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Abstract

Molecular property prediction (MPP) is integral to drug discovery and material
science, but often faces the challenge of data scarcity in real-world scenarios. Ad-
dressing this, few-shot molecular property prediction (FSMPP) has been developed.
Unlike other few-shot tasks, FSMPP typically employs a pre-trained molecular
encoder and a context-aware classifier, benefiting from molecular pre-training
and molecular context information. Despite these advancements, existing methods
struggle with the ineffective fine-tuning of pre-trained encoders. We attribute this is-
sue to the imbalance between the abundance of tunable parameters and the scarcity
of labeled molecules, and the lack of contextual perceptiveness in the encoders. To
overcome this hurdle, we propose a parameter-efficient in-context tuning method,
named Pin-Tuning. Specifically, we propose a lightweight adapter for pre-trained
message passing layers (MP-Adapter) and Bayesian weight consolidation for pre-
trained atom/bond embedding layers (Emb-BWC), to achieve parameter-efficient
tuning while preventing over-fitting and catastrophic forgetting. Additionally, we
enhance the MP-Adapters with contextual perceptiveness. This innovation allows
for in-context tuning of the pre-trained encoder, thereby improving its adaptabil-
ity for specific FSMPP tasks. When evaluated on public datasets, our method
demonstrates superior tuning with fewer trainable parameters, improving few-shot
predictive performance.‡

1 Introduction

In the field of drug discovery and material science, molecular property prediction (MPP) stands as a
pivotal task [5, 9, 63]. MPP involves the prediction of molecular properties like solubility and toxicity,
based on their structural and physicochemical characteristics, which is integral to the development
of new pharmaceuticals and materials. However, a major challenge encountered in real-world MPP
scenarios is data scarcity. Obtaining extensive molecular data with well-characterized properties can
be time-consuming and expensive. To address this, few-shot molecular property prediction (FSMPP)
has emerged as a crucial approach, enabling predictions with limited labeled molecules [1, 41, 4].

The methodology for general MPP typically adheres to an encoder-classifier framework [71, 23, 27,
56], as illustrated in Figure 2(a). In this streamlined framework, the encoder converts molecular
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structures into vectorized representations [12, 28, 50, 67, 2], and then the classifier uses these
representations to predict molecular properties. In the context of few-shot scenarios, two significant
discoveries have been instrumental in advancing this task. Firstly, pre-trained molecular encoders
have demonstrated consistent effectiveness in FSMPP tasks [20, 14, 58]. This indicates the utility of
leveraging pre-acquired knowledge in dealing with data-limited scenarios. Secondly, unlike typical
few-shot tasks such as image classification [57, 48], FSMPP tasks greatly benefits from molecular
context information. This involves comprehending the seen many-to-many relationships between
molecules and properties [58, 45, 73], as molecules are multi-labeled by various properties. These
two discoveries have collectively led to the development of the widely used FSMPP framework that
utilizes a pre-trained encoder followed by a context-aware classifier, as shown in Figure 2(b).
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Figure 1: Comparison of molecular encoders
trained via different paradigms: train-from-scratch,
pretrain-then-freeze, and pretrain-then-finetune.
The evaluation is conducted across two datasets
and three encoder architectures [20, 47, 66]. The
results consistently demonstrate that while pretrain-
ing outperforms training from scratch, the current
methods do not yet effectively facilitate finetuning.

Despite the progress, there are observed lim-
itations in the current approaches to FSMPP.
Notably, while using a pre-trained molecular
encoder generally outperforms training from
scratch, fine-tuning the pre-trained encoder of-
ten leads to inferior results compared to keeping
it frozen, which can be observed in Figure 1.

The observed ineffective fine-tuning can be at-
tributed to two primary factors: (i) Imbalance be-
tween the abundance of tunable parameters and
the scarcity of labeled molecules: fine-tuning
all parameters of a pre-trained encoder with few
labeled molecules leads to a disproportionate ra-
tio of tunable parameters to available data. This
imbalance often results in over-fitting and catas-
trophic forgetting [7, 6]. (ii) Limited contextual
perceptiveness in the encoder: while molecular
context is leveraged to enhance the classifier [58, 73], the encoder typically lacks the explicit capabil-
ity to perceive this context, relying instead on implicit gradient-based optimization. This leads to
the encoder not directly engaging with the nuanced molecular context information that is critical in
FSMPP tasks. In summary, while significant strides have been made, the challenges of imbalance
between the number of parameters and labeled data, along with the need for contextual perceptiveness
in the encoder, necessitate more sophisticated methodologies in this domain.

Based on the aforementioned analysis, we propose the parameter-efficient in-context tuning method,
named Pin-Tuning, to address the two primary challenges in FSMPP. To overcome the parameter-
data imbalance, we propose a parameter-efficient chemical knowledge adaptation approach for
pre-trained molecular encoders. A lightweight adapters (MP-Adapter) are designed to tune the pre-
trained message passing layers efficiently. Additionally, we impose a Bayesian weight consolidation
(Emb-BWC) on the pre-trained embedding layers to prevent aggressive parameter updates, thereby
mitigating the risk of over-fitting and catastrophic forgetting. To address the second challenge, we
further endow the MP-Adapter with the capability to perceive context. This innovation allows for
in-context tuning of the pre-trained molecular encoders, enabling them to adapt more effectively to
specific downstream tasks. Our approach is rigorously evaluated on public datasets. The experimental
results demonstrate that our method achieves superior tuning performance with fewer trainable
parameters, leading to enhanced performance in few-shot molecular property prediction.

The main contributions of our work are summarized as follows:

• We analyze the deficiencies of existing FSMPP approaches regarding the adaptation of pre-trained
molecular encoders. The key issues include an imbalance between the number of tunable parameters
and labeled molecules, as well as a lack of contextual perceptiveness in the encoders.

• We propose Pin-Tuning to adapt the pre-trained molecular encoders for FSMPP tasks. This
includes the MP-Adapter for message passing layers and the Emb-BWC for embedding layers,
facilitating parameter-efficient tuning of pre-trained molecular encoders.

• We further endow the MP-Adapter with the capability to perceive context to allows for in-context
tuning, which provides more meaningful adaptation guidance during the tuning process.

• We conduct extensive experiments on benchmark datasets, which show that Pin-Tuning outper-
forms state-of-the-art methods on FSMPP by effectively tuning pre-trained molecular encoders.
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2 Related work

Few-shot molecular property prediction. Few-shot molecular property prediction aims to accurately
predict the properties of new molecules with limited training data [49]. Early research applied general
few-shot techniques to FSMPP. IterRefLSTM [1] is the pioneer work to leverage metric learning
to solve FSMPP problem. Following this, Meta-GGNN [41] and Meta-MGNN [14] introduce
meta-learning with graph neural networks, setting a foundational framework that subsequent studies
have continued to build upon [39, 40, 4]. It is noteworthy that Meta-MGNN employs a pre-trained
molecular encoder [20] and achieves superior results through fine-tuning in the meta-learning process
compared to training from scratch. In fact, pre-trained graph neural networks [64, 36, 17, 54, 37] have
shown promise in enhancing various graph-based downstream tasks [52, 13], including molecular
property prediction [60, 62, 38, 72]. Recent efforts have shifted towards leveraging unique nature
in FSMPP, such as the many-to-many relationships between molecules and properties arising from
the multi-labeled nature of molecules, often referred to as the molecular context. PAR [58] initially
employs graph structure learning [32, 55] to connect similar molecules through a homogeneous
context graph. MHNfs [45] introduces a large-scale external molecular library as context to augment
the limited known information. GS-Meta [73] further incorporates auxiliary task to depict the
many-to-many relationships.

