhan et al. (2021).

Focus on fundamental binary classification. The previous benchmark simultaneously evaluated query
strategies that either support or do not support multi-class may have affected the validity of claims when
comparing results across different aspects Zhan et al. (2021). Therefore, we restrict our evaluation to binary-
class datasets to ensure consistency and fairness.

Include comprehensive datasets with a unified format. We select 26 binary datasets from Zhan et al.
(2021) and Yang & Loog (2018) and ensure consistency in the source datasets and the composition of the
initial labeled and unlabeled pools. For instance, we scaled raw data features to [−1, 1] for all datasets.1
We added three datasets from the other tabular data benchmark Grinsztajn et al. (2022) to expand the
benchmark coverage. These datasets were selected based on their large-scale and high-dimensional properties
to better reflect real-world scenarios. Please refer to Table 10 for the properties of 29 datasets.

Include broad types of query strategies. Zhan et al. (2021) extended the query strategies from Yang &
Loog (2018) to 17 query strategies. However, the redundancy of query strategies, such as US and Informative
Cluster Diverse (InfoDiv) (See Appendix B.5 for more detail.), may lead to repetitive and limited insights
into the benchmark. Therefore, we only keep the most representative 12 query strategies: US, QBC, Hier,
Graph, Core-Set, HintSVM, QUIRE, DWUS, MCM, BMDR, ALBL, and LAL. We further expand the
benchmark to explore a broader range of query strategies by including BALD, a popular query strategy in
deep learning Gal et al. (2017).

Adopt a tree-based model. Previous benchmarks studied Logistic Regression and RBFSVM.2 In this
work, we further studied tree-based models such as XGBoost Chen & Guestrin (2016) and Random For-
est Breiman (2001) (See Appendix D), as recommended by the earlier benchmark for tabular datasets Grin-
sztajn et al. (2022). To clarify the relationship between query-oriented and task-oriented models, we report
some query strategies that do not use tree-based model as the query-oriented model in Table 2.

We disclose the construction of the initial labeled pool, data preprocessing steps, and the choice of models,
which can significantly impact the experimental results Ji et al. (2023). This information saves participants

1We retained the original scaling for some of the LIBSVM datasets, such as Heart, Ionosphere, and Sonar, which were
already scaled to the range of [−1, 1].

2We also reproduce the previous benchmarks with different base models in Appendix C
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time examining the settings and critical considerations for designing active learning experiments. Next, we
report the issues encountered and solutions when we conduct experiments.

Handle errors and exceptions of experiments. Because current modules cannot support cold-start
problems, we run the experiments repeatedly and skip any seed that lacks labels in the training or test set at
the initial setup. For execution, we set a maximum running time of 72 hours for executing a query strategy
on a dataset to ensure completion within a reasonable time (Denote ‘TLE’ in Table 5).

This section outlines the necessary information to conduct experiments for the benchmark. In our imple-
mentation and report, we strive to ensure the reproducibility of all results under these specific settings and
processes corresponding to Figure 1. Furthermore, we compare our settings and results with the existing
benchmark Zhan et al. (2021) in Appendix B and Appendix C, covering any additional modifications or
improvements needed.

4 Benchmarking results

This section presents the benchmarking results for XGBoost in Table 3. We repeated experiments 100 times
for small datasets with a size less than 2000 (KS = 100) and 10 times for large datasets (KL = 10). We
set a total query budget of 3000 to reduce running time for large datasets. Next, we verify the superiority
of Uncertainty Sampling over other query strategies. Furthermore, we investigate whether existing query
strategies bring more benefits than Uniform for each dataset. In addition, we reproduce the benchmarking
results from Zhan et al. (2021) with RBFSVM in Appendix C and constructed the new benchmark for RF
in Appendix D.

4.1 Verify superiority

Referring to Table 3, we observe that US attains the highest mean AUBC among all query strategies on 18
datasets, indicating its superior performance compared to other query strategies on average. The remaining
dominant query strategies are LAL and BALD, which achieve the highest AUBC on 6 and 4 datasets,
respectively.

Besides AUBC, we also observe learning curves from different perspectives. Specifically, we check the model’s
accuracy with varying ratios of labeled examples on each dataset. Table 4 shows the model’s accuracy with
20% labeled examples on each dataset, and US outperforms other query strategies on more than half (15)
datasets. Please refer to Appendix A for more comparisons under other ratios.

Finally, we verify the ranking performance of query strategies across multiple datasets. Specifically, we assess
the average and standard deviation of the rankings by seeds of the query strategy on each dataset. Then, we
apply the Friedman test with a 5% significance level to test for statistical significance. The p-values of the
Friedman test are less than 5% for all datasets, indicating that the performance differences between query
strategies are statistically exist. Table 5 demonstrates that US ranks first on 18 datasets, and LAL, BALD,
and MCM often achieve second and third ranks.

These results show that the straightforward and efficient US outperforms others on most datasets. These
outcomes also correspond to previous work claiming US is the strong baseline with LR Yang & Loog (2018)
and RBFSVM, which we re-benchmarked in Appendix C. We recommend that practitioners initiate their
pool-based active learning projects with US.

4.2 Verify usefulness

We investigate the usefulness of query strategies in Section 4.2. The analysis of usefulness can uncover which
query strategy brings more benefits than Uniform, offering practitioners a reality check on the effectiveness
of a query strategy. Specifically, we investigate the improvement of the optimal stopping point of query
strategies over Uniform. The optimal stopping point is the point where the model achieves the target
accuracy with the least number of labeled examples. We refer to the data utilization rate Culver et al.
(2006), which is the number of labeled examples to achieve the target accuracy divided by the number of
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Table 3: Benchmarking results of XGBoost. The numbers are mean AUBC (↑ is better). We report the
baseline method (Uniform), the best query strategy with its mean AUBC (BEST_QS, BEST), and the worst
query strategy with its mean AUBC (WORST_QS, WORST) across datasets in Table 3.

Uniform BEST_QS BEST WORST_QS WORST

Appendicitis 81.51% US 82.85% DWUS 80.74%
Sonar 75.10% US 76.06% Core-Set 74.11%
Parkinsons 84.24% US 86.63% HintSVM 83.12%
Ex8b 84.21% LAL 85.16% DWUS 83.05%
Heart 78.37% BALD 79.35% HintSVM 77.83%
Haberman 67.69% US 69.17% HintSVM 66.82%
Ionosphere 87.96% US 89.95% DWUS 81.85%
Clean1 76.54% US 78.99% Graph 76.30%
Breast 95.57% LAL 96.31% DWUS 91.85%
Wdbc 94.07% LAL 95.24% HintSVM 93.96%
Australian 84.77% US 85.78% HintSVM 83.89%
Diabetes 72.62% US 73.62% HintSVM 71.49%
Mammographic 79.46% BALD 80.78% DWUS 78.80%
Ex8a 92.06% Core-Set 94.07% HintSVM 84.75%
Tic 90.11% US 90.65% DWUS 89.11%
German 72.68% US 74.03% DWUS 71.78%
Splice 91.89% US 93.76% DWUS 89.51%
Gcloudb 87.85% LAL 88.68% QUIRE 85.99%
Gcloudub 92.98% US 94.30% DWUS 86.12%
Checkerboard 98.72% LAL 99.49% DWUS 86.83%
Spambase 93.16% US 94.51% HintSVM 91.09%
Banana 87.70% LAL 88.45% HintSVM 79.70%
Phoneme 85.78% US 87.77% DWUS 82.42%
Ringnorm 93.76% US 95.46% Core-Set 64.58%
Twonorm 95.43% US 96.39% HintSVM 83.38%
Phishing 94.20% US 96.24% DWUS 91.68%
Covertype 74.11% US 76.64% DWUS 61.34%
Bioresponse 72.92% BALD 74.50% Core-Set 72.04%
Pol 96.03% BALD 97.62% HintSVM 90.52%

labeled examples required by Uniform. In this benchmark, we set the target accuracy as the accuracy with
the total query budget minus 0.01. Table 6 shows the data utilization rate of the optimal stopping point of
query strategies over Uniform. We observe that US, BALD, MCM, and LAL achieve a higher data utilization
rate than Uniform on most datasets.

To further investigate the usefulness of US, we check the improved accuracy (τ) of US, BALD, Core-Set, and
LAL over Uniform on effective dataset (Covertype) and ineffective dataset (Checkerboard) on average with
different scales of the total budget. Figure 3 shows that the performance of US and BALD gains significant
benefits on large scale dataset. However, US suffers from the sampling bias on Checkerboard with a small
budget, while BALD is more stable. We notice that a query strategy with a good performance brings more
benefits at the early stage of the learning process.

5 Beyond the benchmarking results

In this section, we aim to clarify the conflicting conclusions between our benchmark and the previous
work Zhan et al. (2021) and extend the benchmark to real-world datasets used in another tabular data
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Table 4: Accuracy (↑ is better) of the model with 20% labeled examples: We report the accuracy of the
model with 20% labeled examples on each dataset. The scores with bold indicate the best performance on
a dataset. ‘TLE’ means a query strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Sonar 67.82% 67.29% 66.95% 66.73% 66.45% 67.83% 66.25% 65.88% 67.99% 68.15% 66.82% TLE 67.25% 67.32%
Parkinsons 79.26% 80.71% 79.36% 80.51% 79.40% 78.90% 78.68% 78.41% 78.60% 79.69% 80.10% 78.81% 79.91% 80.27%
Ex8b 80.55% 80.69% 79.98% 79.37% 80.24% 79.13% 81.11% 80.32% 81.26% 78.76% 80.45% 81.26% 80.74% 80.60%
Heart 75.73% 77.19% 75.06% 77.36% 75.59% 76.31% 76.69% 74.82% 76.36% 75.09% 75.41% 75.91% 76.36% 76.39%
Haberman 69.24% 70.61% 69.20% 70.15% 68.54% 68.96% 67.68% 68.43% 67.69% 68.51% 71.04% 69.15% 68.67% 70.50%
Ionosphere 83.59% 86.96% 83.84% 86.78% 84.18% 82.28% 83.24% 81.84% 80.82% 74.91% 84.02% 80.28% 86.73% 87.21%
Clean1 68.34% 69.86% 68.03% 69.10% 68.57% 68.21% 66.74% 67.59% 68.42% 68.34% 67.36% TLE 69.35% 69.31%
Breast 95.17% 96.73% 95.17% 96.72% 95.54% 95.29% 94.54% 94.77% 94.93% 90.07% 96.57% 94.77% 96.16% 96.66%
Wdbc 92.91% 95.34% 92.50% 95.36% 92.91% 92.99% 93.04% 91.94% 92.66% 92.54% 95.26% 92.68% 94.75% 95.55%
Australian 83.63% 85.55% 83.77% 85.33% 83.87% 83.90% 82.97% 81.95% 82.75% 82.51% 84.86% 83.58% 83.28% 85.13%
Diabetes 71.84% 73.96% 72.34% 73.35% 72.07% 72.38% 71.73% 70.14% 71.81% 70.54% 72.85% 72.16% 71.78% 72.80%
Mammographic 79.66% 82.51% 79.66% 82.30% 79.48% 79.17% 79.52% 78.70% 80.41% 79.39% 82.09% 80.03% 80.33% 81.67%
Ex8a 88.22% 88.55% 87.81% 88.75% 87.94% 89.41% 91.69% 78.04% 78.12% 78.06% 88.41% TLE 85.21% 91.88%
Tic 89.25% 90.43% 89.23% 90.38% 89.30% 89.72% 89.33% 88.12% 89.83% 85.76% 89.58% TLE 89.32% 89.15%
German 71.23% 72.90% 71.37% 72.73% 71.08% 71.48% 70.46% 71.61% 71.06% 68.76% 71.97% TLE 71.55% 72.11%
Splice 89.07% 92.95% 88.88% 92.65% 89.00% 89.25% 84.99% 85.74% 88.99% 84.69% 91.33% TLE 88.65% 90.25%
Gcloudb 87.82% 89.55% 87.98% 89.24% 87.95% 88.19% 88.27% 84.62% 84.61% 85.48% 89.49% 87.96% 88.35% 89.36%
Gcloudub 91.25% 94.11% 91.45% 92.40% 91.92% 92.28% 88.58% 83.11% 85.69% 80.24% 91.69% 89.76% 88.91% 93.61%
Checkerboard 98.76% 96.89% 98.80% 99.46% 99.35% 98.95% 98.59% 91.40% 88.72% 79.82% 99.46% 99.09% 98.26% 99.80%
Spambase 92.47% 94.84% 92.69% 94.91% 92.54% 92.64% 92.06% 88.95% TLE 92.54% 94.61% TLE 92.66% 94.68%
Banana 87.46% 87.93% 87.46% 87.65% 87.53% 87.50% 88.02% 71.37% TLE 74.94% 88.49% TLE 86.99% 88.94%
Phoneme 83.97% 87.13% 83.73% 87.24% 84.66% 84.13% 84.70% 80.83% TLE 78.60% 86.36% TLE 83.73% 86.52%
Ringnorm 92.79% 95.75% 93.33% 95.77% 92.35% 92.40% 51.86% 57.27% TLE 55.71% 95.33% TLE 92.45% 92.55%
Twonorm 94.99% 96.61% 95.04% 96.53% 95.07% 95.24% 95.73% 79.31% TLE 94.26% 96.60% TLE 95.52% 95.90%
Phishing 93.41% 96.19% 93.01% 96.04% 92.83% 93.35% 93.18% 91.75% TLE 88.11% 95.70% TLE 94.37% 95.94%
Covertype 72.30% 75.26% 72.05% 75.26% TLE 64.54% TLE 62.90% TLE 59.97% TLE TLE TLE 73.92%
Bioresponse 69.96% 73.14% 71.05% 72.87% 70.48% 71.11% 66.59% 66.70% TLE 69.96% 71.34% TLE TLE 72.07%
Pol 95.29% 98.19% 95.52% 98.10% 95.40% 86.38% 93.68% 86.75% TLE 95.29% 97.58% TLE 95.18% 97.75%
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Figure 3: Mean difference of accuracy (improvement) of a query strategy from Uniform on Covertype (left)
and Checkerboard (right). Note that there are no results of Core-Set on Covertype due to the time limit
(TLE).

