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Abstract

Active Learning (AL) addresses the crucial challenge of enabling machines to efficiently
gather labeled examples through strategic queries. Among the many AL strategies, Un-
certainty Sampling (US) stands out as one of the most widely adopted. US queries the
example(s) that the current model finds uncertain, proving to be both straightforward and
effective. Despite claims in the literature suggesting superior alternatives to US, community-
wide acceptance remains elusive. In fact, existing benchmarks for tabular datasets present
conflicting conclusions on the continued competitiveness of US. In this study, we review
the literature on AL strategies in the last decade and build the most comprehensive open-
source AL benchmark to date to understand the relative merits of different AL strategies.
The benchmark surpasses existing ones by encompassing a broader coverage of strategies,
models, and data. Through our investigation of the conflicting conclusions in existing tab-
ular AL benchmarks by evaluation under broad AL experimental settings, we uncover fresh
insights into the often-overlooked issue of using machine learning models-model compati-
bility in the context of US. Specifically, we notice that adopting the different models for the
querying unlabeled examples and learning tasks would degrade US’s effectiveness. Notably,
our findings affirm that US maintains a competitive edge over other strategies when paired
with compatible models. These findings have practical implications and provide a concrete
recipe for AL practitioners, empowering them to make informed decisions when working
with tabular classifications with limited labeled data. The code for this project is available
on https://github.com/ariapoy/active-learning-benchmark.

1 Introduction

Supervised learning models can achieve competitive results with sufficient high-quality labeled data. How-
ever, acquiring such data can be costly in specific domains. This situation calls for Active Learning (AL),
a learning paradigm that strategically selects the most valuable unlabeled examples for labeling. AL has
the capability of achieving better performance with lower labeling costs, which has been widely studied and
applied in various domains, such as computer vision (Li & Guol 2013} |Demir et al., |2015; Beluch et al. [2018)),
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Table 1: Comparison between [Yang & Loog| (2018); |Zhan et al. (2021) and our benchmark. (D) means
aspects of datasets; (M) means aspects of base models; (Q) means aspects of query strategies; (A) means
aspects of analysis; (O) means aspects of an open source tool. Our benchmark fetches up lacking query
strategies in [Yang & Loog| (2018) and lacking analysis in [Zhan et al. (2021)) to provide a comprehensive
comparison.

|Yang & Loog| (]2018[) |Zhan et al.| (]2021[) Ours

More than 100K examples v
More than 400 features v
LR v
RBFSVM

RF

Model uncertainty v
Bayesian uncertainty

Data diversity

Hybrid criteria v
Redesigned learning
framework

AUBC

Average ranking
Comparison with Uniform
Released datasets v
Unified AL protocol

Analysis tools
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natural language processing (Liu et al., 2021} |Schréder et al., 2021; Kishaan et al., 2020), and biology and
medical fields (Hao et al.,|2020; Nath et al., 2020; Logan et al., 2022).

Among the many AL strategies, Uncertainty Sampling (US) stands out as a straightforward and efficient
query strategy by selecting the most uncertain examples for labeling based on the model’s prediction con-
fidence. US has demonstrated success across multiple applications (Kishaan et al., 2020; [Narayanan et al.
[2020; Nath et all [2020); while US is widely used, several AL studies have developed more sophisticated
query strategies to address specific limitations in particular scenarios (Donmez et al, 2007; Huang et al.
2010% [Li et all 2015).

Two large-scale benchmarks for pool-based AL have been developed to evaluate existing strategies for clas-
sification on tabular datasets (Yang & Loog, 2018; Zhan et al. 2021). However, they present conflicting
conclusions regarding the preferred query strategies. While |[Yang & Loog| (2018)) suggested that the straight-
forward US strategy excels across the majority of datasets, |Zhan et al|(2021)) argued that Learning Active
Learning (LAL) (Konyushkova et al.l [2017) outperforms US.

Given the lack of consistent comparisons across diverse contexts and the contradictory conclusions drawn from
the previous two extensive benchmarks, there is a critical need for a benchmark that accurately represents
the current state of AL techniques in this field. Therefore, this work aims to build the most comprehensive
AL benchmark compared to previous benchmarks, focusing on datasets, base models, query strategies, and
analysis aspects, as highlighted in Table[I[} Our benchmark is the most comprehensive open-source framework
to date, crafted by integrating a transparent and unified interface. This unified interface cooperates with
existing GitHub repositories, such as libact (Yang et al., 2017), Google AL playground (Yilei “Dolee” Yang
2017), ALiPy (Tang et al,[2019), ModAL (Danka & Horvath)), scikit-activeml (Kottke et al.,2021)), and sets
a new standard for future research.

Subsequently, we assess the performance of query strategies specifically for classifications on tabular data,
which is widely used in various real-world applications due to its structured nature and the availability of
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diverse datasets. Our benchmarking results show that US is SOTA on 18 of the 29 binary-class datasets and
5 of the 7 multi-class datasets.

Furthermore, through our investigation under different AL experimental settings, we uncover the reason for
the substandard performance of US in [Zhan et al| (2021) is model compatibility. The incompatibility
between a model used within US querying the unlabeled examples (query-oriented model) and a model being
evaluated for the tasks (task-oriented model) degrades the performance because the queired examples might
not be the most uncertain to the current task-oriented model. Through careful study, we affirm that US
maintains a competitive edge over other strategies when used with compatible settings on Logistic Regression
(LR), Radial Basis Function kernel Support Vector Machine (RBFSVM), Random Forest (RF), and Gradient
Boosting Decision Tree (GBDT). In summary, we recommend adopting US with compatible settings as the
first choice for practitioners, providing a clear baseline for AL in real-world usage from the community.

In this work, we make the following contributions:

e To our knowledge, our benchmark is the most comprehensive, surpassing existing benchmarks in
terms of datasets, models, query strategies, and analyses.

e We re-benchmark existing strategies for tabular datasets, demonstrating the US’s competitiveness
on most datasets, and, importantly, uncover profound insights into the often-overlooked issue of
model compatibility in the context of US.

e We offer a reproducible and open-source benchmarking framework, which includes preparing

datasets, an active learning process, and analysis tools to facilitate future research in the community.

2 Preliminary

In this section, we extend the |Settles (2012))’s literature to the current state of pool-based AL research,
addressing the gap created by the lack of an open-source benchmark and highlighting significant developments
in query strategies over the last decade. We also introduce the experimental protocol of our benchmark, which
facilitates a deeper understanding of the critical components involved in pool-based AL, helping readers to
comprehensively evaluate the efficacy of different query strategies in this domain.

2.1 Literature survey of pool-based active learning

Settles| (2012) formalized the pool-based active learning protocol as follows:

Initial setup The process begins with a small labeled pool D = {(x1,%1), ..., (zx,yn)}, where x,, € R is
d-dimension features, y,, € Y is label, and |D;| = N is the number of labeled examples, and a large unlabeled
pool Dy, = {&N+1,--.,ZN+M}, Where |Dy,| = M is the number of unlabeled examples; and an oracle O that
provides ground truth labels.

Execution setup The active learning algorithm operates over T' rounds within a total query budget, where
each round involves querying the label of one unlabeled example from D, until the budget is exhausted.

Query steps in each round

1. Query: Employ the query strategy Q to select an example z; from D,,.
2. Label: Acquire the label y; for z; from an oracle O(z;) = y;.

3. Update pools: Move the new labeled example from D, to Dy, i.e., Dy <= D1 U {(z;,y;)},
Dy < Do\ {(z)}.

4. Update the model: Retrain the model using the updated labeled pool D;.
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Prediction on the test set Finally, we train the model G on the latest labeled pool D; and make
predictions on new examples from the unseen testing set Dy.

The critical element in pool-based active learning is the query strategy Q. A naive uniform sampling
(Uniform) method randomly selects unlabeled examples for labeling. Uniform does not utilize active learning
strategies and serves primarily as a baseline. The overarching goal of active learning is to develop a query
strategy that outperforms the Uniform baseline, and there are already numerous query strategies available
today. Based on|Settles| (2012), we classify existing query strategies into six categories: model uncertainty,
expected model changing, representation exploiting, hybrid criteria, Bayesian methods, and
redesigned Learning Framework. In the next section, we first introduce different query strategies with
an illustrative example, and then we further introduce each type of query strategy and their variants in
detail.

2.1.1 An illustrative example of types of different methods

In this section, we illustrate the characteristics of six distinct types of query strategies. We denote negative
examples with red points, positive examples with blue points, and unlabeled examples with gray points.
Figure [[]demonstrates the properties of these methods, highlighting the queried example with a black square
box. Given the model’s , marked with a dashed line,

e Model uncertainty strategy selects the example closest to the decision boundary, reflecting high
marginal uncertainty.

o Expected model changing chooses an example that, if labeled negative as displayed in Figure
would significantly change the current model to the new model displayed in .

e Representative Exploiting selects the centre of the densest cluster, which does not rely on the
current model.

e Hybrid criteria balance uncertainty with density by querying uncertain examples in denser regions
compared to pure Uncertainty Sampling.

o Bayesian methods identify examples within uncertain regions with high posterior variance, as
illustrated by the colored areas in Figure

e Redesigned Learning Framework selects the most rewarding query strategy and then queries a
new example by it.
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Figure 1: Illustration examples of model uncertainty, expected model changing, representation
exploiting, hybrid criteria, Bayesian method, and redesigned learning framework.

Given the high-level idea of different types of query strategies, we begin with model uncertainty to guide
readers through the relationships and historical development of these query strategies.

Model uncertainty Uncertainty Sampling (US) is a prevalent query strategy in pool-based active learning,
where it selects examples for labeling based on the degree of uncertainty regarding the model’s prediction. US
assumes that examples about which the model is most uncertain are likely to yield the highest information
gain upon being labeled. Various measures can be employed to quantify uncertainty, including the margin
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score and entropy of the predictions of an examples in the unlabeled pool returned by the current model.
In binary classification scenarios, using margin and entropy scores are equivalent in terms of defining model
uncertainty (see Appendix [B.5)). Previous works have found that US is a strong baseline for most pool-based
active learning problems (Cawleyl 2011} [Yang & Loog}, 2018} [Karamcheti et al., 2021} |Schroder et al., 2021}
Bahri et al., |2022]).

In contrast to US, which relies on a single model to quantify uncertainty, Query By Committee (QBC) (Seung
et al.l |1992)) quantifies uncertainty through multiple models to address the sampling bias in US (Settles,
2012)). QBC operates on the principle of disagreement among a committee of models, each representing a
different model derived from the training set. Specifically, QBC selects the unlabeled example where there
is the maximal disagreement among the committee members. Disagreement is measured by voting entropy,
defined as the entropy of the distribution of the committee’s votes. A higher voting entropy of an example
indicates more significant disagreement and, consequently, a higher value for querying.

Expected model changing Previous query strategies aim to query the most informative example for the
current model. In this category, we strive to query the most informative example to reduce the model’s error
in the future. For instance, Expected Error Reduction (EER) queries the highest expected error of the future
output over an unlabeled pool, where the error would be estimated by the Monte-Carlo approach (Roy &
McCallum) [2001)). Similarly, Variance Reduction (VR) estimates the variance of the model’s output based
on its Fisher information, which estimates the inverse of the lower bound on the variance of the model’s
parameters (Cover [1999; [Schein & Ungar, [2007). Another method proposed the difference between the error
reduction and the cost of obtaining the label to query the most informative example over an unlabeled pool
effectively (Kapoor et al., |2007)).

Representation exploiting US and QBC might perform poorly due to outliers or sampling bias that
results in querying a non-representative example during the query process (Dasgupta & Hsul, 2008} |Yang
et al|2015; |Shui et al.}|2020). Although EER and VR take the input distribution into account via estimating
expected future error over all unlabeled examples, these methods are computationally expensive, making
them unsuitable for large datasets (Settles, 2012)). In this category, we depart from strategies that rely
on model predictions and instead focus on the structure/representation of data, an approach we refer to
as model-free. Hierarchical Sampling (Hier) is a model-free representation sampling method that exploits
hierarchical clustering to explore the data structure of the unlabeled pool (Dasgupta & Hsu, 2008). Hier
randomly selects an example from the subtree of the hierarchical clustering tree to obtain its label. Then,
the tree structure is iteratively updated by making the labels in the cluster more pure and focusing on the
remaining impure clusters.

The query strategies mentioned in [Settles| (2012) are long-standing. However, the survey should be updated
with the latest approaches. Graph Density (Graph) is also a model-free representation sampling method
that exploits cluster structure by applying graph-based clustering techniques to the unlabeled pool without
depending on any model. Similar to Graph, Core-Set uses K-Means clustering on the embedding space
extracted from the data transformation (such as deep convolutional neural networks) and then queries
unlabeled examples closest to the centers of clusters. [Sener & Savarese (2018) show that Core-Set works well
on image classification tasks. Besides Graph and Core-Set, we could categorize recent query strategies into
three categories: hybrid criteria, Bayesian method, and redesigned learning framework.

Hybrid criteria Several works study the combination of uncertainty and diversity information to improve
previous query strategies. For example, Density-Weight Uncertainty Sampling (DWUS) assumes that infor-
mative examples should have both high uncertainty and be representative of the data distribution (Nguyen
& Smeulders| |2004)), so DWUS designs a weighted uncertainty score by averaging an example’s similarity to
the remaining examples in the training set. Hinted Support Vector Machine (HintSVM) focused on selecting
an example of an updated decision boundary that passes through unqueried regions instead of reducing its
margin only (Li et al.| [2015)). QUerying Informative and Representative Examples (QUIRE) formulated the
informativeness and representativeness with kernel matrices (Huang et all |2010), which characterizes the
similarity between labeled examples and unlabeled examples, to select an example with large self-similarity
and large similarity to most remaining examples in the unlabeled pool. Representative Marginal Cluster
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Mean Sampling (MCM) queries examples within the model’s margin closest to the K-Means centers in the
embedding space (Xu et al.,|2003), which inherits the benefits from Core-Set and US. Recently, Batch Mode
Discriminative and Representative (BMDR) and Self-Paced Active Learning (SPAL) have been designed to
query a batch of examples with elaborated empirical risk minimization (Wang & Ye} 2015; [Tang & Huang,
2019). BMDR queries the example that expects to minimize the empirical risk on the labeled and unlabeled
pools using a self-learning approach and distribution difference between the labeled pool and training set.
Following the objective function of BMDR, SPAL modifies the constraint of the objective function (1)) to
improve BMDR/’s performance. Please refer to Appendix for the detailed information.

Bayesian method Although QBC aims to query the most disagreeable example, the voter entropy might
ignore each model’s confidence regarding its predictions, potentially reducing efficiency. To address this
issue, Bayesian Active Learning by Disagreement (BALD) queries the most uncertain example across the
ensemble models but confident in the single model (Houlsby et al., [2011]). This approach can be interpreted
as the conditional mutual information between the model’s prediction and its parameters. BALD aims to
query the example with high conditional mutual information, where the model’s prediction is uncertain, but
the model’s parameters are certain.

Redesigned learning framework As the number of query strategies increases, some are designed to
automatically select the optimal strategy from multiple heuristic query strategies. For example, Active
Learning By Learning (ALBL) treats the learning problem as a multi-armed bandit problem (Hsu & Lin|
2015)). It thus selects the optimal strategy from a set of query strategies and queries the example based on this
strategy that maximizes the estimated reward at each round. Learning Active Learning (LAL) formulates
the query process as a regression problem to learn the strategy from various types of toy data (Konyushkova,
et al., 2017). LAL queries the example from the learned regression function, which predicts the potential
error reduction.

2.1.2 Deep active learning

Besides previous query strategies for conventional machine learning models, such as Logistic Regression
(LR), and Radial Basis Function kernel Support Vector Machine (RBFSVM), Beck et al.| (2021) and |Zhan
et al.|(2022)) compared additional query strategies designed for deep learning models used in computer vision
classification tasks. Their results show that US outperforms data diversity-based sampling strategies (Core-
Set, Variational Adversarial Active Learning) (Sinha et al.|[2019). Moreover, hybrid criteria query strategies,
such as Batch Active learning by Diverse Gradient Embeddings (BADGE) (Ash et al, 2019), Learning Loss
for Active Learning (LPL) (Yoo & Kweon| 2019)), and Wasserstein Adversarial Active Learning (WAAL) (Shui
et al.,|2020)), achieve competitive results better than US. Given that many recent works have taken the burden
to study deep active learning on computer vision tasks (Zhan et al.,2022)), transformer models (Rauch et al.,
2023), and cross-domain scenarios (Werner et al., [2024), we consider “the use of deep active learning in
tabular data” still requires a lot of effort to study deeply. Therefore, we focus on providing the practical
guide and benchmark of active learning methods for tabular datasets in this work.

2.2 Experimental protocol for the benchmark

Section 2.I] depicts an abstract process of pool-based active learning. To concretize the experimental protocol
for the benchmark, we illustrate the framework in Figure 2] In this framework, we define the training set
as the union of the labeled pool and unlabeled pool, denoted as D, = D) U D,,. First, we split the dataset
into disjoint training and testing sets, i.e., Dy, N Dy, = (J, to simulate a real-world learning scenario. After
splitting the dataset, we sample from the labeled pool D; within Dy, and leave the remaining examples as
the unlabeled pool D, to set up the initial environment. Furthermore, we isolate a query-oriented model
H from the task-oriented model G in Section 2.I] The query-oriented model is used for selecting the most
informative example during the query step while the task-oriented model is used for prediction on the test
set, as depicted in Figure

To distinguish the relationship between the query-oriented model and the task-oriented model, we define
model compatibility as the setting where the examples obtained by the query-oriented model might be
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Figure 2: The Framework of Active Learning Experiments. Rectangles represent datasets including labeled
pool, unlabeled pool, and test set. Rounded rectangles represent processes including an active learning
algorithm, labeling, and evaluation. Circles represent models. In this work, we differentiate the relationship
between two models: task-oriented and query-oriented.

different from using the task-oriented model. After introducing the model compatibility, we can further
discuss the query strategies that depend on the query-oriented models to query new examples. For example,
the query-oriented model in HintSVM and QUIRE are restricted to the SVM model due to their theoretical
design contrasting model-free strategies, which do not rely on the query-oriented model (See Section .

We notice that the setting of the model compatibility is an often-overlooked issue in previous benchmarks
when they compared query strategies under the same task-oriented model (Yang & Loog], [2018; Zhan et al.,
2021). Although some works discuss the influence of using different models for query informative examples in
deep active learning (Yoo & Kweonl 2019} Sinha et al.|2019), it remains unclear in the context of Uncertainty
Sampling. In this work, we denote the compatible query-oriented and task-oriented models for Uncertainty
Sampling as US-Compatible (US-C) and non-compatible models as US-Non-Compatible (US-NC). Section
studies the impact of model compatibility on US to clarify the conflicting conclusion in previous benchmarks.

The benchmark aims to provide a standardized framework for evaluating and comparing different query
strategies in a fair manner. Following (Guyon et al.l [2010; 2011} [Desreumaux & Lemaire, [2020; |Zhan et al.)
2021)), we utilize the Area Under the Budget Curve (AUBC) as a summary metric to quantify the results of
learning curves. A learning curve tracks the performance of model G at each round of the active learning
process, typically using evaluation metrics such as accuracy. AUBC provides a concise way to compare
the overall performance of different learning curves of query strategies. Figure [3] demonstrates that US,
BALD, and LAL achieve higher accuracy more quickly than Uniform, corresponding to the mean AUBC of
US (85.78%) and BALD (85.72%), which are better than LAL (85.52%), Uniform (84.77%), and Core-Set
(84.47%) in detail. Furthermore, we report the accuracy of the task-oriented model under different labeled
data sizes and data utilization rates of the query strategy for more detail.