Parameter-efficient tuning. As pre-training techniques have advanced, tuning of pre-trained models
has become increasingly crucial. Traditional full fine-tuning approaches updates all parameters, often
leading to high computational costs and the risk of over-fitting, especially when available data for
downstream tasks are limited [33, 15]. This challenge has led to the emergence of parameter-efficient
tuning [26, 29, 34]. The philosophy of parameter-efficient tuning is to optimize a small subset of
parameters, reducing the computational costs while retaining or even improving performance on
downstream tasks [19, 69]. Among the various strategies, the adapters [18, 42, 59] have gained
prominence. Adapters are small modules inserted between the pre-trained layers. During the tuning
process, only the parameters of these adapters are updated while the rest remains frozen, which not
only improves tuning efficiency but also offers an elegant solution to the generalization [70, 30, 8].
By keeping the majority of the pre-trained parameters intact, adapters preserve the rich pre-trained
knowledge. This attribute is particularly valuable in many real-world applications including FSMPP.

3 Preliminaries

3.1 Problem formulation

Let {T } be a collection of tasks, where each task T involves the prediction of a property p. The
training set comprising multiple tasks {Ttrain}, is represented as Dtrain = {(mi, yi,t)|t ∈ {Ttrain}},
with mi indicating a molecule and yi,t its associated label for task t. Correspondingly, the test set
Dtest, formed by tasks {Ttest}, ensures a separation of properties between training and testing phases,
as the property sets {ptrain} and {ptest} are disjoint ({ptrain} ∩ {ptest} = ∅).
The goal of FSMPP is to train a model using Dtrain that can accurately infer new properties from a
limited number of labeled molecules in Dtest. Episodic training has emerged as a promising strategy
in meta-learning [10, 16] to deal with few-shot problem. Instead of retaining all {Ttrain} tasks in
memory, episodes {Et}Bt=1 are iteratively sampled throughout the training process. For each episode
Et, a particular task Tt is selected from the training set, along with corresponding support set St and
query set Qt. Typically, the prediction task involves classifying molecules into two classes: positive
(y = 1) or negative (y = 0). Then a 2-way K-shot episode Et = (St,Qt) is constructed. The
support set St = {(ms

i , y
s
i,t)}2Ki=1 includes 2K examples, each class contributing K molecules. The

query set containing M molecules is denoted as Qt = {(mq
i , y

q
i,t)}Mi=1.

3.2 Encoder-classifier framework for FSMPP

Encoder-classifier framework is widely adopted in FSMPP methods. As illustrated in Figure 2(a),
given a molecule m whose property need to be predicted, a molecular encoder f(·) first learns the
molecule’s representation based on its structure, i.e., hm = f(m) ∈ Rd. The molecule m is generally
represented as a graph m = (V,A,X,E), where V denotes the nodes (atoms), A represents the
adjacent matrix defined by edges (chemical bonds), and X,E denote the original feature of atoms
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and bonds, then graph neural networks (GNNs) are employed as the molecular encoders [44, 51, 21].
Subsequently, the learned molecular representation is fed into a classifier g(·) to obtain the prediction
ŷ = g(hm). The model is trained by minimizing the discrepancy between ŷ and the ground truth y.

Further, two key discoveries have been pivotal for FSMPP. The first is the proven effectiveness of
pre-trained molecular encoders, while the second is the significant advantage gained from molecular
context. Together, these discoveries have further reshaped the widely adopted FSMPP framework,
which combines a pre-trained encoder followed by a context-aware classifier, as shown in Figure 2(b).

3.3 Pre-trained molecular encoders (PMEs)

Due to the scarcity of labeled data in molecular tasks, molecular pre-training has emerged as a
crucial area, which involves training encoders on extensive molecular datasets to extract informative
representations. Pre-GNN [20] is a classic pre-trained molecular encoder that has been widely used
in addressing FSMPP tasks [14, 58, 73]. The backbone of Pre-GNN is a modified version of Graph
Isomorphism Network (GIN) [65] tailored to molecules, which we call GIN-Mol, consisting of
multiple atom/bond embedding layers and message passing layers.

Atom/Bond embedding layers. The raw atom features and bond features are both categorical vectors,
denoted as (iv,1, iv,2, . . . , iv,|En|) and (je,1, je,2, . . . , je,|Ee|) for atom v and bond e, respectively.
These categorical features are embedded as:

h(0)
v =

∑|En|

a=1
EmbAtoma(iv,a), h(l)

e =
∑|Ee|

b=1
EmbBond(l)b (je,b), (1)

where EmbAtoma(·)a∈{1,...,|En|} and EmbBondb(·)b∈{1,...,|Ee|} represent embedding operations that

map integer indices to d-dimensional real vectors, i.e., h(0)
v ,h(l)

e ∈ Rd, l ∈ {0, 1, . . . , L − 1}
represents the index of encoder layers, and L is the number of encoder layers. The atom embedding
layer is present only in the first encoder layer, while an bond embedding layer exists in each layer.

Message passing layers. At the l-th encoder layer, atom representations are updated by aggregating
the features of neighboring atoms and chemical bonds:

h(l)
v = ReLU

(
MLP(l)

(∑
u
h(l−1)
u +

∑
e=(v,u)

h(l−1)
e

))
, (2)

where u ∈ N (v)∪{v} is the set of atoms connected to v, and h(l)
v ∈ Rd is the learned representation

of atom v at the l-th layer. MLP(·) is implemented by 2-layer neural networks, in which the hidden
dimension is d1. After MLP, batch normalization is applied right before the ReLU. The molecule-level
representation hm ∈ Rd is obtained by averaging the atom representations at the final layer.

4 The proposed Pin-Tuning method

This section delves into our motivation and proposed method. Our framework for FSMPP is depicted
in Figure 2(c). The details of our principal design, Pin-Tuning for PMEs, is present in Figure 2(d).

As shown in Figure 1, pretraining then finetuning molecular encoders is a common approach. However,
fully fine-tuning yields results inferior to simply freezing them. Thus, the following question arises:

How to effectively adapt pre-trained molecular encoders to downstream tasks, especially in
few-shot scenarios?

We analyze the reasons of observed ineffective fine-tuning issue, and attribute it to two primary
factors: (i) imbalance between the abundance of tunable parameters and the scarcity of labeled
molecules, and (ii) limited contextual perceptiveness in the encoder.

