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Abstract

Diffusion models have demonstrated outstand-
ing performance in industrial anomaly detection.
However, their iterative denoising nature results
in slow inference speed, limiting their practicality
for real-time industrial deployment. To address
this challenge, we propose OmiAD, a One-step
masked diffusion model for multi-class Anomaly
Detection, derived from a well-designed multi-
step adaptive masked diffusion model (AMDM)
and compressed using adversarial score distil-
lation (ASD). OmiAD first introduces AMDM,
equipped with an adaptive masking strategy that
dynamically adjusts masking patterns based on
noise levels and encourages the model to recon-
struct anomalies as normal counterparts by lever-
aging broader context, to reduce the pixel-level
shortcut reliance. Then, ASD is developed to
compress the multi-step diffusion process into
a single-step generator by score distillation and
incorporating a shared-weight discriminator ef-
fectively reusing parameters while significantly
improving both inference efficiency and detec-
tion performance. The effectiveness of OmiAD
is validated on four diverse datasets, achieving
state-of-the-art performance across seven metrics
while delivering a remarkable inference speedup.
Code is available at https://github.com/
luolundashu/OmiAD

1. Introduction
Anomaly detection plays a pivotal role in manufacturing
defect detection (Bergmann et al., 2019), medical image
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analysis (Fernando et al., 2021), and video surveillance (Ra-
machandra et al., 2020). In industrial environments, due to
the scarcity of anomalous samples, unsupervised anomaly
detection has gained significant attention for its capability
to learn the normal data distribution and detect deviations
indicative of anomalies (You et al., 2022; Lu et al., 2023; He
et al., 2024b). Furthermore, industrial anomaly detection of-
ten involves objects spanning diverse categories with distinct
normal patterns. Such scenarios require models capable of
generalizing across different classes without necessitating
extensive fine-tuning. As such, developing a robust unsuper-
vised multi-class anomaly detection framework is crucial to
achieving consistent and efficient production workflows in
real-world industrial scenarios.

Under the paradigm of unsupervised multi-class anomaly de-
tection, diffusion-based generative models (Sohl-Dickstein
et al., 2015; Song et al., 2020; Ho et al., 2020) have gar-
nered substantial interest for their ability to handle high-
dimensional data and model complex distributions. These
models operate by progressively denoising a sample from
random noise, enabling them to reconstruct intricate data
patterns that traditional methods often struggle to capture.
This generative process makes diffusion models are particu-
larly effective at learning the distribution of normal data and
identifying deviations that signal anomalies, making them a
promising approach for unsupervised multi-class anomaly
detection tasks (Yin et al., 2023; He et al., 2024b).

Several diffusion-based approaches have been proposed for
anomaly detection, with a primary focus on generating im-
pactful conditional embeddings derived from abnormal in-
puts (Mousakhan et al., 2023; Yin et al., 2023; He et al.,
2024b; Fučka et al., 2025; Yao et al., 2025). These embed-
dings are then fed into the denoising network to guide the
reverse process within the diffusion model. For instance,
DADD (Mousakhan et al., 2023) conditions the denoising
process on the original input, enabling the model to progres-
sively remove noise and accurately reconstruct the normal
distribution. Similarly, DiAD (He et al., 2024b) leverages
pixel-level semantic information as conditional inputs to
guide the denoising process. While these methods enhance
reconstruction quality, they often overlook a critical limita-
tion in reconstruction-based anomaly detection, known as
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“identical shortcut” (Gong et al., 2019; You et al., 2022),
which arises when models over-rely on local, pixel-level
features, unintentionally preserving abnormal features dur-
ing reconstruction. As a result, these models prioritize local
patterns to minimize reconstruction errors, unintentionally
reproducing anomalies in the output.

Moreover, the iterative nature of diffusion models poses a
significant challenge for real-time deployment due to their
reliance on a stepwise denoising process, where each itera-
tion gradually removes noise to reconstruct the original data.
This process requires multiple forward passes through the
network, leading to high computational overhead and slow
inference speeds. While methods based on faster solvers for
stochastic differential equations (SDE) or ordinary differen-
tial equations (ODE) have successfully reduced the number
of inference steps to around a dozen (Zhang & Chen, 2022;
Karras et al., 2022; Lu et al., 2022; Song & Dhariwal, 2023),
it still falls short of meeting the stringent real-time require-
ments of industrial applications.

These challenges highlight the need for a new approach
that can reduce “identical shortcut” and improve inference
efficiency in diffusion-based anomaly detection. To this
end, we propose a One-step adaptive masked diffusion
model for Anomaly Detection, named OmiAD, which is
a novel unsupervised framework that addresses both issues
through two key innovations: an Adaptive Masking strategy
(AM), which mitigates shortcut reliance by dynamically en-
couraging broader contextual understanding based on noise
levels, and Adversarial Score Distillation (ASD), which
compresses the multi-step diffusion process into a single
inference step by distilling the knowledge of training data
encapsulated within the score-estimation network of a pre-
trained diffusion model. During this distillation process,
OmiAD synchronously employs the encoder module of the
student score network as a shared-weight discriminator to
perform adversarial distillation, eliminating the need for
additional parameters (Zhou et al., 2024a). This Diffusion
GAN-based adversarial loss enables the model to distin-
guish between real and generated samples by aligning the
noisy distributions at any timestep (Wang et al., 2022), en-
suring that the generative distribution closely matches the
clean data distribution. By integrating these components,
OmiAD achieves a more efficient and streamlined training
framework, improving anomaly detection accuracy while
maintaining computational efficiency and simplicity, mak-
ing it highly applicable to real-world scenarios.

The main contributions of our work are summarized as
follows:

• We propose a novel Adaptive Masked Diffusion Model
(AMDM) that utilizes an AM strategy to guide the
model in reconstructing anomalies into their normal
counterparts, effectively mitigating the “identical short-

cut” problem and enhancing the model’s ability to cap-
ture global context.

• We adapt adversarial score distillation for anomaly
detection and develop OmiAD, which compresses the
multi-step diffusion process into a single inference step,
significantly improving efficiency. To further reduce
redundancy, OmiAD incorporates a shared-weight dis-
criminator that reuses parameters, enabling a more
compact and efficient training process.

• OmiAD is validated on four datasets, achieving state-
of-the-art performance across seven metrics while de-
livering remarkable speed-ups.