benchmark Grinsztajn et al. (2022). First, we study the impact of model compatibility. Second, we
expand the benchmark by evaluating the usefulness of Uncertainty Sampling on three real-world datasets.

5.1 Impact of non-compatible models for uncertainty sampling

In contrast to the broader performance comparisons in earlier sections, Section 5.1 focuses on the model
compatibility with US. Our investigation demonstrates that the incompatibility between query-oriented
and task-oriented models significantly influences the performance of US. An example of model incompatibility
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Table 5: Average Ranking of Query Strategies (↓ is better): We report query strategies with the best
average ranking. The scores with 1, 2, or 3 mean the 1st, 2nd and 3rd performance on a dataset. ‘TLE’
means a query strategy exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 4.831 7.50 5.513 7.63 8.30 7.15 7.34 7.82 9.12 5.202 7.85 6.92 5.83
Sonar 4.791 6.38 4.972 6.83 7.52 8.35 8.04 7.79 6.71 6.19 TLE 5.39 5.043
Parkinsons 3.391 8.41 3.792 7.03 9.45 8.37 10.92 8.47 8.74 4.59 7.26 6.34 4.243
Ex8b 5.312 7.95 6.34 7.60 8.28 5.83 9.09 7.42 10.07 5.081 7.13 5.50 5.403
Heart 4.892 7.72 4.761 7.66 8.17 7.18 9.65 8.34 6.43 6.33 7.10 7.04 5.733
Haberman 4.381 7.69 4.562 7.04 8.10 8.97 9.76 9.55 6.07 4.743 7.07 7.95 5.12
Ionosphere 2.671 7.19 2.892 7.12 8.22 8.28 9.38 10.10 12.74 4.51 10.08 4.30 3.523
Clean1 2.611 8.13 2.962 8.33 8.76 7.87 8.47 7.39 8.59 5.30 TLE 5.53 4.063
Breast 3.983 8.72 3.722 7.14 10.02 7.43 8.88 7.50 12.97 4.24 8.64 4.88 2.881
Wdbc 3.673 9.47 3.442 8.15 9.35 8.41 9.57 9.02 9.54 3.95 9.59 3.71 3.131
Australian 2.801 7.75 3.202 7.70 7.47 8.97 10.38 8.36 8.65 4.66 8.30 8.32 4.443
Diabetes 3.641 7.15 4.352 6.88 7.09 7.17 10.44 8.44 10.01 4.983 7.20 8.14 5.51
Mammographic 3.463 8.69 3.301 7.67 8.07 9.09 8.24 9.06 9.54 3.412 7.51 9.07 3.89
Ex8a 4.373 6.10 4.42 5.90 6.16 1.701 11.68 10.75 10.24 4.43 TLE 8.94 3.312
Tic 2.651 5.66 2.992 6.47 6.84 8.49 9.32 8.31 9.24 4.593 TLE 7.28 6.16
German 3.101 7.29 3.522 7.81 7.23 7.41 6.87 8.24 10.92 4.143 TLE 6.02 5.45
Splice 1.521 7.30 1.862 7.18 8.61 9.29 9.82 6.40 11.62 3.373 TLE 6.62 4.41
Gcloudb 4.243 7.25 4.69 7.51 8.19 5.93 10.71 11.04 11.67 4.022 7.07 5.56 3.121
Gcloudub 2.521 6.41 3.683 4.91 7.13 8.75 12.44 10.70 12.45 4.51 7.60 7.05 2.852
Checkerboard 6.37 7.15 4.94 5.03 7.44 6.54 11.36 11.48 12.81 3.722 4.583 8.34 1.241
Spambase 1.501 7.80 1.702 6.80 8.10 8.30 11.00 TLE 7.80 3.303 TLE 6.20 3.50
Banana 5.20 5.70 5.70 3.603 8.20 3.002 10.60 TLE 10.40 5.00 TLE 7.20 1.401
Phoneme 1.601 8.10 2.002 5.20 8.40 6.40 10.00 TLE 10.90 3.30 TLE 7.00 3.103
Ringnorm 1.401 5.10 1.602 6.30 8.00 10.50 9.00 TLE 10.50 3.003 TLE 6.30 4.30
Twonorm 1.301 7.90 1.702 8.50 7.40 6.00 11.00 TLE 10.00 3.003 TLE 5.20 4.00
Phishing 1.401 7.90 1.602 7.20 8.70 6.20 10.10 TLE 10.90 3.60 TLE 5.00 3.403
Covertype 1.401 3.80 1.902 TLE 5.00 TLE TLE TLE 6.00 TLE TLE TLE 2.903
Bioresponse 1.902 6.40 1.601 6.40 6.20 8.60 TLE TLE 6.60 3.70 TLE TLE 3.603
Pol 1.802 5.80 1.501 6.20 9.80 9.20 11.00 TLE 6.70 4.00 TLE 7.30 2.703

is that the previous benchmark adopted US with LR(C = 1) as the query-oriented model and RBFSVM as
the task-oriented model Zhan et al. (2021).3 Through careful analysis, we found that when non-compatible
models are used (denoted as US-NC), the performance of US (denoted as US-C) notably drops, as shown
in Table 12. This drop is primarily due to the misalignment of the decision boundaries between the query-
oriented and task-oriented models, which can lead the query-oriented model to select samples that are not
the most uncertain for the task-oriented model, as illustrated in Figure 4. In summary, our benchmarking
highlights that by utilizing compatible models, US-C consistently performs better than US-NC on average.

We compare different combinations of query-oriented and task-oriented models based on LR, RBFSVM, and
RF. Figure 5 and Appendix C.3 emphasize that compatible model pairs perform better than non-compatible
model pairs for US, evident across 22 datasets, where the optimal AUBC score occurs with compatible
models, i.e., the highest AUBC score is found along the diagonal. Although some results demonstrate that
non-compatible models are slightly better than compatible models, such as Splice and Banana in Figure 13,
these instances were exceptions rather than the norm in our benchmark.

In summary, we advocate for the default use of compatible model parings in US for practical applications.
This setting simplifies the model selection process and can potentially yield better performance across various
datasets.

3See https://github.com/SineZHAN/ComparativeSurveyIJCAI2021PoolBasedAL/blob/master/Algorithm/
baseline-google-binary.py#L242
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Table 6: Data utilization rate (↓ is better): We report the data utilization rate of query strategies. The
scores with italic style indicate that the query strategy does not provide more benefits than Uniform. ‘TLE’
means a query strategy exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL
Appendicitis 77.96% 93.97% 71.10% 88.47% 84.87% 77.22% 73.31% 81.74% 101.34% 73.73% 88.66% 72.73% 71.81%
Sonar 94.66% 98.91% 92.74% 103.50% 109.41% 115.15% 107.62% 110.06% 106.54% 103.24% 103.20% 94.73% 93.96%
Parkinsons 65.14% 100.21% 70.28% 86.74% 116.07% 99.84% 123.64% 103.34% 101.74% 74.59% 92.52% 90.79% 67.29%
Ex8b 90.08% 109.88% 93.86% 95.59% 107.28% 91.14% 126.40% 104.15% 129.39% 90.31% 103.05% 90.49% 93.70%
Heart 86.90% 107.95% 84.11% 107.17% 97.55% 103.64% 113.07% 103.62% 109.48% 97.06% 95.77% 91.87% 89.85%
Haberman 82.19% 95.22% 82.67% 111.45% 105.52% 129.80% 161.28% 141.81% 107.57% 92.66% 104.88% 118.27% 100.55%
Ionosphere 61.01% 111.80% 63.87% 105.88% 108.81% 96.76% 119.75% 111.23% 209.02% 76.15% 139.82% 78.44% 65.46%
Clean1 75.75% 103.42% 76.96% 99.94% 104.20% 94.65% 97.48% 95.94% 100.00% 82.71% 99.69% 88.50% 82.04%
Breast 69.35% 109.64% 66.14% 89.34% 147.47% 95.73% 100.94% 95.69% 494.88% 71.37% 133.41% 66.72% 49.26%
Wdbc 64.80% 133.42% 62.73% 108.66% 131.75% 109.41% 138.49% 116.93% 117.16% 68.42% 119.39% 64.54% 59.28%
Australian 77.16% 115.07% 79.27% 107.96% 128.48% 144.82% 159.60% 127.39% 130.52% 92.17% 128.82% 111.12% 85.45%
Diabetes 93.03% 102.01% 107.05% 89.91% 114.95% 108.80% 181.30% 112.29% 171.75% 94.00% 105.48% 101.62% 76.47%
Mammographic 92.07% 120.26% 78.18% 124.13% 128.84% 112.22% 237.91% 103.86% 202.17% 88.01% 119.19% 82.66% 79.15%
Ex8a 80.82% 101.76% 82.20% 97.18% 110.12% 62.62% 164.20% 158.36% 134.14% 79.50% 84.62% 153.98% 69.71%
Tic 80.79% 128.22% 79.62% 118.52% 137.88% 151.43% 147.20% 111.52% 164.54% 105.34% TLE 137.67% 118.43%
German 99.67% 119.68% 103.79% 125.82% 122.31% 139.69% 114.99% 124.65% 190.73% 113.27% TLE 113.41% 95.44%
Splice 50.12% 109.42% 52.06% 110.84% 101.56% 96.64% 116.59% 97.02% 165.10% 58.39% 105.95% 99.16% 77.40%
Gcloudb 73.44% 124.36% 71.91% 103.12% 145.65% 78.12% 222.56% 289.43% 152.25% 72.98% 85.25% 72.23% 64.86%
Gcloudub 67.80% 118.36% 79.22% 102.15% 131.47% 168.09% 310.10% 198.38% 303.37% 87.16% 156.37% 117.76% 66.35%
Checkerboard 231.82% 140.07% 93.83% 110.34% 115.64% 154.47% 529.48% 543.18% 660.77% 72.37% 105.94% 153.28% 39.50%
Spambase 25.23% 97.59% 28.02% 87.65% 121.97% 106.69% 196.13% TLE 101.91% 37.69% TLE 82.08% 37.18%
Banana 111.31% 95.73% 121.28% 106.59% 117.47% 65.76% 448.34% 393.05% 574.50% 103.93% TLE 132.50% 43.66%
Phoneme 35.59% 97.05% 36.87% 73.34% 103.54% 80.84% 107.40% TLE 165.20% 43.68% TLE 90.82% 44.67%
Ringnorm 31.06% 91.33% 32.57% 111.24% 102.61% 208.70% 158.46% TLE 195.48% 44.30% TLE 94.07% 73.23%
Twonorm 34.59% 115.91% 36.78% 112.05% 103.37% 75.10% 529.37% TLE 173.40% 43.62% TLE 73.05% 74.54%
Phishing 27.08% 131.84% 28.23% 117.78% 137.85% 109.86% 57.30% TLE 244.87% 37.25% TLE 55.39% 31.95%
Covertype 41.33% 109.86% 40.35% TLE 116.98% TLE TLE TLE 117.86% TLE TLE TLE 46.23%
Bioresponse 64.95% 105.42% 64.58% 89.29% 96.76% 91.78% TLE TLE 100.00% 73.95% TLE TLE 66.72%
Pol 29.38% 96.56% 27.82% 96.41% 98.11% 152.58% 34.08% TLE 100.00% 41.06% TLE 126.70% 31.84%