4.1 Parameter-efficient tuning for PMEs

To address the first cause of observed ineffective tuning, we reform the tuning method for PMEs.
Instead of conducting full fine-tuning for all parameters, we propose tuning strategies specifically
tailored to the message passing layers and embedding layers in PMEs, respectively.
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Figure 2: (a) The vanilla encoder-classifier framework for MPP. (b) The framework widely adopted
by existing FSMPP methods, which contains a pre-trained molecular encoder and a context-aware
property classifier. (c) Our proposed framework for FSMPP, in which we introduce a Pin-Tuning
method to update the pre-trained molecular encoder followed by the property classifier. (d) The
details of our proposed Pin-Tuning method for pre-trained molecular encoders. In (b) and (c), we use
the property names like SR-HSE to denote the molecular context in episodes.

4.1.1 MP-Adapter: message passing layer-oriented adapter

For message passing layers in PMEs, the number of parameters is disproportionately large compared
to the training samples. To mitigate this imbalance, we design a lightweight adapter targeted at the
message passing layers, called MP-Adapter. The pre-trained parameters in each message passing
layer include parameters in the MLP and the following batch normalization. We freeze all pre-trained
parameters in message passing layers and add a lightweight trainable adapter after MLP in each
message passing layer. Formally, the adapter module for l-th layer can be represented as:

z(l)
v = FeedForwarddown(h(l)

v ) ∈ Rd2 , (3)

∆h(l)
v = FeedForwardup(ϕ(z(l)

v )) ∈ Rd, (4)

h̃
(l)

v = LayerNorm(h(l)
v +∆h(l)

v ) ∈ Rd, (5)

where FeedForward(·) denotes feed forward layer and LayerNorm(·) denotes layer normalization.
To limit the number of parameters, we introduce a bottleneck architecture. The adapters downscale
the original features from d dimensions to a smaller dimension d2, apply nonlinearity ϕ, then upscale
back to d dimensions. By setting d2 smaller than d, we can limit the number of parameters added. The
adapter module has a skip-connection internally. With the skip-connection, we adopt the near-zero
initialization for parameters in the adapter modules, so that the modules are initialized to approximate
identity functions. Therefore, the encoder with initialized adapters is equivalent to the pre-trained
encoder. Furthermore, we add a layer normalization after skip-connection for training stability.

4.1.2 Emb-BWC: embedding layer-oriented Bayesian weight consolidation

Unlike message passing layers, embedding layers contain fewer parameters. Therefore, we directly
fine-tune the parameters of the embedding layers, but impose a constraint to limit the magnitude of
parameter updates, preventing aggressive optimization and catastrophic forgetting.

The parameters in an embedding layer consist of an embedding matrix used for lookups based on the
indices of the original features. We stack the embedding matrices of all embedding layers to form
Φ ∈ RE×d, where E represents the total number of lookup entries. Further, Φi ∈ Rd denotes the i-th
row’s embedding vector, and Φi,j ∈ R represents the j-th dimensional value of Φi.

To avoid aggressive optimization of Φ, we derive a Bayesian weight consolidation framework tailored
for embedding layers, called Emb-BWC, by applying Bayesian learning theory [3] to fine-tuning.

Proposition 1: (Emb-BWC ensures an appropriate stability-plasticity trade-off for pre-trained em-
bedding layers.) Let Φ ∈ RE×d be the pre-trained embeddings before fine-tuning, and Φ′ ∈ RE×d

be the fine-tuned embeddings. Then, the embeddings can both retain the atom and bond properties
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obtained from pre-training and be appropriately updated to adapt to downstream FSMPP tasks, by
introducing the following Emb-BWC loss into objective during the fine-tuning process:

LEmb-BWC = −1

2

E∑
i=1

(Φ′
i − Φi)

⊤H(DP ,Φi)(Φ
′
i − Φi), (6)

where H(DP ,Φi) ∈ Rd×d is the Hessian of the log likelihood LP of pre-training dataset DP at Φi.

Details on the theoretical derivation of Eq. (6) are given in Appendix A. Since H(DP ,Φi) is
intractable to compute due to the great dimensionality of Φ, we adopt the diagonal approximation
of Hessian. By approximating H as a diagonal matrix, the j-th value on the diagonal of H can be
considered as the importance of the parameter Φi,j . The following three choices are considered.

Identity matrix. When using the identity matrix to approximate the negation of H, Eq. (6) is simplified
to LIM

Emb-BWC = 1
2

∑E
i=1

∑d
j=1(Φ

′
i,j − Φi,j)

2, assigning equal importance to each parameter. This
loss function is also known as L2 penalty with pre-trained model as the starting point (L2-SP) [31].

Diagonal of Fisher information matrix. The Fisher information matrix (FIM) F is the negation
of the expectation of the Hessian over the data distribution, i.e., F = −EDP [H], and the FIM can
be further simplified with a diagonal approximation. Then, the Eq. (6) is simplified to LFIM

Emb-BWC =
1
2

∑E
i=1 F̂i(Φ

′
i−Φi)

2, where F̂i ∈ Rd is the diagonal of F(DP ,Φi) ∈ Rd×d and the j-th value in F̂i

is computed as EDP (∂LP/∂Φi,j)
2. This is equivalent to elastic weight consolidation (EWC) [24].

Diagonal of embedding-wise Fisher information matrix. In different property prediction tasks, the
impact of the same atoms and inter-atomic interactions may be significant or negligible. Therefore,
we propose this choice to assign importance to parameters based on different embeddings, rather than
treating each parameter individually. By defining Φ̃i =

∑
j Φi,j , the total update of the embedding

Φi can be represented as ∆Φi = Φ̃′
i − Φ̃i =

∑
j(Φ

′
i,j − Φi,j). Then, the Eq. (6) is reformulated to

LEFIM
Emb-EWC = 1

2

∑E
i=1 F̃i(Φ̃

′
i − Φ̃i)

2, where F̃i =
∑

j EDP (∂LP/∂Φi,j)
2.

Detailed derivation is given in Appendix A. Intuitively, these three approximations employ different
methods to assign importance to parameters. LIM

Emb-BWC assigns the same importance to each pa-
rameter, LFIM

Emb-BWC assigns individual importance to each parameter, and LEFIM
Emb-BWC assigns the same

importance to parameters within the same embedding vector.

4.2 Enabling contextual perceptiveness in MP-Adapter

For different property prediction tasks, the decisive substructures vary. As shown in Figure 2, the
ester group in the given molecule determines the property SR-HSE, while the carbon-carbon triple
bond determines the property SR-MMP. If fine-tuning can be guided by molecular context, encoding
context-specific molecular representations allows for dynamic representations of molecules tailored
to specific tasks and enables the modeling of the context-specific significance of substructures.
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q ? 1 1 0

Context Graph
𝑚1

𝑠

𝑚2
𝑠

𝑚3
𝑠

𝑚4
𝑠

𝑚1
𝑞

𝑚2
𝑞

𝑝𝑡
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𝑝1𝑠𝑒𝑒𝑛

Context Information Positive Label Negative Label Unknown LabelMolecule Property

Figure 3: Convert the context information of a 2-
shot episode into a context graph.

Extracting molecular context information. In
each episode, we consider the labels of the sup-
port molecules on the target property and seen
properties, as well as the labels of the query
molecules on seen properties, as the context of
this episode. We adopt the form of a graph to
describe the context. Figure 3 demonstrates the
transformation from original context data to a
context graph. In the left table, the labels of
molecules mq

1,m
2
2 for property pt are the pre-

diction targets, and the other shaded values are
the available context. The right side shows the
context graph constructed based on the available context. Specifically, we construct context graph
Gt = (Vt,At,Xt) for episode Et. It contains M molecule nodes {m} and P property nodes {p}.
Three types of edges indicate different relationships between molecules and properties.