2. Background
2.1. Multi-class Unsupervised Anomaly Detection

Multi-class unsupervised anomaly detection has garnered
increasing attention for its ability to create a unified model
that detects anomalies across multiple categories when only
normal data is available (Li et al., 2021; Pirnay & Chai,
2022; Chen et al., 2022; You et al., 2022). It is based on
the hypothesis that reconstruction models trained on normal
samples excel in normal regions but struggle with anoma-
lous ones (Deng & Li, 2022; Liu et al., 2023; Mousakhan
et al., 2023; Zhang et al., 2023b; He et al., 2024a). Building
upon this hypothesis, recent works have introduced inno-
vative methods to enhance anomaly detection performance.
UniAD (You et al., 2022) integrates Neighbor Masked Atten-
tion and Layer-wise Query Decoder mechanisms, effectively
mitigating the “identical shortcut” problem and improving
anomaly detection performance. HVQ-Trans (Lu et al.,
2023) utilizes vector quantization to prevent the model from
learning “identical shortcut,” thereby enhancing the robust-
ness of anomaly detection. DiAD (He et al., 2024b) explores
an anomaly detection framework based on diffusion mod-
els, introducing a semantic-guided network to ensure the
consistency of reconstructed image semantics.

2.2. Diffusion Distillation

Diffusion models are celebrated for their ability to generate
high-fidelity and diverse data, but they are often constrained
by the large number of sampling steps required for refine-
ment. To address this limitation, diffusion distillation tech-
niques have emerged as an effective solution, compressing
multi-step diffusion processes into single-step or few-step
generators (Salimans & Ho, 2022; Song et al., 2023).

Recent advances in diffusion distillation are primarily driven
by distribution matching under noise corruption. These
methods aim to align the distribution of generated data—
after adding noise at various levels—with that of real data.
An early attempt at this idea was Diffusion GAN (Wang
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et al., 2022), which matched noisy data distributions di-
rectly but required access to real data samples. In contrast,
diffusion distillation can eliminate this requirement by repre-
senting the noisy data distribution using the estimated score
function from a pretrained diffusion model.

To measure the discrepancy between the noisy data and gen-
erated distributions in score space, these methods typically
use either the KL divergence—as seen in Score Distilla-
tion Sampling (SDS) (Poole et al., 2022), Variational Score
Distillation (Wang et al., 2023), Diff-Instruct (Luo et al.,
2024a), and Distribution Matching Distillation (DMD) (Yin
et al., 2024b)—or the Fisher divergence, employed in Score
identity Distillation (SiD) (Zhou et al., 2024b) and its vari-
ants (Zhou et al., 2024a; 2025; Luo et al., 2024b; Huang
et al., 2024). SiD leverages three score-related identities
to construct a novel loss function without relying on real
data, enabling state-of-the-art performance in single-step
generation tasks.

To further improve both generation efficiency and quality—
particularly by correcting inaccuracies in the teacher dif-
fusion model—adversarial diffusion distillation methods
(Sauer et al., 2025; Yin et al., 2024a; Zhou et al., 2024a)
have shown great promise by integrating diffusion models
with GAN-style training (Goodfellow et al., 2014) or Dif-
fusion GAN frameworks (Wang et al., 2022). For example,
ADD (Sauer et al., 2025) introduces an adversarial loss into
the distillation process, significantly boosting both sample
fidelity and inference speed. SiDA (Zhou et al., 2024a) fur-
ther extends SiD by incorporating adversarial loss across
varying noise levels, enabling finer discrimination between
real and generated samples during distillation.

3. Methodology
To harness the generative capabilities of diffusion models
for anomaly detection while mitigating the inefficiencies
of their multi-step generation process, we first design the
AMDM, which incorporates AM to enhance robustness
and efficiency across diverse scenarios. Then, we intro-
duce ASD to compress AMDM into a single-step model,
significantly improving inference speed and detection per-
formance. OmiAD seamlessly integrates AMDM with ASD,
achieving efficient and high-performing multi-class anomaly
detection.

3.1. Preliminaries

Diffusion models, particularly the widely adopted Denois-
ing Diffusion Probabilistic Model (DDPM) (Ho et al., 2020),
consist of two key processes: a forward diffusion process
and a reverse diffusion process. The forward diffusion pro-
cess incrementally corrupts the input vector x0 by adding
noise over T steps, progressively transforming it into a
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Figure 1. Overview of the ASD framework. ASD comprises four
main components:One Step Generator (OneStep- Gen), Teacher
Score, Student Score, and Discriminator, which collaboratively
enable accurate single-step generation and robust anomaly detec-
tion. The upper-left section illustrates the alignment between the
Teacher and Student Scores, where the Student Score progressively
adapts to the Teacher Score, thereby optimizing the One Step Gen-
erator. For a detailed explanation, please refer to Section 3.3.

Gaussian noise vector xT :

q(x1:T | x0) :=
∏T
t=1 q(xt | xt−1),

q(xt | xt−1) := N (
√
1− βtxt−1, βtI)

(1)

where βt represents a positive constant denoting the noise
level. In practical applications, we directly sample xt given
x0 as the following:

q(xt | x0) = N (
√
ᾱtx0, (1− ᾱt)I) (2)

where αt := 1−βt and ᾱt :=
∏T
t=1 αt. The reverse process

involves denoising xt back to x0 :

pθ(x0:T ) := p(xT )
∏T
t=1 pθ(xt−1 | xt),

pθ(xt−1 | xt) := N (µθ(xt, t),σθ(xt, t))
(3)

In DDPM, pθ(xt−1 | xt) is defined as:

µθ(xt, t) =
1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)),

σθ(xt, t) = (β̄t)
1/2,

if t = 1 : β̄t = β1, else : β̄t =
1−ᾱt−1

1−ᾱt
βt

(4)
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where the ϵθ is denoising function and which can be trained
by solving the following optimization problem:

min
θ

L(θ) := Eq(xt|x0,t)[γ(t) ∥ϵ− ϵθ(xt, t)∥22] (5)

where γ(t) is a time-dependent weight that adjusts the con-
tribution of different timesteps during training, ensuring an
appropriate balance across noise levels.

3.2. Adaptive Masked Diffusion Model

Existing diffusion-based anomaly detection models often
suffer from the “identical shortcut” problem. To address
this issue, we propose the AMDM, which integrates AM to
dynamically adjust the masking probability p(t) based on
the noise level during the diffusion process. This mechanism
adaptively balances preserving local details at low noise
levels and modeling broader context at high noise levels.
By progressively increasing p(t) with noise, AM enhances
global context modeling while retaining critical features,
thereby improving robustness and efficiency in anomaly
detection across diverse scenarios.