3 Experimental settings

We employ most of the settings outlined in the prior benchmark (Zhan et al., 2021)). For each dataset D,
we reserve 40% as the unseen test set Dy, for performance evaluation. Then, for the remaining 60%, our
default protocol is uniformly sampling few examples as the initial labeled pool D; and leave the others as
the unlabeled pool D,.

D = Dtr @] Dte; |Dte| = 04|D|,
Dy, = D1 U Dy, |D1|:k'>< D)|,
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Figure 3: The learning curves (test accuracy vs. number of labeled examples) of query strategies on Australian
dataset (Chang & Lin, [2011)).

where k is the positive number to control the size of the initial labeled pool. In the following, we clarify the
differences and expansions in our benchmark compared to the previous benchmarks (Yang & Loog, [2018;
[Zhan et al., |2021)).

Remove improper use of query strategies The previous benchmark simultaneously evaluated query
strategies that either support or do not support multi-class or batch size greater than one, may have affected
the validity of claims when comparing results across different aspects (Zhan et al., 2021). Therefore, we
restrict our evaluation only on valid use of query strategies to ensure consistency and fairness.

Include comprehensive datasets with a unified format. We select 26 binary datasets from
2021) and (Yang & Loog), 2018). Besides, we ensure consistency in the source datasets and the composition of
the initial labeled and unlabeled pools. For instance, we scaled raw data features to [—1, 1] for all datasetsEl
We added 4 datasets from the other tabular data benchmark (Grinsztajn et al., [2022)) to expand the coverage
of the binary classifications. These datasets were selected based on their large-scale, class-imbalanced, and
high-dimensional properties to better reflect real-world scenarios. We also extend our benchmark by adding
8 multi-class classification across diverse fields from UCI datasets (Dua & Graff, 2017). Moreover, we extend
2 domain-specific datasets, including utilization of Vision Transformer (ViT) (Dosovitskiy et all [2021)) as a
feature extractor for CIFAR10 (Krizhevsky et al., [2009)), and BERT (Devlin et al., [2019) for IMDB (Maas
, to connect our findings with modern machine learning research. Please refer to Table (17| for
the properties of 40 datasets.

Include broad types of query strategies. [Zhan et al. (2021) extended the query strategies from
to 17 query strategies. However, the redundancy of query strategies, such as US and Informative
Cluster Diverse (InfoDiv) (See Appendix for more detail.), may lead to repetitive and limited insights
into the benchmark. Therefore, we only keep the most representative 12 query strategies: US, QBC, Hier,
Graph, Core-Set, HintSVM, QUIRE, DWUS, MCM, BMDR, ALBL, and LAL. We further expand the

1We retained the original scaling for some of the LIBSVM datasets, such as Heart, Ionosphere, and Sonar, which were
already scaled to the range of [—1,1].
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Table 2: Settings of query-oriented models H for specific query strategies Q.

Q H Reason of choice
HintSVM  RBFSVM the implementation in libact
QUIRE  RBFSVM the implementation in libact
QBC LR(C = 0.1), RBFSVM, RF, the inheritance of [Zhan et al.
Linear Discriminant Analysis (2021))

ALBL Combination of multiple Q with the default settings in libact
same H: US, HintSVM
LAL RF the implementation in ALiPy

benchmark to explore a broader range of query strategies by including BALD, a popular query strategy in
deep learning (Gal et al., [2017)).

Adopt a tree-based model. Previous benchmarks studied Logistic Regression and RBFSVMH In this
work, we further studied tree-based models such as XGBoost (Chen & Guestrin) [2016)) and Random For-
est (Breiman) |2001)) (See Appendix@[), as recommended by the earlier benchmark for tabular datasets (Grin-
sztajn et al., 2022)). To clarify the relationship between query-oriented and task-oriented models, we report
some query strategies that do not use tree-based model as the query-oriented model in Table [2}

We disclose the construction of the initial labeled pool, data preprocessing steps, and the choice of models,
which can significantly impact the experimental results (Ji et al} [2023), that saves participants time examin-
ing the settings and critical considerations for designing active learning experiments. Notably, Ji et al.| (2023))
recommended using consistent “initial sets” across multiple runs to minimize the impact of randomness and
ensure fair comparisons. In our study, randomness arises from two main sources: the train-test split used to
derive datasets Dy, Di. and the construction of initial sets for Dy, D,, (See Section ) While randomness
from the train-test split is unavoidable without predefined training and test sets, we adhere |Ji et al.| (2023)’s
suggestions by keeping the initial labeled sets fixed to mitigate randomness. A detailed investigation into
the effects of randomness due to the train-test split is presented in Appendix[C.3] In summary, our findings
indicate that Uncertainty Sampling exhibits consistent performance across most datasets, confirming its
stability within our benchmark.

Handle errors and exceptions of experiments. We report the issues encountered and solutions when we
conduct experiments. Because current modules cannot support cold-start problem&ﬂ we run the experiments
repeatedly and skip any seed that lacks labels in the training or test set at the initial setup. For execution,
we set a maximum running time of 72 hours for executing a query strategy on a dataset to ensure completion
within a reasonable time (Denote ‘TLE’ in Table @

This section outlines the necessary information to conduct experiments for the benchmark. In our imple-
mentation and report, we strive to ensure the reproducibility of all results under these specific settings and
processes corresponding to Figure 2] Furthermore, we compare our settings and results with the existing
benchmark (Zhan et al.l [2021)) in Appendix [B| and Appendix covering any additional modifications or
improvements needed.

4 Benchmarking results

This section presents the benchmarking results for XGBoost in Table [3] We repeated experiments 100 times
for small datasets with a size less than 2000 (Kg = 100) and 10 times for large datasets (K1, = 10). We
set a total query budget of 3000 to reduce running time for large datasets. Next, we verify the superiority
of Uncertainty Sampling over other query strategies. Furthermore, we investigate whether existing query

2We also reproduce the previous benchmarks with different base models in Appendix
3The cold-start problem is that some classes are under-represented in the initial labeled pool (Yuan et al 2020} [Brangbour
et al., |2020]).
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Table 3: Benchmarking results of XGBoost. The numbers are mean AUBC (1 is better). We report the
baseline method (Uniform), the best query strategy with its mean AUBC (BEST__QS, BEST), and the worst
query strategy with its mean AUBC (WORST__QS, WORST).

Uniform BEST_QS BEST WORST QS WORST

Appendicitis 81.51% US 82.85% DWUS 80.74%
Sonar 75.10%  US 76.06% Core-Set 74.11%
Parkinsons 84.24%  US 86.63% HintSVM 83.12%
Ex8b 84.21% LAL 85.16% DWUS 83.05%
Heart 78.37% BALD 79.35% HintSVM 77.83%
Haberman 67.69% US 69.17% HintSVM 66.82%
Ionosphere 87.96%  US 89.95% DWUS 81.85%
Cleanl 76.54%  US 78.99%  Graph 76.30%
Breast 95.57% LAL 96.31% DWUS 91.85%
Wdbc 94.07%  LAL 95.24% HintSVM 93.96%
Australian 84.77% US 85.78%  HintSVM 83.89%
Diabetes 72.62% US 73.62% HintSVM 71.49%
Mammographic  79.46%  BALD 80.78% DWUS 78.80%
Ex8a 92.06%  Core-Set 94.07% HintSVM 84.75%
Tic 90.11%  US 90.65% DWUS 89.11%
German 72.68% US 74.03% DWUS 71.78%
Splice 91.89% US 93.76% DWUS 89.51%
Gcloudb 87.85% LAL 88.68% QUIRE 85.99%
Gcloudub 92.98% UsS 94.30% DWUS 86.12%
Checkerboard 98.72%  LAL 99.49% DWUS 86.83%
Spambase 93.16% US 94.51% HintSVM 91.09%
Banana 87.70% LAL 88.45% HintSVM 79.70%
Phoneme 85.78%  US 87.77% DWUS 82.42%
Ringnorm 93.76%  US 95.46%  Core-Set 64.58%
Twonorm 95.43%  US 96.39% HintSVM 83.38%
Phishing 94.20%  US 96.24% DWUS 91.68%
Covertype 74.11% US 76.64% DWUS 61.34%
Bioresponse 72.92%  BALD 74.50%  Core-Set 72.04%
Pol 96.03% BALD 97.62% HintSVM 90.52%

strategies bring more benefits than Uniform for each dataset. After comparing the performance of query
strategies in binary classification datasets, we further initiate the experiments for multi-class classification
and domain-specific problems to enrich the scope of this work. In addition, we reproduced the benchmarking
results from (Zhan et al.l 2021) with RBFSVM in Appendix |C|and constructed the new benchmark for RF

in Appendix

4.1 Verify superiority

Referring to Table [3] we observe that US attains the highest mean AUBC among all query strategies on 18
datasets, indicating its superior performance compared to other query strategies on average. The remaining
dominant query strategies are LAL and BALD, which achieve the highest AUBC on 6 and 4 datasets,
respectively.

Besides AUBC, we also observe learning curves from different perspectives. Specifically, we check the model’s
accuracy with varying ratios of labeled examples on each dataset. Table [] shows the model’s accuracy with
20% labeled examples on each dataset, and US outperforms other query strategies on more than half (15)
datasets. Please refer to Appendix [A] for more comparisons under other ratios. Beyond using a fixed query
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Table 4: Accuracy (1 is better) of the model with 20% labeled examples: We report the model’s accuracy
with 20% labeled examples on each dataset. The scores with bold indicate the best performance, and with
italics indicate the second-place performance on a dataset. ‘TLE’ means a query strategy exceeds the time
limit.

Uniform Us QBC BALD Hier Graph  Core-Set HintSVM  QUIRE DWUS MCM BMDR  ALBL LAL
Sonar 67.82%  67.29% 66.95% 66.73%  66.45% 67.83%  66.25% 65.88% 67.99% 68.15% 66.82% 68.56% 67.25%  67.32%
Parkinsons 79.26% 80.71% 79.36% 80.51%  79.40% 78.90%  78.68% 78.41% 78.60%  79.69%  80.10%  7881%  79.91%  80.27%
Ex8b 80.55%  80.69%  79.98%  79.37%  80.24% 79.13%  81.11% 80.32%  81.26% 78.76%  80.45%  81.26%  80.74%  80.60%
Heart 75.73%  77.19%  75.06% 77.36% 75.59% 76.31% = 76.69% 74.82% 76.36%  75.09%  75.41%  75.91%  76.36%  76.39%
Haberman 69.24%  70.61% 69.20%  70.15%  68.54% 68.96%  67.68% 68.43% 67.69%  68.51% 71.04% 69.15%  68.67%  70.50%
Ionosphere 83.59%  86.96% 83.84%  86.78%  84.18% 82.28% = 83.24% 81.84% 80.82%  74.91%  84.02%  80.28%  86.73% 87.21%
Cleanl 68.34% 69.86% 68.03% 69.10% 68.57% 68.21%  66.74% 67.59% 68.42%  68.34%  67.36%  66.42%  69.35%  69.31%
Breast 95.17%  96.73% 95.17%  96.72%  95.54% 95.29% = 94.54% 94.77% 94.93%  90.07%  96.57%  94.77%  96.16%  96.66%
Wdbe 92.91%  95.34%  92.50%  95.36%  92.91% 92.99%  93.04% 91.94% 92.66%  92.54%  95.26%  92.68%  94.75% 95.55%
Australian 83.63%  85.55% 83.77%  85.33% 83.87% 83.90%  82.97% 81.95% 82.75%  82.51%  84.86%  83.58%  83.28%  85.13%
Diabetes 71.84% 73.96% 72.34%  73.35% 712.07% 72.38%  71.73% 70.14% 71.81%  70.54%  72.85%  72.16% 7L.78%  72.80%
Mammographic ~ 79.66%  82.51% 79.66%  82.30%  79.48% 79.17%  79.52% 78.70% 80.41%  79.39%  82.09%  80.03%  80.33%  81.67%
Ex8a 88.22%  88.55% 87.81% 88.75%  87.94% 89.41%  91.69% 78.04% 78.12%  78.06%  88.41%  89.22%  85.21% 91.88%
Tic 89.25%  90.43% 89.23%  90.38%  89.30% 89.72%  89.33% 88.12% 89.83%  85.76%  89.58%  TLE%  89.32%  89.15%
German 71.23%  72.90% T71.37%  72.73% 71.08% T71.48%  70.46% 71.61% 71.06%  68.76% 71.97%  TLE%  71.55% 72.11%
Splice 89.07%  92.95% 88.88%  92.65%  89.00% 89.25%  84.99% 85.74% 88.99%  84.69%  91.33%  89.04%  88.65%  90.25%
Gcloudb 87.82%  89.55% 87.98%  89.24%  87.95% 88.19%  88.27% 84.62% 84.61%  85.48%  89.49%  87.96%  88.35%  89.36%
Gcloudub 91.25% 94.11% 91.45%  92.40% 91.92% 92.28%  88.58% 83.11% 85.69%  80.24%  91.69%  89.76%  88.91%  93.61%
Checkerboard 98.76%  96.89%  98.80%  99.46%  99.35% 98.95%  98.59% 91.40% 88.72%  79.82%  99.46%  99.09%  98.26% 99.80%
Spambase 92.47%  94.84% 92.69% 94.91% 92.54% 92.64%  92.06%  88.95%  TLE%  92.54% 94.61% TLE% 92.66%  94.68%
BaTLEa 87.46%  87.93% 87.46% 87.65% 87.53% 87.50%  88.02% 71.37% 76.11%  74.94%  88.49%  TLE%  86.99% 88.94%
Phoneme 83.97%  87.13% 83.73% 87.24% 84.66% 84.13%  84.70% 80.83% TLE%  78.60% 86.36%  TLE%  83.73%  86.52%
Ringnorm 92.79%  95.75% 93.33% 95.77% 92.35% 92.40%  51.86% 57.27% TLE%  55.71% 95.33%  TLE%  92.45%  92.55%
Twonorm 94.99%  96.61% 95.04% 96.53%  95.07% 95.24%  95.73% 79.31% TLE%  94.26%  96.60%  TLE%  95.52%  95.90%
Phishing 93.41% 96.19% 93.01%  96.04% 92.83% 93.35%  93.18% 91.75% TLE%  88.11% 95.70%  TLE%  94.37%  95.94%
Covertype 72.30%  75.26% 72.06%  75.26% TLE% 64.54%  TLE% 62.90% TLE%  59.97% 71.54%  TLE% 69.30%  73.92%
Bioresponse 69.96% 73.14% T71.05% 72.87% 7048% 71.11%  66.59% 66.70% TLE%  69.96% 71.34%  TLE% 70.33% 72.07%
Pol 95.29%  98.19% 95.52%  98.10%  95.40% 86.38%  93.68% 86.75% TLE%  95.29% 97.58%  TLE%  95.18%  97.75%

budget in Table 4] we also check the metric of the number of queried examples required to reach 99% of the
model’s performance trained on the full budget. Table [f] demonstrates that Uncertainty Sampling stably
achieves first place or second place on 21 datasets, which shows a consistent conclusion with Table [3] and
Table [d More results are revealed in Appendix [A]

Finally, we verify the ranking performance of query strategies across multiple datasets. Specifically, we assess
the average and standard deviation of the rankings by seeds of the query strategy on each dataset. Then, we
apply the Friedman test with a 5% significance level to test for statistical significance. The p-values of the
Friedman test are less than 5% for all datasets, indicating that the performance differences between query
strategies are statistically significant. Table [6] demonstrates that US ranks first on 18 datasets, and LAL,
BALD, and MCM often achieve second and third ranks.

These results show that the straightforward and efficient US outperforms others on most datasets. These
outcomes also correspond to previous work claiming US is the strong baseline with LR (Yang & Loog, |2018)
and RBFSVM, which we re-benchmarked in Appendix [C] We recommend that practitioners initiate their
pool-based active learning projects with US.

4.2 Verify usefulness

We investigate the usefulness of query strategies in Section[4.2] The analysis of usefulness can uncover which
query strategy brings more benefits than Uniform, offering practitioners a reality check on the effectiveness
of a query strategy. Specifically, we investigate the improvement of the optimal stopping point of query
strategies over Uniform. The optimal stopping point is the point where the model achieves the target
accuracy with the least number of labeled examples. We refer to the data utilization rate
, which is the number of labeled examples to achieve the target accuracy divided by the number of
labeled examples required by Uniform. In this benchmark, we set the target accuracy as the accuracy with
the total query budget minus 0.01. Table [7] shows the data utilization rate of the optimal stopping point of
query strategies over Uniform. We observe that US, BALD, MCM, and LAL achieve a higher data utilization
rate than Uniform on most datasets.
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Table 5: The minimum number of queried examples required to reach 99% accuracy (| is better) of the
model: The bold indicates the first place and italics indicates the second place. ‘TLE’ means a query
strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph  Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 28.44 25.58 29.52 25.06 28.59 27.50 26.03 25.63 26.92 31.49 24.71  28.68 25.43 24.74

Sonar 73.45 65.70 68.14 65.21 72.94 75.91 77.40 73.36 75.83 75.70 70.33 71.05 67.15 63.78
Parkinsons 66.44 44.56 66.81 47.26 58.10 75.95 65.68 81.31 70.40 67.83 49.78 60.99 59.36 45.41

Ex8b 51.02 42.87 54.42 46.34 45.86 55.63 43.27 58.98 52.16 66.05 43.28 49.59 43.56 45.09

Heart 47.75 41.11 48.64 40.14 51.24 45.84 48.88 52.44 46.48 51.28 44.87 45.48 45.19 43.35

Haberman 25.53 24.59 28.73 25.35 27.02 27.17 29.75 30.51 29.40 28.74 26.36 26.81 28.67 25.12

Tonosphere 97.04 53.38 98.79 55.72 91.89 95.68 88.46 104.41 96.79 179.88  66.03  120.41 70.33 57.49

Cleanl 207.79  152.39 20793 15550 201.93  211.52 191.98 198.64 196.44  207.79 166.59 199.24  180.07  166.30
Breast 70.81 38.78 65.98 38.02 56.25 90.22 61.85 64.05 60.09 288.68  40.14 81.19 39.19 30.39
Wdbc 102.53 48.87 111.69 48.00 89.32 106.51 88.53 110.64 92.47 110.06  51.92  100.71 49.67 44.84
Australian 88.71 55.39 79.43 59.18 86.36 92.02 101.76 119.76 96.14 104.74  66.84 96.08 77.46 64.00

Diabetes 56.67 49.28 57.50 54.89 53.78 58.07 59.12 104.25 62.42 88.29 57.51 56.83 56.63 44.80
Mammographic 30.29 28.73 39.66 27.09 42.09 39.69 37.89 35.29 31.48 50.08 30.52 31.67 28.13 27.10

Ex8a 263.54 191.79  250.31 193.59  241.43  261.52 154.35 379.03 363.91  312.23  188.39 204.05  367.55  168.98
Tic 144.75 90.08 148.10  89.12 137.06  151.89 194.89 172.11 132.64  185.20 11946 TLE 166.50  132.92
German 178.81  124.03 163.55  138.11 184.64  177.15 177.90 164.53 169.58  256.71  144.83 TLE 146.80  129.60
Splice 310.57  134.00 305.19  140.50 307.94  285.83 264.18 321.10 290.00  444.19 158.67 302.19  274.96  214.72
Gceloudb 56.49 56.85 63.12 38.09 48.29 71.45 42.10 116.48 158.24 73.58 37.54 45.44 45.08 34.30
Geloudub 239.57 124.60  228.82  140.76  194.34  252.24 309.11 510.70 355.73  512.64 150.74 270.05  206.95 119.19
Checkerboard 140.40 233.72  146.03 91.92 100.84  121.44 159.23 528.25 529.48  619.52  72.11  107.50  151.65 37.22
Spambase 941.80  221.00 865.50 247.80  780.30  1090.40  991.00 1670.10 TLE 965.40  322.60 TLE 734.70  324.20
BaTLEa 540.70 496.30  450.10  537.10  509.10  579.50 319.20 2081.00  1593.80 2618.60 489.60 TLE 729.50  221.90
Phoneme 1742.80 611.30 1665.60 622.70 1248.10 1750.50  1332.40 1792.80 TLE 2690.90 750.70 TLE 1501.40  738.90
Ringnorm 1317.10  386.90 1150.40 410.00 1400.60 1332.20  2564.60 1959.10 TLE 2066.90 546.80 TLE 1189.30  922.80
Twonorm 525.50 179.40 62230 189.10  574.90  531.10 398.20 2638.30 TLE 921.80 222.00 TLE 382.50  375.20
Phishing 1080.50  282.60 1366.60 275.50 1244.70 1396.00 1151.10 20.00 TLE 2500.00 374.50 TLE 578.00  322.90
Covertype 1981.60  796.50 2115.80  842.30 TLE 20.00 TLE TLE TLE 20.00 TLE TLE TLE 1008.00
Bioresponse 1182.30  771.00 1262.50 793.50 1112.20 1160.80  1068.80 TLE TLE 1182.30 908.50 TLE TLE 717.40
Pol 1001.00  288.90  938.70  272.40 930.90  955.60  1501.00 300.00 TLE 1001.00 404.30 TLE 1236.60  312.20

To further investigate the usefulness of US, we check the improved accuracy (1) of US, BALD, Core-Set, and
LAL over Uniform on effective dataset (Covertype) and ineffective dataset (Checkerboard) on average with
different scales of the total budget. Figure [4] shows that the performance of US and BALD gains significant
benefits on large scale dataset. However, US suffers from the sampling bias on Checkerboard with a small
budget, while BALD is more stable. We notice that a query strategy with good performance brings more
benefits at the early stage of the learning process.