Then we employ a GNN-based context encoder: C = ContextEncoder(Vt,At,Xt), where C ∈
R(M+P )×d2 denotes the learned context representation matrix for Et. Vt and At denote the node set
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and the adjacent matrix of the context graph, respectively, and Xt denotes the initial features of nodes.
The features of molecule nodes are initialized with a pre-trained molecular encoder. The property
nodes are randomly initialized. When we make the prediction of molecule m’s target property p, we
take the learned representations of the this molecule cm and of the target property cp as the context
vectors. Details about the context encoder are provided in Appendix F.2.

In-context tuning with molecular context information. After obtaining the context vectors, we
consider enabling the molecular encoder to use the context as a condition, achieving conditional
molecular encoding. To achieve this, we further refine our adapter module. While neural conditional
encoding has been explored in some domains, such as cross-attention [43] and ControlNet [68] for
conditional image generation, these methods often come with a significant increase in the number
of parameters. This contradicts our motivation of parameter-efficient tuning for few-shot tasks. In
this work, we adopt a simple yet effective method. We directly concatenate the context with the
output of the message passing layer, and feed them into the downscaling feed-forward layer in the
MP-Adapter. Formally, the downscaling process defined in Eq. (3) is reformulated as:

z(l) = FeedForwarddown(h(l)
v ∥cm∥cp), (7)

where ∥ denotes concatenation. Such learned molecular representations are more easily predicted on
specific properties, verified in Section 5.5 and Appendix G.

4.3 Optimization

Following MAML [10], a gradient descent strategy is adopted. Firstly, B episodes {Et}Bt=1 are
randomly sampled. For each episode, in the inner-loop optimization, the loss on the support set is
computed as Lcls

t,S(fθ) and the parameters θ are updated by gradient descent:

Lcls
t,S(fθ) = −

∑
St

(y log(ŷ) + (1− y) log(1− ŷ)), (8)

θ′ ← θ − αinner∇θLcls
t,S(fθ), (9)

where αinner is the learning rate. In the outer loop, the classification loss of query set is denoted as
Lcls
t,Q. Together with our Emb-BWC regularizer, the meta-training loss L(fθ′) is computed and we do

an outer-loop optimization with learning rate αouter across the mini-batch:

L(fθ′) =
1

B

∑B

t=1
Lcls
t,Q(fθ′) + λLEmb-BWC, (10)

θ ← θ − αouter∇θL(fθ′), (11)

where λ is the weight of Emb-BWC regularizer. The pseudo-code is provided in Appendix B. We also
provide more discussion of tunable parameter size and total model size in Appendix C.

5 Experiments

5.1 Evaluation setups

Datasets. We use five common few-shot molecular property prediction datasets from the Molecu-
leNet [61]: Tox21, SIDER, MUV, ToxCast, and PCBA. Standard data splits for FSMPP are adopted.
Dataset statistics and more details of datasets can be found in Appendix D.

Baselines. For a comprehensive comparison, we adopt two types of baselines: (1) methods
with molecular encoders trained from scratch, including Siamese Network [25], ProtoNet [46],
MAML [10], TPN [35], EGNN [22], and IterRefLSTM [1]; and (2) methods which leverage pre-
trained molecular encoders, including Pre-GNN [20], Meta-MGNN [14], PAR [58], and GS-Meta [73].
More details about these baselines are in Appendix E.

Metrics. Following prior works [1, 58], ROC-AUC scores are calculated on the query set for each
meta-testing task, to evaluate the performance of FSMPP. We run experiments 10 times with different
random seeds and report the mean and standard deviations.
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Table 1: ROC-AUC scores (%) on benchmark datasets, compared with methods trained from scratch
(first group) and methods that leverage pre-trained molecular encoder (second group). The best
is marked with boldface and the second best is with underline. ∆Improve. indicates the relative
improvements over the baseline models in percentage.

Model Tox21 SIDER MUV ToxCast PCBA
10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot

Siamese 80.40(0.35) - 71.10(4.32) - 59.96(5.13) - - - - -
ProtoNet 74.98(0.32) 72.78(3.93) 64.54(0.89) 64.09(2.37) 65.88(4.11) 64.86(2.31) 68.87(0.43) 66.26(1.49) 64.93(1.94) 62.29(2.12)

MAML 80.21(0.24) 69.17(1.34) 70.43(0.76) 60.92(0.65) 63.90(2.28) 63.00(0.61) 68.30(0.59) 67.56(1.53) 66.22(1.31) 65.25(0.75)

TPN 76.05(0.24) 75.45(0.95) 67.84(0.95) 66.52(1.28) 65.22(5.82) 65.13(0.23) 69.47(0.71) 66.04(1.14) 67.61(0.33) 63.66(1.64)

EGNN 81.21(0.16) 76.80(2.62) 72.87(0.73) 60.61(1.06) 65.20(2.08) 63.46(2.58) 74.02(1.11) 67.13(0.50) 69.92(1.85) 67.71(3.67)

IterRefLSTM 81.10(0.17) - 69.63(0.31) - 49.56(5.12) - - - - -

Pre-GNN 82.14(0.08) 82.04(0.30) 73.96(0.08) 76.76(0.53) 67.14(1.58) 70.23(1.40) 75.31(0.95) 74.43(0.47) 76.79(0.45) 75.27(0.49)

Meta-MGNN 82.97(0.10) 76.12(0.23) 75.43(0.21) 66.60(0.38) 68.99(1.84) 64.07(0.56) 76.27(0.56) 75.26(0.43) 72.58(0.34) 72.51(0.52)

PAR 84.93(0.11) 83.95(0.15) 78.08(0.16) 77.70(0.34) 69.96(1.37) 68.08(2.42) 79.41(0.08) 76.89(0.32) 73.71(0.61) 72.79(0.98)

GS-Meta 86.67(0.41) 86.43(0.02) 84.36(0.54) 84.57(0.01) 66.08(1.25) 64.50(0.20) 83.81(0.16) 82.65(0.35) 79.40(0.43) 77.47(0.29)

Pin-Tuning 91.56(2.57) 90.95(2.33) 93.41(3.52) 92.02(3.01) 73.33(2.00) 70.71(1.42) 84.94(1.09) 83.71(0.93) 81.26(0.46) 79.23(0.52)

∆Improve. 5.64% 5.23% 10.73% 8.81% 4.82% 3.86% 1.35% 1.28% 2.34% 2.27%

Table 2: Ablation analysis on the MP-Adapter, in which we drop different components to form
variants. We report ROC-AUC scores (%), and the best performance is highlighted in bold.