The original image is first processed by EfficientNet to
extract its feature representation, denoted as x0, which is
situated in the input feature space. Subsequently, a binary
mask M(t) is applied to x0, producing the masked feature
representation xm:

xm = x0 ⊙M(t), (6)

where ⊙ denotes element-wise multiplication. The masking
probability p(t) is dynamically adjusted based on the for-
ward diffusion timestep t, ensuring that the masking process
is synchronized with the diffusion process. Specifically, p(t)
is defined as:

p(t) = pmin + (pmax − pmin) ·
(
t

T

)k
(7)

where pmin and pmax represent the minimum and maximum
masking probabilities, T is the total number of diffusion
timesteps, and k controls the masking growth rate. The
binary mask M(t) is sampled as:

M(t) ∼ Bernoulli(p(t)) (8)

The forward diffusion timestep t is consistent with the mask-
ing process, and Gaussian noise is added to the masked
feature xm at the same timestep t. At each timestep t, the
noisy feature xtm is computed as:

xm
t =

√
ᾱt · xm +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I) (9)

where ᾱt represents the variance schedule. The noisy feature
xm

t, along with the timestep t, is passed through the model
θ to predict the denoised feature x̂0:

x̂0 =
1√
ᾱt

xm
t −

√
1− ᾱt√
ᾱt

ϵθ(xm
t, t) (10)

where ϵθ(xm
t, t) is the noise predicted by the model θ.

By using the timestep t for both masking adjustment and
noise addition, the model ensures consistency throughout
the forward diffusion process, enabling accurate reconstruc-
tion of the original feature x0 by estimating and removing
the noise component.

The reconstructed feature x̂0 is compared with the ground
truth x0.

L = γ(t)∥x̂0 − x0∥22 (11)

By incorporating AM into the diffusion process, the pro-
posed AMDM significantly strengthens global context
modeling, effectively mitigating reliance on shortcut fea-
tures. This enhancement improves the model’s accuracy in
anomaly detection across diverse scenarios while ensuring
robustness and efficiency.

3.3. One-step Adaptive Masked Diffusion Model

As a diffusion-based method, AMDM suffers from slow
inference due to its iterative denoising process. To ad-
dress this limitation, we adapt the SiD method proposed
in Zhou et al. (2024b) and SiDA method proposed in Zhou
et al. (2024a) to develop OmiAD, a novel one-step adap-
tive masked diffusion model. The ASD framework used
by OmiAD is illustrated in Fig. 1. ASD comprises four
components: One Step Generator (OneStep-Gen), Teacher
Score, Student Score, and Discriminator. The Teacher Score
ϵϕ, derived from AMDM, leverages its global contextual
modeling for anomaly detection. The One Step Generator
gθ performs single-step generation to reconstruct xg , which,
along with the real sample x0, is perturbed with the same
noise and fed into the Discriminator D to align noisy distri-
butions. Additionally, xg is further perturbed with noise and
processed through the Teacher Score ϵϕ and Student Score
ϵψ. The loss is computed by aligning the Student Score
with the Teacher Score, thereby facilitating the optimization
of the One Step Generator. These four components within
ASD are integrated into the score distillation and adver-
sarial optimization processes, enabling OmiAD to achieve
not only efficient single-step generation but also enhanced
anomaly detection capabilities.

3.3.1. SCORE DISTILLATION

Our distillation process leverages the One Step generator
gθ to produce data that closely matches the real data dis-
tribution. By training the student score ϵψ on this data, it
learns to replicate the behavior of the teacher score ϵϕ. Once
the distillation is complete, gθ(x0) can perform anomaly
detection in a single step, by passing the need for multi-step
inference while retaining the teacher model’s performance.

The student score ϵψ is trained using data generated by the
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single-step generator gθ, formulated as:

xg = gθ(
√
ᾱtinitx0 +

√
1− ᾱtinitε) (12)

where x0 represents a normal training sample, and xg is
the output reconstructed by the generator. We denote the
distribution of xg as pθ(xg). The timestep tinit represents
a fixed noise level used during the generation of xg. The
reconstructed samples xg are then used to train the student
score ϵψ , defined as:

Eq(xt|xg,t)pθ(xg)
[∥∥ϵψ(√ᾱtxg +

√
1 − ᾱtϵ, t)−ϵ

∥∥2

2

]
(13)

Assuming we have access to ϵψ∗(θ), the optimal student
score that minimizes Equation 13, we follow SiD to define
a Fisher divergence-based distillation loss to optimize gθ,
expressed as

Lθ = Eq(xt|xg,t)pθ(xg)
[
γ(t)

∥∥ϵψ∗(θ)(xt, t)− ϵϕ(xt, t)
∥∥2

2

]
(14)

While Equation 14 is intractable to solve due to the unknown
ψ∗(θ) and its gradient, we follow SiD and adopt an alternat-
ing optimization strategy. This approach alternates between
optimizing ψ using SGD with Equation 13 and optimizing
θ using SGD with the following loss:

Lθ = Eq(xt|xg,t)pθ(xg)

[
γ(t)

(
∆ψ,ϕ(xt)

(
ϵ− ϵϕ(xt, t)

)
− α∥∆ψ,ϕ(xt)∥22

)]
(15)

where ∆ψ,ϕ(xt) represents the discrepancy between the
teacher and student scores:

∆ψ,ϕ(xt) = ϵψ(xt, t)− ϵϕ(xt, t) (16)

Through this SiD-based score distillation process, the multi-
step diffusion mechanism of AMDM is compressed into a
single inference step. This is accomplished by extracting
and distilling the knowledge from the training data encap-
sulated within the score-estimation network of a pretrained
diffusion model. The derivation of this formulation, which
follows the original approach in SiD (Zhou et al., 2024b;
2025) but is adapted to the DDPM-style teacher model used
in this paper, is provided in Appendix C.

3.3.2. ADVERSARIAL OPTIMIZATION IN DISTILLATION

Through OmiAD, single-step anomaly detection is achieved
via distillation. Following SiDA (Zhou et al., 2024a), we en-
hance performance by integrating a Diffusion GAN (Wang
et al., 2022) based adversarial loss. As in SiDA, OmiAD re-
purposes the encoder module of the student score network as
a shared-weight discriminator, eliminating the need for ad-
ditional parameters. This adversarial loss enables the model
to distinguish between real and generated samples by align-
ing the noisy distributions at any timestep t, ensuring that

the generative distribution closely matches the clean data
distribution, thereby improving anomaly detection accuracy.