Figure 4: Given RBFSVM as the task-oriented model, we study the non-compatible query-oriented model
with LR(C = 0.1). The red and blue points represent labeled examples. The gray points represent unlabeled
examples. The cyan and magenta lines indicate the decision boundaries of query models LR(C = 0.1) and
RBFSVM trained on current labeled examples. If we adopt US, the non-compatible setting queries a sample
(orange circle), which is most uncertain to LR(C = 0.1) rather than the most uncertain sample to RBFSVM
(red circle).
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Figure 5: Mean AUBC of a query-oriented model (rows) and a task-oriented model (columns) on Australian
(left) and Phishing (right)

5.2 Extending the usefulness of uncertainty sampling

We extend the existing benchmark to real-world datasets used in another tabular data benchmark Grinsztajn
et al. (2022) to demonstrate the usefulness of US within our current benchmark and its potential applicability
and benefits across a more comprehensive array of real-world datasets. Real-world datasets include a larger
number of examples, such as Pol and Covertype, and higher dimensions, such as Bioresponse. By extending
our evaluation to these datasets, we aim to illustrate that the consistent usefulness of US is not limited to
the existing benchmark.

In Figure 6, similar to Section 4.2, US could bring more benefits than Uniform at the early stage. These
results affirm that US has potential as an applicable approach across large-scale and high-dimension scenarios,
which encourages the exploration of US in broader applications.
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Figure 6: Mean difference of AUBC (improvement) of a query strategy from Uniform on Bioresponse (left)
and Pol (right).
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6 Conclusion

This work presents the most comprehensive survey and open-source benchmark for active learning to date.
Our benchmark, with its transparent and unified interface, incorporates existing GitHub repositories, pro-
viding a thorough and up-to-date comparison of active learning query strategies. We equip Uncertainty
Sampling with compatible models and affirm that it remains superior to other active learning strategies as
well as Uniform Sampling on most of the datasets. Furthermore, we discover that Uncertainty Sampling
can be affected by the incompatibility between query-oriented and task-oriented models, resulting in dis-
crepancies between previous benchmarks. Our affirmation suggests Uncertainty Sampling with compatible
query-oriented and task-oriented models as a first-hand choice for practitioners. These insights not only
enhance the community’s comprehension of current active learning strategies but also establish a foundation
for future research with this practical guide. We anticipate extending our framework to encompass diverse
domains like vision and languages and incorporating various models such as deep neural networks, as outlined
in Appendix F for future exploration.

Broader Impact Statement

Active learning is a long-term research topic in machine learning, yet achieving a consensus on the best
strategies within the community is challenging. This work starts from the tabular data to build the most
comprehensive open-source active learning benchmark to date. We affirm that Uncertainty Sampling (US)
remains superior to other active learning strategies and Uniform on most datasets. We also clarify conflicting
conclusions in previous benchmarks by carefully verifying previous settings. Our work will benefit the active
learning community by providing a transparent and unified framework for evaluating active learning strategies
compared to a strong baseline–US with compatible settings. We hope our work will help practitioners check
the reality of existing active learning strategies and settings for different domains. Moreover, re-examine the
potential issues in existing benchmarks, such as neglected settings and unpublished analysis steps.
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Table 7: Accuracy of the model with 10% labeled examples: We report the accuracy of the model with 10%
labeled examples on each dataset. The scores with bold mean the best performance on a dataset. ‘TLE’
means a query strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Ionosphere 74.99% 75.43% 74.94% 74.91% 74.57% 74.86% 75.82% 74.91% 75.30% 74.31% 74.83% 75.06% 75.25% 75.96%
Clean1 62.60% 62.65% 62.32% 62.39% 63.36% 61.67% 62.52% 61.93% 62.60% 62.60% 61.44% 61.71% 62.82% 62.88%
Breast 93.33% 94.95% 93.13% 94.68% 94.26% 90.32% 93.61% 93.74% 93.56% 90.49% 94.65% 93.18% 94.73% 95.88%
Wdbc 90.54% 90.28% 90.58% 91.38% 90.09% 87.78% 91.33% 90.49% 90.96% 90.07% 89.88% 89.29% 91.92% 92.32%
Australian 81.00% 83.13% 81.17% 82.96% 81.37% 80.44% 76.49% 78.11% 77.38% 79.75% 80.85% 80.20% 80.11% 82.36%
Diabetes 70.22% 72.07% 70.52% 71.40% 70.85% 69.98% 69.25% 69.34% 68.88% 69.30% 70.90% 70.29% 70.43% 71.68%
Mammographic 79.92% 81.45% 79.38% 81.76% 79.46% 79.40% 79.61% 78.65% 79.07% 78.72% 81.32% 79.29% 80.26% 81.56%
Ex8a 79.53% 79.62% 79.70% 78.66% 79.49% 78.32% 83.99% 76.19% 76.52% 71.73% 78.38% 82.90% 79.19% 82.25%
Tic 86.54% 88.12% 86.63% 87.95% 86.46% 84.66% 87.33% 85.39% 85.46% 81.19% 87.07% TLE 87.58% 87.09%
German 69.23% 70.75% 69.46% 70.37% 69.11% 69.35% 68.96% 69.18% 69.28% 68.47% 69.64% TLE 69.29% 70.45%
Splice 83.16% 84.98% 82.06% 84.91% 82.45% 75.17% 76.06% 78.42% 83.03% 79.81% 81.08% 80.61% 81.79% 82.71%
Gcloudb 86.36% 89.11% 86.39% 88.86% 87.14% 83.93% 87.18% 84.21% 84.60% 84.17% 88.84% 87.09% 87.57% 89.15%
Gcloudub 88.19% 88.91% 88.41% 87.93% 88.47% 86.93% 86.82% 82.97% 84.66% 79.88% 86.87% 87.70% 86.01% 90.77%
Checkerboard 97.32% 95.81% 97.08% 97.67% 97.93% 96.57% 96.78% 90.18% 87.09% 75.27% 98.66% 98.23% 94.78% 99.80%
Spambase 90.77% 93.85% 89.93% 93.62% 90.63% 90.97% 88.96% 85.38% TLE 90.85% 93.11% TLE 91.09% 93.04%
Banana 85.76% 83.20% 86.17% 82.74% 86.53% 83.44% 87.51% 69.76% 62.64% 70.87% 84.51% TLE 85.29% 88.43%
Phoneme 81.66% 85.13% 80.97% 84.77% 82.30% 80.62% 81.45% 78.38% TLE 76.87% 83.62% TLE 81.47% 83.64%
Ringnorm 89.55% 93.89% 89.92% 94.02% 87.82% 57.35% 54.17% 55.70% TLE 57.73% 92.03% TLE 88.21% 89.32%
Twonorm 93.97% 95.92% 93.56% 95.95% 93.31% 93.73% 94.45% 80.79% TLE 92.31% 95.70% TLE 94.50% 94.42%
Phishing 92.17% 94.62% 92.06% 94.84% 91.76% 91.18% 92.22% 90.97% TLE 87.74% 93.80% TLE 93.20% 94.28%
Covertype 70.98% 73.70% 70.22% 73.43% TLE 64.46% TLE 61.73% TLE 58.76% 67.50% TLE 66.92% 71.90%
Bioresponse 66.64% 68.38% 66.74% 68.99% 65.45% 65.64% 63.52% 60.64% TLE 66.64% 67.77% TLE 66.55% 67.88%
Pol 93.24% 96.67% 93.27% 96.84% 92.96% 84.26% 85.70% 75.77% TLE 93.24% 95.24% TLE 93.67% 96.15%

A Detailed benchmarking results of XGBoost

We present more settings of the benchmarking results for XGBoost for verifying the superiority of query
strategies in Section 4.1. We check the accuracy of the model with different ratios, e.g., 10% and 30% of
labeled examples on each dataset. Tables 7 and 8 also confirm that US outperforms other query strategies
on most datasets. It is worth mentioning that LAL achieves good performance on Gcloudb, Gcloudub,
and Checkerboard when the ratio of labeled examples is 10%. However, these datasets are synthetic, and
their features may be more similar to the pre-trained datasets used by LAL, resulting in LAL’s exceptional
performance on these datasets.

B Revision of Zhan et al. (2021)

In this section, we reveal and revise descriptions in Zhan et al. (2021) to study the conflicting conclusions in
previous benchmarks and provide clear information to the active learning community. We appreciate that
Zhan et al. (2021) published their source code on GitHub.4 Thus we could examine the difference from our
settings.

B.1 Experimental Settings

Inputs and base models. At the initial setup, Zhan et al. (2021) employed a random split of 60% of
the dataset for the training set and the remaining 40% for the testing set. No pre-processing was applied
to the dataset, and fixed random seeds were used to ensure consistency in the training and testing sets
across repeated experiments. They used an RBFSVM as the task-oriented model for evaluating the query
strategies.