Difference of accuracy on Covertype Difference of accuracy on Checkerboard

— Us
—— BALD
—— Core-Set
— LAL
10% of total budget

0.10 1
0.04 4

0.08 1

0.02 1
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0.021

0.00 1 4 el
us !
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Core-Set —~0.02
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Performance improvement ()
Performance improvement (t)
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Figure 4: Mean difference of accuracy (improvement) of a query strategy from Uniform on Covertype (left)
and Checkerboard (right). Note that there are no results of Core-Set on Covertype due to the time limit
(TLE).
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Table 6: Average Ranking of Query Strategies (| is better): We report query strategies with the best average
ranking. The scores with ', 2, or 3 mean the 1st, 2nd and 3rd performance on a dataset. ‘TLE’ means a
query strategy exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 4.83t 7.50 5513 7.63  8.30 7.15 7.34 7.82 9.12 5.20% 7.85 6.92 5.83
Sonar 4.79* 6.38  4.97° 6.83 7.52 8.35 8.04 7.79 6.71 6.19 TLE 5.39 5.043
Parkinsons 3.391 841 3792 7.03 945 8.37 10.92 8.47 8.74 4.59 7.26 6.34 4.243
Ex8b 531 795 6.34 7.60 8.28 5.83 9.09 7.42 10.07 5.08t 7.13 5.50 5.40°
Heart 4.89% 7.72  4.76' 7.66 8.17 7.18 9.65 8.34 6.43 6.33 7.10 7.04 5.733
Haberman 4.38t 7.69 4.56* 7.04 8.10 8.97 9.76 9.55 6.07 4.74%  7.07 7.95 5.12
Ionosphere 2.67t 719 2.89° 712 822 8.28 9.38 10.10 12.74 4.51 10.08 4.30 3.523
Cleanl 2.61' 8.13 2.96° 833 8.76 7.87 8.47 7.39 8.59 5.30 TLE 5.53 4.06%
Breast 3.98 872 372 714 10.02 743 8.88 7.50 12.97 4.24 8.64 4.88 2.88t
Wdbc 3.67% 947  3.44% 815 935 8.41 9.57 9.02 9.54 3.95 9.59 3.71 3.13*
Australian 2.80t 7.75  8.20° 7770 7.47 8.97 10.38 8.36 8.65 4.66 8.30 8.32 4.443
Diabetes 3.64t 7.15 4.35° 688 7.09 717 10.44 8.44 10.01 4.98 7.20 8.14 5.51
Mammographic  3.46% 869  3.30' 7.67 8.07 9.09 8.24 9.06 9.54 8.41%2 751 9.07 3.89
Ex8a 437 6.10 4.42 590 6.16 1.70* 11.68 10.75 10.24 4.43 TLE 8.94 3.812
Tic 2.65' 5.66 2.99° 647 6.84 8.49 9.32 8.31 9.24 4.59%  TLE 7.28 6.16
German 3.10t 729 852 781 7.23 7.41 6.87 8.24 10.92 4.14® TLE 6.02 5.45
Splice 1.52' 730 1.86® 7.18 8.61 9.29 9.82 6.40 11.62 3.377 TLE 6.62 4.41
Gcloudb 4.243  7.25  4.69 7.51  8.19 5.93 10.71 11.04 11.67 4.02% 7.07 5.56 3.12!
Gcloudub 2.52t 641 3.68° 491 713 8.75 12.44 10.70 12.45 4.51 7.60 7.05 2.85%
Checkerboard 6.37 715  4.94 5.03 7.44 6.54 11.36 11.48 12.81 8.72%2 4.583 8.34 1.241
Spambase 1.50* 780 1.70° 6.80 8.10 8.30 11.00 TLE 7.80 3.302 TLE 6.20 3.50
Banana 5.20 5.70  5.70 3.60°  8.20 3.007 10.60 TLE 10.40 5.00 TLE 7.20 1.40*
Phoneme 1.60* 810 2.00° 520 8.40 6.40 10.00 TLE 10.90 3.30 TLE 7.00 3.10%
Ringnorm 1.40* 5.10 1.60* 6.30 8.00 10.50 9.00 TLE 10.50 3.002 TLE 6.30 4.30
Twonorm 1.30* 790 1.70® 850 7.40 6.00 11.00 TLE 10.00 3.002 TLE 5.20 4.00
Phishing 1.40* 790 1.60* 7.20 870 6.20 10.10 TLE 10.90 3.60 TLE 5.00 3.40°%
Covertype 1.40* 380 1.90° TLE 5.00 TLE TLE TLE 6.00 TLE TLE TLE 2.90%
Bioresponse 1.90° 6.40 1.60* 6.40 6.20 8.60 TLE TLE 6.60 3.70 TLE TLE 3.60%
Pol 1.802 5.80 1.50* 6.20 9.80 9.20 11.00 TLE 6.70 4.00 TLE 7.30 2.70°

Tables demonstrate that the Checkerboard and Banana datasets pose challenges for Uncertainty Sam-
pling. Both are synthetic two-dimensional datasets introduced in previous works (Alcala-Fdez et all [2010;
Konyushkova et al., 2017)). To study the cause of the Uncertainty Sampling’s failure, we visualize scatter
plots at selected rounds throughout the active learning process. Specifically, we examine the size of labeled
pool at 20, 200, and 800 for Checkerboard, while 20, 400, and 800 for Banana. These rounds correspond
to the initial labeled pool, the round at which Uncertainty Sampling performs worse than Uniform, and
the round at which Uncertainty Sampling achieves comparable performance to Uniform, as observed in the
learning curves for each dataset presented in Figure

Figures [6] (Checkerboard) and [7] (Banana) illustrate existing unexplored regions either at the initial or
during intermediate rounds. Our analysis reveals that when datasets have multiple overlapping positive and
negative regions, Uncertainty Sampling tends to query examples from these overlapping regions rather than
exploring less-covered regions, particularly due to the uneven distribution of the initial labeled pool. In this
paragraph, we analyze the possible reasons for the failure of US. Other related works investigating the causes
of US failure is discussed in Section (.41

4.3 Expanded benchmarks: multi-class classifications and domain-specific data
4.3.1 Multi-class classification datasets

We extend the evaluation to include 7E| multi-class classification problems to demonstrate the broad scope of
the benchmark and improve the validity of the US competitive edge. The multi-class datasets cover several
fields of applications such as biology, physics, climate, business, healthcare, and social science, which reveals

4We exclude RT-ToT2022 for this experiment because the highly imbalanced ratio of the dataset results in lacking classes
for the training set when initializing the labeled pool by the default protocol (See Section .
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Table 7: Data utilization rate ({ is better): We report the data utilization rate of query strategies. The
bold indicates the first place and dtalics indicates the second place. The scores with pink color indicate
that the query strategy does not provide more benefits than Uniform. ‘TLE’ means a query strategy exceeds
the time limit.

Us QBC BALD Hier Graph Core-Set  HintSVM  QUIRE DWUS MCM BMDR ALBL LAL
Appendicitis 77.96% 93.97% 71.10% 88.47% 84.87% 77.22% 73.31% 81.74% 101.34%  73.73% 88.66% 72.73% 71.81%
Sonar 94.66% 98.91% 92.74% 103.50%  109.41%  115.15% 107.62% 110.06% 106.54% 103.24% 103.20%  94.73% 93.96%
Parkinsons 65.14% 100.21%  70.28% 86.74% 116.07%  99.84% 123.64% 103.34% 101.74%  74.59% 92.52% 90.79% 67.29%
Ex8b 90.08% 109.88%  93.86% 95.59% 107.28%  91.14% 126.40% 104.15% 129.39%  90.31% 103.05%  90.49% 93.70%
Heart 86.90% 107.95% 84.11% 107.17%  97.55% 103.64% 113.07% 103.62% 109.48%  97.06% 95.77% 91.87% 89.85%
Haberman 82.19% 95.22% 82.67% 111.45%  105.52%  129.80%  161.28% 141.81% 107.57%  92.66% 104.88% 118.27% 100.55%
Tonosphere 61.01% 111.80%  65.87% 105.88%  108.81%  96.76% 119.75% 111.23%  209.02%  76.15% 139.82%  78.44% 65.46%
Cleanl 75.75% 103.42%  76.96% 99.94% 104.20%  94.65% 97.48% 95.94% 100.00%  82.71% 99.69% 88.50% 82.04%
Breast 69.35% 109.64%  66.14% 89.34% 147.47%  95.73% 100.94%  95.69% 494.88%  71.37% 133.41%  66.72% 49.26%
Wdbc 64.80% 133.42%  62.73% 108.66%  131.75%  109.41% 138.49% 116.93% 117.16%  68.42% 119.39%  64.54% 59.28%
Australian 77.16% 115.07%  79.27% 107.96%  128.48%  144.82%  159.60% 127.39% 130.52%  92.17% 128.82% 111.12%  85.45%
Diabetes 93.03% 102.01%  107.06% 89.91% 114.95%  108.80%  181.30% 112.29% 171.75%  94.00% 105.48% 101.62% 76.47%
Mammographic ~ 92.07% 120.26%  78.18% 124.13%  128.84%  112.22%  237.91% 103.86%  202.17%  88.01% 119.19%  82.66% 79.15%
Ex8a 80.82% 101.76%  82.20% 97.18% 110.12%  62.62% 164.20% 158.36% 134.14%  79.50% 84.62% 153.98%  69.71%
Tic 80.79% 128.22%  79.62% 118.52%  137.88%  151.43%  147.20% 111.52% 164.54% 105.34% TLE 137.67% 118.43%
German 99.67% 119.68%  103.79%  125.82%  122.31%  139.69% 114.99% 124.65% 190.73% 113.27% TLE 113.41%  95.44%
Splice 50.12% 109.42%  52.06% 110.84%  101.56%  96.64% 116.59%  97.02% 165.10%  58.39% 105.95%  99.16% 77.40%
Gcloudb 73.44% 124.36%  71.91% 103.12%  145.65%  78.12% 222.56%  289.43% 152.25%  72.98% 85.25% 72.23% 64.86%
Gcloudub 67.80% 118.36%  79.22% 102.15%  131.47%  168.09%  310.10% 198.38%  303.37%  87.16% 156.37% 117.76% 66.35%
Checkerboard 231.82%  140.07%  93.83% 110.34%  115.64%  154.47%  529.48%  543.18%  660.77%  72.37% 105.94% 153.28%  39.50%
Spambase 25.23% 97.59% 28.02% 87.65% 121.97%  106.69%  196.13% TLE 101.91%  37.69% TLE 82.08% 37.18%
Banana 111.31%  95.73% 121.28%  106.59%  117.47%  65.76% 448.34%  393.05%  574.50% 103.93% TLE 132.50% 43.66%
Phoneme 35.59% 97.05% 36.87% 73.34% 103.54%  80.84% 107.40% TLE 165.20%  43.68% TLE 90.82% 44.67%
Ringnorm 31.06% 91.33% 32.51% 111.24%  102.61%  208.70%  158.46% TLE 195.48%  44.30% TLE 94.07% 73.23%
Twonorm 34.59% 115.91%  36.78% 112.05%  103.37%  75.10% 529.37% TLE 173.40%  43.62% TLE 73.05% 74.54%
Phishing 27.08% 131.84%  28.23% 117.78%  137.85%  109.86%  57.30% TLE 244.87T%  37.25% TLE 55.39% 31.95%
Covertype 41.33% 109.86%  40.35% TLE 116.98% TLE TLE TLE 117.86% TLE TLE TLE 46.23%
Bioresponse 64.95% 105.42%  64.58% 89.29% 96.76% 91.78% TLE TLE 100.00%  73.95% TLE TLE 66.72%
Pol 29.38% 96.56% 27.82% 96.41% 98.11% 152.58%  34.08% TLE 100.00%  41.06% TLE 126.70%  31.84%
Learning curves on Checkerboard Learning curves on Banana
1.00 — 0,90
0.95 4
0.85
0.90 4
0.80
.. 0.85 N
§ g 0.75
£ 080 g
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Figure 5: The learning curves (test accuracy vs. number of labeled examples) of query strategies on Checker-
board (left) and Banana (right).

the value of this benchmark for real-world applications (See Tablc for details). As an initiating demo, we
only adopt the query strategies that are valid for the multi-class classifications and representative of each
category of query strategy described in Section Therefore, we choose US, BALD, MCM, and Core-Set. In
particular, the different uncertainty measures in US behave differently for multi-class classifications
2012)), so we compare the least confidence (US-LC), the smallest margin (US-SM), and the maximum entropy
(US-ME) to verify their performance.
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Checkerboard (Seed 4) at round 0 with Test Accuracy: 0.86 Checkerboard (Seed 4) at round 180 with Test Accuracy: 0.93 Checkerboard (Seed 4) at round 780 with Test Accuracy: 1.00

® Labeled Positive ® Labeled Positive
=

PG -SEN—
——
# ewmsmmEm. e o

Figure 6: The scatter plots of Checkerboard at 20 (left), 200 (middle), and 800 (right) labeled examples.
We denote red points as negative examples, blue points as positive examples, and gray points as unlabeled
examples. We mark an example with a cross in labeled pool D) and others with dots.

Banana (Seed 1) at round 0 with Test Accuracy: 0.61 Banana (Seed 1) at round 380 with Test Accuracy: 0.83 Banana (Seed 1) at round 780 with Test Accuracy: 0.90
T

i ® Labeled Positive

®  Labeled Positive

Figure 7: The scatter plots of Banana at 20 (left), 200 (middle), and 800 (right) labeled examples. The
format is the same as the Figure @

Table [8| demonstrates the superiority of uncertainty sampling with margins (US-SM) performing well in
multi-class classifications. Although US-SM does not achieve first place in Iris and Wine, the difference
between all query strategies, including Uniform, is insignificant in these datasets. In this experiment, we
verify that US-SM with compatible XGBoost models would significantly improve the model’s performance
for the multi-class classifications.

4.3.2 Domain-specific datasets

Our benchmark also includes domain-specific datasets. One is CIFAR-10 (Krizhevsky et al., [2009)), which
belongs to the computer vision (CV) domain; the other is IMDB (Maas et al.2011), belonging to the natural
language process (NLP) domain. We incorporate deep learning models, such as the ViT feature extractor for
CIFAR-10 and BERT tokenizer for IMDB, to transform the images and texts to embedding space&ﬂ Then,
we treat them as tabular datasets and follow the same active learning process described in Section [3]

Table [0 shows that Uncertainty Sampling with different measures is still competitive to Uniform. In particu-
lar, US-ME stands out from other uncertainty measures, and all query strategies achieve similar performance
in this experiment. The results indicate that by utilizing the feature extractor to convert image or text data
to a tabular format, domain-specific tabular data essentially differs from the regular tabular structure.

In this section, we initialize the preliminary investigation on active learning for domain-specific scenarios.
Specifically, we utilize feature extractors for CIFAR-10 and IMDB to convert domain-specific data sets
to tabular data sets and verify the feasibility of US for this protocol. However, there is still a lack of
comparisons for other approaches. For example, the feature extractors for CIFAR-10 and IMDB we chose
are pre-trained on large-scale datasets and might be considered the ‘external knowledge’ for the benchmark.
Such ‘external knowledge’ would be obtained by semi-supervised learning or self-supervised learning on both
labeled and unlabeled pools (Zhang et al.| 2023)) or from foundation models (Gupte et al.,|2024)). We leave the

5We used the pre-trained ViT (https://huggingface.co/google/vit-base-patch16-224) and BERT tokenizer (https:
//huggingface.co/google-bert/bert-base-uncased) from Hugging Face repository
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Table 8: ‘Mean + standard deviation’” AUBC of XGBoost for multi-class classifications (1 is better). The
scores with 1, 2, or  denote the 1st, 2nd and 3rd performance on a dataset. ‘TLE’ denotes a query strategy
that exceeds the time limit. The scores with underline denote its mean AUBC is greater than Uniform’s
‘mean + standard deviation’” AUBC.

Uniform US-SM US-LC US-ME BALD Core-Set MCM
Iris 92.95%+1.88%  94.05%+0.85% 94.06%+0.84%>  94.01%+0.91%  94.07%+0.85%" 94.45%+0.51%"  92.87%+0.54%
Wine 92.40%+1.25%  92.95%=+0.50%* 92.98%+0.47%*  92.94%+0.52% 93.14%=40.52%' 92.85%+0.96% 91.94%40.64%
Abalone 88.06%+0.27% 90.14%=+0.10%"' 90.04%+0.10%>  89.92%+0.13%  90.06%+0.11%* 88.51%40.26% 89.57%40.17%
Academic Success  91.17%+0.21%  92.30%=40.08%' 92.28%+0.09%>  92.24%+0.09%  92.29%+0.08%* 91.20%0.25% 91.73%40.19%
Satellite 74.02%40.32% 74.80%=+0.17%' 74.44%+0.26%> 74.33%+0.31%  74.49%+0.23%* 74.00%+0.28% 74.38%40.23%
Dry Bean 22.39%40.47%  23.08%+0.00%'  22.95%+0.09%° 22.45%=+0.05%  22.50%+0.44% 22.34%+0.05% 22.73%+0.08%
Diabetes 130 53.92%40.43% 55.26%+0.44%  54.89%+0.87%° 53.77%=+0.74% TLE 54.13%+0.15%> 54.04%40.58%

Table 9: ‘Mean + standard deviation’” AUBC of XGBoost for multi-class classifications (1 is better). The
scores with 1, 2, or ? denote the 1st, 2nd and 3rd performance on a dataset. ‘TLE’ denotes a query strategy
that exceeds the time limit. The scores with underline denote its mean AUBC is greater than Uniform’s
‘mean + standard deviation’” AUBC.