To train the encoder module of ϵψ, which also functions as
the discriminator, we define its role in detail. Specifically,
the discriminator corresponds to the encoder component
of the network. For an input xt, which is a noisy sam-
ple, the encoder module processes the input and generates
the final layer output of the discriminator with dimensions
(H,W,C), where H and W represent the spatial dimen-
sions, and C denotes the number of channels, we compute
the mean along the channel dimension, resulting in a feature
map of size (H,W ).

This mechanism enables the discriminator to capture sub-
tle differences between real and generated (reconstructed)
samples. Particularly in noisy scenarios, the discrimina-
tor’s feature map highlights local responses that amplify the
anomaly signals between the generated and real samples.

To this end, we define the discriminator loss as:

Ladv
ψ =

1

W ′H ′

W ′∑
i′=1

H′∑
j′=1

[
lnD(yt)[i

′, j′]

+ ln (1−D(xt)[i
′, j′])

] (17)

where xt represents the generated (reconstructed) sam-
ple, and yt denotes the real sample. D is discriminator.
D(yt)[i

′, j′] and D(xt)[i
′, j′] denote the responses at the

(i′, j′)-th position in the discriminator maps for real and
generated samples, respectively. This formulation ensures
the discriminator learns to distinguish between real and
fake samples by optimizing its responses across the spatial
dimensions W ′ and H ′.

Next, we leverage the discriminator to optimize θ, with the
adversarial loss defined as:

Ladv
θ =

1

W ′H ′

W ′∑
i=1

H′∑
j=1

D(xt)[i, j] (18)

This formulation ensures the discriminator learns to dis-
tinguish between real and fake samples by optimizing its
responses across the spatial dimensions W ′ and H ′.

In summary, the adversarial distillation process is completed
with minimal computational overhead due to the reuse of the
encoder module as the discriminator. This efficient design
not only ensures that distillation incurs almost no additional
computational cost but also enhances the model’s sensitivity
and capability in anomaly detection. The detailed ASD
algorithm is provided in Algorithm 1.
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Table 1. Quantitative Results on different AD datasets for multi-class setting.

Dateset Method
Image-level Pixel-level

mAD
AU-ROC AP F1 max AU-ROC AP F1 max AU-PRO

MVTec-AD

RD4AD 94.6 96.5 95.2 96.1 48.6 53.8 91.1 82.3
UniAD 96.5 98.8 96.2 96.8 43.4 49.5 90.7 81.7

SimpleNet 95.3 98.4 95.8 96.9 45.9 49.7 86.5 81.2
DeSTSeg 89.2 95.5 91.6 93.1 54.3 50.9 64.8 77.1

DiAD 97.2 99.0 96.5 96.8 52.6 55.5 90.7 84.0
HVQ-Trans 98.0 99.5 97.5 97.3 48.2 53.3 91.4 83.6

AMDM(Ours) 98.4 99.0 97.4 97.5 51.5 56.1 92.6 84.6
OmiAD (Ours) 98.8 99.7 98.5 97.7 52.6 56.7 93.2 85.3

VisA

RD4AD 92.4 92.4 89.6 98.1 38.0 42.6 91.8 77.8
UniAD 88.8 90.8 85.8 98.3 33.7 39.0 85.5 74.6

SimpleNet 87.2 87.0 81.8 96.8 34.7 37.8 81.4 72.4
DeSTSeg 88.9 89.0 85.2 96.1 39.6 43.4 67.4 72.8

DiAD 86.8 88.3 85.1 96.0 26.1 33.0 75.2 70.1
HVQ-Trans 93.2 92.8 87.6 98.7 35.0 39.6 86.3 76.2

AMDM(Ours) 94.8 95.6 91.1 98.8 39.8 43.5 88.4 78.9
OmiAD (Ours) 95.3 96.0 91.2 98.9 40.4 44.1 89.2 79.3

MPDD

RD4AD 84.1 83.2 84.1 98.1 35.2 38.7 93.4 73.8
UniAD 82.2 87.1 85.1 95.1 18.9 25.0 81.9 67.9

SimpleNet 90.6 94.1 89.7 97.1 33.6 35.7 90.0 75.8
DeSTSeg 93.0 95.1 90.6 94.1 33.2 37.6 59.8 71.9

DiAD 74.6 82.1 82.5 93.0 15.9 21.2 78.4 64.0
HVQ-Trans 86.5 88.1 85.8 96.7 27.6 31.4 86.9 71.9

AMDM(Ours) 93.3 94.9 90.7 98.4 36.8 41.6 93.5 78.4
OmiAD (Ours) 93.7 95.5 90.9 98.6 37.6 42.3 94.0 78.9

Real-IAD

RD4AD 82.4 79.0 73.9 97.3 25.0 32.7 89.6 68.6
UniAD 83.0 80.9 74.3 97.3 21.1 29.2 86.7 67.5

SimpleNet 57.2 53.4 61.5 75.7 2.8 6.5 39.0 42.3
DeSTSeg 82.3 79.2 73.2 94.6 37.9 41.7 40.6 64.2

DiAD 75.6 66.4 69.9 88.0 2.9 7.1 58.1 52.6
HVQ-Trans 86.6 84.9 79.4 98.0 27.6 34.4 88.7 71.4

AMDM(Ours) 89.8 87.7 81.9 98.6 36.5 41.4 92.6 75.5
OmiAD (Ours) 90.1 88.6 82.8 98.9 37.7 42.6 93.1 76.3

4. Experiment
4.1. Experiments Setup

Dataset: Four datasets are utilized in our paper: (1) MVTec-
AD (Bergmann et al., 2019) simulates real-world industrial
production scenarios with high-resolution images specif-
ically designed for unsupervised anomaly detection. (2)
VisA (Zou et al., 2022), a large dataset with 9,621 normal
and 1,200 anomalous images spanning 12 object types and
diverse anomalies. (3) MPDD (Jezek et al., 2021), focusing
on detecting defects in six classes of metal parts during fabri-
cation. (4) Real-IAD (Wang et al., 2024) comprises 150,000
images across 30 distinct categories, offering a comprehen-
sive large-scale benchmark for anomaly detection. More
details about the datasets can be found in Appendix D.