Query strategies. To compare the performance of 17 query strategies, they implemented random sam-
pling and all query strategies using different libraries. The libact library provided implementations for
Uncertainty Sampling (US), Query by Committee (QBC), Hinted Support Vector Machine (HintSVM),
QUerying Informative and REpresentative Examples (QUIRE), Active Learning by Learning (ALBL), Den-

4 https://github.com/SineZHAN/ComparativeSurveyIJCAI2021PoolBasedAL
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Table 8: Accuracy of the model with 30% labeled examples: We report the accuracy of the model with 30%
labeled examples on each dataset. The scores with bold mean the best performance on a dataset. ‘TLE’
means a query strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Sonar 71.18% 71.71% 70.73% 71.90% 70.89% 71.02% 67.89% 69.06% 70.20% 71.43% 70.10% 72.37% 71.75% 71.99%
Parkinsons 81.44% 84.95% 81.88% 84.38% 81.87% 81.95% 81.58% 80.50% 81.74% 81.74% 83.74% 82.67% 83.21% 84.08%
Ex8b 82.76% 84.21% 82.99% 83.14% 83.11% 82.54% 84.42% 81.99% 83.48% 81.54% 83.88% 83.51% 84.40% 84.87%
Heart 77.78% 79.78% 77.90% 79.50% 77.85% 77.84% 78.07% 76.76% 77.99% 77.84% 78.29% 78.49% 78.37% 79.27%
Haberman 68.87% 71.21% 68.41% 70.92% 69.58% 68.96% 68.54% 67.49% 67.65% 69.13% 70.33% 69.24% 68.85% 70.33%
Ionosphere 85.97% 90.30% 86.70% 90.27% 87.21% 87.41% 84.42% 84.07% 79.92% 78.34% 88.85% 81.04% 88.76% 89.99%
Clean1 72.59% 74.79% 72.52% 74.26% 72.36% 72.40% 71.87% 72.59% 72.87% 72.59% 72.54% 72.03% 73.59% 74.59%
Breast 95.68% 96.69% 95.77% 96.76% 96.26% 95.52% 96.08% 95.74% 95.99% 90.15% 96.64% 95.62% 96.36% 96.81%
Wdbc 93.73% 95.95% 93.77% 95.95% 94.28% 93.86% 94.07% 92.98% 93.94% 93.58% 95.94% 93.71% 95.75% 95.99%
Australian 84.59% 86.25% 84.62% 86.12% 84.56% 85.00% 84.50% 82.80% 84.79% 83.76% 86.00% 84.76% 84.91% 85.77%
Diabetes 72.60% 74.27% 72.84% 73.84% 72.72% 73.12% 73.19% 70.34% 72.86% 71.05% 73.59% 72.59% 72.54% 72.78%
Mammographic 79.53% 82.05% 79.27% 82.07% 79.42% 78.87% 79.10% 79.10% 79.60% 78.65% 82.08% 79.89% 79.17% 81.69%
Ex8a 91.08% 92.63% 91.30% 92.75% 91.20% 91.01% 94.96% 77.68% 80.40% 82.04% 93.09% 92.75% 88.08% 93.89%
Tic 90.12% 91.07% 90.12% 91.29% 90.11% 90.15% 89.58% 89.37% 90.21% 88.67% 90.78% TLE 89.79% 90.11%
German 72.16% 73.73% 72.50% 73.56% 72.35% 72.71% 72.11% 72.40% 71.84% 70.83% 73.47% TLE 72.96% 73.24%
Splice 91.53% 95.47% 91.53% 95.17% 91.36% 91.75% 90.43% 89.53% 91.76% 87.21% 94.79% 91.80% 91.82% 92.98%
Gcloudb 88.09% 89.06% 88.20% 89.03% 88.23% 88.33% 88.56% 84.96% 84.50% 85.99% 89.15% 88.26% 88.62% 89.27%
Gcloudub 92.67% 95.38% 92.52% 94.84% 93.37% 92.76% 90.66% 84.03% 87.36% 81.48% 94.49% 91.84% 91.76% 94.42%
Checkerboard 99.29% 97.22% 99.19% 99.76% 99.61% 99.16% 99.47% 91.51% 91.71% 79.49% 99.65% 99.56% 99.29% 99.81%
Spambase 93.10% 95.14% 93.22% 95.11% 93.45% 93.07% 92.99% 90.03% TLE 93.16% 94.88% TLE 93.49% 95.04%
Banana 88.02% 89.08% 87.83% 88.98% 87.86% 87.75% 87.96% 74.16% 79.78% 76.83% 89.16% TLE 87.43% 88.98%
Phoneme 85.14% 88.47% 85.14% 88.20% 86.02% 84.93% 85.59% 83.45% TLE 80.68% 88.15% TLE 85.15% 88.00%
Ringnorm 94.22% 96.15% 94.59% 96.32% 93.38% 94.01% 51.04% 64.64% TLE 55.09% 96.12% TLE 94.06% 94.94%
Twonorm 95.67% 96.76% 95.67% 96.77% 95.76% 95.73% 96.03% 77.35% TLE 95.08% 96.75% TLE 96.02% 96.57%
Phishing 94.09% 96.56% 93.67% 96.55% 93.79% 93.98% 93.83% 91.96% TLE 91.03% 96.38% TLE 94.81% 96.60%
Covertype 73.54% 76.30% 73.16% 76.25% TLE 65.82% TLE 63.94% TLE 60.21% 73.13% TLE 69.72% 74.64%
Bioresponse 72.11% 74.10% 72.51% 74.72% 71.91% 73.20% 69.89% 69.11% TLE 72.11% 73.33% TLE 71.76% 73.78%
Pol 96.34% 98.28% 96.22% 98.25% 96.41% 96.70% 94.84% 91.99% TLE 96.34% 98.14% TLE 95.93% 98.25%

sity Weighted Uncertainty Sampling (DWUS), and Variation Reduction (VR). The Google library included
Random Sampling (Uniform), k-Center-Greedy (KCenter or Core-Set), Margin-based Uncertainty Sampling
(Margin), Graph Density (Graph), Hierarchical Sampling (Hier), Informative Cluster Diverse (InfoDiv), and
Representative Sampling (MCM). The ALiPy library contributed Estimation of Error Reduction (EER),
BMDR, SPAL, and LAL. Besides, they proposed the Beam-Search Oracle (BSO) as a reference to approx-
imate the optimal sequence of queried samples that maximizes performance on the testing set, aiming to
assess the potential improvement space for query strategies on specific datasets. Through reviewing their re-
leased source code, we identified differences between the task-oriented and query-oriented models for specific
query strategies. Table 9 highlights the discrepancies between the two models for each query strategy.5 In
particular, Margin and US (US-C and US-NC in our notation) are variant settings for Uncertainty Sampling.
We further discuss such differences in Section 5.1. In re-benchmarking (Appendix C), we adopt RBFSVM
for a query strategy and evaluation by default.

Experimental design. The active learning algorithm was stopped when the total budget was equal to
the size of the unlabeled pool, T = |D(0)

u |. They collected the testing accuracy at each round to construct a
learning curve, and the AUBC was calculated to summarize the performance of a query strategy on a dataset.
To ensure reliable results, they conducted KS = 100 repeated experiments for small datasets (n < 2000)
and KL = 10 repeated experiments for large datasets (n ≥ 2000), where n represents the size of the dataset.
Finally, they compute the average AUBCs across repeated experiments for each query strategy on each
dataset.

Analysis methods. Zhan et al. (2021) benchmarked the pool-based active learning for classifications on
35 datasets, including 26 binary-class and 9 multi-class datasets collected from LIBSVM and UCI Chang
& Lin (2011); Dua & Graff (2017). They provided the data properties, such as the number of samples n,
dimension d, and imbalance ratio IR, where the imbalance ratio is the proportion of negative labels to the

5The settings are different from their source code for Google and ALiPy4.
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Table 9: Settings of query-oriented models H for specific query strategies Q in (Zhan et al., 2021).
Q H

US(Zhan et al. (2021)) , US-NC (Ours) LR(C = 0.1)
QBC LR(C = 1), SVM(Linear,

probability = True),
SVM(RBF, probability =
True), Linear Discriminant
Analysis

ALBL Combination of QSs with same
H: US-C, US-NC, HintSVM

VR LR(C = 1)
EER SVM(RBF, probability =

True)

number of positive labels
IR = |{(xi, yi) : yi = +1}|

|{(xj , yj) : yj = −1}| .

They employed these metrics to analyze the results from different aspects to explain the results of the query
strategy’s performance on a dataset. We agree with their core idea of the analysis methods and believe their
benchmark benefits the research community. However, we observe that the conclusion of their work differs
from several previous works. For example, Zhan et al. (2021) claimed that LAL performs better on binary
datasets than Uncertainty Sampling while not in the other benchmark Yang & Loog (2018). The evidence
urges us to re-implement the active learning benchmark to clarify the conflicting claims.

B.2 Benchmarking datasets

Section 3 records the datasets used in the previous benchmark Zhan et al. (2021). However, we discover that
the attributes of datasets are different. We report the revision in Table 10 via ‘Zhan et al. (2021) → Our
new version’.

B.3 Failure of the Reproducing Uniform

Table 13 (Table 14) shows the significant difference between ours and Zhan et al. (2021). We noticed an
implementation error in the previous benchmark. In Google, Uniform assumes that the data has already
been shuffled.6 However, the implementation in Zhan et al. (2021) does not shuffle the unlabeled pool at
first.7

[Code=Python]
dict_data,labeled_data,test_data,unlabeled_data = \

split_data(dataset_filepath, test_size, n_labeled)

print(unlabeled_data)
# results of indices of unlabeled pool
#[3, 4, 5, 10, 11, 13, 15, 16, 20, 23, 24, 26, 27, 29, 30, \
# 31, 33, 36, 37, 41, 43, 44, 45, 49, 50, 51, 53, 54, 55, \
# 57, 63, 64, 65, 70, 73, 75, 77, 78, 79, 83, 84, 86, 87, \
# 88, 89, 91, 92, 95, 97, 102, 105, 110, 112, 114, 115, \
# 121, 122, 127, 128, 131, 132, 136, 137, 139, 140, 144, \

6https://github.com/google/active-learning/blob/master/sampling_methods/uniform_sampling.py#L40
7https://github.com/SineZHAN/ComparativeSurveyIJCAI2021PoolBasedAL/blob/master/Algorithm/

baseline-google-binary.py#L331
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Table 10: Benchmarking datasets and revision of Table 2 in Zhan et al. (2021) Note. Pol, Bioresponse, and
Covertype are expanded datasets which are not included in Zhan et al. (2021).

Property r d n

Appendicitis Real-life 4 7 106
Sonar Real-life 1 60 108→208
Parkinsons Real-life 3.06 22 195
Ex8b Synthetic 1 2 206→210
Heart Real-life 1 13 270
Haberman Real-life 2 3 306
Ionosphere Real-life 1 34 351
Clean1 Real-life 1 168→166 475→476
Breast Real-life 1 10 478
Wdbc Real-life 1 30 569
Australian Real-life 1 14 690
Diabetes Real-life 1 8 768
Mammographic Real-life 1 5 830
Ex8a Synthetic 1 2 863→766
Tic Real-life 6 9 958
German Real-life 2 20→24 1000
Splice Real-life 1 61→60 1000
Gcloudb Synthetic 1 2 1000
Gcloudub Synthetic 2→2.03 2 1000
Checkerboard Synthetic 1→1.82 2 1600
Spambase Real-life 1→1.54 57 4601
Banana Synthetic 1 2 5300
Phoneme Real-life 2 5 5404
Ringnorm Real-life 1 21→20 7400
Twonorm Real-life 1 50→20 7400
Phishing Real-life 1 30 2456→11055
Pol Real-life 1 26 10082
Bioresponse Real-life 1 419 3434
Covertype Real-life 1 10 566602

# 148, 150, 151, 155, 157, 159, 160, 161, 162, 164, 165, \
# 167, 168, 172, 175, 176, 177, 178, 181, 182, 183, 184, \
# 185, 186, 187, 188, 190, 191, 193, 194, 197, 198, 199, \
# 202, 203, 204, 205, 207, 208]

We also modify their Uniform implementation by shuffle the unlabeled_data. Then, we can obtain similar
results based on their source code, see Table 11.