Model Component Tox21 SIDER MUV ToxCast PCBA

Adapter Context LayerNorm 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot

Pin-Tuning ! ! ! 91.56 90.95 93.41 92.02 73.33 70.71 84.94 83.71 81.26 79.23
w/o Adapter - - ! 79.72 78.49 74.04 72.94 66.06 62.88 80.06 78.70 73.85 72.02
w/o Context ! - ! 81.42 79.34 74.68 72.86 68.70 66.12 81.49 79.85 74.69 72.46

w/o LayerNorm ! ! - 86.71 84.93 91.50 90.76 70.26 67.42 83.52 82.55 80.07 78.23

5.2 Performance comparison

We compare Pin-Tuning with the baselines and the results are summarized in Table 1, Table 7, and
Table 8. Our method significantly outperforms all baseline models under both the 10-shot and 5-shot
settings, demonstrating the effectiveness and superiority of our approach.

Across all datasets, our method provides greater improvement in the 10-shot scenario than in the
5-shot scenario. This is attributed to the molecular context constructed based on support molecules.
When there are more molecules in the support set, the uncertainty in the context is reduced, providing
more effective adaptation guidance for our parameter-efficient tuning.

Among benchmark datasets, our method shows significant improvement on the SIDER dataset,
increasing by 10.73% in the 10-shot scenario and by 8.81% in the 5-shot scenario. We consider this
is related to the relatively balanced ratio of positive to negative samples, as well as the absence of
missing labels in the SIDER dataset (Table 5). A balanced and low-uncertainty distribution can better
benefit addressing the FSMPP task from our method.

We also observe that the standard deviations of our method’s results under 10 seeds are slightly higher
than that of baseline models. However, our worst-case results are still better than the best baseline
model. For example, in 10-shot experiments on the Tox21 dataset, the performance of our method is
91.56± 2.57. However, our 10 runs yield specific results with the worst-case ROC-AUC reaching
88.02, which is also better than the best baseline model GS-Meta’s result of 86.67± 0.41. Therefore,
a high standard deviation does not mean our method is inferior to baseline models.

5.3 Ablation study

For MP-Adapter, the main components consist of: (i) bottleneck adapter module (Adapter), (ii)
introducing molecular context to adatpers (Context), and (iii) layer normalization (LayerNorm). The
results of ablation experiments are summarized in Table 2. The bottleneck adapter and the modeling of
molecular context are the most critical, having the most significant impact on performance. Removing
them leads to a noticeable decline, which underscores the importance of parameter-efficient tuning
and context perceptiveness in FSMPP tasks. Layer normalization is used to normalize the resulting
representations, which is also important for improving the optimization effect and stability.
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Table 3: Ablation analysis on the Emb-BWC.

Fine-tune Regularizer Tox21 SIDER MUV PCBA

- - 89.70 90.12 70.76 80.24
! - 90.17 92.06 72.37 80.74
! LIM

Emb-BWC 91.56 93.41 73.22 81.26
! LFIM

Emb-BWC 90.93 90.09 72.17 80.78
! LEFIM

Emb-BWC 91.32 90.31 72.78 81.22

For Emb-BWC, we verify the effectiveness of fine-
tuning the embedding layers and regularizing
them with different approximations ofLEmb-BWC
(Table 3). Since the embedding layers have rela-
tively few parameters, direct fine-tuning can also
enhance performance. Applying our proposed
regularizers to fine-tuning can further improve
the effects. Among the three regularizers, the
LIM

Emb-BWC is the most effective. This indicates that keeping pre-trained parameters to some extent can
better utilize pre-trained knowledge, but the parameters worth keeping in fine-tuning and the important
parameters in pre-training revealed by Fisher information matrix are not completely consistent.

5.4 Sensitivity analysis
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Figure 4: Effect of different hyper-parameters. The
y-axis represents ROC-AUC scores (%) and the x-axis
is the different hyper-parameters.

0.0 0.5 1.0 1.5 2.0
Number of Trainable Parameters (×1e6)

88

90

R
O

C
-A

U
C

 (%
)

Pin-Tuning (d2 = 25)
Pin-Tuning (d2 = 50)
Pin-Tuning (d2 = 75)
Pin-Tuning (d2 = 100)
Pin-Tuning (d2 = 150)
Fine-Tuning (GS-Meta)

Figure 5: ROC-AUC (%) and number of
trainable parameters of Pin-Tuning with var-
ied value of d2 and full Fine-Tuning method
(e.g., GS-Meta) on the Tox21 dataset.

Effect of weight of Emb-BWC regularizer λ. Emb-BWC is applied on the embedding layers to limit the
magnitude of parameter updates during fine-tuning. We vary the weight of this regularization λ from
{0.01, 0.1, 1, 10}. The first subfigure in Figure 4 shows that the performance is best when λ = 0.1 or
1. When λ is too small, the parameters undergo too large updates on few-shot downstream datasets,
leading to over-fitting and ineffectively utilizing the pre-trained knowledge. Too large λ causes the
parameters of the embedding layers to be nearly frozen, which prevents effective adaptation.

Effect of hidden dimension of MP-Adapter d2. The results corresponding to different values of d2
from {25, 50, 75, 100, 150} are presented in the second subfigure of Figure 4. On the Tox21 dataset,
we further analyze the impact of this hyper-parameter on the number of trainable parameters. As
shown in Figure 5, the number of parameters that our method needs to train is significantly less than
that required by the full fine-tuning method, such as GS-Meta, while our method also performs better
in terms of ROC-AUC performance due to solving over-fitting and context perceptiveness issues.
When d = 50, Pin-Tuning performs best on Tox21, and the number of parameters that need to train is
only 14.2% of that required by traditional fine-tuning methods.

5.5 Case study

Figure 6: Molecular representations encoded
by GS-Meta [73].

Figure 7: Molecular representations encoded
by Pin-Tuning.

We visualized the molecular representations learned by the GS-Meta and our Pin-Tuning’s encoders
in the 10-shot setting, respectively. As shown in Figure 6 and 7, Pin-Tuning can effectively adapt
to different downstream tasks based on context information, generating property-specific molecular
representations. Across different tasks, our method is more effective in encoding representations that
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facilitate the prediction of the current property, reducing the difficulty of property prediction from the
encoding representation aspect. More case studies are provided in Appendix G.

6 Conclusion

In this work, we propose a tuning method, Pin-Tuning, to address the ineffective fine-tuning of
pre-trained molecular encoders in FSMPP tasks. Through the innovative parameter-efficient tuning
and in-context tuning for pre-trained molecular encoders, our approach not only mitigates the issues
of parameter-data imbalance but also enhances contextual perceptiveness. The promising results
on public datasets underscore the potential of Pin-Tuning to advance this field, offering valuable
insights for future research in drug discovery and material science.
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Appendix
The organization of the appendix is as follows:

• Appendix A: Derivation of Emb-BWC regularization;
• Appendix B: Pseudo-code of training process;
• Appendix C: Discussion of tunable parameter size and total model size;
• Appendix D: Details of datasets;
• Appendix E: Details of baselines;
• Appendix F: Implementation details;
• Appendix G: More experimental results and discussions;
• Appendix H: Limitations and future directions.

A Derivation of Emb-BWC regularization

A.1 Derivation of LEmb-BWC

Let Φ ∈ RE×d be the pre-trained embeddings before fine-tuning, and Φ′ ∈ RE×d be the fine-tuned
embeddings. Further, Φi ∈ Rd denotes the i-th row’s embedding vector in Φ, and Φi,j ∈ R represents
the j-th dimensional value of Φi.