Evaluation metrics: For anomaly detection and segmenta-
tion, we report the Area Under the Receiver Operating Char-
acteristic Curve (AU-ROC), Average Precision (AP) (Zavr-
tanik et al., 2021), and F1-score-max (F1 max) (Zou et al.,
2022). Additionally, for anomaly segmentation, we also
report the Area Under the Per-Region-Overlap (AU-PRO)
(Bergmann et al., 2020). To provide a comprehensive as-

sessment of the model’s performance, we further calculate
the mean value of the above seven metrics, referred to as
mAD (Zhang et al., 2023a).

Baselines: We extensively compare our model with 6 base-
line methods under unsupervised multi-class settings, in-
cluding the unified state-of-the-art method HVQ-Trans (Lu
et al., 2023) and the diffusion-based approach DiAD (He
et al., 2024b). More details about the baseline methods can
be found in Appendix E.

Implementation details: For AMDM, the number of
timesteps is T = 1000, with a linear noise schedule
(β1 = 10−4, βT = 0.02) as in Ho et al. (2020). The
mask probability is controlled by pmin = 0.1, pmax = 0.4
and k = 2, while the weighting factor α in adversarial
distillation is set to 1. More details are in Appendix F.

4.2. Comparison with SoTAs on Different AD datasets

As shown in Table 1, OmiAD achieves state-of-the-art
performance across four widely used anomaly detection
datasets, highlighting its robustness and versatility. Built
upon its teacher model, AMDM, which leverages global
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Figure 2. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly sample,
our reconstruction, ground-truth, and our predicted anomaly map.
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Figure 3. Qualitative comparison of pixel-level anomaly segmentation results across four datasets. From left to right: normal sample as
the reference, anomaly sample, ground truth (GT), predicted anomaly maps by UniAD, HVQ-Trans, DiAD, and ours.

contextual information to secure the second-highest perfor-
mance across four datasets, OmiAD demonstrates its capa-
bility to excel in both anomaly detection and segmentation
tasks.

On the MVTec-AD dataset, OmiAD achieves impres-
sive scores of 98.8/99.7/98.5 for AU-ROC/AP/F1 max
at the image level and 97.7/52.6/56.7/93.2 for AU-
ROC/AP/F1 max/PRO at the pixel level, surpassing DiAD
by 1.5% and HVQ-Trans by 2.0% in the overall mAD met-
ric. On the VisA dataset, OmiAD outperforms DiAD by
13.1% and HVQ-Trans by 4.1% in mAD. For the MPDD
dataset, which features industrial metal parts with subtle,
localized defects, OmiAD achieves a significant 23.3% im-
provement over DiAD and 9.7% over HVQ-Trans in mAD.
On the Real-IAD dataset, a large-scale benchmark of 150K
images across 30 categories, OmiAD demonstrates excep-
tional performance, surpassing DiAD by 45.1% and HVQ-
Trans by 6.9% in mAD, further underscoring its scalability
and effectiveness in real-world applications. Comprehen-
sive per-category results for each dataset are provided in
Appendix G.

4.3. Quantitative Results of OmiAD

To demonstrate the capability of modeling normal distribu-
tions, we visualize the generated results. As illustrated in

Fig. 2, OmiAD effectively reconstructs anomalies into their
corresponding normal samples, accurately localizing anoma-
lous regions through reconstruction differences. Specifically,
it handles both object anomalies (Left) and texture damages
(Right) with remarkable precision, thereby showcasing its
robustness in capturing subtle and diverse defect patterns
across various scenarios.

Furthermore, Fig. 3 highlights OmiAD’s superior pixel-level
anomaly segmentation capabilities. Compared to UniAD,
HVQ-Trans, and DiAD, OmiAD achieves significantly more
accurate segmentation with minimal bias. This advantage
can be attributed to its ability to incorporate global con-
textual information, which enables it to avoid reliance on
localized features. Consequently, OmiAD delivers robust
and consistent segmentation performance across a wide
range of anomaly types. For additional qualitative results
and analysis, please refer to Appendix J.

4.4. Inference Speed Comparison

We evaluate the inference speed of OmiAD against
Transformer-based, Reconstruction-based, and Diffusion-
based methods on four anomaly detection datasets, as shown
in Table 2. All evaluations are conducted with a batch size
of 64 under identical hardware settings.

OmiAD achieves unparalleled inference efficiency across all
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Table 2. Average inference time (in seconds) for different models on various datasets with batch size 64.

Dataset Transformer-based Reconstruction-based Diffusion-based Ours
HVQ-Trans UniAD RD4AD ReContrast DDAD DiAD TransFusion

MVTec-AD 0.1795 0.1891 0.2075 0.2383 6.0067 15.662 15.904 0.0254
VisA 0.2018 0.2198 0.2063 0.2342 6.0260 16.446 15.975 0.0283

MPDD 0.1620 0.1723 0.2106 0.2314 5.9247 16.327 16.002 0.0201
Real-IAD 0.1732 0.1732 0.2171 0.2288 5.9602 15.567 16.051 0.0192

Table 3. Ablation studies on MVTec-AD: Evaluating the effects
of fixed/adaptive masking strategies and distillation methods on
anomaly detection/localization using AU-ROC. Abbreviations: F-
Mask (Fixed Mask), A-Mask (Adaptive Mask), ADD(Adversarial
Diffusion Distillation), Distill (Score Distillation), Adv. D. (Ad-
versarial Score Distillation).

DDPM F-Mask A-Mask ADD Distill Adv. D. Results

✓ - - - - - 90.2 / 91.4
✓ ✓ - - - - 97.7 / 96.8
✓ - ✓ - - - 98.4 / 97.5
✓ - ✓ ✓ - - 94.5 / 95.2
✓ - ✓ - ✓ - 98.3 / 97.2
✓ - ✓ - ✓ ✓ 98.8 / 97.7

datasets due to its one-step diffusion process. On MVTec-
AD, OmiAD records an inference time of 0.0254s, dramati-
cally outperforming DDAD (6.0067s), DiAD (15.662s), and
TransFusion (15.904s), achieving a nearly 200× speedup
over DDAD. Similarly, on VisA, MPDD, and Real-IAD,
OmiAD maintains its efficiency, with inference times
of 0.0283s, 0.0201s, and 0.0192s, respectively. Com-
pared to Transformer-based methods, OmiAD delivers a
7× to 8× speedup, significantly surpassing HVQ-Trans
(0.1795s) and UniAD (0.1891s). Additionally, it out-
performs Reconstruction-based methods such as RD4AD
(0.2075s) and ReContrast (0.2383s). These results under-
score OmiAD’s ability to balance accuracy and efficiency,
making it a highly practical solution for real-time anomaly
detection.