[Code=Python]
dict_data,labeled_data,test_data,unlabeled_data = \

split_data(dataset_filepath, test_size, n_labeled)
random.shuffle(unlabeled_data)

The unshuffled implementation in Google significantly impacts binary classification datasets, such as Sonar,
Clean1, and Spambase. Also, it affects Ex8a and German, which enlarges the difference AUBCs between
Uniform and other query strategies. Due to this experience, we suggest practitioners ensure the correct-
ness of the baseline method by comparing different implementations before conducting the benchmarking
experiments.
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Table 11: Comparing different train/test/labeled splits on Sonar : first column is reprot and reproducing
results in Zhan et al. (2021), second column in our implementation, and the third column is reproducing
results after we revise Zhan et al. (2021)’s code.

Uniform Report and code
in Zhan et al.
(2021)

Our code Modified code
in Zhan et al.
(2021)

Google 0.6274* 0.7513 0.7577
libact - 0.7520 0.7543
ALiPy - 0.7556 0.7579

B.4 Query Strategy and Implementation

We revise some descriptions of the query strategies in Zhan et al. (2021):

(1) ‘Graph Density (Graph) is a typical parallel-form combined strategy that balances the uncertainty
and representative based measure simultaneously via a time-varying parameter Ebert et al. (2012).’

(2) ‘Marginal Probability based Batch Mode AL (Margin) Chattopadhyay et al. (2012) selects a batch
that makes the marginal probability of the new labeled set similar to the one of the unlabeled set
via optimization by Maximum Mean Discrepancy (MMD).’

(3) ‘Kremer et al. (2014) proposed an SVM-based AL strategy by minimizing the distances between
data points and classification hyperplane (HintSVM).’

Issue (1): Although Ebert et al. (2012) proposed the reinforcement learning method to select uncertainty and
diversity sample(s) during the procedure, Google Yilei “Dolee” Yang (2017) does not implement the whole
procedure but only the diversity sampling method.8 Thus, we should categorize it as diversity-based
method.
Issue (2): Google Yilei “Dolee” Yang (2017) does not use MMD to measure the distance. The implementation
is uncertainty sampling with a margin score is mentioned in the survey paper Settles (2012). Therefore, we
should categorize it to uncertainty-based method.
Issue (3): libact Yang et al. (2017) implemented HintSVM based on the work of Li et al. (2015) rather than
Kremer et al. (2014).

B.5 Relationship between query strategies

We provide additional evidence to explain the relationship between query strategies, which supports our
experimental results.

(1) US-C and InfoDiv should be the same when the query batch size is one.

(2) Different uncertainty measurements should be the same in the binary classification, indicating that
different uncertainty measurements do not cause differences between US-C and US-NC.

(3) SPAL changes the condition of variables used for discriminative and representative objective func-
tions in BMDR.

Issue (1): InfoDiv clusters unlabeled samples into several clusters, then selects uncertain samples and keeps
the same cluster distribution simultaneously.9 Therefore, it is the same when we set the B = 1 to query the

8https://github.com/google/active-learning/blob/master/sampling_methods/graph_density.py
9https://github.com/google/active-learning/blob/master/sampling_methods/informative_diverse.py
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most uncertain sample. Zhan et al. (2021) provided the different numbers of US-C and InfoDiv in Table 4,
which might have resulted from using the different batch sizes of these query strategies.
Issue (2): The least confidence, margin, and entropy are monotonic functions with a peak equal to P(y =
+1 | x) = 0.5 in binary classification, such that all of these uncertainty measurements would query the same
point Settles (2012).
Issue (3) The optimization problem in BMDR is

min
α⊤1|Du|=b,w

|Dl|∑
i=1

(yi − w⊤ϕ(xi))2 + λ∥w∥2

+
|Du|∑
i=1

αi

[
∥w⊤ϕ(xj)∥2

2 + 2|w⊤ϕ(xj)|
]

+ β(α⊤K1α + kα),

(1)

where ϕ(x) is the feature mapping, λ is the hyper-parameter for the regularization term, β is the hyper-
parameter for the diversity term, 1|Du| means ones vector with length of the unlabelled pool |Du|. K1 is
defined as K1 = 1

2 KUU , where KUU means the kernel matrix with sub-index U of unlabelled pool Du. SPAL
only changes α⊤1|Du| = b to α⊤e|Du| = b.10

B.6 Comparison between Zhan et al. (2021) and Yang & Loog (2018)

Yang & Loog (2018) propose the first benchmark for pool-based active learning for the conventional Logistic
Regression model. The work compares 10 query strategies that could be categorized into model uncertainty
and hybrid criteria. In datasets, they adopt 44 binary datasets and follow data pre-processing in Chang
& Lin (2011). To compare performance across different query strategies, they also use an Area Under
the Learning Curve with accuracy to show the average performance of a query strategy, named AUBC in
Zhan et al. (2021). Furthermore, they compare the performance of each query strategy by average rank and
improvement (win/tie/loss) from random sampling, which has the same purpose as our work (See Section 4.1
and Section 4.2).

C Re-benchmarking results of Zhan et al. (2021)

After we accomplish experiments under the settings in Appendix B.1, we obtain the benchmarking results
for RBFSVM with the form (query strategy, dataset, seed, |Dl|, accuracy) for each round. A (random) seed
corresponds to the different training sets, test sets, and initial label pool splits for a dataset. We collect
the accuracy at each round (|Dl|, accuracy) to plot a learning curve for query strategy on a dataset with a
seed and summarize it as the mean AUBC in Table 12. Our re-benchmarking results show that Uncertainty
Sampling with compatible models (US-C) outperforms the other query strategies on most datasets.

C.1 Statistical comparison of re-benchmarking results

We show our re-benchmarking results for RBFSVM side-by-side with Zhan et al. (2021)’s Table 3 in Table 13.
To determine if there is a statistical difference between the two benchmarking results, we construct the
confidence interval with the t-distribution of mean AUBCs. If a result in Zhan et al. (2021) falls outside the
interval, their mean significantly differs from ours. We notice significant differences in Uniform on several
datasets in Table 13. Therefore, we focus on comparing Uniform in Table 14, demonstrating our mean and
standard deviation (SD) AUBC of Uniform and the mean AUBC of Uniform reported by Zhan et al. (2021).
There are 13, nearly half of the datasets, significantly different from the existing benchmark with significance
level α = 5%. Furthermore, we perform better on most datasets except for Parkinsons and Mammographic.
1% of mean AUBC is larger than previous work on 8 datasets, especially for Sonar, Clean1, and Spambase.
Following the same procedure of statistical testing, Table 15 demonstrates BSO of ours and (Zhan et al.,

10https://github.com/NUAA-AL/ALiPy/blob/master/alipy/query_strategy/query_labels.py#L1469
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Table 12: Mean AUBC of Query Strategies: We report query strategies with mean of repeated experiments.
Uniform US-C US-NC InfoDiv QBC EER VR Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR SPAL ALBL LAL

Appendicitis 83.95% 84.54% 84.49% 84.54% 84.41% 84.26% 83.95% 84.14% 84.19% 83.98% 83.90% 83.99% 84.21% 84.57% 84.18% 84.15% 84.49% 84.33%
Sonar 75.00% 77.88% 76.54% 77.88% 76.75% 75.73% 75.00% 75.54% 75.58% 74.54% 74.06% 75.11% 74.35% 77.51% 75.98% TLE 76.28% 76.76%
Parkinsons 83.05% 85.31% 85.11% 85.31% 84.49% 84.51% 83.05% 83.57% 82.91% 83.56% 81.78% 83.05% 82.74% 85.27% 83.69% 83.85% 84.61% 84.63%
Ex8b 88.53% 89.81% 89.39% 89.81% 89.38% 89.36% 88.53% 88.81% 88.50% 89.15% 86.95% 87.86% 88.42% 89.77% 88.84% TLE 88.74% 89.42%
Heart 80.51% 81.57% 81.20% 81.57% 81.30% 80.85% 80.51% 80.75% 80.54% 81.05% 80.39% 81.03% 80.57% 81.54% 80.65% 80.97% 81.18% 81.24%
Haberman 73.09% 72.99% 73.02% 72.99% 73.05% 73.14% 73.08% 73.01% 73.04% 72.67% 72.62% 72.46% 73.16% 72.92% 73.23% TLE 72.97% 73.11%
Ionosphere 91.80% 93.00% 91.97% 93.00% 92.78% 92.49% 91.80% 92.04% 91.62% 91.34% 89.64% 90.15% 87.93% 92.96% 89.34% 92.32% 92.06% 92.65%
Clean1 81.79% 84.32% 83.41% 84.32% 83.42% 82.15% TLE 81.86% 81.00% 79.02% 76.97% 81.81% 81.79% 84.16% TLE TLE 82.64% 83.34%
Breast 96.14% 96.34% 96.26% 96.34% 96.33% 96.31% 95.82% 96.17% 96.15% 96.28% 96.24% 96.24% 96.06% 96.34% 96.18% TLE 96.26% 95.86%
Wdbc 95.39% 96.52% 95.97% 96.52% 96.26% 96.22% 95.39% 95.65% 95.40% 95.86% 95.58% 95.83% 95.04% 96.50% 95.12% 95.72% 96.12% 96.13%
Australian 84.83% 85.04% 84.59% 85.04% 84.94% 84.72% 84.83% 84.87% 84.69% 84.78% 84.44% 84.76% 84.73% 85.04% 84.73% 85.04% 84.86% 84.83%
Diabetes 74.24% 74.79% 74.32% 74.79% 74.72% 74.57% 74.24% 74.34% 74.24% 74.91% 74.56% 74.70% 72.27% 74.71% 74.23% 74.65% 74.43% 74.62%
Mammographic 81.25% 81.64% 81.65% 81.64% 81.61% 81.58% 81.23% 81.40% 81.22% 81.48% 80.94% 81.42% 79.95% 81.68% 81.32% TLE 81.59% 81.39%
Ex8a 85.52% 88.01% 82.83% 88.01% 86.16% 85.22% 85.52% 86.10% 85.13% 85.55% 81.34% 80.95% 79.24% 87.80% 85.39% TLE 84.19% 83.54%
Tic 87.18% 87.20% 87.18% 87.20% 87.19% 87.19% 87.18% 87.19% 87.20% 87.16% 87.19% 86.99% 87.10% 87.20% 87.19% 87.12% 87.18% 87.20%
German 73.40% 74.17% 73.87% 74.17% 73.96% 73.80% 73.40% 73.48% 73.54% 73.62% 73.06% 73.55% 72.69% 74.09% TLE 73.62% 73.66% 74.00%
Splice 80.68% 82.28% 81.47% 82.28% 81.50% 80.73% 80.68% 80.62% 78.21% 74.76% 77.57% 80.35% 76.08% 82.39% TLE TLE 81.00% 80.45%
Gcloudb 89.50% 89.85% 88.58% 89.85% 89.73% 89.47% 89.50% 89.49% 89.40% 89.25% 87.55% 87.85% 88.62% 89.82% 89.54% TLE 89.72% 89.46%
Gcloudub 94.40% 95.67% 94.89% 95.67% 95.36% 93.87% 94.40% 94.75% 94.40% 89.12% 89.35% 93.17% 93.62% 95.57% 93.77% TLE 93.83% 94.76%
Checkerboard 97.81% 98.47% 91.34% 98.47% 97.02% 98.40% 97.81% 97.85% 97.37% 98.74% 92.42% 94.37% 90.45% 98.47% 98.32% TLE 96.79% 96.41%
Spambase 91.03% 92.05% 90.10% 92.05% 91.90% TLE TLE 91.22% 90.73% 90.52% 89.85% TLE 91.03% 92.00% TLE TLE 91.62% 90.62%
Banana 89.26% 87.87% 80.50% 87.87% 89.08% TLE 89.25% 89.29% 88.48% 89.30% 85.10% 82.99% 81.64% 87.54% TLE TLE 88.51% 89.23%
Phoneme 82.54% 83.55% 82.11% 83.55% 83.18% TLE TLE 83.00% 82.09% 82.40% 80.83% 81.83% 81.37% 83.59% TLE TLE 82.47% 82.42%
Ringnorm 97.76% 97.86% 97.67% 97.86% 97.71% TLE TLE 97.66% 97.11% 94.77% 97.15% TLE 93.46% 97.82% TLE TLE 97.69% 97.80%
Twonorm 97.53% 97.64% 97.55% 97.64% 97.60% TLE TLE 97.52% 97.54% 97.55% 97.36% TLE 97.31% 97.63% TLE TLE 97.52% 97.61%
Phishing 93.82% 94.60% 93.91% 94.60% 94.41% TLE TLE 93.80% 93.27% 94.06% 92.96% TLE 89.23% 94.49% TLE TLE 94.20% 94.29%

Table 13: We report our AUBCs (%) with Table 3 in Zhan et al. (2021) side-by-side. A score denoted
with format: Zhan et al. (2021) → ours. The symbol ‘*’ indicates a significant difference with the
significance level α = 5%.