The optimization of embedding layers can be interpreted as performing a maximum a posterior
(MAP) estimation of the parameters Φ′ given the pre-training data and training data of downstream
FSMPP task, which is formulated in a Bayesian framework.

In the FSMPP setting, the molecular encoder has been pre-trained on the pre-training task P using
dataDP , and is then fine-tuned on a downstream FSMPP task F using dataDF . The overall objective
is to find the optimal parameters on task F while preserving the prior knowledge obtained in pre-
training on task F . Based on a prior p(Φ′) of the embedding parameters, the posterior after observing
the FSMPP task F can be computed with Bayes’ rule:

p(Φ′|DP ,DF ) =
p(DF |Φ′,DP)p(Φ

′|DP)

p(DF |DP)

=
p(DF |Φ′)p(Φ′|DP)

p(DF )
,

(12)

where DF is assumed to be independent of DP . Taking a logarithm of the posterior, the MAP
objective is therefore:

Φ′∗ = argmax
Φ′

log p(Φ′|DP ,DF )

= argmax
Φ′

log p(DF |Φ′) + log p(Φ′|DP).
(13)

The first term log p(DF |Φ′) is the log likelihood of the data DF given the parameters Φ′, which
can be expressed as the training loss function on task F = − log p(DF |Φ′), denoted as LF (Φ

′).
The second term p(Φ′|DP) is the posterior of the parameters given the pre-training dataset DP .
Since Φ′ = [Φ′⊤

1 ,Φ′⊤
2 , . . . ,Φ′⊤

E ]⊤, and Φ′
i is conditionally independent of Φ′

j for i, j = {1, . . . , E}
and i ̸= j given condition DP , we have p(Φ′|DP) =

∏E
i=1 p(Φ

′
i|DP). Thus, log p(Φ′|DP) =∑E

i=1 log p(Φ
′
i|DP)

For adapting pre-trained molecular embedding layers to downstream FMSPP tasks, this posterior
must encompass the prior knowledge of the pre-trained embedding layers to reflect which parameters
are important for pre-training task P . Despite the true posterior being intractable, log p(Φ′

i|DP) can
be defined as a function f(Φ′

i) and approximated around the optimum point f(Φi), where f(Φi)
is the pre-trained values and ∇f(Φi) = 0. Performing a second-order Taylor expansion on f(Φ′

i)
around Φi gives:

log p (Φ′
i | DP) ≈ f (Φi) +

1

2
(Φ′

i − Φi)
T ∇2f (Φi) (Φ

′
i − Φi)

= f (Φi) +
1

2
(Φ′

i − Φi)
T
H(DP ,Φi) (Φ

′
i − Φi) ,

(14)
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where H(DP ,Φi) ∈ Rd×d is the Hessian matrix of f(Φ′
i) at Φi. The second term suggests that the

posterior of the parameters on the pre-training data can be approximated by a Gaussian distribution
with mean Φ′

i and covariance H(DP ,Φi)
−1. Following Eq. (13), the training objective becomes:

Φ′∗ = argmax
Φ′

log p(DF |Φ′) + log p(Φ′|DP)

= argmax
Φ′

log p(DF |Φ′) +

E∑
i=1

log p(Φ′
i|DP)

= argmin
Φ′

LF (Φ
′)−

E∑
i=1

f(Φi)−
1

2

E∑
i=1

(Φ′
i − Φi)

T
H(DP ,Φi) (Φ

′
i − Φi)

= argmin
Φ′

LF (Φ
′)− 1

2

E∑
i=1

(Φ′
i − Φi)

T
H(DP ,Φi) (Φ

′
i − Φi) .

(15)

We define the second term as our Emb-BWC regularization objective:

LEmb-BWC = −1

2

E∑
i=1

(Φ′
i − Φi)

⊤H(DP ,Φi)(Φ
′
i − Φi). (16)

A.2 Derivation of LFIM
Emb-BWC

Since the Fisher information matrix (FIM) F is the negation of the expectation of the Hessian over
the data distribution, i.e., F = −EDP [H], the objective can be reformulated as:

LFIM
Emb-BWC =

1

2

E∑
i=1

(Φ′
i − Φi)

⊤F(DP ,Φi)(Φ
′
i − Φi), (17)

where F(DP ,Φi) ∈ Rd×d is the corresponding Fisher information matrix of H(DP ,Φi). Further,
the Fisher information matrix can be further simplified with a diagonal approximation. Then, the
objective is simplified to:

LFIM
Emb-BWC ≈

1

2

E∑
i=1

F̂i(Φ
′
i − Φi)

2, (18)

where F̂i ∈ Rd is the diagonal of F(DP ,Φi). According to the definition of the Fisher information
matrix, the j-th value in F̂i is computed as EDP (∂LP/∂Φi,j)

2. In this work, this approximated form
is defined as LFIM

Emb-BWC.

A.3 Derivation of LEFIM
Emb-BWC

We assume that the parameters within an embedding should share the same importance. To this
end, we define Φ̃i =

∑
j Φi,j , then the total update of the embedding Φi can be represented as

∆Φi = Φ̃′
i − Φ̃i =

∑
j(Φ

′
i,j − Φi,j). Then, the objective in Eq. (16) is reformulated to:

LEFIM
Emb-EWC =

1

2

E∑
i=1

H̃i(Φ̃
′
i − Φ̃i)

2, (19)

where H̃i =
∂2LP
∂Φ̃2

i

= ∂
∂Φ̃i

(∂LP
∂Φ̃i

). Next, we continue to derive H̃i. Given that Φ̃i =
∑d

j=1 Φi,j , we

first use the chain rule to find ∂LP
∂Φ̃i

According to chain rule, the derivative of LP with respect to ∂Φ̃i

can be computed as:
∂LP

∂Φ̃i

=
∑
j

∂LP

∂Φi,j

∂Φi,j

∂Φ̃i

. (20)

Since Φ̃i = Φi,1 + Φi,2 + . . . + Φi,d, each of ∂Φi,j

∂Φ̃i
for j = 1, 2, . . . , d equals 1. Therefore, the

equation simplifies to:
∂LP

∂Φ̃i

=

d∑
j=1

∂LP

∂Φi,j
. (21)
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When taking the derivative of this with respect to Φi,j again, using the chain rule, we have:

∂2LP

∂Φ̃2
i

=
∂

∂Φ̃i

(

d∑
j=1

∂LP

∂Φi,j
) =

d∑
j=1

d∑
k=1

∂

∂Φi,k
(
∂LP

∂Φi,j
)
∂Φi,k

∂Φ̃i

(22)

Given that Φi,j(Φi,k) are all parameters in embedding lookup tables, they are independent of each
other. Thus, when j = k, ∂

∂Φi,k
( ∂LP
∂Φi,j

)
∂Φi,k

∂Φ̃i
= ∂2LP

∂Φ2
i,j

, otherwise it equals 0. We finally get

H̃i =
∑

j
∂2LP
∂Φ2

i,j
=

∑
j H(DP ,Φi)j,j .

We still approximate the Hessian with the FIM as in Section A.2, and combining this with the
definition of FIM, we arrive at the final objective:

LEFIM
Emb-EWC ≈

1

2

E∑
i=1

F̃i(Φ̃
′
i − Φ̃i)

2, (23)

where F̃i =
∑

j EDP (∂LP/∂Φi,j)
2.