4.5. Ablation Studies and Analysis

Table 3 presents the ablation study results on the MVTec-
AD dataset, examining the impact of masking strategies and
distillation techniques on anomaly detection and localiza-
tion performance. The results, reported using the AU-ROC
metric for both image-level detection and pixel-level local-
ization, also include a comparison between our proposed
ASD and Adversarial Diffusion Distillation (ADD) (Sauer
et al., 2025), highlighting the effectiveness of our distillation
strategy.

Impact of Masking Strategies: The introduction of mask-
ing strategies significantly enhances model performance
by reducing shortcut learning. Specifically, the Adaptive

Masking (A-Mask) strategy demonstrates superior perfor-
mance compared to the Fixed Masking (F-Mask) approach,
demonstrating that dynamically adjusting masking patterns
based on input characteristics enables the model to better
capture global context. This, in turn, improves its ability to
reconstruct anomalies as their normal counterparts, leading
to superior detection performance.

Effect of Distillation and Adversarial Distillation: In-
troducing Score Distillation (Distill) allows the student
model to closely approximate the performance of the multi-
step teacher model while drastically reducing inference
time. Furthermore, integrating Adversarial Score Distil-
lation (Adv. D.) further enhances model effectiveness, even
surpassing the performance of the teacher model. This im-
provement is attributed to the shared-weight discriminator
embedded within the student network, which refines the
alignment between generated and real samples, ensuring
better adaptation to the normal data distribution. Notably,
the highest AU-ROC scores of 98.8/97.7 are achieved when
combining Adaptive Masking with Adversarial Score Distil-
lation.

Comparison with Adversarial Diffusion Distillation: To
further evaluate the effectiveness of our proposed ASD,
developed based on SiD (Zhou et al., 2024b) and SiDA
(Zhou et al., 2024a), we conducted a direct comparison with
ADD (Sauer et al., 2025). ASD achieves a substantial per-
formance gain, attaining 98.8/97.7 AU-ROC, significantly
outperforming ADD, which achieves 94.5/95.2 AU-ROC.
These results highlight the superior robustness of ASD in
handling diverse anomaly patterns, further demonstrating
its effectiveness in improving anomaly detection and local-
ization accuracy.

Overall Impact on Performance: The integration of adap-
tive masking strategies and adversarial score distillation
underscores the critical role of mitigating shortcut learning
while enhancing the efficiency of the diffusion process. By
facilitating a deeper understanding of global context and
ensuring accurate reconstructions, OmiAD achieves state-
of-the-art performance across a variety of anomaly detection
datasets. For further details and additional ablation studies,
please refer to Appendix I.
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5. Conclusion
In this paper, we proposed OmiAD, a novel one-step Adap-
tive Masked Diffusion Models for multi-class anomaly de-
tection, addressing two key challenges: shortcut learning
and inference efficiency. To reduce shortcut reliance, we
introduced an Adaptive Masking strategy, guiding the model
to leverage global contextual information and reconstruct
anomalies into their normal counterparts, thereby improving
robustness across diverse scenarios. Furthermore, we tack-
led the efficiency bottleneck of diffusion models by design-
ing an adversarial score distillation framework. Experiments
on four datasets show that OmiAD achieves state-of-the-art
performance across seven metrics, offering a practical solu-
tion for real-time industrial anomaly detection.
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inatively trained reconstruction embedding for surface
anomaly detection. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 8330–
8339, 2021.

Zhang, J., Chen, X., Wang, Y., Wang, C., Liu, Y., Li, X.,
Yang, M.-H., and Tao, D. Exploring plain vit recon-
struction for multi-class unsupervised anomaly detection.
arXiv preprint arXiv:2312.07495, 2023a.

Zhang, Q. and Chen, Y. Fast sampling of diffusion
models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

Zhang, X., Li, S., Li, X., Huang, P., Shan, J., and Chen, T.
Destseg: Segmentation guided denoising student-teacher
for anomaly detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 3914–3923, 2023b.

Zhou, M., Zheng, H., Gu, Y., Wang, Z., and Huang, H.
Adversarial score identity distillation: Rapidly surpassing
the teacher in one step. arXiv preprint arXiv:2410.14919,
2024a.

Zhou, M., Zheng, H., Wang, Z., Yin, M., and Huang, H.
Score identity distillation: Exponentially fast distillation
of pretrained diffusion models for one-step generation. In
Forty-first International Conference on Machine Learn-
ing, 2024b.

Zhou, M., Wang, Z., Zheng, H., and Huang, H. Guided score
identity distillation for data-free one-step text-to-image
generation. In ICLR 2025: International Conference on
Learning Representations, 2025.

Zou, Y., Jeong, J., Pemula, L., Zhang, D., and Dabeer,
O. Spot-the-difference self-supervised pre-training for
anomaly detection and segmentation. In European Con-
ference on Computer Vision, pp. 392–408. Springer, 2022.

11

https://openreview.net/forum?id=ppJuFSOAnM
https://openreview.net/forum?id=ppJuFSOAnM
https://openreview.net/forum?id=tQukGCDaNT
https://openreview.net/forum?id=tQukGCDaNT


OmiAD: One-Step Adaptive Masked Diffusion Model for Multi-class Anomaly Detection via Adversarial Distillation

A. Algorithm for Training OmiAD

Algorithm 1 Training for OmiAD
1: Input: One step Generator gθ , pretrained teacher network ϵϕ, student score network ϵψ , tinit, tmax = 990, α = 1, λadv

θ = 1, λadv
ψ =

0.01, latent discriminator map size (W ′, H ′).
2: Initialization: θ ← ϕ, ψ ← ϕ, D(·)← encoder(ψ)
3: repeat
4: Sample x0 from the original dataset.
5: Compute xg = gθ

(√
ᾱtinitx0 +

√
1− ᾱtinitε

)
, where ε ∼ N (0, I).