Uniform BSO Avg BEST BEST_QS WORST WORST_QS

Appendicitis 84% → 83.95% 88% → 88.37% 84% → 84.25% 86% → 84.57%* EER → MCM 83% → 83.90%* DWUS → HintSVM
Sonar 62% → 74.63%* 83% → 88.40%* 76% → 75.60% 78% → 77.62%* LAL → US-C 73% → 73.57% HintSVM →HintSVM
Parkinsons 84% → 83.05%* 87% → 88.28%* 85% → 83.97% 86% → 85.31%* QBC → US-C 83% → 81.78% HintSVM →HintSVM
Ex8b 87% → 88.53%* 92% → 93.76%* 89% → 88.88% 91% → 89.81%* SPAL → US-C 86% → 86.99% HintSVM →HintSVM
Heart 81% → 80.51% 85% → 89.30%* 79% → 80.99% 83% → 81.57%* InfoDiv → US-C 72% → 80.39%* DWUS → HintSVM
Haberman 73% → 73.08% 75% → 78.96%* 73% → 72.95% 74% → 73.19% BMDR → BMDR 72% → 72.44% QUIRE → QUIRE
Ionosphere 90% → 91.80%* 93% → 95.45%* 91% → 91.59% 93% → 93.00%* LAL → US-C 88% → 87.93%* HintSVM → DWUS
Clean1 65% → 81.83%* 87% → 92.19%* 81% → 81.97% 84% → 84.25%* LAL → US-C 75% → 76.95% HintSVM →HintSVM
Breast 95% → 96.16%* 96% → 97.60%* 96% → 96.19% 96% → 96.32%* SPAL → US-C 95% → 95.82%* DWUS → VR
Wdbc 95% → 95.39% 97% → 98.41%* 96% → 95.87% 97% → 96.52%* LAL → US-C 94% → 95.04%* EER → DWUS
Australian 85% → 84.83% 88% → 90.46%* 85% → 84.82% 85% → 85.04%* Core-Set → US-C 82% → 84.44%* DWUS → HintSVM
Diabetes 74% → 74.24%* 78% → 82.57%* 74% → 74.42% 75% → 74.91% Core-Set →Core-Set 69% → 72.27%* EER → DWUS
Mammographic 82% → 81.30%* 84% → 85.03%* 82% → 81.44% 83% → 81.78% MCM → MCM 80% → 79.99%* EER → DWUS
Ex8a 84% → 85.39%* 87% → 88.28%* 84% → 84.62% 86% → 87.88%* Hier → US-C 80% → 79.11%* QUIRE → DWUS
Tic 87% → 87.18% 87% → 90.77%* 87% → 87.17% 87% → 87.20%* EER → US-C 87% → 86.99% QUIRE → QUIRE
German 73% → 73.40%* 78% → 82.08%* 74% → 73.65% 74% → 74.17%* QBC → US-C 72% → 72.68% DWUS → DWUS
Splice 81% → 80.75% 87% → 91.02%* 79% → 80.08% 82% → 82.34%* QBC → MCM 68% → 75.18%* EER → Core-Set
Gcloudb 89% → 89.52% 90% → 90.91%* 89% → 89.20% 90% → 89.81%* Graph → US-C 87% → 87.48% HintSVM →HintSVM
Gcloudub 94% → 94.37% 96% → 96.83%* 93% → 93.72% 95% → 95.60%* QBC → US-C 86% → 89.29%* EER → Core-Set
Checkerboard 98% → 97.81% 99% → 99.72%* 94% → 96.42% 99% → 98.74% Core-Set →Core-Set 90% → 90.45%* VR → DWUS
Spambase 69% → 91.03%* - → - 88% → 91.14% 92% → 92.05%* QBC → US-C 69% → 89.85%* DWUS → HintSVM
Banana 90% → 89.26% - → - 85% → 86.90% 89% → 89.30%* Hier → Core-Set 78% → 80.50%* QUIRE → US-NC
Phoneme 82% → 82.54% - → - 82% → 82.49% 83% → 83.59%* QBC → MCM 80% → 80.83% HintSVM →HintSVM
Ringnorm 98% → 97.76%* - → - 95% → 97.05% 98% → 97.86%* LAL → US-C 80% → 93.46% DWUS → DWUS
Twonorm 98% → 97.53% - → - 98% → 97.54% 98% → 97.64%* Core-Set → US-C 97% → 97.31% DWUS → DWUS
Phishing 93% → 93.82%* - → - 94% → 93.65% 95% → 94.60%* LAL → US-C 92% → 89.23%* Graph → DWUS

2021). This phenomenon is more evident in BSO than in Uniform. We still get significantly different and
better performances on most datasets except for Appendicitis.

C.2 Verify usefulness

Zhan et al. (2021) verified the applicability of a query strategy by several aspects:

• Low/high dimension view (LD for d < 50, HD for d ≥ 50),

• Data scale view (SS for n < 1000, LS for n ≥ 1000),
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Table 14: Reporducing Failure of Uniform
Mean SD Zhan et al. (2021) α = 5% α = 1%

Appendicitis 83.95% 3.63% 83.6% In In
Sonar 74.63% 3.79% 61.7% Out Out
Parkinsons 83.05% 3.68% 84.0% Out In
Ex8b 88.53% 2.80% 86.6% Out Out
Heart 80.51% 2.79% 80.8% In In
Haberman 73.08% 2.70% 72.7% In In
Ionosphere 91.80% 1.78% 90.1% Out Out
Clean1 81.83% 1.94% 64.9% Out Out
Breast 96.16% 0.90% 95.4% Out Out
Wdbc 95.39% 1.30% 95.2% In In
Australian 84.83% 1.58% 84.6% In In
Diabetes 74.24% 1.52% 73.6% Out Out
Mammographic 81.30% 1.98% 81.9% Out Out
Ex8a 85.39% 2.17% 83.8% Out Out
Tic 87.18% 1.53% 87.0% In In
German 73.40% 1.73% 72.6% Out Out
Splice 80.75% 1.61% 80.6% In In
Gcloudb 89.52% 1.17% 89.3% In In
Gcloudub 94.37% 0.96% 94.2% In In
Checkerboard 97.81% 0.59% 97.8% In In
Spambase 91.03% 0.57% 68.5% Out Out
Banana 89.26% 0.38% 89.5% In In
Phoneme 82.54% 1.01% 82.2% In In
Ringnorm 97.76% 0.21% 97.6% Out In
Twonorm 97.53% 0.19% 97.6% In In
Phishing 93.82% 0.48% 92.6% Out Out

• Data balance/imbalance view (BAL for γ < 1.5, IMB for γ ≥ 1.5).

They compare these aspects with a score

δq,s = max {AUBCBSO,s, AUBCUS,s, . . . , AUBCLAL,s} −AUBCq,s,

Specifically, they grouped δq,s by different aspects to generate the metric for the report

δ̄q,v =
∑

s∈v δq,s

|{s ∈ v}|
,

where v is one of a dataset’s dimension, scale, or class-balance views. We re-benchmark results and denote
the rank of the query strategy with a superscript in Table 16. Table 16 shows that the US-C (InfoDiv) and
MCM occupy the first and second ranks in different aspects, and the QBC keeps the third rank. The results
are unlike those of Zhan et al. (2021) except for the QBC performance well on both of us. We explain the
reason for the same performance of US-C and InfoDiv in Appendix B.5.

Using score δ̄q,v to ascertain the applicability of several query strategies is straightforward. However, it
could bring an issue: BSO outperforms query strategies significantly on most datasets in our benchmarking
results. We cannot exclude those remaining large-scale datasets without BSO, i.e., n > 1000, having the
same pattern, such that their results could impact different aspects. Therefore, we replace δ̄q,v with the
improvement of query strategy q over Uniform, i.e., τq,s,k in Section 4.2, because Uniform is the baseline and
most efficient across all experiments, which is essential to complete.
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Table 15: Reporducing Failure of BSO
Mean SD Zhan et al. (2021) α = 5% α = 1%

Appendicitis 88.37% 2.95% 88.1% In In
Sonar 88.40% 2.84% 83.0% Out Out
Parkinsons 88.28% 3.19% 86.5% Out Out
Ex8b 93.76% 1.82% 92.4% Out Out
Heart 89.30% 2.47% 84.8% Out Out
Haberman 78.96% 3.05% 75.1% Out Out
Ionosphere 95.45% 1.42% 93.3% Out Out
Clean1 92.19% 1.69% 87.1% Out Out
Breast 97.60% 0.67% 96.1% Out Out
Wdbc 98.41% 0.65% 97.3% Out Out
Australian 90.46% 1.48% 87.8% Out Out
Diabetes 82.57% 1.70% 78.4% Out Out
Mammographic 85.03% 1.97% 84.4% Out Out
Ex8a 88.28% 2.03% 87.3% Out Out
Tic 90.77% 2.27% 87.3% Out Out
German 82.08% 2.01% 78.3% Out Out
Splice 91.02% 1.18% 87.1% Out Out
Gcloudb 90.91% 1.09% 90.1% Out Out
Gcloudub 96.83% 0.78% 96.3% Out Out
Checkerboard 99.72% 0.36% 99.2% Out Out

Table 16: Verifying Applicability with δi

B LD HD SS LS BAL IMB

US-NC 4.77 4.16 8.12 5.36 3.96 5.09 4.39
QBC 3.833 3.153 7.573 5.023 2.203 4.053 3.573

HintSVM 5.91 4.92 11.37 6.77 4.73 6.25 5.51
QUIRE 5.96 5.08 11.54 6.13 5.60 6.94 4.98
ALBL 4.20 3.49 8.06 5.37 2.59 4.45 3.90
DWUS 6.20 5.46 10.24 6.71 5.50 6.83 5.46
VR 5.04 4.26 12.02 5.43 4.13 5.36 4.72
Core-Set 4.92 3.78 11.20 5.79 3.72 5.35 4.42
US-C 3.501 2.891 6.861 4.621 1.971 3.721 3.241

Graph 4.62 3.72 9.58 5.77 3.05 4.98 4.20
Hier 4.22 3.41 8.69 5.53 2.43 4.49 3.90
InfoDiv 3.501 2.891 6.861 4.621 1.971 3.721 3.241

MCM 3.562 2.942 6.982 4.682 2.032 3.802 3.272

EER 5.21 4.18 11.09 5.33 4.86 6.13 4.30
BMDR 5.61 4.57 11.50 5.77 5.11 6.33 4.89
SPAL 5.90 4.69 12.32 5.67 6.77 6.56 5.17
LAL 4.14 3.41 8.14 5.27 2.59 4.37 3.86

The other issue is heuristically grouping the views into a binary category and averaging the performance with
the same views δ̄q,v without reporting SDs. These analysis methods may be biased when the properties of
datasets are not balanced. To address this issue, we plot a matrix of scatter plots that directly demonstrates
the improvement of US-C for each property on all datasets with different colors. Figure 7 shows a low
correlation (|r| < 0.4) and no apparent patterns between properties and the improvement of US-C, indicating
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that Our analysis results do not support the claims of ‘Method aspects’ in the existing benchmark Zhan
et al. (2021), either. In conclusion, we want to emphasize that revealing the analysis methods is
as important as the experimental settings because the analysis method employed will influence the
conclusion.