Uniform US-SM US-LC US-ME BALD Core-Set MCM
CIFAR-10  97.59%+0.11%  98.49%+0.02%> 98.48%+0.04% 98.50%+0.02%° 98.47%+0.03%  98.51%=40.03%' 97.02%+0.68%
IMDB 93.75%+0.09%  93.88%+0.06%  93.88%+0.06% 93.91%+0.06%* 93.90%+0.07%* 93.98%+0.01%"' 93.89%+0.06%

investigation on the protocol choice for domain-specific datasets and its impact on active learning methods
in future work.

5 Analysis of uncertainty sampling

In this section, we first study the impact of model compatibility on Uncertainty Sampling, which clarifies
the conflicting conclusions between our benchmark and the previous work of [Zhan et al.| (2021)) (Section .
Then, we extend the benchmark by evaluating the usefulness of Uncertainty Sampling on three real-world
datasets, which are large-scale or high-dimension used in the recent tabular benchmark (Grinsztajn et al.,
2022) (Section . Lastly, we study the sensitivity of active learning protocols for Uncertainty Sampling,
including imbalanced datasets with the one-shot protocol, hyper-parameters/ model complexity, and query
batch sizes (Section. We also present the limitations of Uncertainty Sampling to remind AL practitioners
of the ineffectiveness of some tabular classification scenarios (Section [5.4)).

5.1 Impact of non-compatible models for uncertainty sampling

In contrast to the broader performance comparisons in earlier sections, Section focuses on the model
compatibility with US. Our investigation demonstrates that the incompatibility between query-oriented
and task-oriented models significantly influences the performance of US. An example of model incompatibility
is that the previous benchmark adopted US with LR(C = 1) as the query-oriented model and RBFSVM as
the task-oriented model (Zhan et al. 2021)E| Through careful analysis, we found that when non-compatible
models are used (denoted as US-NC), the performance of US (denoted as US-C) notably drops, as shown
in Table [I9] This drop is primarily due to the misalignment of the decision boundaries between the query-
oriented and task-oriented models, which can lead the query-oriented model to select samples that are not
the most uncertain for the task-oriented model, as illustrated in Figure In summary, our benchmarking
highlights that by utilizing compatible models, US-C consistently performs better than US-NC on average.

We compare different combinations of query-oriented and task-oriented models based on LR, RBFSVM, and
RF. Figure[J and Appendix [C.4] emphasize that compatible model pairs perform better than non-compatible

6See Zhan et al. (2021))’s implementation for more details https://github.com/SineZHAN/
ComparativeSurveyIJCAI2021PoolBasedAL/blob/master/Algorithm/baseline-google-binary.py#L242.
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Figure 8: Given RBFSVM as the task-oriented model, we study the non-compatible query-oriented model
with LR(C = 0.1). The red and blue points represent labeled examples. The gray points represent unlabeled
examples. The cyan and magenta lines indicate the decision boundaries of query models LR(C = 0.1) and
RBFSVM trained on current labeled examples. If we adopt US, the non-compatible setting queries a sample
(orange circle) that is most uncertain to LR(C = 0.1) rather than the most uncertain sample to RBFSVM
(red circle).

model pairs for US, evident across 22 datasets, where the optimal AUBC score occurs with compatible
models, i.e., the highest AUBC score is found along the diagonal. Although some results demonstrate that
non-compatible models are slightly better than compatible models, such as Splice and Banana in Figure [I8]
these instances were exceptions rather than the norm in our benchmark.

LR(C=1) SVM(RBF) LR(C=1) SVM(RBF) RF

LR(C=1)  EBIAvEs 84.50% LR(c=1)- 92.79% 93.80% 95.87%

SVM(RBF){ sl 84.92% SVM(RBF)-  92.68% 94.68% 96.52%

G 85.41% 84.72% RF-  92.57% 94.39%

Figure 9: Mean AUBC of a query-oriented model (rows) and a task-oriented model (columns) on Australian
(left) and Phishing (right)

In summary, we advocate for the default use of compatible model parings in US for practical applications.
This setting simplifies the model selection process and can potentially yield better performance across various
datasets.
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5.2 Extending the usefulness of uncertainty sampling

We extend the existing benchmark to real-world datasets used in another tabular data benchmark
to demonstrate the usefulness of US within our current benchmark and its potential applicability
and benefits across a more comprehensive array of real-world datasets. Real-world datasets include a larger
number of examples, such as Pol and Covertype, and higher dimensions, such as Bioresponse. By extending
our evaluation to these datasets, we aim to illustrate that the consistent usefulness of US is not limited to
the existing benchmark.

In Figure [I0} similar to Section [£.2] US could bring more benefits than Uniform at the early stage. These
results affirm that US has potential as an applicable approach across large-scale and high-dimension scenarios,
which encourages the exploration of US in broader applications.

Difference of accuracy on Bioresponse Difference of accuracy on Pol
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—— BALD
—— Core-Set
— LAL
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0.04 4
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\
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o
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Figure 10: Mean difference of AUBC (improvement) of a query strategy from Uniform on Bioresponse (left)
and Pol (right).

5.3 Sensitive of active learning protocols for uncertainty sampling

5.3.1 Outcomes of the imbalanced datasets with the one-shot protocol

We collect imbalanced datasets in our benchmark (See Table [17] for details). To evaluate the results under
imbalanced data, we report the weighted F1 scoreﬂ of datasets. We especially check the datasets with an
imbalance ratio r > 4 with the one-shot protocol, where at least one label is used for each class. This scenario
is practical, that the new project is initialized with only a few data for each class with an unknown label
distribution of the test set.

Table demonstrates that no query strategy is significantly superior on most datasets. In particular, all
query strategies cannot have significant improvement over Uniform in Appendicitis, Myocardial, Abalone, and
Diabetes 130. We argue that existing active learning algorithms lack consideration of imbalanced data and
expect practitioners to investigate Uncertainty Sampling on imbalanced tabular datasets in future worklﬂ

5.3.2 OQutcomes of different hyper-parameters for the query-oriented model

Previous sections illustrate that Uncertainty Sampling with compatible XGBoost task-oriented and query-
oriented models is a strong baseline for our benchmark. In this section, we verify whether the change in
the model complexity of the query-oriented model would influence the Uncertainty Sampling. The model

"The weighted F1 score is usually used for imbalanced datasets to handle unequal class distribution issues.
8Recent work investigates active learning for imbalanced datasets in the CV domain and suggests incorporating a balancing
step into the labeling process to mitigate imbalance within the labeled pool (Aggarwal et al., 2020).
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Table 10: ‘Mean =+ standard deviation’ weighted F1 score of XGBoost for imbalanced classifications with
the one-shot protocol at 20% total budget (1 is better). The scores with bold denote the best performance
on a dataset. The scores with underline denote its mean AUBC is greater than Uniform’s ‘mean + standard

deviation’ AUBC.

Data Uniform US-SM Core-Set BALD MCM
Appendicitis  80.07%=%8.439%  80.15%+£8.804% 84.20%+7.734%  80.87%+10.225%  80.38%+8.579%
Tic 88.99%+1.303% 91.08%+1.147% 88.18%+1.691% 91.02%+1.170% 90.13%+1.480%
Myocardial 95.14%40.423%  95.50%+0.144% 95.21%+0.199% 95.53%+0.133% 95.56%310.096%
Abalone 20.98%+1.001% 20.97%=+1.039% 19.57%+1.017% 20.99%=+1.293% 20.69%=+1.073%
Dry Bean 90.83%40.443%  92.27%+0.203% 90.70%+0.652% 92.29%+0.205%  91.33%+0.520%
Diabetes 130 49.856%+0.853% 50.52%+0.872%  49.41%40.199% TLE 49.31%4+1.339%
RT-10T2022  98.52%+0.250%  99.71%+0.028% 83.80%+10.681% 99.72%+0.053%  98.93%=41.054%

complexity of the XGBoost model is controlled by the hyper-parameters, e.g., we could reduce the propor-
tional number of leaves in the trees by adjusting min_child_weight in XGBoost. Therefore, we further
launched thought experiments that compare the default and best hyper-parameters of the query-oriented
model on small datasets over the same structure with different hyper-parameters. Concretely, we follow the
hyper-parameters tuning process in previous work (Grinsztajn et al [2022) to get the best hyper-parameters
of the XGBoost models for each dataset. Then, we create the XGBoost models with these hyper-parameters
and repeat the same active learning process described in Section

Figure[T1]demonstrates that the query-oriented model with the best hyper-parameters obtains slightly better
mean AUBC than the default hyper-parameters on most datasets. We conjecture that XGBoost, which has
high model complexity, performs stably on our benchmark; hence, the tuning hyper-parameters do not affect
these results too much. In summary, the compatible models with the default hyper-parameters of XGBoost
would achieve good performance for most tabular datasets.
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Figure 11: Mean and standard deviation AUBC of US with the default and the best hyper-parameters
for XGBoost as the query-oriented model for each dataset. Note. We use the best hyper-parameters for
XGBoost as the task-oriented model.

5.3.3 Outcomes of different query batch sizes

Early studies design the active learning algorithms based on a serial query, i.e., query an example at each
round in the early stage. However, a serial query would be inefficient when the size of the query-oriented
model increases or the training process becomes slower. Increasing the query batch size B at each round
becomes the choice to overcome these issues. Nevertheless, directly selecting the most B-highest uncertain
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Table 11: Accuracy (1 is better) of the model with 3000 labeled examples for the batch size B = 1, B = 10,
and B = 100 on large-scale datasets.

Data 1 (Original) 10 100

Covertype 79.34% 79.29%  79.08%
Pol 98.29% 98.40% 98.39%
Phishing 96.80% 96.75%  96.74%
Dry Bean 92.63% 92.60%  92.60%
Diabetes 130 56.48% 56.37%  56.35%

examples for Uncertainty Sampling might query redundant examples, resulting in inefficiency. In this section,
we study the impact of increasing the batch size on US without designing complicated techniques.

Table shows the degrading of Uncertainty Sampling when increasing batch size from 1 to 10, and 100,
indicating the existing ineffective examples queried by batch-mode Uncertainty Sampling. While previous
works made an effort to design hybrid criteria such as BMDR and SPAL to improve batch-mode Uncer-
tainty Sampling, most methods suffer from the computational cost (in Appendix and only bring small
benefits compared to Uniform (in Table [7)). For future work, we suggest that the researcher consider the
trade-off between the improvement over Uniform and the computational cost of their design.

5.4 Limitations of uncertainty sampling

Previous benchmarks show that query strategies may not outperform Uniform in specific settings or
tasks (Yang & Loog, [2018; |Desreumaux & Lemairel 2020; Karamcheti et al.l |2021; Munjal et al., |2022).
Our findings demonstrated in Table [7] also indicate that uncertainty sampling does not excel on datasets
like Checkerboard and Banana. Several works study possible reasons for the failure of Uncertainty Sam-
pling (Mussmann & Liang, |2018; [Karamcheti et al.l 2021} Tifrea et al.l 2022) to realize the applicability of
active learning algorithms. It underscores the need to explore robust baselines for pool-based active learning,
particularly in real-world scenarios (Lu et al., [2023)).

In this work, we give the preliminary results of exploration Uncertainty Sampling for tabular datasets, cov-
ering binary classification and multi-class classification. Although Uncertainty Sampling provides promising
for some of these scenarios, the usefulness and effectiveness of Uncertainty Sampling still have a gap and are
unclear in domain-specific classification and imbalance learning (Johnson & Khoshgoftaar,|2019)). We believe
there are still potential research directions, and our protocol could help researchers explore more scenarios
in future works.

6 Conclusion

This work presents the most comprehensive survey and open-source benchmark for active learning to date.
Our benchmark, with its transparent and unified interface, incorporates existing GitHub repositories, pro-
viding a thorough and up-to-date comparison of active learning query strategies. We equip Uncertainty
Sampling with compatible models and affirm that it remains superior to other active learning strategies as
well as Uniform Sampling on most of the datasets. Furthermore, we discover that Uncertainty Sampling
can be affected by the incompatibility between query-oriented and task-oriented models, resulting in dis-
crepancies between previous benchmarks. Our affirmation suggests Uncertainty Sampling with compatible
query-oriented and task-oriented models as a first-hand choice for practitioners. These insights not only
enhance the community’s comprehension of current active learning strategies but also establish a foundation
for future research with this practical guide. We anticipate extending our framework to encompass diverse
domains like vision and languages and incorporating various models such as deep neural networks, as outlined
in Appendix [F] for future exploration.
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Broader Impact Statement

Active learning is a long-term research topic in machine learning, yet achieving a consensus on the best
strategies within the community is challenging. This work starts from the tabular data to build the most
comprehensive open-source active learning benchmark to date. We affirm that Uncertainty Sampling (US)
remains superior to other active learning strategies and Uniform on most datasets. We also clarify conflicting
conclusions in previous benchmarks by carefully verifying previous settings. Our work will benefit the active
learning community by providing a transparent and unified framework for evaluating active learning strategies
compared to a strong baseline-US with compatible settings. We hope our work will help practitioners check
the reality of existing active learning strategies and settings for different domains. Moreover, re-examine the
potential issues in existing benchmarks, such as neglected settings and unpublished analysis steps.

Studying active learning beyond pursuing high accuracy is also important. For example, some AL works
studied ML fairness (Anahideh et all [2022) and privacy issues (Feyisetan et al., |2019) for ethical consid-
erations, which are essential for using new ML/AL techniques for other fields. To study AL for different
real-world scenarios, we trust our benchmark and experimental protocol is the solid foundation for future
works.
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Table 12: Accuracy of the model with 10% labeled examples: We report the accuracy of the model with
10% labeled examples on each dataset. The bold indicates the first place. ‘TLE’ means a query strategy
exceeds the time limit.

Uniform US QBC BALD Hier Graph  Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL
Ionosphere 74.99%  75.43%  74.94% 74.91%  74.57%  74.86% 75.82% 74.91% 75.30%  74.31% 74.83% 75.06% 75.25% 75.96%
Cleanl 62.60%  62.65%  62.32% 62.39%  63.36% 61.67% 62.52% 61.93% 62.60% 62.60% 61.44% 61.71% 62.82% 62.88%
Breast 93.33%  94.95%  93.13% 94.68%  94.26%  90.32% 93.61% 93.74% 93.56%  90.49% 94.65% 93.18% 94.73% 95.88%
Wdbc 90.54%  90.28%  90.58% 91.38%  90.09%  87.78% 91.33% 90.49% 90.96%  90.07% 89.88% 89.29% 91.92% 92.32%
Australian 81.00%  83.13% 81.17% 82.96%  81.37%  80.44% 76.49% 78.11% 77.38%  79.75% 80.85% 80.20% 80.11%  82.36%
Diabetes 70.22%  72.07% 70.52% 71.40%  70.85% = 69.98% 69.25% 69.34% 68.88%  69.30% 70.90% 70.29% 70.43% 71.68%
Mammographic  79.92%  81.45%  79.38% 81.76% 79.46%  79.40% 79.61% 78.65% 79.07%  78.72% 81.32% 79.29% 80.26% 81.56%
Ex8a 79.53%  79.62%  79.70% 78.66% = 79.49% = 78.32% 83.99%  76.19% 76.52%  T1.73% 78.38% 82.90% 79.19% 82.25%
Tic 86.54%  88.12% 86.63% 87.95%  86.46%  84.66% 87.33% 85.39% 85.46% 81.19% 87.07% TLE 87.58%  87.09%
German 69.23%  70.75% 69.46% 70.37%  69.11%  69.35% 68.96% 69.18% 69.28%  68.47% 69.64% TLE 69.29%  70.45%
Splice 83.16%  84.98% 82.06% 84.91%  82.45%  75.17% 76.06% 78.42% 83.03% 79.81% 81.08% 80.61% 81.79% 82.71%
Gcloudb 86.36%  89.11%  86.39% 88.86%  87.14%  83.93% 87.18% 84.21% 84.60%  84.17% 88.84% 87.09% 87.57% 89.15%
Gcloudub 88.19%  88.91%  88.41% 87.93%  88.47%  86.93% 86.82% 82.97% 84.66%  T79.88% 86.87% 87.70% 86.01% 90.77%
Checkerboard 97.32%  95.81%  97.08% 97.67%  97.93%  96.57% 96.78% 90.18% 87.09%  75.27% 98.66% 98.23% 94.78% 99.80%
Spambase 90.77%  93.85% 89.93% 93.62%  90.63%  90.97% 88.96% 85.38% TLE 90.85% 93.11% TLE 91.09%  93.04%
Banana 85.76%  83.20%  86.17% 82.74%  86.53%  83.44% 87.51% 69.76% 62.64% 70.87% 84.51% TLE 85.29% 88.43%
Phoneme 81.66%  85.13% 80.97% 84.77%  82.30%  80.62% 81.45% 78.38% TLE 76.87% 83.62% TLE 81.47%  83.64%
Ringnorm 89.55%  93.89%  89.92% 94.02% 87.82%  57.35% 54.17% 55.70% TLE 57.73% 92.03% TLE 88.21% 89.32%
Twonorm 93.97%  95.92%  93.56% 95.95% 93.31%  93.73% 94.45% 80.79% TLE 92.31% 95.70% TLE 94.50% 94.42%
Phishing 92.17%  94.62%  92.06% 94.84% 91.76%  91.18% 92.22% 90.97% TLE 87.74% 93.80% TLE 93.20%  94.28%
Covertype 70.98%  73.70% 70.22% 73.43% TLE 64.46% TLE 61.73% TLE 58.76% 67.50% TLE 66.92%  71.90%
Bioresponse 66.64%  68.38%  66.74% 68.99% 65.45% = 65.64% 63.52% 60.64% TLE 66.64% 67.77% TLE 66.55% 67.88%
Pol 93.24%  96.67%  93.27% 96.84% 92.96%  84.26% 85.70% 75.77% TLE 93.24% 95.24% TLE 93.67% 96.15%

A Detailed benchmarking results of XGBoost

We present more settings of the benchmarking results for XGBoost for verifying the superiority of query
strategies in Section We check the accuracy of the model with different ratios, e.g., 10% and 30% of
labeled examples on each dataset. Tables[[2] and [I3]also confirm that US outperforms other query strategies
on most datasets. It is worth mentioning that LAL achieves good performance on Gcloudb, Gcloudub,
and Checkerboard when the ratio of labeled examples is 10%. However, these datasets are synthetic, and
their features may be more similar to the pre-trained datasets used by LAL, resulting in LAL’s exceptional
performance on these datasets.