6: Sample t ∼ Uniform(0, . . . , tmax), ϵt ∼ N (0, I), and compute xt =
√
ᾱtxg +

√
1− ᾱtϵt ,yt =

√
ᾱtx0 +

√
1− ᾱtϵt.

7: Update ψ with the loss function:
8: Ladv

ψ = 1
W ′H′

∑W ′

i′=1

∑H′

j′=1 [lnD(yt)[i
′, j′] + ln (1−D(xt)[i

′, j′])]

9: Lψ = γ(t)
(
∥ϵψ(xt, t)− ϵt∥22 + λadv

ψ Ladv
ψ

)
10: ψ = ψ − η∇ψLψ
11: Sample t ∼ Uniform(0, . . . , tmax), ϵt ∼ N (0, I), and compute xt =

√
ᾱtxg +

√
1− ᾱtϵt.

12: Update gθ with the loss function:
13: Ladv

θ = 1
W ′H′

∑W ′

i=1

∑H′

j=1D(xt)[i, j]

14: Lθ = γ(t)(ϵϕ(xt, t)− ϵψ(xt, t))(ϵψ(xt, t)− ϵt)− αγ(t)∥ϵϕ(xt, t)− ϵψ(xt, t)∥22 + λadv
θ Ladv

θ

15: θ = θ − η∇θLθ
16: until convergence
17: Output: gθ

B. Algorithm for Inference with OmiAD

Algorithm 2 OmiAD Inference Stage
1: Input: img: Original input image, gθ: Trained one-step generator, EfficientNet: Feature extractor, tinit.
2: Output:
3: S: Pixel-wise anomaly score map (same resolution as input image)
4: Procedure:
5: Feature Extraction: x0 = EfficientNet(img)
6: Noising: xt =

√
ᾱt · x0 +

√
1− ᾱt · ε, t = tinit, ε ∼ N (0, I) ,

7: One-step Reconstruction: x̂0 = gθ(xt)
8: Anomaly Score Computation: S = ||x0 − x̂0||22

C. Derivation of the Optimized Distillation Loss Function
Following Zhou et al. (2024b; 2025), we start with the original Fisher divergence-based loss function:

Lθ = Eq(xt|xg,t) pθ(xg)

[
γ(t)

∥∥ϵψ∗(θ)(xt, t)− ϵϕ(xt, t)
∥∥2
2

]
(19)

where ϵϕ and ϵψ∗(θ) represent the teacher and optimal student scores, respectively; γ(t) is a weighting function dependent
on t; q(xt | xg, t) describes the noisy data distribution conditioned on xg and t; and pθ(xg) reflects the data distribution
tied to θ.

We refer to a naive approximation of this loss—obtained by substituting ψ∗(θ) with its approximation ψ—as L(1)
θ ,

expressed as

L(1)
θ = Eq(xt|xg,t) pθ(xg)

[
γ(t)

∥∥ϵψ(xt, t)− ϵϕ(xt, t)
∥∥2
2

]
(20)

Using the definition of the student score

ϵψ∗(θ)(xt, t) = −
√
1− ᾱt∇xt log pθ(xt) (21)
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the objective function in Equation 19 can be equivalently reformulated as follows:

Eq(xt|xg,t) pθ(xg)

[∥∥∥ϵϕ(xt, t)− ϵψ∗(θ)(xt, t)
∥∥∥2]

= Eq(xt|xg,t) pθ(xg)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t), ϵϕ(xt, t)− ϵψ∗(θ)(xt, t)

〉]
= Eq(xt|xg,t) pθ(xg)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t), ϵϕ(xt, t)

〉]
+ Eq(xt|xg,t) pθ(xg)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t),

√
1− ᾱt∇xt log pθ(xt)

〉]
(22)

Furthermore, by using a score-related identity given by

∇xt log p(xt) = Ex0∼p(x0|xt)

[
∇xt

log p(xt | x0)
]

(23)

and more specifically the score-projection identity discussed in SiD, we obtain

Eq(xt|xg,t) pθ(xg)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t),

√
1− ᾱt∇xt

log pθ(xt)
〉]

= Ep(xg|xt)pθ(xt)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t),

√
1− ᾱt∇xt

log p(xt | xg)
〉]

= −Eq(xt|xg,t)pθ(xg)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t),

xt −
√
ᾱtxg√

1− ᾱt

〉]
= −Exg∼pθ(xg),ϵ∼N (0,I)

[〈
ϵϕ(xt, t)− ϵψ∗(θ)(xt, t), ϵ

〉]
(24)

Plugging Equation 24 into Equation 22, we obtain an equivalent expression of the objective function in Equation 19 as

Lθ = Eq(xt|xg,t) pθ(x0)

[
γ(t) (ϵϕ(xt, t)− ϵψ∗(θ)(xt, t))

(
ϵϕ(xt, t)− ϵ

)]
(25)

Substituting ψ∗(θ) with its approximation ψ, we obtain another approximated Fisher divergence as

L(2)
θ = Eq(xt|xg,t) pθ(x0)

[
γ(t) (ϵϕ(xt, t)− ϵψ(xt, t))

(
ϵϕ(xt, t)− ϵ

)]
(26)

Compared with L(1)
θ in Equation 20, the new loss L(2)

θ leverages the score-projection identity to mitigate the intricate
dependency of ψ∗(θ) on θ.

The final loss, designed by SiD to counteract the effect of ignoring the dependency of ψ∗(θ) on θ, is defined as

Lθ = L(2)
θ − αL(1)

θ

= Eq(xt|xg,t)pθ(xg)

[
γ(t)

(
ϵψ(xt, t)− ϵϕ(xt, t)

(
ϵ− ϵϕ(xt, t)

)
− α∥ϵψ(xt, t)− ϵϕ(xt, t)∥22

)] (27)

D. Dataset:
MVTec-AD dataset: The MVTec Anomaly Detection (MVTec-AD) dataset (Bergmann et al., 2019) is a widely used
benchmark for unsupervised anomaly detection and localization in industrial scenarios. It includes 15 categories of high-
resolution images across both texture and object types, covering a variety of real-world defects such as scratches, dents,
and cracks. The dataset consists of 3,629 normal images for training and 1,725 test images containing both normal and
anomalous samples. Additionally, pixel-level ground truth annotations are provided for anomaly localization, making it
suitable for evaluating both detection accuracy and localization performance.