Figure 7: A matrix of scatter plots of the improvement of US-C

C.3 More on analysis of non-compatible models for uncertainty sampling

Section 5.1 demonstrates results involving different combinations of query-oriented and task-oriented models
on Checkerboard and Gcloudb datasets. We reveal more datasets from Figure 8 to Figure 12. These re-
sults still hold for the compatible models for uncertainty sampling outperform non-compatible ones on most
datasets, i.e., the diagonal entries of the heatmap are larger than non-diagonal entries. Figure 13 demon-
strates that non-compatible models achieve slightly better performance than compatible models. When
query-oriented and task-oriented models are heterogeneous, we conjecture that it could improve uncertainty
sampling by exploring more diverse examples like the hybrid criteria approach Settles (2012); Sinha et al.
(2019).

D Benchmarking results of Random Forest

This section follows the analysis procedure in Section 4 to benchmark Random Forest (RF) on the same
datasets. The analysis results are listed as follows:

1. Verify the superiority by comparing the mean AUBC of query strategies in Table 17.

2. Verify the superiority by comparing the average accuracy of the model with 20% of the total budget
in Table 18.

3. Verify the superiority by comparing the average ranking of query strategies in Table 19.

4. Verify the usefulness by comparing the data utilization rate of query strategies in Table 20.

These results are consistent with the previous benchmarking results in Section 4 and Appendix C. We
conclude that the uncertainty sampling with compatible RF models gains superiority and usefulness for
tabular datasets.
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Figure 8: Mean AUBC of query-oriented model and task-oriented model on group 1. (Compatible LRs achieve
best results.): Appendicitis (top-left), Ex8b (top-right), Haberman (bottom-left), and Wdbc (bottom-right).

E Computational resource

We test the time of an experiment for query strategy running on a dataset. Our re-
source is: DELL PowerEdge R730 with CPU Intel Xeon E5-2640 v3 @2.6GHz * 2
and memory 192 GB. The results are reported in the supplementary material with path
active-learning-benchmark/results/rbfsvm-exps_rebenchmarkZhan2021/speedtest/README.md.
Note that this work does not optimize libact, Google, and ALiPy performance. If practitioners discover
inefficient implementation, please contact us by mail or leave issues on GitHub.

F Limitations, related benchmarks, and future works

While we intentionally constrain our benchmark’s scope to maintain fairness and reproducibility, this focus
might give the impression of limitations. It is worth noting that prior active learning benchmarks focus
on assessing query strategies within the context of advanced deep learning models, especially in image
classification and visual question answering Beck et al. (2021); Karamcheti et al. (2021); Zhan et al. (2022).
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Figure 9: Mean AUBC of query-oriented model and task-oriented model on group 1. (Compatible LRs
achieve best results.): Diabetes (top-left), Mammographic (top-right), Gcloudub (bottom-left), and Twonorm
(bottom-right).

We encourage practitioners to explore active learning techniques in broader tasks and domains. For example,
ample room exists to investigate active learning’s applicability in areas like regression problems, object
detection, and natural language processing Cai et al. (2016); Wu et al. (2019); Zhang et al. (2020); Yuan
et al. (2021); Brust et al. (2018); Zhang et al. (2022).

Evaluating the performance of query strategy is a challenge in benchmarking. Kottke et al. (2017) and
Trittenbach et al. (2021) propose metrics such as Deficiency score, Data Utilization Rate, Start Quality,
and Average End Quality to summarize the performance of a query strategy from learning curves. Our
implementation saves querying results at each round, enabling thorough analysis without costly re-runs,
which empowers researchers to develop novel metrics and methods, driving advancements in active learning
assessment.

The stability of experimental results is another challenge to a fair comparison. Studies by Ji et al. (2023); Lüth
et al. (2023); Munjal et al. (2022) have revealed variations in performance metrics stemming from different
query strategies, causing inconsistent results and claims in previous research. They suggest standardizing
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Table 17: Benchmarking results of Random Forest. The numbers are mean AUBC (↑, %). We report the
baseline method (Uniform), the best query strategy with its mean AUBC (BEST_QS, BEST), and the worst
query strategy with its mean AUBC (WORST_QS, WORST) across datasets in Table 17.

Uniform BEST_QS BEST WORST_QS WORST

Appendicitis 83.70% US 84.48% DWUS 83.12%
Sonar 75.66% US 77.31% HintSVM 74.75%
Parkinsons 84.31% US 86.61% HintSVM 82.79%
Ex8b 85.97% US 87.07% HintSVM 84.67%
Heart 80.19% DWUS 80.93% HintSVM 79.64%
Haberman 69.56% US 70.61% QUIRE 68.91%
Ionosphere 90.98% BALD 92.08% HintSVM 87.22%
Clean1 79.15% BALD 82.09% HintSVM 75.18%
Breast 96.42% US 96.82% DWUS 95.44%
Wdbc 94.29% LAL 95.32% HintSVM 93.92%
Australian 85.77% US 86.20% DWUS 85.55%
Diabetes 74.60% LAL 74.97% DWUS 73.59%
Mammographic 79.36% LAL 80.82% DWUS 78.82%
Ex8a 93.09% BALD 95.50% HintSVM 87.65%
Tic 86.36% Core-Set 86.43% DWUS 85.48%
German 74.02% US 74.74% DWUS 72.86%
Splice 90.49% MCM 91.52% Core-Set 84.17%
Gcloudb 88.33% LAL 88.96% QUIRE 86.50%
Gcloudub 93.83% BALD 95.34% HintSVM 87.38%
Checkerboard 99.24% LAL 99.67% DWUS 95.00%
Spambase 93.54% BALD 94.74% HintSVM 92.11%
Banana 88.25% LAL 88.82% DWUS 81.54%
Phoneme 86.63% BALD 88.81% HintSVM 84.75%
Ringnorm 94.15% US 95.66% Core-Set 70.55%
Twonorm 96.60% BALD 96.88% HintSVM 94.78%
Phishing 95.61% US 96.68% HintSVM 94.24%
Covertype 76.47% US 79.20% Uniform 76.47%
Bioresponse 73.57% US 74.83% Uniform 73.57%
Pol 96.58% US 97.85% Uniform 96.58%

experimental settings like data augmentation, neural network structures, and optimizers to address this.
These findings emphasize the sensitivity of active learning algorithms to experimental settings, a critical
consideration for future work.

Previous benchmarks show that query strategies may not outperform Uniform in specific settings or
tasks Yang & Loog (2018); Desreumaux & Lemaire (2020); Karamcheti et al. (2021); Munjal et al. (2022).
Our findings, demonstrated in Table 6, also indicate that uncertainty sampling does not excel on datasets
like Checkerboard and Banana. Several works study possible reasons for the failure of uncertainty sam-
pling (Mussmann & Liang, 2018; Karamcheti et al., 2021; Tifrea et al., 2022) to realize the applicability of
active learning algorithms. It underscores the need to explore robust baselines for pool-based active learning,
particularly in real-world scenarios Lu et al. (2023).
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Table 18: Accuracy of the model with 20% labeled examples: We report the accuracy of the model with
20% labeled examples on each dataset. The scores with bold mean the best performance on a dataset.
‘TLE’ means a query strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Sonar 68.98% 69.99% 69.96% 70.45% 69.11% 70.77% 68.57% 69.40% 70.11% 70.15% 69.81% 70.92% 70.33% 70.17%
Parkinsons 81.04% 81.94% 80.87% 82.21% 81.56% 81.04% 80.47% 80.54% 80.53% 81.05% 81.97% 81.41% 81.24% 81.94%
Ex8b 82.44% 83.40% 82.45% 83.62% 82.56% 82.04% 83.83% 81.85% 83.04% 82.61% 83.20% 83.43% 83.18% 83.33%
Heart 78.37% 79.42% 77.80% 78.97% 78.89% 79.08% 78.81% 77.40% 78.78% 79.05% 79.29% 79.40% 78.54% 78.83%
Haberman 70.11% 71.63% 70.24% 71.58% 70.67% 70.79% 69.34% 69.57% 68.76% 71.47% 71.41% 70.49% 70.39% 71.28%
Ionosphere 88.65% 91.34% 88.42% 91.91% 89.13% 88.50% 83.14% 82.30% 80.99% 84.30% 91.54% TLE 88.73% 90.87%
Clean1 71.01% 72.94% 70.82% 73.42% 71.25% 71.27% 66.95% 66.69% 71.31% 70.98% 73.32% 68.87% 72.34% 72.54%
Breast 96.35% 97.18% 96.51% 97.14% 96.66% 96.36% 95.70% 96.36% 95.93% 95.20% 97.22% 96.31% 96.89% 97.23%
Wdbc 93.56% 96.18% 93.35% 96.27% 93.55% 93.62% 93.12% 92.69% 93.28% 93.46% 96.07% 93.85% 94.98% 96.18%
Australian 84.97% 86.17% 85.25% 86.09% 85.42% 85.34% 85.01% 84.69% 85.39% 84.45% 85.72% 85.00% 85.47% 85.98%
Diabetes 73.84% 74.13% 74.07% 74.39% 73.96% 73.86% 73.85% 73.07% 73.71% 72.36% 74.24% 73.50% 73.68% 74.33%
Mammographic 79.74% 82.46% 79.75% 82.23% 80.46% 79.61% 81.19% 80.97% 82.44% 80.13% 82.39% 79.95% 80.67% 82.22%
Ex8a 89.91% 95.05% 89.58% 95.02% 89.86% 91.50% 93.15% 77.99% 82.09% 80.45% 94.51% 91.23% 87.17% 94.46%
Tic 86.92% 86.92% 86.84% 86.96% 86.58% 87.02% 86.93% 86.55% 86.86% 84.93% 86.94% 86.63% 86.98% TLE
German 72.86% 73.62% 72.64% 73.46% 72.66% 72.89% 72.75% 72.53% 72.67% 70.20% 73.41% 72.57% 73.22% 73.72%
Splice 87.65% 88.77% 87.41% 88.57% 87.76% 87.17% 70.04% 78.95% 87.15% 78.31% 88.76% 87.25% 87.53% 86.36%
Gcloudb 88.27% 89.25% 88.52% 89.14% 88.45% 88.69% 88.52% 84.99% 85.68% 86.68% 89.29% 88.48% 89.25% 89.58%
Gcloudub 92.02% 95.31% 92.24% 95.68% 93.05% 93.95% 90.16% 84.09% 86.48% 83.41% 95.47% 91.53% 89.65% 93.90%
Checkerboard 99.28% 99.14% 99.32% 99.13% 99.60% 99.58% 99.41% 93.15% 93.09% 93.32% 99.69% 99.48% 99.10% 99.88%
Spambase 93.09% 95.32% 92.93% 95.31% 92.98% 92.92% 92.17% 90.28% 91.81% 93.20% 95.39% 92.21% 92.80% 95.08%
Banana 87.97% 89.28% 88.00% 89.30% 87.92% 88.04% 88.43% 75.08% 74.97% 77.28% 89.25% 88.23% 87.27% 89.16%
Phoneme 84.44% 88.01% 84.41% 88.30% 85.67% 84.77% 85.51% 81.39% 83.14% 82.61% 87.89% 85.12% 84.46% 87.55%
Ringnorm 93.73% 96.91% 93.90% 96.80% 94.33% 92.80% 50.68% 56.12% 50.68% 60.49% 96.86% 74.30% 92.83% 90.30%
Twonorm 96.47% 96.83% 96.52% 96.89% 95.30% 96.60% 96.46% 93.07% 91.79% 96.15% 96.77% TLE 96.07% 96.85%
Phishing 94.83% 96.85% 94.50% 96.72% 94.66% 94.61% 94.56% 92.91% 91.25% 92.79% 96.80% TLE 95.57% 96.83%
Covertype 74.78% 76.91% TLE 76.97% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Bioresponse 70.63% 73.03% TLE 72.64% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 95.94% 98.23% TLE 98.22% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