We also extend the Table |5| to the number of queried examples required to reach 90% and 95% of the
model’s performance trained on the full budget. Table [[4] demonstrates that Uncertainty Sampling stably
achieves first place or second place on 14 datasets. Similarly, Table [I5] demonstrates that Uncertainty
Sampling achieves first place or second place on 15 datasets. These results verify that Uncertainty Sampling
is competitive in our benchmark.

B Revision of Zhan et al. (2021)

In this section, we reveal and revise descriptions in|Zhan et al.| (2021)) to study the conflicting conclusions in
previous benchmarks and provide clear information to the active learning community. We appreciate that
Zhan et al.|(2021) published their source code on GitHubﬂ Thus we could examine the difference from our
settings.

B.1 Experimental Settings

Inputs and base models. At the initial setup, Zhan et al.| (2021) employed a random split of 60% of
the dataset for the training set and the remaining 40% for the testing set. No pre-processing was applied
to the dataset, and fixed random seeds were used to ensure consistency in the training and testing sets
across repeated experiments. They used an RBFSVM as the task-oriented model for evaluating the query
strategies.

9 https://github.com/SineZHAN/ComparativeSurveyI JCAI2021PoolBasedAL
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Table 13: Accuracy of the model with 30% labeled examples: We report the accuracy of the model with
30% labeled examples on each dataset. The bold indicates the first place. ‘TLE’ means a query strategy
exceeds the time limit.

Uniform US QBC BALD Hier Graph  Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL
Sonar 71.18%  71.71%  70.73% 71.90%  70.89% 71.02% 67.89% 69.06% 70.20%  71.43% 70.10%  72.37% 71.75% 71.99%
Parkinsons 81.44%  84.95% 81.88% 84.38%  81.87% 81.95% 81.58% 80.50% 81.74%  81.74% 83.74%  82.67%  83.21% 84.08%
Ex8b 82.76%  84.21%  82.99% 83.14%  83.11% 82.54% 84.42% 81.99% 83.48%  81.54% 83.88%  83.51%  84.40% 84.87%
Heart 771.78%  79.78% 77.90% 79.50%  77.85% 77.84% 78.07% 76.76% 77.99%  77.84% 78.29%  78.49%  78.37% 79.27%
Haberman 68.87%  71.21% 68.41% 70.92%  69.58% 68.96% 68.54% 67.49% 67.65% 69.13% 70.33%  69.24%  68.85% 70.33%
Ionosphere 85.97%  90.30% 86.70% 90.27%  87.21% 87.41% 84.42% 84.07% 79.92%  78.34% 88.85%  81.04%  88.76%  89.99%
Cleanl 7259%  T4.79% 72.52% T4.26% @ 72.36% 72.40% 71.8T% 72.59% 72.87%  7259% 7254%  72.03%  73.59% 74.59%
Breast 95.68%  96.69%  95.77% 96.76%  96.26% 95.52%  96.08% 95.74% 95.99%  90.15% 96.64%  95.62%  96.36% 96.81%
Wdbc 93.73%  95.95%  93.77% 95.95%  94.28% 93.86% 94.07% 92.98% 93.94%  93.58% 95.94%  93.71%  95.75% 95.99%
Australian 84.59%  86.25% 84.62% 86.12%  84.56% 85.00%  84.50% 82.80% 84.79%  83.76% 86.00%  84.76%  84.91% 85.77%
Diabetes 72.60%  T4.27% 72.84% 73.84%  72.72% 73.12% 73.19% 70.34% 72.86% 71.05% 73.59%  72.59%  72.54% 72.78%
Mammographic  79.53%  82.06%  79.27% 82.07% = 79.42% 78.87% 79.10% 79.10% 79.60% 78.65% 82.08% 79.89%  79.17% 81.69%
Ex8a 91.08%  92.63%  91.30% 92.75%  91.20% 91.01% 94.96%  77.68% 80.40%  82.04% 93.09%  92.75%  88.08%  93.89%
Tic 90.12%  91.07%  90.12% 91.29% 90.11% 90.15% 89.58% 89.37% 90.21%  88.67% 90.78%  TLE 89.79% 90.11%
German 72.16%  73.73% 72.50% 73.56%  72.35% 72.71% 72.11% 72.40% 71.84% 70.83% 73.47% TLE 72.96%  73.24%
Splice 91.53%  95.47% 91.53% 95.17%  91.36% 91.75% 90.43% 89.53% 91.76% 87.21% 94.79%  91.80%  91.82% 92.98%
Gcloudb 88.09%  89.06%  88.20% 89.03%  88.23% 88.33%  88.56% 84.96% 84.50%  85.99% 89.15%  88.26%  88.62% 89.27%
Gcloudub 92.67%  95.38% 92.52% 94.84%  93.37% 92.76%  90.66% 84.03% 87.36%  81.48% 94.49%  91.84%  91.76% 94.42%
Checkerboard 99.29%  97.22%  99.19% 99.76%  99.61% 99.16% 99.47% 91.51% 91.71%  79.49% 99.65%  99.56%  99.29% 99.81%
Spambase 93.10%  95.14% 93.22% 95.11%  93.45% 93.07%  92.99% 90.03% TLE 93.16% 94.88%  TLE 93.49%  95.04%
Banana 88.02%  89.08%  87.83% 88.98%  87.86% 87.75% 87.96% 74.16% 79.78%  76.83% 89.16% TLE 87.43% 88.98%
Phoneme 85.14%  88.47% 85.14% 88.20%  86.02% 84.93%  85.59% 83.45% TLE 80.68% 88.15% TLE 85.15%  88.00%
Ringnorm 94.22%  96.15%  94.59% 96.32% 93.38% 94.01% 51.04% 64.64% TLE 55.09% 96.12%  TLE 94.06%  94.94%
Twonorm 95.67%  96.76%  95.67% 96.77% 95.76% 95.73%  96.03% 77.35% TLE 95.08% 96.75%  TLE 96.02%  96.57%
Phishing 94.09%  96.56%  93.67% 96.55%  93.79% 93.98%  93.83% 91.96% TLE 91.03% 96.38%  TLE 94.81% 96.60%
Covertype 73.54%  76.30% 73.16% 76.25% TLE 65.82% TLE 63.94% TLE 60.21% 73.13%  TLE 69.72%  74.64%
Bioresponse 7211%  74.10%  7251% 74.72% 71.91% 73.20% 69.89% 69.11% TLE 72.11% 73.33%  TLE TL.76%  73.78%
Pol 96.34%  98.28% 96.22% 98.25%  96.41% 96.70% 94.84% 91.99% TLE 96.34% 98.14%  TLE 95.93%  98.25%

Table 14: The minimum number of queried examples required to reach 90% accuracy (J is better) of the
model: The bold indicates the first place and idtalics indicates the second place. ‘TLE’ means a query
strategy exceeds the time limit.

Uniform Us QBC  BALD Hier Graph  Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 20.88 20.62  21.16 20.71 20.89 21.32 20.85 20.98 21.09 21.82 20.64 21.04 20.87  20.82
Sonar 34.95 33.94 34.65 34.23 33.62 35.54 39.05 38.70 33.47 35.75 3423  31.54 3384  32.67
Parkinsons 26.22 23.29 26.81 23.68 25.02 27.32 26.84 32.36 27.29 26.10 24.09 24.74 24.61  23.28
Ex8b 25.01 23.57 24.60 23.24 24.67 23.34 23.02 27.20 24.15 26.79 23.36 23.03 23.13  22.07
Heart 23.35 23.20 23.34 22.76 23.28 23.93 22.76 24.40 22.98 24.64 23.74 23.85 22.69 2313
Haberman 20.45 20.32 20.51 20.51 20.60 20.62 22.09 20.95 21.21 20.54  20.26  20.53 20.40  20.47
Tonosphere 35.05 30.38 32.74 30.02 32.79 38.32 32.26 35.42 39.80 93.23 32.94 50.42  27.56  28.05
Cleanl 97.02 85.99 99.13 85.04  102.03  101.63 102.60 101.68 96.60 97.02 97.67 10431 87.96 84.58
Breast 21.04 20.88 20.95 22.25 20.89 24.60 20.98 21.03 20.85 44.26 20.88 21.50 20.55  20.35
Wdbc 23.33 23.00 23.38 22.37 22.63 25.25 22.04 23.56 22.42 23.41 23.00 24.37 21.53  20.92
Australian 25.02 24.35 24.61  23.85  25.30 26.25 30.30 33.27 28.87 26.19 27.65 26.27 26.89  24.52
Diabetes 22.42 22.02 22.99 22.30 22.02 22.87 22.53 23.22 22.80 25.03 23.36 2337 21.86 22.16
Mammographic 21.07 20.28  20.40 20.70 20.39 20.44 20.49 20.29 20.33 20.99 20.83 20.39 20.33  20.38
Ex8a 74.56 76.86 76.89 75.54 79.67 71.65 55.77 248.32 214.78  154.69  82.22 63.65 99.55  58.75
Tic 22.80 21.60 23.68 22.06 22.40 24.23 22.12 24.19 25.99 27.35 21.70 TLE 21.55 22.04
German 29.63 27.72  30.15 28.29 29.54 29.94 30.92 33.47 32.72 35.41 28.32 TLE 30.26  29.29
Splice 71.31 57.28  T77.10 57.87 75.11 91.75 107.48 107.19 70.71 120.35  73.65 80.92 7776  69.37
Gcloudb 22.37 22.99 22.41 22.18 22.18 24.08 20.92 21.53 22.42 24.02 22.84 21.15 21.19  21.28
Gcloudub 38.13 38.29 36.94 45.03 36.18 41.46 35.65 84.29 60.09 206.32  44.59  35.10 38.94  35.51
Checkerboard 39.15 95.46 41.08 41.61 37.36 41.37 33.60 126.14 93.89 420.74  45.56 30.83 53.35  28.22
Spambase 63.70 37.10  53.10 40.70 59.60 91.80 83.60 184.30 TLE 61.60 46.90 TLE 56.10  88.10
BaTLEa 73.10 22250 85.20 201.90 72.10  195.10 67.00 1040.10 617.60  777.70 173.90 TLE 127.90  79.20
Phoneme 120.50 102.20  193.70  101.70  99.60  227.00 165.20 325.10 TLE 573.90 112,50 TLE 138.80 91.40
Ringnorm 165.90  101.20 162.70 104.70 209.60 478.60  2255.00 1333.50 TLE 2484.30 172.20 TLE  228.20 138.50
Twonorm 52.50 38.40  65.70 39.10 78.70 68.60 55.60 1359.60 TLE 80.60 54.10 TLE 50.70  89.00
Phishing 22.30 22.40 23.20 21.90 25.50 30.80 24.00 25.60 TLE 52.40 22.00 TLE 21.30 22.80
Covertype 164.00 110.80 130.10  146.60 TLE  1689.20 TLE TLE TLE 20.00 TLE TLE TLE  129.70
Bioresponse 291.00  201.70 225.10 174.60 267.10 249.40 450.10 TLE TLE 291.00 222.50 TLE TLE  213.20
Pol 86.00 62.80 79.60 69.20  105.80  649.20 286.70 531.60 TLE 86.00 96.40 TLE 78.30  58.60

Query strategies. To compare the performance of 17 query strategies, they implemented random sam-
pling and all query strategies using different libraries. The libact library provided implementations for
Uncertainty Sampling (US), Query by Committee (QBC), Hinted Support Vector Machine (HintSVM),
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Table 15: The minimum number of queried examples required to reach 99% accuracy (| is better) of the
model: The bold indicates the first place and italics indicates the second place. ‘TLE’ means a query
strategy exceeds the time limit.

Uniform US QBC BALD Hier =~ Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 24.56 22.39 24.72 22.69 23.65  24.23 23.93 23.05 24.41 26.31 22.24  24.22 23.36 2246
Sonar 51.31 48.78 51.26  47.09 51.27  53.33 55.92 55.22 51.48 53.32 50.29 49.14  49.01  46.11
Parkinsons 41.89 29.74 4195 31.35 36.36  44.87 42.01 52.58 40.87 41.77 32.14 36.16 34.49 31.69
Ex8b 34.15 30.30 34.30 31.70 32.04  34.86 29.73 39.04 33.11 42.11 30.27 32.50 30.51  28.12
Heart 28.16 28.83 3043  27.84 29.53  30.43 27.85 31.22 28.53 31.49 30.53 30.13  27.62  28.60
Haberman 22.17 21.35 21.32  21.27  21.70  21.59 22.86 23.73 22.91 21.95  21.06  21.49 21.53  21.36
Tonosphere 57.59 38.77  51.75 38.94 54.52  56.78 53.82 58.17 63.56 145.18  45.75 84.66 39.71  37.18
Cleanl 154.98 116.87 149.53 117.15 152.53 156.88 145.54 145.98 143.03 154.98  129.95 149.07 129.58 121.23
Breast 27.80 26.48 27.98 26.80 24.51  38.88 26.27 28.45 24.37 110.20  26.50 29.27  23.51  21.66
Widbce 33.43 33.02 35.83 29.50 35.15  38.93 30.16 36.22 30.91 37.32 33.26 37.70  26.67 25.62
Australian 36.67 29.97  34.00 29.72  35.67 3748 43.39 53.25 43.54 43.85 35.10 39.84 38.07  30.29
Diabetes 30.10 28.37 32.14 31.09  28.33  31.92 31.15 45.45 33.72 41.25 32.06 33.58 29.50  26.06
Mammographic 22.50 21.49 22.24 21.42 23.53  23.99 21.87 22.20 21.11 25.54 23.82 21.67 21.16  21.01
Ex8a 137.20 131.24  136.96 127.49 133.07 131.67  87.53 303.87 292.35  236.73 125.00 107.80 213.37  92.54
Tic 38.18 31.05 39.40 31.64 36.90 43.42 36.85 48.37 42.04 66.66 33.24 TLE 3447 35.07
German 7775 53.58  61.17 58.86 73.46 7213 75.27 66.40 70.93 99.70 57.47 TLE 5821  54.55
Splice 136.05 85.07 136.84 85.34  134.67 139.17  165.62 172.66 133.49  263.52 106.11 138.55 137.54 112.67
Gceloudb 28.93 28.11 32.15 26.43 28.58  39.38 25.40 32.25 38.50 37.28 27.56 26.09 27.03  24.57
Gcloudub 89.46 70.17 78.74 80.73 63.78  76.47 89.61 325.75 178.15  364.91  93.69 88.56 99.21  59.37
Checkerboard 55.70 195.19  59.63 61.28 47.50  58.96 54.86 276.80 239.73  584.71  56.07  43.10  85.12  32.18
Spambase 223.00 81.20  256.90 78.70 180.20 205.40  252.20 620.00 TLE 220.00 114.10 TLE 167.80  96.80
BaTLEa 141.90  337.30 153.70  349.30 144.40 313.00 105.80 1474.50 888.20 1761.10 286.30 TLE  182.30 112.00
Phoneme 509.70  226.40 527.30 233.70 427.00 442.00  445.00 880.60 TLE 1455.90 303.60 TLE  556.80 296.00
Ringnorm 390.40  175.10 35440 169.20 481.80 546.80 2337.70 1503.90 TLE  2621.40 253.00 TLE  442.80 361.00
Twonorm 127.50 62.10 12350 61.30 176.20 140.80  121.30 2320.40 TLE 218.30  93.20 TLE 89.70  73.30
Phishing 99.00 47.20 101.40 46.80  75.00 215.70 83.30 138.90 TLE 695.40  70.70 TLE 80.50  53.50
Covertype 642.20 231.90  759.80  248.40 TLE 561.70 TLE TLE TLE 20.00 TLE TLE TLE 421.80
Bioresponse 602.40  874.70 540.10 354.60 560.40 529.00  713.60 TLE TLE 602.40  496.50 TLE TLE  447.30
Pol 224.10 131.40 227.20 122.00 290.30 772.60  429.40 1009.80 TLE 224.10 17520 TLE  205.30 124.50

QUerying Informative and REpresentative Examples (QUIRE), Active Learning by Learning (ALBL), Den-
sity Weighted Uncertainty Sampling (DWUS), and Variation Reduction (VR). The Google library included
Random Sampling (Uniform), k-Center-Greedy (KCenter or Core-Set), Margin-based Uncertainty Sampling
(Margin), Graph Density (Graph), Hierarchical Sampling (Hier), Informative Cluster Diverse (InfoDiv), and
Representative Sampling (MCM). The ALiPy library contributed Estimation of Error Reduction (EER),
BMDR, SPAL, and LAL. Besides, they proposed the Beam-Search Oracle (BSO) as a reference to approx-
imate the optimal sequence of queried samples that maximizes performance on the testing set, aiming to
assess the potential improvement space for query strategies on specific datasets. Through reviewing their re-
leased source code, we identified differences between the task-oriented and query-oriented models for specific
query strategies. Table |16 highlights the discrepancies between the two models for each query strategym In
particular, Margin and US (US-C and US-NC in our notation) are variant settings for Uncertainty Sampling.
We further discuss such differences in Section In re-benchmarking (Appendix [C|), we adopt RBFSVM
for a query strategy and evaluation by default.

Experimental design. The active learning algorithm was stopped when the total budget was equal to
the size of the unlabeled pool, T' = |D1(10) |. They collected the testing accuracy at each round to construct a
learning curve, and the AUBC was calculated to summarize the performance of a query strategy on a dataset.
To ensure reliable results, they conducted Kg = 100 repeated experiments for small datasets (n < 2000)
and K, = 10 repeated experiments for large datasets (n > 2000), where n represents the size of the dataset.
Finally, they compute the average AUBCs across repeated experiments for each query strategy on each
dataset.

Analysis methods. |Zhan et al|(2021)) benchmarked the pool-based active learning for classifications on
35 datasets, including 26 binary-class and 9 multi-class datasets collected from LIBSVM and UCI (Chang
& Lin| 20115 |Dua & Graff] 2017). They provided the data properties, such as the number of samples n,
dimension d, and imbalance ratio IR, where the imbalance ratio is the proportion of negative labels to the

10The settings are different from their source code for Google and ALiPyEI.
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Table 16: Settings of query-oriented models H for specific query strategies Q in |Zhan et al| (2021).

Q H

US (Zhan et al., |2021) , US-NC (Ours) LR(C =0.1)
QBC LR(C = 1), SVM(Linear,
probability = True),
SVM(RBEF, probability =

True), Linear Discriminant
Analysis
ALBL Combination of QSs with same
H: US-C, US-NC, HintSVM
VR LR(C =1)
EER SVM(RBF, probability =
True)

number of positive labels
o Heay) yi= 1)
{(zj,95) : y; = —1}

They employed these metrics to analyze the results from different aspects to explain the results of the query
strategy’s performance on a dataset. We agree with their core idea of the analysis methods and believe their
benchmark benefits the research community. However, we observe that the conclusion of their work differs
from several previous works. For example, |Zhan et al|(2021)) claimed that LAL performs better on binary
datasets than Uncertainty Sampling while not in the other benchmark (Yang & Loog, [2018). The evidence
urges us to re-implement the active learning benchmark to clarify the conflicting claims.

B.2 Benchmarking datasets

Section |3| records the datasets used in the previous benchmark (Zhan et al.| |2021)). However, we discover
that the attributes of datasets are different. We report the revision in Table [L7] via {Zhan et al.| (2021) —
Our new version’.