B Pseudo-code of training process

To help better understand the training process, we provide the brief pseudo-code of it in Algorithm 1.

Algorithm 1: Training process of Pin-Tuning.
Input :Training set Dtrain
Output :Tuned few-shot molecular property prediction model with parameter θ

1 while not converge do
2 Sample B episode from training set Dtrain to form a mini-batch {Et}Bt=1;
3 for t = 1 to B do
4 Calculate classification loss on support set Lcls

t,S(fθ) by Eq. (8) on Et:
θ′ ← θ − αinner∇θLcls

t,S(fθ);
5 Do inner-loop update by Eq. (9) on Et;
6 Calculate classification loss on query set Lcls

t,Q(fθ′) by Eq. (8) on Et;

7 Calculate update constraint LEmb-BWC by Eq. (6);
8 Do outer-loop optimization by Eq. (10) and Eq. (11): θ ← θ − αouter∇θL(fθ′);
9 Return optimized model parameter θ.

C Discussion of tunable parameter size and total model size

C.1 Tunable parameter size of molecular encoder

We compare the tunable parameter size of full fine-tuning and our Pin-Tuning. Section 3.3 describes
the parameters of the PME, which include those for the embedding layers and the message passing
layers. We assume there are |En| original node features and |Ee| edge features. Considering there
is one node embedding layer and L edge embedding layers, the total number of parameters for the
embedding part is |En|d + L|Ee|d. The parameters in the message passing layer consist of the
2-layer MLP including biases shown in Eq. (2) and its subsequent batch normalization, with each
layer having L(2dd1 + d + d1 + 2d) parameters. In summary, the total number of parameters to
update in full fine-tuning is

NFine−Tuning = |En|d+ L(|Ee|d+ 2dd1 + 3d+ d1). (24)

In our Pin-Tuning method, the parameters of the embedding layers are still updated. However,
in each message passing layer, the original parameters are completely frozen, and the parts that
require updating are the two feed-forward layers and the layer normalization in the bottleneck adapter
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Table 4: Comparison of total model size. ∗ indicates that the parameters are frozen.
GS-Meta Ours

Size of Molecular Encoder 1.86M 1.86M∗

Size of Adapter - 0.21M
Size of Context Encoder 0.62M 0.62M
Size of Classifier 0.18M 0.27M
Size of Total Model 2.66M 2.96M
Size of Tunable Part of the Model 2.66M 1.10M

Table 5: Dataset statistics.
Dataset Tox21 SIDER MUV ToxCast PCBA

#Compound 7831 1427 93127 8575 437929
#Property 12 27 17 617 128
#Train Property 9 21 12 451 118
#Test Property 3 6 5 158 10
%Positive Label 6.24 56.76 0.31 12.60 0.84
%Negative Label 76.71 43.24 15.76 72.43 59.84
%Unknown Label 17.05 0 84.21 14.97 39.32

module, amounting to L(2dd2 + d+ d2 + 2d) parameters for this part. Therefore, the total number
of parameters that need to be updated in our Pin-Tuning is

NPin−Tuning = |En|d+ L(|Ee|d+ 2dd2 + 3d+ d2). (25)
The difference in the number of parameters updated between the two tuning methods is ∆N =
(d1 − d2)L(2d+ 1).

C.2 Total model size

We provide a comparison of total model size between our Pin-Tuning and the state-of-the-art
baseline method, GS-Meta. The total model size consists of both frozen parameters and trainable
parameters. The results are presented in Table 4. The total size of our model is comparable to
GS-Meta, but the number of parameters that need to be trained is far less than GS-Meta.

D Details of datasets

We carry out experiments in MoleculeNet benchmark [61] on five widely used few-shot molecular
property prediction datasets:

• Tox21: This dataset covers qualitative toxicity measurements and was utilized in the 2014 Tox21
Data Challenge.

• SIDER: The Side Effect Resource (SIDER) functions as a repository for marketed drugs and
adverse drug reactions (ADR), categorized into 27 system organ classes.

• MUV: The Maximum Unbiased Validation (MUV) is determined through the application of a
refined nearest neighbor analysis, specifically designed for validating virtual screening techniques.

• ToxCast: This dataset comprises a compilation of compounds with associated toxicity labels
derived from high-throughput screening.

• PCBA: PubChem BioAssay (PCBA) represents a database containing the biological activities of
small molecules generated through high-throughput screening.

Dataset statistics are summarized in Table 5 and Table 6.

E Details of baselines

We compare our Pin-Tuning with two types of baseline models for few-shot molecular property
prediction tasks, categorized according to the training strategy of molecular encoders: trained-from-
scratch methods and pre-trained methods.
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Table 6: Statistics of sub-datasets of ToxCast.
Assay Provider #Compound #Property #Train Property #Test Property %Label active %Label inactive %Missing Label

APR 1039 43 33 10 10.30 61.61 28.09
ATG 3423 146 106 40 5.92 93.92 0.16
BSK 1445 115 84 31 17.71 82.29 0.00
CEETOX 508 14 10 4 22.26 76.38 1.36
CLD 305 19 14 5 30.72 68.30 0.98
NVS 2130 139 100 39 3.21 4.52 92.27
OT 1782 15 11 4 9.78 87.78 2.44
TOX21 8241 100 80 20 5.39 86.26 8.35
Tanguay 1039 18 13 5 8.05 90.84 1.11

Trained-from-scratch methods:

• Siamese [25]: Siamese is used to rank similarity between input molecule pairs with a dual network.
• ProtoNet [46]: ProtoNet learns a metric space for few-shot classification, enabling classification

by calculating the distances between each query molecule and the prototype representations of
each class.

• MAML [10]: MAML adapts the meta-learned parameters to achieve good generalization perfor-
mance on new tasks with a small amount of training data and gradient steps.

• TPN [35]: TPN classifies the entire test set at once by learning to propagate labels from labeled
instances to unlabeled test instances using a graph construction module that exploits the manifold
structure in the data.

• EGNN [22]: EGNN predicts edge labels on a graph constructed from input samples to explicitly
capture intra-cluster similarity and inter-cluster dissimilarity.

• IterRefLSTM [1]: IterRefLSTM adapts Matching Networks [53] to handle molecular property
prediction tasks.

Pre-trained methods:

• Pre-GNN [20]: Pre-GNN is a classic pre-trained molecular model, taking the GIN as backbone
and pre-training it with different self-supervised tasks.

• Meta-MGNN [14]: Meta-MGNN leverages Pre-GNN for learning molecular representations and
incorporates meta-learning and self-supervised learning techniques.

• PAR [58]: PAR uses class prototypes to update input representations and designs label propagation
for similar inputs in the relational graph, thus enabling the transformation of generic molecular
embeddings into property-aware spaces.

• GS-Meta [73]: GS-Meta constructs a Molecule-Property relation graph (MPG) and redefines
episodes in meta-learning as subgraphs of the MPG.