Table 19: Average Ranking of Query Strategies: We report query strategies with the best average ranking.
The scores with 1, 2, or 3 mean the 1st, 2nd and 3rd performance on a dataset. ‘TLE’ means a query strategy
exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 4.811 7.76 5.442 7.30 7.74 7.31 8.43 7.89 8.85 5.63 7.81 6.47 5.563
Sonar 3.691 6.95 3.973 7.86 7.77 8.15 8.87 7.71 7.83 3.962 TLE 6.52 4.72
Parkinsons 2.971 8.55 3.082 6.81 10.06 9.53 11.61 9.34 7.17 3.723 7.77 6.66 3.73
Ex8b 4.502 8.08 4.371 7.56 8.60 6.04 10.10 8.26 8.90 5.133 7.28 6.82 5.36
Heart 6.063 7.49 6.26 7.46 8.40 7.86 9.42 8.24 4.901 5.742 6.34 6.63 6.20
Haberman 5.071 7.22 5.33 7.42 7.26 8.38 9.35 9.71 5.252 5.293 7.10 7.90 5.72
Ionosphere 2.432 6.53 2.401 6.29 7.27 9.96 11.50 11.55 11.25 2.903 8.03 7.17 3.72
Clean1 2.692 7.76 2.441 7.40 9.25 9.49 11.60 7.15 7.86 2.963 TLE 5.58 3.82
Breast 3.441 8.35 3.643 6.75 9.60 8.36 7.66 9.05 12.24 3.602 8.54 5.94 3.83
Wdbc 3.053 9.30 2.801 8.41 9.53 9.58 10.67 9.42 9.31 3.32 8.19 4.49 2.932
Australian 4.772 7.48 4.581 6.78 8.50 8.11 8.21 7.25 8.89 5.69 8.26 6.82 5.663
Diabetes 5.532 6.75 5.773 7.22 6.83 6.30 8.27 7.78 10.86 6.03 6.86 7.75 5.051
Mammographic 3.923 9.62 3.732 7.66 8.23 9.06 6.96 6.74 10.10 3.92 9.11 8.54 3.411
Ex8a 2.371 7.93 2.392 7.27 7.95 4.10 12.14 11.78 11.86 3.143 6.43 9.83 3.81
Tic 7.49 4.532 7.66 6.58 5.02 3.891 6.15 7.01 9.01 7.80 TLE 4.823 8.04
German 3.801 7.89 4.192 8.44 7.55 7.07 8.71 7.55 12.52 4.343 8.21 5.67 5.06
Splice 2.721 6.46 2.813 6.15 9.43 11.59 9.86 6.20 10.77 2.722 TLE 5.23 4.06
Gcloudb 4.81 7.34 4.763 7.65 8.25 6.73 11.28 10.51 10.25 4.90 6.76 4.532 3.231
Gcloudub 2.472 7.34 2.461 5.49 6.63 8.48 12.90 11.21 11.56 2.873 7.48 7.80 4.31
Checkerboard 3.002 7.67 3.25 6.47 7.49 7.20 12.18 11.67 11.81 3.153 5.83 8.38 2.901
Spambase 2.402 7.50 1.601 5.50 9.10 9.30 11.00 TLE 7.60 2.603 TLE 6.00 3.40
BaTLEa 3.103 6.90 2.902 7.00 9.60 5.60 11.60 12.00 12.40 3.30 6.10 8.30 2.201
Phoneme 2.403 8.60 1.901 5.00 8.60 6.50 11.60 9.60 11.30 2.202 TLE 6.80 3.50
Ringnorm 1.401 6.00 1.802 4.60 8.00 11.70 9.30 11.30 9.70 3.103 TLE 5.90 5.20
Twonorm 1.902 6.20 1.801 9.50 5.50 4.80 10.90 TLE 8.00 2.303 TLE 8.80 6.30
Phishing 1.501 7.00 2.303 5.70 7.50 5.80 9.80 TLE 9.20 2.202 TLE 4.00 TLE
Covertype 1.401 TLE 1.602 TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Bioresponse 1.401 TLE 1.602 TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 1.301 TLE 1.702 TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
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Figure 10: Mean AUBC of query-oriented model and task-oriented model on group 2. (Compatible SVMs
achieve best results.): Sonar (top-left), Ionosphere (top-right), Clean1 (middle-left), Tic (middle-left),
Gcloudb (bottom-left), and Ringnorm (bottom-right).
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Figure 11: Mean AUBC of query-oriented model and task-oriented model on group 3. (Compatible RFs
achieve best results.): Parkinsons (top-left), Breast (top-right), Australian (bottom-left), and Ex8a (bottom-
right).
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Figure 12: Mean AUBC of query-oriented model and task-oriented model on group 3. (Compatible RFs
achieve best results.): German (top-left), Spambase (top-right), Phoneme (bottom-left), and Phishing
(bottom-right).
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Figure 13: Mean AUBC of query-oriented model and task-oriented model on group 5. (Non-Compatible
models achieve best results.): Heart (top-left), Splice (top-right), Checkerboard (bottom-left), and Banana
(bottom-right).
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Table 20: Data utilization rate of query strategies. The scores with 1, 2, or 3 mean the 1st, 2nd and 3rd
performance on a dataset. ‘TLE’ means a query strategy exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL
Appendicitis 72.68% 88.27% 72.37% 83.77% 84.57% 78.46% 94.03% 79.59% 96.47% 73.37% 77.20% 75.18% 68.32%
Sonar 83.21% 96.93% 79.75% 103.93% 105.19% 109.28% 113.21% 100.60% 98.23% 82.09% 93.32% 94.02% 84.00%
Parkinsons 66.78% 104.47% 65.65% 89.01% 115.53% 113.00% 125.06% 109.28% 90.19% 71.19% 83.42% 90.02% 71.19%
Ex8b 72.10% 100.51% 75.02% 108.36% 105.54% 82.26% 134.12% 107.66% 104.83% 78.49% 97.42% 92.07% 78.03%
Heart 83.52% 93.96% 80.04% 87.83% 98.14% 105.58% 126.91% 105.54% 96.75% 85.71% 88.20% 94.19% 84.66%
Haberman 108.22% 166.25% 86.22% 127.40% 117.93% 155.72% 194.88% 160.76% 110.28% 84.09% 108.16% 131.40% 94.10%
Ionosphere 71.03% 109.47% 70.06% 112.15% 118.36% 184.42% 204.09% 190.78% 266.93% 75.05% TLE 117.39% 78.14%
Clean1 66.38% 101.51% 68.54% 98.33% 113.03% 105.73% 125.79% 98.96% 99.31% 67.75% 104.35% 86.16% 75.82%
Breast 56.07% 91.36% 58.33% 83.40% 161.72% 92.76% 94.25% 90.92% 342.11% 58.36% 124.45% 78.14% 59.50%
Wdbc 48.49% 118.85% 49.57% 104.03% 119.32% 113.68% 147.97% 112.58% 119.54% 52.55% 94.83% 65.46% 52.33%
Australian 71.43% 95.51% 73.10% 98.52% 121.25% 114.84% 106.65% 108.79% 125.02% 73.67% 101.76% 92.53% 74.20%
Diabetes 95.33% 104.14% 92.27% 104.10% 122.35% 109.48% 119.51% 116.73% 178.03% 96.93% 110.47% 117.40% 92.93%
Mammographic 72.07% 153.42% 71.66% 89.03% 91.95% 81.27% 103.54% 87.55% 128.24% 64.89% 101.07% 93.26% 59.36%
Ex8a 43.75% 111.29% 42.78% 97.60% 109.29% 57.61% 165.84% 176.49% 166.71% 46.08% 88.94% 142.32% 54.80%
Tic 75.39% 96.17% 80.45% 92.89% 124.21% 82.87% 140.92% 129.96% 209.75% 89.96% 111.72% 61.44% TLE
German 92.08% 119.64% 96.81% 129.11% 122.34% 114.60% 144.97% 120.44% 237.03% 104.75% 136.86% 106.77% 92.01%
Splice 77.98% 108.12% 79.25% 101.68% 108.61% 164.32% 144.63% 97.44% 181.65% 77.97% 104.14% 96.84% 84.31%
Gcloudb 61.60% 147.10% 60.36% 94.06% 147.55% 104.00% 488.17% 423.89% 142.77% 66.29% 98.02% 81.17% 64.59%
Gcloudub 46.41% 105.08% 48.27% 84.01% 85.21% 119.68% 273.89% 186.53% 168.58% 47.57% 123.12% 103.64% 59.03%
Checkerboard 80.42% 125.73% 70.49% 99.35% 79.21% 124.08% 916.17% 801.92% 553.50% 58.66% 106.13% 141.07% 50.63%
Spambase 22.96% 109.32% 19.14% 94.56% 122.51% 132.64% 282.80% 207.05% 96.33% 21.76% TLE 104.81% 25.40%
Banana 65.49% 116.15% 47.70% 131.01% 132.31% 83.74% 455.27% 396.93% 691.08% 56.57% 122.59% 194.17% 52.98%
Phoneme 33.78% 102.37% 33.95% 68.43% 100.16% 72.78% 116.82% 92.83% 107.17% 34.62% 87.11% 83.28% 39.12%
Ringnorm 27.95% 114.87% 31.49% 142.95% 250.54% 866.58% 817.08% 844.31% 731.19% 36.33% TLE 208.99% 124.45%
Twonorm 54.11% 90.13% 42.61% 285.71% 114.89% 97.52% 902.62% TLE 114.72% 58.90% TLE 134.42% 68.25%
Phishing 18.38% 118.07% 20.24% 102.20% 142.07% 98.98% 215.34% TLE 151.26% 20.96% TLE 59.51% 22.77%
Covertype 45.70% TLE 46.78% TLE 116.98% TLE TLE TLE 117.86% TLE TLE TLE TLE
Bioresponse 70.86% TLE 72.53% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 17.78% TLE 17.21% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
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