B.3 Failure of the Reproducing Uniform

Table (Table shows the significant difference between ours and |Zhan et al., (2021). We noticed an
implementation error in the previous benchmark. In Google, Uniform assumes that the data has already
been ShuﬂiedE-] However, the implementation in |Zhan et al.| (2021) does not shuffle the unlabeled pool at

first [

[Code=Python]
dict_data,labeled_data,test_data,unlabeled_data = \
split_data(dataset_filepath, test_size, n_labeled)

print(unlabeled_data)

# results of indices of unlabeled pool

#[3, 4, 5, 10, 11, 13, 15, 16, 20, 23, 24, 26, 27, 29, 30, 31, 33, 36, 37, 41, 43, 44, 45 \

# 49, 50, 51, 53, 54, 55, 57, 63, 64, 65, 70, 73, 75, 77, 78, 79, 83, 84, 86, 87, 88, 89, \

# 91, 92, 95, 97, 102, 105, 110, 112, 114, 115, 121, 122, 127, 128, 131, 132, 136, 137, \

# 139, 140, 144, 148, 150, 151, 155, 157, 159, 160, 161, 162, 164, 165, 167, 168, 172, 175, \
# 176, 177, 178, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193, 194, 197, 198, 199, \

Mhttps://github.com/google/active-learning/blob/master/sampling_methods/uniform_sampling.py#L40
2https://github.com/SineZHAN/ComparativeSurveyIJCAI2021PoolBasedAL/blob/master/Algorithm/
baseline-google-binary.py#L331
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Table 17: Benchmarking datasets in this work and revision of Table 2 in [Zhan et al.| (2021]).

Domain k. r d n
Appendicitis Health and Medicine 2 4.05 7 106
Iris Biology 3 1 4 150
Wine Physics and Chemistry 3 1.48 13 178
Sonar Physics and Chemistry 2 1 60 108—208
Parkinsons Health and Medicine 2 3.06 22 195
Ex8b Synthetic 2 1 2 206—210
Heart Health and Medicine 2 1 13 270
Haberman Health and Medicine 2 2 3 306
Tonosphere Physics and Chemistry 2 1 34 351
Cleanl Physics and Chemistry 2 1 168—166 475—476
Breast Health and Medicine 2 1 10 478
Wdbc Health and Medicine 2 1 30 569
Australian Business 2 1 14 690
Diabetes Health and Medicine 2 1 8 768
Mammographic Health and Medicine 2 1 b) 830
Ex8a Synthetic 2 1 2 863—766
Tic Games 2 6 9 958
German Social Science 2 2 20—24 1000
Splice Biology 2 1 61—60 1000
Gcloudb Synthetic 2 1 2 1000
Gcloudub Synthetic 2 2203 2 1000
Checkerboard Synthetic 2 1-1.82 2 1600
Myocardial Health and Medicine 2 20.52 111 1700
Bioresponse Biology 2 1 419 3434
Abalone Biology 21 11483 8 4168
Academic Success Social Science 3 278 36 4424
Spambase Computer Science 2  1—1.54 57 4601
Banana Synthetic 2 1 2 5300
Phoneme Speech 2 2 5 5404
Satellite Climate and Environment 6  2.45 36 6435
Ringnorm Synthetic 2 1 21—-20 7400
Twonorm Synthetic 2 1 50—20 7400
Pol Synthetic 2 1 26 10082
Phishing Computer Science 2 1 30 2456—11055
Dry Bean Biology 7  6.79 16 13611
IMDB Text 2 1 768 50000
CIFAR-10 Image 10 1 768 60000
Diabetes 130-US Hospitals Health and Medicine 3 483 2463 101766
RT-10T2022 Engineering 12 3380.68 94 123117
Covertype Biology 2 1 10 566602

# 202, 203, 204, 205, 207, 208]

We also modify their Uniform implementation by shuffle the unlabeled_data. Then, we can obtain similar
results based on their source code, see Table [1§

[Code=Python]

dict_data,labeled_data,test_data,unlabeled_data = \
split_data(dataset_filepath, test_size, n_labeled)
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Table 18: Comparing different train/test/labeled splits on Sonar: first column is reprot and reproducing
results in [Zhan et al.| (2021), second column in our implementation, and the third column is reproducing
results after we revise [Zhan et al.| (2021))’s code.

Uniform Report and code Our code Modified code

in [Zhan et al. in [Zhan et al.
(2021)) (2021))

Google 0.6274* 0.7513 0.7577

libact _ 0.7520 0.7543

ALiPy 0.7556 0.7579

random.shuffle(unlabeled_data)

The unshuffled implementation in Google significantly impacts binary classification datasets, such as Sonar,
Cleanl, and Spambase. Also, it affects Ex8a and German, which enlarges the difference AUBCs between
Uniform and other query strategies. Due to this experience, we suggest practitioners ensure the correct-
ness of the baseline method by comparing different implementations before conducting the benchmarking
experiments.

B.4 Query Strategy and Implementation

We revise some descriptions of the query strategies in [Zhan et al.| (2021)):

(1) ‘Graph Density (Graph) is a typical parallel-form combined strategy that balances the uncertainty
and representative based measure simultaneously via a time-varying parameter (Ebert et al., 2012’

(2) ‘Marginal Probability based Batch Mode AL (Margin) |(Chattopadhyay et al.| (2012) selects a batch
that makes the marginal probability of the new labeled set similar to the one of the unlabeled set
via optimization by Maximum Mean Discrepancy (MMD).

(3) Kremer et al| (2014) proposed an SVM-based AL strategy by minimizing the distances between
data points and classification hyperplane (HintSVM).

Issue (1): Although Ebert et al.| (2012)) proposed the reinforcement learning method to select uncertainty and
diversity sample(s) during the procedure, Google (Yilei “Dolee” Yang), 2017)) does not implement the whole
procedure but only the diversity sampling methodE Thus, we should categorize it as diversity-based
method.

Issue (2): Google (Yilei “Dolee” Yang} 2017 does not use MMD to measure the distance. The implementation
is uncertainty sampling with a margin score is mentioned in the survey paper (Settles|, 2012)). Therefore, we
should categorize it to uncertainty-based method.

Issue (3): libact (Yang et all [2017) implemented HintSVM based on the work of |[Li et al.| (2015]) rather than
Kremer et al.| (2014).

B.5 Relationship between query strategies

We provide additional evidence to explain the relationship between query strategies, which supports our
experimental results.

(1) US-C and InfoDiv should be the same when the query batch size is one.

(2) Different uncertainty measurements should be the same in the binary classification, indicating that
different uncertainty measurements do not cause differences between US-C and US-NC.

3https://github.com/google/active-learning/blob/master/sampling_methods/graph_density.py
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(3) SPAL changes the condition of variables used for discriminative and representative objective func-
tions in BMDR.

Issue (1): InfoDiv clusters unlabeled samples into several clusters, then selects uncertain samples and keeps
the same cluster distribution simultaneouslyE Therefore, it is the same when we set the B = 1 to query
the most uncertain sample. [Zhan et al.| (2021)) provided the different numbers of US-C and InfoDiv in Table
4, which might have resulted from using the different batch sizes of these query strategies.

Issue (2): The least confidence, margin, and entropy are monotonic functions with a peak equal to P(y =
+1 | 2) = 0.5 in binary classification, such that all of these uncertainty measurements would query the same
point (Settles| 2012]).

Issue (3) The optimization problem in BMDR is

| Dy
aTl\mi?—b Z(?/i —w' ¢(x;))* + Aw|?
Dul =% =1
|Du (1)
+ > i [wT (@) 3 + 2w é(z;)]]
i=1
+ B(OZTKla + ka)v

where ¢(x) is the feature mapping, A is the hyper-parameter for the regularization term, § is the hyper-
parameter for the diversity term, 1;p, | means ones vector with length of the unlabelled pool |D,|. K is
defined as K; = %K vu, where Ky means the kernel matrix with sub-index U of unlabelled pool D,,. SPAL
only changes o' 1jp,| =btoa'ep, =b

B.6 Comparison between [Zhan et al.| (2021)) and |Yang & Loog| (2018)

Yang & Loog| (2018) propose the first benchmark for pool-based active learning for the conventional Logistic
Regression model. The work compares 10 query strategies that could be categorized into model uncertainty
and hybrid criteria. In datasets, they adopt 44 binary datasets and follow data pre-processing in |Chang
& Lin| (2011). To compare performance across different query strategies, they also use an Area Under
the Learning Curve with accuracy to show the average performance of a query strategy, named AUBC in
Zhan et al.| (2021). Furthermore, they compare the performance of each query strategy by average rank and
improvement (win/tie/loss) from random sampling, which has the same purpose as our work (See Section [4.1]

and Section .

C Re-benchmarking results of [Zhan et al.| (2021)

After we accomplish experiments under the settings in Appendix [B:I} we obtain the benchmarking results
for RBFSVM with the form (query strategy, dataset, seed, | D;|, accuracy) for each round. A (random) seed
corresponds to the different training sets, test sets, and initial label pool splits for a dataset. We collect
the accuracy at each round (]| D], accuracy) to plot a learning curve for query strategy on a dataset with a
seed and summarize it as the mean AUBC in Table Our re-benchmarking results show that Uncertainty
Sampling with compatible models (US-C) outperforms the other query strategies on most datasets.

C.1 Statistical comparison of re-benchmarking results

We show our re-benchmarking results for RBFSVM side-by-side with|Zhan et al.| (2021))’s Table 3 in Table
To determine if there is a statistical difference between the two benchmarking results, we construct the
confidence interval with the ¢-distribution of mean AUBCs. If a result in|Zhan et al.| (2021)) falls outside the
interval, their mean significantly differs from ours. We notice significant differences in Uniform on several
datasets in Table 20} Therefore, we focus on comparing Uniform in Table 21 demonstrating our mean and

Mhttps://github.com/google/active-learning/blob/master/sampling_methods/informative_diverse.py
Bhttps://github.com/NUAA-AL/ALiPy/blob/master/alipy/query_strategy/query_labels.py#L1469
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Table 19: Mean AUBC of Query Strategies: We report query strategies with mean of repeated experiments.

Uniform  US-C US-NC InfoDiv._ QBC EER VR Hier Graph  Core-Set  HintSVM QUIRE DWUS MCM  BMDR SPAL  ALBL LAL

Appendicitis 83.95%  84.54% 84.49% 84.54%  84.41% 84.26% 83.95% 84.14% 84.19%  83.98% 83.90% 83.99% 84.21% 84.57% 84.18% 84.15% 84.49% 84.33%

Sonar 75.00%  77.88% 76.54% T7.88% 76.75% 75.73% 75.00% 75.54% 75.58% T4.54% 74.06% 75.11%  74.35% 77.51% 75.98% TLE 76.28%  76.76%
Parkinsons 83.05%  85.31% 85.11% 85.31% 84.49% 84.51% 83.05% 83.57% 82.91% 83.56% 81.78% 83.05%  82.74% 85.27% 83.69% 83.85% 84.61% 84.63%
Ex8b 88.53%  89.81% 89.39% 89.81%  89.38% 89.36% 88.53% 88.81% 88.50% 89.15% 86.95% 87.86%  88.42% 89.77% 88.84% TLE 88.74%  89.42%
Heart 80.51%  81.57% 81.20% 81.57% 81.30% 80.85% 80.51% 80.75% 80.54% 81.05% 80.39% 81.03%  80.57% 81.54% 80.65% 80.97% 81.18% 81.24%
Haberman 73.09%  72.99% 73.02% 72.99% 73.05% 73.14% 73.08% 73.01% 73.04% 72.67% 72.62% 72.46%  73.16% 72.92% 73.23% TLE 72.97% 73.11%
Tonosphere 91.80%  93.00% 91.97% 93.00% 92.78% 92.49% 91.80% 92.04% 91.62% 91.34% 89.64% 90.15%  87.93% 92.96% 89.34%  92.32% 92.06% 92.65%
Cleanl 81.79%  84.32% 83.41% 84.32% 83.42% 82.15% TLE 81.86% 81.00% 79.02% 76.97% 81.81% 81.79% 84.16% TLE TLE 82.64% 83.34%
Breast 96.14%  96.34% 96.26% 96.34%  96.33% 96.31% 95.82% 96.17% 96.15%  96.28% 96.24% 96.24%  96.06% 96.34% 96.18% TLE 96.26%  95.86%
‘Wdbce 95.39%  96.52% 95.97% 96.52%  96.26% 96.22% 95.39%  95.65%  95.40%  95.86% 95.58% 95.83%  95.04%  96.50% 95.72%  96.12%  96.13%
Australian 84.83%  85.04% 84.59% 85.04% 84.94% 84.72% 84.83% 84.87% 84.69% 84.78% 84.44% 84.76%  84.73%  85.04% 85.04% 84.86% 84.83%
Diabetes T4.24%  TATI%  T4.32%  TATI%  T472%  TABT%  14.24% TA34%  T4.24%  74.91% 74.56% T470%  72.27%  14.71% 74.65% 14.43% 74.62%
Mammographic  81.25%  81.64% 81.65% 81.64% 81.61% 81.58% 81.23% 81.40% 81.22% 81.48% 80.94% 81.42%  79.95% 81.68% 81.32% TLE 81.59% 81.39%
Ex8a 85.52%  88.01% 82.83% 88.01% 86.16% 85.22% 85.52% 86.10% 85.13% 85.55% 81.34% 80.95%  79.24% 87.80% 85.39% TLE 84.19% 83.54%
Tic 87.18%  87.20% 87.18% 87.20% 87.19% 87.19% 87.18% 87.19% 87.20% 87.16% 87.19% 86.99% 87.10% 87.20% 87.19% 87.12% 87.18% 87.20%
German 73.40%  7417T% 73.87% TALT%  73.96% 73.80% 73.40% 73.48% 73.54% 73.62% 73.06% 73.55%  72.69% 74.09% TLE 73.62% 73.66% 74.00%
Splice 80.68%  82.28% 81.47% 82.28% 81.50% 80.73% 80.68% 80.62% 78.21% T74.76% 77.57% 80.35%  76.08% 82.39% TLE TLE 81.00% 80.45%
Geloudb 89.50%  89.85% 88.58% 89.85%  89.73% 89.47% 89.50% 89.49% 89.40% 89.25% 87.55% 87.85%  88.62% 89.82% 89.54% TLE 89.72%  89.46%
scloudub 94.40%  95.67% 94.89% 95.67%  95.36% 93.87% 94.40% 94.75% 94.40% 89.12% 89.35% 93.17%  93.62% 95.57% 93.77% TLE 93.83%  94.76%
Checkerboard 97.81%  98.47% 91.34% 98.47% 97.02% 98.40% 97.81% 97.85% 97.3T% 98.74% 92.42% 94.37%  90.45% 98.47% 98.32% TLE 96.79%  96.41%
Spambase 91.03%  92.05% 90.10% 92.05% 91.90% TLE TLE 91.22%  90.73%  90.52% 89.85% TLE 91.03% 92.00% TLE TLE 91.62%  90.62%
Banana 89.26%  87.87% 80.50% 87.87%  89.08% TLE 89.25% 89.29% 88.48%  89.30% 85.10% 82.99% 81.64% 87.564% TLE TLE 88.51%  89.23%
Phoneme 82.54%  83.556% 82.11% 83.55% 83.18% TLE TLE 83.00% 82.09% 82.40% 80.83% 81.83% 81.37% 83.59% TLE TLE 82.47%  82.42%
Ringnorm 97.76%  97.86% 97.67% 97.86% 97.71% TLE TLE 97.66% 97.11% 94.77% 97.15% TLE 93.46% 97.82% TLE TLE 97.69%  97.80%
Twonorm 97.53%  97.64% 97.55% 97.64% 97.60% TLE TLE 97.52% 97.54%  97.55% 97.36% TLE 97.31% 97.63% TLE TLE 97.52%  97.61%
Phishing 93.82%  94.60% 93.91% 94.60% 94.41% TLE TLE 93.80% 93.27%  94.06% 92.96% TLE 89.23% 94.49% TLE TLE 94.20%  94.29%

Table 20: We report our AUBCs (%) with Table 3 in [Zhan et al.| (2021) side-by-side. A score denoted
with format: Zhan et al.| (2021) — ours. The symbol ‘*’ indicates a significant difference with the
significance level o = 5%.

Uniform BSO Avg BEST BEST QS WORST WORST_ QS
Appendicitis 84% — 83.95% 88% — 88.37% 84% — 84.25% 86% — 84.57%* EER — MCM 83% — 83.90%* DWUS — HintSVM
Sonar 62% — 74.63%* 83% — 88.40%* T76% — 75.60% 8% — 77.62%* LAL —  US-C 73% — 73.57% HintSVM —HintSVM
Parkinsons 84% — 83.06%* 87% — 88.28%* 85% — 83.97% 86% — 85.31%* QBC — US-C 83% — 81.78% HintSVM —HintSVM
Ex8b 87% — 88.53%*  92% — 93.76%* 89% — 88.88% 91% — 89.81%* SPAL — US-C 86% — 86.99% HintSVM —HintSVM
Heart 81% — 80.51% 85% — 89.30%* 79% — 80.99% 83% — 81.57%* InfoDiv — US-C 72% — 80.39%* DWUS — HintSVM
Haberman 73% — 73.08% 5% — 78.96%*  73% — 72.95% 74% — 73.19% BMDR — BMDR 2% — 72.44% QUIRE — QUIRE
Ionosphere 90% — 91.80%*  93% — 95.45%* 91% — 91.59% 93% — 93.00%* LAL — US-C 88% — 87.93%* HintSVM — DWUS
Cleanl 65% — 81.83%* 87% — 92.19%* 81% — 81.97% 84% — 84.25%* LAL — US-C 5% — 76.95% HintSVM —HintSVM
Breast 95% — 96.16%* 96% — 97.60%* 96% — 96.19% 96% — 96.32%* SPAL — US-C 95% — 95.82%* DWUS — VR
Wdbc 95% — 95.39% 97% — 98.41%*  96% — 95.87% 97% — 96.52%* LAL —  US-C 94% — 95.04%* EER — DWUS
Australian 85% — 84.83%  88% — 90.46%* 85% — 84.82% 85% — 85.04%* Core-Set — US-C 82% — 84.44%* DWUS — HintSVM
Diabetes T4% — 74.24%*  78% — 82.5T%*  TA% — T4.42% 5% — 74.91%  Core-Set —Core-Set  69% — 72.27%* EER — DWUS
Mammographic ~ 82% — 81.30%* 84% — 85.03%* 82% — 81.44% 83% — 81.78% MCM — MCM 80% — 79.99%* EER — DWUS
Ex8a 84% — 85.39%*  87% —» 88.28%* 84% — 84.62% 86% — 87.88%* Hier — Us-C 80% — 79.11%* QUIRE — DWUS
Tic 87% — 87.18% 87% — 90.77%*  87% — 87.17% 87% — 87.20%* EER —  US-C 87% — 86.99% QUIRE — QUIRE
German 73% — 73.40%* 78% — 82.08%* 74% — 73.65% T4% — 74.17%* QBC — US-C 2% — 72.68% DWUS —- DWUS
Splice 81% — 80.75% 87% — 91.02%*  79% — 80.08%  82% — 82.34%* QBC — MCM 68% — 75.18%* EER —  Core-Set
Geloudb 89% — 89.52% 90% — 90.91%* 89% — 89.20% 90% — 89.81%* Graph — US-C 87% — 87.48% HintSVM —HintSVM
Geloudub 94% — 94.37% 96% — 96.83%*  93% — 93.72%  95% — 95.60%* QBC — US-C 86% — 89.29%* EER —  Core-Set
Checkerboard 98% — 97.81%  99% — 99.72%*  94% — 96.42% 99% — 98.74%  Core-Set —Core-Set  90% — 90.45%* VR — DWUS
Spambase 69% — 91.03%* TLE 88% — 91.14%  92% — 92.05%* QBC — US-C 69% — 89.85%* DWUS — HintSVM
Banana 90% — 89.26% TLE 85% — 86.90% 89% — 89.30%* Hier — Core-Set 78% — 80.50%* QUIRE — US-NC
Phoneme 82% — 82.54% TLE 82% — 82.49% 83% — 83.59%* QBC — MCM 80% — 80.83% HintSVM —HintSVM
Ringnorm 98% — 97.76%* TLE 95% — 97.05% 98% — 97.86%* LAL — US-C 80% — 93.46% DWUS —- DWUS
Twonorm 98% — 97.53% TLE 98% — 97.54% 98% — 97.64%* Core-Set — US-C 97% — 97.31% DWUS —- DWUS
Phishing 93% — 93.82%* TLE 94% — 93.65% 95% — 94.60%* LAL — US-C 92% — 89.23%* Graph — DWUS

standard deviation (SD) AUBC of Uniform and the mean AUBC of Uniform reported by [Zhan et al.|(2021]).
There are 13, nearly half of the datasets, significantly different from the existing benchmark with significance
level a@ = 5%. Furthermore, we perform better on most datasets except for Parkinsons and Mammographic.
1% of mean AUBC is larger than previous work on 8 datasets, especially for Sonar, Cleanl, and Spambase.
Following the same procedure of statistical testing, Table 22] demonstrates BSO of ours and
. This phenomenon is more evident in BSO than in Uniform. We still get significantly different and
better performances on most datasets except for Appendicitis.