Following prior work [58], for the methods we reproduced, we use GIN as the graph-based molecular
encoder to extract molecular representations. Specifically, we use the GIN provided by Pre-GNN [20]
which consists of 5 GIN layers with 300-dimensional hidden units. Pre-GNN, Meta-MGNN, PAR,
and GS-Meta further use the pre-trained GIN which is also provided by Pre-GNN.

F Implementation details

F.1 Hardware and software

Our experiments are conducted on Linux servers equipped with an AMD CPU EPYC 7742 (256)
@ 2.250GHz, 256GB RAM and NVIDIA 3090 GPUs. Our model is implemented in PyTorch
version 1.12.1, PyTorch Geometric version 2.3.1 (https://pyg.org/) with CUDA version 11.3, RDKit
version 2023.3.3 and Python 3.9.18. Our code is available at: https://github.com/CRIPAC-DIG/
Pin-Tuning.

F.2 Model configuration

For featurization of molecules, we use atomic number and chirality tag as original atom features,
as well as bond type and bond direction as bond features, which is in line with most molecular

19

https://github.com/CRIPAC-DIG/Pin-Tuning
https://github.com/CRIPAC-DIG/Pin-Tuning


Table 7: 10-shot performance on each sub-dataset of ToxCast.
Model APR ATG BSK CEETOX CLD NVS OT TOX21 Tanguay

ProtoNet 73.58 59.26 70.15 66.12 78.12 65.85 64.90 68.26 73.61
MAML 72.66 62.09 66.42 64.08 74.57 66.56 64.07 68.04 77.12

TPN 74.53 60.74 65.19 66.63 75.22 63.20 64.63 73.30 81.75
EGNN 80.33 66.17 73.43 66.51 78.85 71.05 68.21 76.40 85.23

Pre-GNN 80.61 67.59 76.65 66.52 78.88 75.09 70.52 77.92 83.05
Meta-MGNN 81.47 69.20 78.97 66.57 78.30 79.60 69.55 78.77 83.98

PAR 86.09 72.72 82.45 72.12 83.43 74.94 71.96 82.81 88.20
GS-Meta 90.15 82.54 88.21 74.19 86.34 76.29 74.47 90.63 91.47

Pin-Tuning 92.78 83.58 89.49 75.96 87.70 76.33 75.56 90.80 92.25
∆Improve. 2.92% 1.26% 1.45% 2.39% 1.58% 0.05% 1.46% 0.19% 0.85%

Table 8: 5-shot performance on each sub-dataset of ToxCast.
Model APR ATG BSK CEETOX CLD NVS OT TOX21 Tanguay

ProtoNet 70.38 58.11 63.96 63.41 76.70 62.27 64.52 65.99 70.98
MAML 68.88 60.01 67.05 62.42 73.32 69.18 64.56 66.73 75.88

TPN 70.76 57.92 63.41 64.73 70.44 61.36 61.99 66.49 77.27
EGNN 74.06 60.56 64.60 63.20 71.44 62.62 66.70 65.33 75.69

Pre-GNN 80.38 66.96 75.64 64.88 78.03 74.08 70.42 75.74 82.73
Meta-MGNN 81.22 69.90 79.67 65.78 77.53 73.99 69.20 76.25 83.76

PAR 83.76 70.24 80.82 69.51 81.32 70.60 71.31 79.71 84.71
GS-Meta 89.36 81.92 86.12 74.48 83.10 74.72 73.26 89.71 91.15

Pin-Tuning 89.94 82.37 87.61 75.20 85.07 75.49 74.70 90.89 92.14
∆Improve. 0.65% 0.55% 1.73% 0.97% 2.37% 1.03% 1.97% 1.32% 1.09%

pre-training methods. Following previous works, we set d = 300. For MLPs in Eq. (2), we use the
ReLU activation with d1 = 600. Pre-trained GIN model provided by Pre-GNN [20] is adopted as the
PTME in our framework. We tune the weight of update constraint (i.e., λ) in {0.01, 0.1, 1, 10}, tune
the learning rate of inner loop (i.e., αinner) in {1e-3, 5e-3, 1e-2,5e-2,1e-1, 5e-1, 1, 5}, and tune the
learning rate of outer loop (i.e., αouter) in {1e-5, 1e-4, 1e-3,1e-2,1e-1}. Based on the results of hyper-
parameter tuning, we adopt αinner = 0.5, αouter = 1e − 3 and d2 = 50. The ContextEncoder(·)
described in Section 4.2 is implemented using a 2-layer message passing neural network [11]. In
each MPNN layer, we employ a linear layer to aggregate messages from the neighborhoods of nodes
and utilize distinct edge features to differentiate between various edge types in the context graphs.
For baselines, we follow their recommended settings.

G More experimental results and discussions

More discussion of Figure 1. The results show that molecular encoders with more molecule-specific
inductive biases, such as CMPNN [47] and Graphormer [66], performed slightly worse than GIN-
Mol [20] on this few-shot task. This is because more complex encoders require more parameters to
provide inductive biases, which are difficult to train effectively under a few-shot setting.

More main results. The detailed comparison between Pin-Tuning and baseline models on sub-
datasets of ToxCast are summarized in Table 7 and Table 8. Our method outperforms all baseline
models under both the 10-shot and 5-shot settings, demonstrating the superiority of our method
compared to existing methods.

More discussion of ablation study. Different datasets show varying sensitivity to the removal
of components. On small-scale datasets like Tox21 and SIDER, removing components leads to
a significant performance drop. On large-scale datasets like ToxCast and PCBA, the impact of
removing components is less pronounced. This is because more episodes can be constructed on
large-scale datasets, which aids in adaptation. This observation indicates that Pin-Tuning can bring
considerable benefits in situations where data is extremely scarce.

More case studies. We provide more case studies in Figure 8 and 9 as a supplement to Section 5.5.
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Figure 8: More molecular representations encoded by GS-Meta [73].

Figure 9: More molecular representations encoded by Pin-Tuning.
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H Limitations and future directions

As we discusses in Section 5.2, although our method significantly outperforms the state-of-the-art
baseline method, our method exhibits higher standard deviations in the experimental results under
multiple runs with different seeds.

We further speculate that these high standard deviations might be due to the uncertainty in the
context information within episodes. The explicitly introduced molecular context, on one hand,
provides effective guidance for tuning pre-trained molecular encoders, but on the other hand, this
information also carries a high degree of uncertainty. We aim to model the target property through the
molecule-property relationships within episodes, but each episode is obtained by sampling very few
samples from the large space corresponding to the target property. The uncertainty between different
episodes is relatively high. How to quantify and calibrate this uncertainty is another question worth
exploring, which we will investigate in our future work.
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contributions and scope?
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• The authors should provide scripts to reproduce all experimental results for the new proposed
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• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Please refer to Section 5.1 and Appendix F.
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• The answer NA means that the paper does not include experiments.
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Answer: [Yes]
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• For asymmetric distributions, the authors should be careful not to show in tables or figures
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
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ments?

Answer: [Yes]
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Our method addresses the few-shot molecular property prediction problem, which is
important for drug discovery and material science, as discussed in the introduction and conclusion.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

26

https://neurips.cc/public/EthicsGuidelines
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Guidelines:
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13. New Assets
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Answer: [Yes]

Justification: Our code is well documented.
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• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
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details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
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risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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