C.2 Verify usefulness

[Zhan et al] (2021]) verified the applicability of a query strategy by several aspects:
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Table 21: Reporducing Failure of Uniform

Mean SD Zhan et al.| (2021) a=5% a=1%

Appendicitis 83.95% 3.63% 83.6% In In
Sonar 74.63%  3.79% 61.7% Out Out
Parkinsons 83.056% 3.68% 84.0% Out In
Ex8b 88.53% 2.80% 86.6% Out Out
Heart 80.51% 2.79% 80.8% In In
Haberman 73.08% 2.70% 72.7% In In
Tonosphere 91.80% 1.78% 90.1% Out Out
Cleanl 81.83% 1.94% 64.9% Out Out
Breast 96.16%  0.90%  95.4% Out Out
Wdbc 95.39% 1.30% 95.2% In In
Australian 84.83% 1.58% 84.6% In In
Diabetes 74.24%  1.52%  73.6% Out Out
Mammographic  81.30% 1.98% 81.9% Out Out
Ex8a 85.39% 2.17% 83.8% Out Out
Tic 87.18% 1.53% 87.0% In In
German 73.40% 1.73% 72.6% Out Out
Splice 80.75% 1.61% 80.6% In In
Gcloudb 89.52% 1.17% 89.3% In In
Gcloudub 94.37%  0.96% 94.2% In In
Checkerboard 97.81% 0.59% 97.8% In In
Spambase 91.03% 0.57% 68.5% Out Out
Banana 89.26% 0.38% 89.5% In In
Phoneme 82.54% 1.01% 82.2% In In
Ringnorm 97.76% 0.21% 97.6% Out In
Twonorm 97.53% 0.19% 97.6% In In
Phishing 93.82% 0.48% 92.6% Out Out

o Low/high dimension view (LD for d < 50, HD for d > 50),
o Data scale view (SS for n < 1000, LS for n > 1000),
o Data balance/imbalance view (BAL for v < 1.5, IMB for v > 1.5).

They compare these aspects with a score

5(1’5 = max {AUBCBSO,S, AUBCUS’S, . ,AUBCLAL,S} — AUBCq,S,
Specifically, they grouped d, s by different aspects to generate the metric for the report

N ZSEU 6(175

©T s eo}]”

where v is one of a dataset’s dimension, scale, or class-balance views. We re-benchmark results and denote
the rank of the query strategy with a superscript in Table Table [23| shows that the US-C (InfoDiv) and
MCM occupy the first and second ranks in different aspects, and the QBC keeps the third rank. The results
are unlike those of [Zhan et al.| (2021)) except for the QBC performance well on both of us. We explain the
reason for the same performance of US-C and InfoDiv in Appendix

Using score Sqﬂ, to ascertain the applicability of several query strategies is straightforward. However, it
could bring an issue: BSO outperforms query strategies significantly on most datasets in our benchmarking
results. We cannot exclude those remaining large-scale datasets without BSO, i.e., n > 1000, having the
same pattern, such that their results could impact different aspects. Therefore, we replace Sq’v with the
improvement of query strategy ¢ over Uniform, i.e., 745k in Section because Uniform is the baseline and
most efficient across all experiments, which is essential to complete.
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Table 22: Reporducing Failure of BSO

Mean SD Zhan et al.| (2021) a=5% a=1%

Appendicitis 88.37% 2.95% 88.1% In In

Sonar 88.40%  2.84%  83.0% Out Out
Parkinsons 88.28% 3.19% 86.5% Out Out
Ex8b 93.76% 1.82%  92.4% Out Out
Heart 89.30% 2.47% 84.8% Out Out
Haberman 78.96%  3.06% 75.1% Out Out
Tonosphere 95.45%  1.42%  93.3% Out Out
Cleanl 92.19% 1.69% 87.1% Out Out
Breast 97.60% 0.67% 96.1% Out Out
Wdbc 98.41% 0.65% 97.3% Out Out
Australian 90.46% 1.48% 87.8% Out Out
Diabetes 82.57% 1.70%  78.4% Out Out
Mammographic  85.03% 1.97% 84.4% Out Out
Ex8a 88.28% 2.03% 87.3% Out Out
Tic 90.77% 2.27% 87.3% Out Out
German 82.08% 2.01% 78.3% Out Out
Splice 91.02% 1.18% 87.1% Out Out
Gcloudb 90.91% 1.09% 90.1% Out Out
Gcloudub 96.83% 0.78%  96.3% Out Out
Checkerboard 99.72% 0.36%  99.2% Out Out

Table 23: Verifying Applicability with §;

B LD HD SS LS BAL IMB

US-NC 4.77 416 812 536 396 5.09  4.39
QBC 3.83% 3.15% 757 502 220° 4.05° 3573
HintSVM 591 492 11.37 6.77 473 625 551
QUIRE 596 508 11.54 6.13 5.60 6.94  4.98

ALBL 420 349 806 537 259 445  3.90
DWUS 6.20 5.46 1024 6.71 550 6.83  5.46
VR 5.04 426 12.02 543 4.13 536  4.72
Core-Set  4.92 378 11.20 579 3.72 535  4.42
USs-C 3501 2.89' 6.861 4.62' 1.97 3721 3.24!
Graph 462 372 958 577 3.05 498  4.20
Hier 422 341 869 553 243 449  3.90
InfoDiv 3501 2.89' 6.861 4.62' 1.97 372! 3.24!
MCM 3.562 2942 6.982 4.68% 2.032 3.802 3.277
EER 521 418 11.09 5.33 486 6.13  4.30
BMDR 561 457 11.50 5.77 511 6.33  4.89
SPAL 590 469 1232 5.67 6.77 656 5.17
LAL 414 341 814 527 259 437  3.86

The other issue is heuristically grouping the views into a binary category and averaging the performance with
the same views Sqw without reporting SDs. These analysis methods may be biased when the properties of
datasets are not balanced. To address this issue, we plot a matrix of scatter plots that directly demonstrates
the improvement of US-C for each property on all datasets with different colors. Figure shows a low
correlation (|r| < 0.4) and no apparent patterns between properties and the improvement of US-C, indicating
that Our analysis results do not support the claims of ‘Method aspects’ in the existing benchmark (Zhan
et al., 2021)), either. In conclusion, we want to emphasize that revealing the analysis methods is
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Table 24: Mean and standard deviation of AUBCs of query strategies under no-fized and fized initial sets.

Uniform US

Table FixInit Table FixInit
Heart 78.37%+£2.59% 77.88%+2.58% 79.32%+2.43%  78.82%+2.43%
Mammographic  79.46%+1.50%  79.14%+1.59%  80.75%+1.39%  80.53%+1.38%
Phoneme 85.78%+0.56%  85.66%+0.55% 87.77%=+0.38% 87.67%=+0.37%

as important as the experimental settings because the analysis method employed will influence the
conclusion.
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Figure 12: A matrix of scatter plots of the improvement of US-C

C.3 The impact of initial sets

The current results are based on the train-test split described in Section [3] followed by random sampling to
select the initial labeled and unlabeled pools. In this section, we follow |Ji et al.| (2023))’s recommendation to
check the influence of the consistent initial set (labeled pool and unlabeled pool) on Uniform and Uncertainty
Sampling. Specifically, we investigate two settings on Heart, Mammographic, and Phoneme datasets:

o No fixed train-test split and no fixed initial sets (Table current results),

o Fixed initial sets and no fixed train-test split (FixInit).

The similar standard deviations between no-fixed (Table [3]) and fixed initial sets in Table [24] indicate that
fixing the seed of the initial sets across different train-test splits does not lead to significant differences.
This is mainly because the primary source of randomness comes from the train-test split itself. Because the
datasets in our benchmark do not have predefined train-test splits, we would not eliminate the randomness
by fixing the train-test split in our experiments. Although the randomness of the train-test split exists, our
benchmarking results show that Uncertainty Sampling performs consistently on most datasets.

C.4 More on analysis of non-compatible models for uncertainty sampling

Section [5.1] demonstrates results involving different combinations of query-oriented and task-oriented models
on Checkerboard and Gcloudb datasets. We reveal more datasets from Figure to Figure These re-
sults still hold for the compatible models for uncertainty sampling outperform non-compatible ones on most
datasets, i.e., the diagonal entries of the heatmap are larger than non-diagonal entries. Figure [18] demon-
strates that non-compatible models achieve slightly better performance than compatible models. When
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query-oriented and task-oriented models are heterogeneous, we conjecture that it could improve uncertainty
sampling by exploring more diverse examples like the hybrid criteria approach (Settles, 2012} [Sinha et al.|
2019)).

D Benchmarking results of Random Forest

This section follows the analysis procedure in Section [4] to benchmark Random Forest (RF) on the same
datasets. The analysis results are listed as follows:

1. Verify the superiority by comparing the mean AUBC of query strategies in Table

2. Verify the superiority by comparing the average accuracy of the model with 20% of the total budget
in Table

3. Verify the superiority by comparing the average ranking of query strategies in Table 27

4. Verify the usefulness by comparing the data utilization rate of query strategies in Table 28]

These results are consistent with the previous benchmarking results in Section [] and Appendix [C| We
conclude that the uncertainty sampling with compatible RF models gains superiority and usefulness for
tabular datasets.

E Computational resource

We test the time of an experiment for query strategy running on a dataset. Our resource is: DELL PowerEdge
R730 with CPU Intel Xeon E5-2640 v3 @2.6GHz * 2 and memory 192 GB. We report the computational
time for a query strategy for each dataset per round in Table 29| following the setting in Section

Note that this work does not optimize libact, Google, and ALiPy performance. If practitioners discover
inefficient implementation, please contact us by mail or leave issues on GitHub.

F Limitations, related benchmarks, and future works

While we intentionally constrain our benchmark’s scope to maintain fairness and reproducibility, this focus
might give the impression of limitations. We encourage practitioners to explore active learning techniques
in broader tasks and domains. For example, ample room exists to investigate active learning’s applicability
in areas like regression problems, object detection, and natural language processing (Cai et all 2016; 'Wu
et al., 2019; |Zhang et al.| [2020; [Yuan et al., |2021} Brust et al 2018; [Zhang et al., |2022]).

Evaluating the performance of query strategy is a challenge in benchmarking. Kottke et al. (2017)) and
Trittenbach et al.| (2021]) propose metrics such as Deficiency score, Data Utilization Rate, Start Quality,
and Average End Quality to summarize the performance of a query strategy from learning curves. Our
implementation saves querying results at each round, enabling thorough analysis without costly re-runs,
which empowers researchers to develop novel metrics and methods.

The stability of experimental results is another challenge to a fair comparison. |Ji et al.| (2023); [Lith et al.
(2023); Munjal et al.|(2022) have revealed variations in performance metrics stemming from different query
strategies, causing inconsistent results and claims in previous research. They suggest standardizing experi-
mental settings like data augmentation, neural network structures, and optimizers. These findings emphasize
the sensitivity of active learning algorithms to experimental settings, a critical consideration for future work.
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Table 25: Benchmarking results of Random Forest. The numbers are mean AUBC (1, %). We report the
baseline method (Uniform), the best query strategy with its mean AUBC (BEST__QS, BEST), and the worst
query strategy with its mean AUBC (WORST__QS, WORST) across datasets in Table

Uniform BEST_ QS BEST  WORST QS WORST

Appendicitis 83.70% UsS 84.48% DWUS 83.12%
Sonar 75.66% UsS 77.31% HintSVM 74.75%
Parkinsons 84.31% US 86.61% HintSVM 82.79%
Ex8b 85.97% UsS 87.07% HintSVM 84.67%
Heart 80.19% DWUS 80.93% HintSVM 79.64%
Haberman 69.56% UsS 70.61% QUIRE 68.91%
Ionosphere 90.98% BALD 92.08% HintSVM 87.22%
Cleanl 79.15% BALD 82.09%  HintSVM 75.18%
Breast 96.42% US 96.82% DWUS 95.44%
Wdbc 94.29% LAL 95.32% HintSVM 93.92%
Australian 85.77%  US 86.20% DWUS 85.55%
Diabetes 74.60% LAL 74.97% DWUS 73.59%
Mammographic  79.36%  LAL 80.82% DWUS 78.82%
Ex8a 93.09% BALD 95.50%  HintSVM 87.65%
Tic 86.36% Core-Set 86.43% DWUS 85.48%
German 74.02%  US 74.74% DWUS 72.86%
Splice 90.49%  MCM 91.52%  Core-Set 84.17%
Gcloudb 88.33% LAL 88.96% QUIRE 86.50%
Gcloudub 93.83% BALD 95.34% HintSVM 87.38%
Checkerboard 99.24%  LAL 99.67% DWUS 95.00%
Spambase 93.54% BALD 94.74% HintSVM 92.11%
Banana 88.25% LAL 88.82% DWUS 81.54%
Phoneme 86.63%  BALD 88.81% HintSVM 84.75%
Ringnorm 94.15% US 95.66%  Core-Set 70.55%
Twonorm 96.60% BALD 96.88% HintSVM 94.78%
Phishing 95.61%  US 96.68% HintSVM 94.24%
Covertype 76.47%  US 79.20%  Uniform 76.47%
Bioresponse 73.57% US 74.83%  Uniform 73.57%
Pol 96.58% UsS 97.85%  Uniform 96.58%
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Table 26: Accuracy of the model with 20% labeled examples: We report the accuracy of the model with 20%
labeled examples on each dataset. The scores with bold mean the best performance on a dataset. ‘TLE’
means a query strategy exceeds the time limit.

Uniform US QBC BALD Hier Graph Core-Set  HintSVM  QUIRE DWUS MCM BMDR  ALBL LAL
Sonar 68.98%  69.99%  69.96% 70.45%  69.11% 70.77%  68.57% 69.40% 70.11%  70.15% 69.81% = 70.92% 70.33% 70.17%
Parkinsons 81.04%  81.94%  80.87% 82.21% 81.56% 81.04%  80.47% 80.54% 80.53%  81.06% 81.97%  81.41%  81.24% 81.94%
Ex8b 82.44%  83.40%  82.45% 83.62%  82.56% 82.04%  83.83%  81.85% 83.04% 82.61% 83.20%  83.43%  83.18% 83.33%
Heart 7837%  79.42% T7.80% 78.97%  78.89% 79.08%  78.81% 77.40% 78.78%  79.05% 79.29%  79.40%  78.54% 78.83%
Haberman 70.11%  71.63% 70.24% 71.58%  70.67% 70.79% = 69.34% 69.57% 68.76%  71.47% 71.41%  70.49%  70.39% 71.28%
Ionosphere 88.65%  91.34%  88.42% 91.91% 89.13% 88.50%  83.14% 82.30% 80.99%  84.30% 91.564%  TLE 88.73%  90.87%
Cleanl 71.01%  72.94%  70.82% 73.42% T71.25% 71.27%  66.95% 66.69% 71.31%  70.98% 73.32%  68.87%  72.34% 72.54%
Breast 96.35%  97.18%  96.51% 97.14%  96.66% 96.36%  95.70% 96.36% 95.93%  95.20% 97.22%  96.31%  96.89% 97.23%
Wdbc 93.56%  96.18%  93.35% 96.27% 93.55% 93.62% = 93.12% 92.69% 93.28%  93.46% 96.07%  93.85%  94.98% 96.18%
Australian 84.97%  86.17% 85.25% 86.09%  85.42% 85.34%  85.01% 84.69% 85.39%  84.45% 85.72%  85.00%  85.47% 85.98%
Diabetes 73.84%  74.13%  T4.0T% 74.39% 73.96% 73.86%  73.85% 73.07% T3.71%  72.36% T4.24%  73.50%  73.68%  74.33%
Mammographic  79.74%  82.46% 79.75% 82.23%  80.46% 79.61%  81.19% 80.97% 82.44%  80.13% 82.39%  79.95%  80.67% 82.22%
Ex8a 89.91%  95.05% 89.58% 95.02%  89.86% 91.50%  93.15% 77.99% 82.09% 80.45% 94.51%  91.23%  87.17% 94.46%
Tic 86.92%  86.92%  86.84% 86.96%  86.58% 87.02% 86.93% 86.55% 86.86% 84.93% 86.94%  86.63%  86.98% TLE
German 72.86%  73.62%  72.64% 73.46%  72.66% 72.89% = 72.75% 72.53% 72.67% 70.20% 73.41%  72.57%  73.22% 73.72%
Splice 87.65%  88.77% 87.41% 88.57%  87.76% 87.17%  70.04% 78.95% 87.15% 78.31% 88.76%  87.25%  87.53% 86.36%
Gcloudb 88.27%  89.25%  88.52% 89.14%  88.45% 88.69%  88.52% 84.99% 85.68%  86.68% 89.29%  88.48%  89.25% 89.58%
Gcloudub 92.02%  95.31%  92.24% 95.68% 93.05% 93.95%  90.16% 84.09% 86.48%  83.41% 95.47%  91.53%  89.65%  93.90%
Checkerboard 99.28%  99.14%  99.32% 99.13%  99.60% 99.58%  99.41% 93.15% 93.09%  93.32% 99.69%  99.48%  99.10% 99.88%
Spambase 93.09%  95.32%  92.93% 95.31%  92.98% 92.92%  92.17% 90.28% 91.81% 93.20% 95.39% 92.21%  92.80% 95.08%
Banana 87.97%  89.28%  88.00% 89.30% 87.92% 88.04%  88.43% 75.08% T4.97%  771.28% 89.25%  88.23%  87.27% 89.16%
Phoneme 84.44%  88.01%  84.41% 88.30% 85.67% 84.77%  85.51% 81.39% 83.14%  82.61% 87.89%  85.12%  84.46% 87.55%
Ringnorm 93.73%  96.91% 93.90% 96.80%  94.33% 92.80%  50.68% 56.12% 50.68%  60.49% 96.86%  74.30%  92.83% 90.30%
Twonorm 96.47%  96.83%  96.52% 96.89% 95.30% 96.60%  96.46% 93.07% 91.79%  96.15% 96.77%  TLE 96.07%  96.85%
Phishing 94.83%  96.85% 94.50% 96.72%  94.66% 94.61%  94.56% 92.91% 91.25%  92.79% 96.80% TLE 95.57%  96.83%
Covertype 74.78%  76.91%  TLE 76.97% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Bioresponse 70.63%  73.03% TLE 72.64%  TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 95.94%  98.23% TLE 98.22%  TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

Table 27: Average Ranking of Query Strategies: We report query strategies with the best average ranking.
The scores with !, 2, or 3 mean the 1st, 2nd and 3rd performance on a dataset. “‘TLE’ means a query strategy
exceeds the time limit.

US QBC BALD Hier Graph Core-Set HintSVM QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 481 7.76  5.442 730 7.74 7.31 8.43 7.89 8.85 5.63 7.81 6.47 5.56°
Sonar 3.69' 6.95 397 7.86 7.77 8.15 8.87 7.71 7.83 3.962 TLE 6.52 4.72
Parkinsons 297t 855  3.082 6.81 10.06  9.53 11.61 9.34 7.17 3.72% 7.7 6.66 3.73
Ex8b 4.502 8.08  4.37! 7.56  8.60 6.04 10.10 8.26 8.90 5.13%  7.28 6.82 5.36
Heart 6.06® 7.49  6.26 7.46  8.40 7.86 9.42 8.24 4.90! 5.742  6.34 6.63 6.20
Haberman 507" 7.22 533 742 7.26 8.38 9.35 9.71 5.252 529  7.10 7.90 5.72
Ionosphere 2.43% 6.53  2.40! 6.29 7.27 9.96 11.50 11.55 11.25 2.90%  8.03 717 3.72
Cleanl 2.69% 7.76  2.44! 740  9.25 9.49 11.60 7.15 7.86 2.96 TLE 5.58 3.82
Breast 3.44' 835  3.643 6.75  9.60 8.36 7.66 9.05 12.24 3.602  8.54 5.94 3.83
Wdbc 3.05% 9.30  2.80! 841  9.53 9.58 10.67 9.42 9.31 3.32 8.19 4.49 2.932
Australian 4.777 748  4.58! 6.78  8.50 8.11 8.21 7.25 8.89 5.69 8.26 6.82 5.66%
Diabetes 5.532 6.75  5.773 722 6.83 6.30 8.27 7.78 10.86 6.03 6.86 7.75 5.05!
Mammographic  3.923 9.62  3.732 7.66 8.23 9.06 6.96 6.74 10.10 3.92 9.11 8.54 341t
Ex8a 237 793 2392 727 7.95 4.10 12.14 11.78 11.86 3.14%  6.43 9.83 3.81
Tic 749  4.532  7.66 6.58  5.02 3.89! 6.15 7.01 9.01 7.80 TLE 4.82% 8.04
German 3.80t 7.89 4.19? 844 7.55 7.07 8.71 7.55 12.52 4.34% 821 5.67 5.06
Splice 2.72' 6.46  2.81° 6.15  9.43 11.59 9.86 6.20 10.77 2.722  TLE 5.23 4.06
Gcloudb 481 734  4.76° 7.65 8.25 6.73 11.28 10.51 10.25 4.90 6.76 4.532  3.23!
Gcloudub 247 734 246! 549  6.63 8.48 12.90 11.21 11.56 2.87% 748 7.80 4.31
Checkerboard 3.002 7.67 3.25 6.47 7.49 7.20 12.18 11.67 11.81 3.15%  5.83 8.38 2.90!
Spambase 2402 7.50  1.60! 5.50  9.10 9.30 11.00 TLE 7.60 2.60* TLE 6.00 3.40
BaTLEa 3.10%  6.90  2.90? 7.00 9.60 5.60 11.60 12.00 12.40 3.30 6.10 8.30 2.20!
Phoneme 2.40% 8.60  1.90! 5.00 8.60 6.50 11.60 9.60 11.30 2.202  TLE 6.80 3.50
Ringnorm 1.40' 6.00 1.807 4.60  8.00 11.70 9.30 11.30 9.70 3.102 TLE 5.90 5.20
Twonorm 1.90> 6.20 1.80! 9.50  5.50 4.80 10.90 TLE 8.00 2.302 TLE 8.80 6.30
Phishing 1.50t 7.00  2.303 5.70  7.50 5.80 9.80 TLE 9.20 2.202 TLE 4.00 TLE
Covertype 140t TLE 1.60° TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Bioresponse 1.40t TLE 1.60° TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 1.30t TLE 1.70° TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
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Table 28: Data utilization rate of query strategies. The scores with !, 2, or ® mean the 1st, 2nd and 3rd
performance on a dataset. ‘TLE’ means a query strategy exceeds the time limit.

Us QBC BALD  Hier Graph Core-Set  HintSVM  QUIRE  DWUS MCM BMDR  ALBL LAL
Appendicitis 72.68% 88.27% 72.37% 83.77% 84.57% 78.46% 94.03% 79.59% 96.47% 73.37% 77.20% 75.18% 68.32%
Sonar 83.21% 96.93% 79.75% 103.93% 105.19% 109.28% 113.21%  100.60% 98.23% 82.09% 93.32% 94.02% 84.00%
Parkinsons 66.78% 104.47% 65.65% 89.01% 115.58% 113.00%  125.06%  109.28% 90.19% 71.19% 83.42% 90.02% 71.19%
Ex8b 72.10% 100.51% 75.02% 108.36% 105.54% 82.26% 184.12%  107.66% 104.83% 78.49% 97.42% 92.07% 78.03%
Heart 83.52% 93.96% 80.04%  87.83% 98.14% 105.58%  126.91%  105.54% 96.75% 85.71% 88.20% 94.19% 84.66%
Haberman 108.22% 166.25% 86.22%  127.40% 117.93% 155.72% 194.88%  160.76% 110.28% 84.09% 108.16%  131.40% 94.10%
Ionosphere 71.03% 109.47% 70.06% 112.15% 118.36% 184.42%  204.09%  190.78%  266.93% 75.05% TLE 117.39%  78.14%
Cleanl 66.38% 101.51% 68.54% 98.33% 113.08% 105.73%  125.79%  98.96% 99.31% 67.75% 104.35%  86.16% 75.82%
Breast 56.07% 91.36% 58.33%  83.40% 161.72%  92.76% 94.25% 90.92% 342.11%  58.36% 124.45%  78.14% 59.50%
Widbc 48.49% 118.85% 49.57T% 104.03% 119.32% 113.68% 147.97%  112.58% 119.54% 52.55% 94.83% 65.46% 52.33%
Australian 71.43% 95.51% 73.10%  98.52% 121.25% 114.84% 106.65%  108.79% 125.02% 713.67% 101.76%  92.53% 74.20%
Diabetes 95.33% 104.14% 92.27% 104.10% 122.35% 109.48% 119.51%  116.73% 178.03% 96.93% 110.47%  117.40%  92.93%
Mammographic ~ 72.07% 153.42% 71.66%  89.03% 91.95% 81.27% 103.54%  87.55% 128.24% 64.89% 101.07%  93.26% 59.36%
Ex8a 43.75% 111.29% 42.718%  97.60% 109.29%  57.61% 165.84%  176.49% 166.71% 46.08% 88.94% 142.32%  54.80%
Tic 75.39% 96.17% 80.45%  92.89% 124.21% 82.8T% 140.92%  129.96%  209.75%  89.96% 111.72%  61.44% TLE
German 92.08% 119.64% 96.81% 129.11% 122.34% 114.60% 144.97%  120.44% 237.03% 104.75% 136.86% 106.77% 92.01%
Splice 77.98% 108.12% 79.25% 101.68% 108.61% 164.32% 144.63%  97.44% 181.65% T7.97% 104.14%  96.84% 84.31%
Gcloudb 61.60% 147.10%  60.36%  94.06% 147.55% 104.00%  488.17%  423.89% 142.717% 66.29% 98.02% 81.17% 64.59%
Gcloudub 46.41% 105.08% 48.27%  84.01% 85.21% 119.68% 273.89%  186.53% 168.58% 47.57% 123.12% 103.64%  59.03%
Checkerboard 80.42% 125.7183% 70.49%  99.35% 79.21% 124.08% 916.17%  801.92% 553.50%  58.66% 106.18% 141.07% 50.63%
Spambase 22.96% 109.32% 19.14%  94.56% 122.51% 132.64%  282.80%  207.05% 96.33% 21.76% TLE 104.81%  25.40%
Banana 65.49% 116.15% A7.70% 131.01% 132.31% 83.74% 455.27%  396.93%  691.08%  56.57% 122.59% 194.17%  52.98%
Phoneme 33.78% 102.37% 33.95% 68.43% 100.16%  72.78% 116.82%  92.83% 107.17%  34.62% 87.11% 83.28% 39.12%
Ringnorm 27.95% 114.87% 31.49%  142.95% 250.54% 866.58%  817.08%  844.531% 731.19% 36.33% TLE 208.99%  124.45%
Twonorm 54.11% 90.13% 42.61%  285.71%  114.89% 97.52% 902.62%  TLE 114.72%  58.90% TLE 134.42% 68.25%
Phishing 18.38% 118.07% 20.24%  102.20% 142.07% 98.98% 215.834% TLE 151.26%  20.96% TLE 59.51% 22.77%
Covertype 45.70% TLE 46.78% TLE 116.98% TLE TLE TLE 117.86% TLE TLE TLE TLE
Bioresponse 70.86% TLE 72.53% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
Pol 17.78% TLE 17.21% TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

Table 29: The computational time of a query strategy (column) on a dataset (row) with format ‘min-
utes:seconds’. ‘TLE’ denotes a query strategy that exceeds the time limit.

Uniform us QBC Hier Graph Core-Set HintSVM  QUIRE DWUS MCM BMDR ALBL LAL

Appendicitis 0m3.838s  0m38.605s 0m39.556s  O0m6.453s  0m6.473s  Om4.556s  0m5.390s  O0m12.681s 0m9.665s  0m4.322s  TLE 0m42.372s  9m12.175s
Sonar 0m2.278s  0m42.757s 0m59.219s  O0m15.093s O0m3.278s  0m5.831s  0m6.422s 1m11.645s 0m9.481s  0m2.926s 10m42.063s  0m51.094s  6m6.153s
Parkinsons 0m2.102s  Om41.104s 0m42.915s  0m10.972s 0m2.960s  Om5.147s  O0mb.414s  O0m47.767s 0m38.258s 0m2.556s  22m19.975s  0m46.091s  11m40.118s
Ex8b 0m2.099s  Om41.264s 0m40.830s  O0m13.134s Om4.657s  Om4.807s  0m4.982s 1m17.010s 0m9.605s  0m2.648s 12m48.409s  0m44.175s  3m37.467s
Heart 0m2.496s  Om44.071s 0m46.790s  0m24.2285 O0m5.449s  0m6.257s  0m6.740s  3m27.610s 0m23.185s  0m3.434s  59m9.378s 0m49.261s  12m23.746s
Haberman 0m2.612s  Om44.858s O0m47.148s  0m29.947s O0m5.583s  0m6.364s  0m6.531s  5m14.789s 0m14.081s  O0m3.412s 15m49.559s  0m49.798s  7m17.263s
Ionosphere 0m3.012s 0m45.163s  0mb7.073s 0mb55.119s  0m4.748s 0m8.249s 0m9.165s Tmb51.793s 1m7.518s 0m4.479s 30m20.452s 1m3.266s 12mb52.246s
Cleanl 0m8.529s 1m39.377s  3m7.041s 1m16.212s  0m10.947s 0m31.609s 0m39.084s 19m34.331s  Om43.750s O0m15.876s TLE 2m59.617s  20mb4.571s
Breast 0m4.879s  0m52.967s 1m15.016s  2m52.406s Om11.266s Om15.623s 0m17.907s 40m7.140s 0m56.034s  O0m11.091s  87m17.190s 1m30.334s  60m28.833s
Wdbc 0m4.867s  0m55.079s  1m18.105s 1m42.001s 0m8.129s  0m14.407s 0m22.674s 31m10.174s  O0m19.239s 0m9.264s 160m47.424s  1m35.925s  31m4.656s
Australian 0m?7.588s 1m1.552s 1m38.815s  2m42.369s 0m14.618s 0m22.574s 0m28.341s 51m13.865s  0m24.982s O0ml15.664s 189m13.127s 1m41.586s 55m13.816s
Diabetes 0m9.436s 1m9.050s 1m52.802s  3m10.987s 0m16.178s 0m29.073s 0m33.750s 66m25.062s  0m54.033s  0m20.934s 112m52.681s  1m49.799s  56m45.749s
Mammographic  0m9.026s 1m6.022s 1m44.588s  4m1.753s  0m17.076s 0m26.850s 0m30.192s 81m58.434s  O0m46.407s O0m21.149s  61mb52.793s 1m52.393s  58m27.473s
Ex8a 0m8.391s 1m0.039s 1m30.220s  2m58.896s 0m14.736s 0m22.182s 0m24.874s 65m35.275s  Om37.734s Oml17.328s TLE 1m35.728s  53m10.547s
Tic 0m12.182s  1m14.257s  2m5.724s 4m20.451s  0m22.801s 0m34.233s 0m47.141s 106m1.296s  1m36.144s O0m31.285s TLE 2m16.302s  81m22.460s
German 0m21.129s  2m14.906s 4m?56.843s 5m37.499s  0m32.877s  1m4.185s 1m25.568s 130m51.383s  2m40.555s 0m51.400s TLE 4m11.411s  88m12.394s
Splice 0m30.106s  3m24.539s 11m40.330s 5m35.731s  0m41.997s 2m9.672s 6m32.557s  114m2.042s 5m35.220s  1m21.324s TLE 8m19.553s  88mb0.834s
Gcloudb 0m10.540s  1m13.866s 1m?59.490s 5m6.187s  0m21.419s O0m31.987s 0m31.938s 16m13.863s 1m5.692s  0m32.361s  83m49.329s  2m21.688s 63m11.067s
Gcloudub 0m8.376s 1m8.158s 1m47.249s  5m23.843s 0m20.025s 0m26.050s 0m31.233s 16m7.883s 0mb59.193s  0m26.849s  85m38.125s  2m18.006s  59m32.045s

Checkerboard 0m22.576s  1m49.740s  4m28.037s 14mb5.470s  0m55.399s  1m7.784s 1m16.511s  92m10.770s 1m51.429s  1m39.574s  229m38.358s  4m22.690s  191m30.459s
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LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF) RF
LR(C=1)- 84.25% 84.16% LR(C=1)- 89.20% 86.75%
SVM(RBF)- 84.21% 84.31% 84.15% SQUIGEIRE 90.56% 86.92%
(& 84.49% 84.31% 84.34% [ 90.32% 89.65% 87.09%

LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF) RF
LR(C=1)- 70.19% LR(C=1) VY 95.24%
SVM(RBF) - S 6] 70.28% SQUIGEIRE 96.98% 95.18%
(& 73.48% 73.21% 70.69% [® 96.92% 96.22% 95.40%

Figure 13: Mean AUBC of query-oriented model and task-oriented model on group 1. (Compatible LRs
achieve best results.): Appendicitis (top-left), Ex8b (top-right), Haberman (bottom-left), and Wdbc (bottom-
right).
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LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF) RF

LR(Cl). 74.18% 74.23% LR(C=1) IPRYA 81.17% 79.84%

SWGEIRE 75.92% 74.80% 74.42% SVM(RBF) -t Pt 81.68% 80.18%

[ 75.98% 74.50% 74.74% [ 82.22% 81.45% 80.72%
LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF) RF

LR(C=1) SN b7 LR(C=1) VAV 97.55% 96.13%

SWIGERE  95.38% SVM(RBF) - 96.44%

B 95.42% 95.08% 95.29% R 97.70% 97.66% 96.88%

Figure 14: Mean AUBC of query-oriented model and task-oriented model on group 1. (Compatible LRs
achieve best results.): Diabetes (top-left), Mammographic (top-right), Geloudub (bottom-left), and Twonorm
(bottom-right).
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LR(C=1) SVM(RBF) LR(C=1) SVM(RBF)

LR(C=1)- 74.54% LR(c=1)- 85.94%

SVM(RBF)-  73.74% 77.68% 76.79% SVM(RBF)-  86.10% 92.95% 91.34%

RF-  73.71% RF- 86.30%
LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF)
LR(Cc=1)- 79.49% 82.87% 80.72% LR(C=1) - R VA 87.04%
sVM(RBF)- 78.57% 84.28% 81.65% SVM(RBF)- 83.29% 87.05% 85.38%
RF-  78.75% 83.87% 82.10% RF-  84.77% 87.04% 85.80%
LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF)
LR(c=1)- 87.91% 88.55% LR(c=1)- 75.80% 97.66% 94.42%
SVM(RBF)- 87.84% 89.86% 88.52% SVM(RBF)- 74.99% 97.83% 94.54%
RF- 87.58% 89.43% 88.71% RF- 68.33% 97.80%

Figure 15: Mean AUBC of query-oriented model and task-oriented model on group 2. (Compatible SVMs
achieve best results.): Sonar (top-left), Ionosphere (top-right), Clean! (middle-left), Tic (middle-left),
Gcloudb (bottom-left), and Ringnorm (bottom-right).
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SVM(RBF)
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87.94%

86.23% 95.46%

Figure 16: Mean AUBC of query-oriented model and task-oriented model on group 3. (Compatible RFs
achieve best results.): Parkinsons (top-left), Breast (top-right), Australian (bottom-left), and Fz8a (bottom-

right).
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LR(C=1) SVM(RBF) LR(C=1) SVM(RBF)
LR(C=1) AR LS 73.94% 74.40% LR(Cc=1)1 92.24% 90.37% 93.58%
SVM(REF) - NP 74.17% SVM(RBF)- 91.70% 92.15%
[  74.49% 74.09% 74.76% RF-  91.20% 91.34% 94.73%
LR(C=1) SVM(RBF) LR(C=1) SVM(RBF) RF

LR(C=1)- 75.66% LR(c=1)- 92.79%

svM(RBF)- 71.61% SVM(RBF)- 92.68%

RF-  73.25% 82.93% 88.71% RF-  92.57% 94.39% 96.73%

Figure 17: Mean AUBC of query-oriented model and task-oriented model on group 3. (Compatible RFs
achieve best results.): German (top-left), Spambase (top-right), Phoneme (bottom-left), and Phishing
(bottom-right).
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LR(C=1) SVM(RBF) RF LR(C=1) SVM(RBF)

LR(C=1) - AN 80.98%

80.30% LR(C=1)- 76.94% 81.25% 91.36%

SVM(REF) - WA 80.67% SVM(RBF)- 76.76% 82.30%

G  81.49% 81.21% 80.66% RF-  76.21% 81.59% 91.50%

LR(C=1) SVM(RBF) LR(C=1) SVM(RBF)

LR(c=1)- 76.09% LR(c=1)- 56.85%

SVM(RBF)- 67.80% SVM(RBF)- 55.97%

RF-  60.94% 97.15% 99.45% rRF-  53.09% 89.34% 88.74%

Figure 18: Mean AUBC of query-oriented model and task-oriented model on group 5. (Non-Compatible
models achieve best results.): Heart (top-left), Splice (top-right), Checkerboard (bottom-left), and Banana
(bottom-right).
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