VisA dataset: The VisA dataset is a large-scale anomaly detection benchmark (Zou et al., 2022) that features 10,821
high-resolution images across 12 distinct object categories. Each category contains various types of anomalies, ranging
from structural defects to surface irregularities. The dataset is structured into three types of anomaly scenarios: complex
structures, multiple instances, and single-instance anomalies. With detailed annotations and a diverse set of defect types,
VisA is particularly useful for evaluating the robustness of anomaly detection models under different industrial conditions.

13
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MPDD dataset: The MPDD dataset (Jezek et al., 2021) focuses on anomaly detection in metallic components during the
manufacturing process. It contains six categories of painted metal parts with various types of defects, such as scratches,
dents, and discoloration. The dataset provides 888 normal training images and 458 test images, comprising both normal
and defective samples. Unlike other datasets, MPDD introduces challenges such as varying spatial orientations, lighting
conditions, and non-homogeneous backgrounds, making it a realistic and challenging benchmark for defect detection.

Real-IAD dataset: The Real-IAD dataset (Wang et al., 2024) is one of the largest publicly available datasets for industrial
anomaly detection, consisting of over 150,000 high-resolution images across 30 object categories. The dataset includes
99,721 normal images and 51,329 images with various types of anomalies. Real-IAD covers a wide range of real-world
industrial defects and includes complex, multi-instance, and subtle anomalies, providing a comprehensive benchmark for
evaluating anomaly detection methods in practical applications.

E. Baselines:
We conduct and analyze a variety of qualitative and quantitative comparison experiments on MVTec-AD, VisA, MPDD, and
Real-IAD. For the comparison, we select three embedding-based methods, DeSTSeg (Zhang et al., 2023b), RD4AD (Deng
& Li, 2022), and SimpleNet (Liu et al., 2023), along with one reconstruction-based method, UniAD (You et al., 2022).
Additionally, we include the unified SOTA method HVQ-Trans (Lu et al., 2023) and the diffusion-based method DiAD (He
et al., 2024b).

Furthermore, we select ReContrast (Guo et al., 2023), DADD (Mousakhan et al., 2023) and TransFusion (Fučka et al., 2024)
to evaluate inference speed.

F. Implementation details:
The input image resolution is set to 224× 224, and the feature maps are resized to 32× 32. Feature maps from stages 1 to 4
of EfficientNet-b4 (Tan & Le, 2019) are resized and concatenated to produce a 272-channel feature representation. For the
diffusion model, we configure the number of timesteps as T = 1000, employing a linear noise schedule with β1 = 10−4

and βT = 0.02, following the setup in Ho et al. (2020).In our adaptive masking strategy, the mask probability is controlled
by the following parameters: pmin = 0.1, pmax = 0.4, and k = 2. The model is trained using the Adam optimizer (Kingma,
2014) with a learning rate of 0.001 and a batch size of 32. All experiments are implemented in PyTorch 2.1.0 (Paszke et al.,
2019) and executed on an NVIDIA RTX 4090 GPU with 24GB of VRAM.

G. More Quantitative Results for Each Category on MVTec-AD, VisA, MPDD, and Real-IAD:
To provide a more comprehensive evaluation, we present additional quantitative results for each category across the four
benchmark datasets: MVTec-AD, VisA, MPDD, and Real-IAD. The reported evaluation metrics include the Area Under the
Receiver Operating Characteristic Curve (AU-ROC), Average Precision (AP) , and F1-score-max (F1 max). Additionally,
for anomaly segmentation, we report the Area Under the Per-Region-Overlap (AU-PRO) .

These detailed per-category results provide a deeper understanding of the model’s performance across different types of
anomalies. By analyzing the results on each dataset, we can better observe the robustness and adaptability of the proposed
method in various real-world scenarios, demonstrating its effectiveness in both anomaly detection and segmentation tasks.

14



OmiAD: One-Step Adaptive Masked Diffusion Model for Multi-class Anomaly Detection via Adversarial Distillation

Table 4. Comparison with SoTA methods on MVTec-AD dataset for multi-class anomaly detection with AU-ROC/AP/F1 max metrics.

Category RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

O
bj

ec
t

Bottle 99.6/99.9/98.4 99.7/100./100. 100./100./100. 98.7/99.6/96.8 99.7/96.5/91.8 100./100./100. 100./100./100.
Cable 84.1/89.5/82.5 95.2/95.9/88.0 97.5/98.5/94.7 89.5/94.6/85.9 94.8/98.8/95.2 99.0/98.8/95.1 98.4/99.4/95.6

Capsule 94.1/96.9/96.9 86.9/97.8/94.4 90.7/97.9/93.5 82.8/95.9/92.6 89.0/97.5/95.5 95.4/99.2/96.3 94.7/99.3/96.8
Hazelnut 60.8/69.8/86.4 99.8/100./99.3 99.9/99.9/99.3 98.8/99.2/98.6 99.5/99.7/97.3 100./100./99.3 100./100./100.
MetalNut 100./100./99.5 99.2/99.9/99.5 96.9/99.3/96.1 92.9/98.4/92.2 99.1/96.0/91.6 99.9/99.9/98.9 99.4/99.9/98.9

Pill 97.5/99.6/96.8 93.7/98.7/95.7 88.2/97.7/92.5 77.1/94.4/91.7 95.7/98.5/94.5 95.8/99.2/94.9 94.2/99.2/95.4
Screw 97.7/99.3/95.8 87.5/96.5/89.0 76.7/90.6/87.7 69.9/88.4/85.4 90.7/99.7/97.9 95.6/97.9/92.1 96.9/98.8/96.3

Toothbrush 97.2/99.0/94.7 94.2/97.4/95.2 89.7/95.7/92.3 71.7/89.3/84.5 99.7/99.9/99.2 93.6/99.9/98.4 99.7/100./100.
Transistor 94.2/95.2/90.0 99.8/98.0/93.8 99.2/98.7/97.6 78.2/79.5/68.8 99.8/99.6/97.4 99.7/99.5/96.4 99.9/99.9/98.8

Zipper 99.5/99.9/99.2 95.8/99.5/97.1 99.0/99.7/98.3 88.4/96.3/93.1 95.1/99.1/94.4 97.9/99.6/98.3 99.8/100./99.6

Te
xt

ur
e

Carpet 98.5/99.6/97.2 99.8/99.9/99.4 95.7/98.7/93.2 95.9/98.8/94.9 99.4/99.9/98.3 99.9/100./100. 99.6/100./99.4
Grid 98.0/99.4/96.5 98.2/99.5/97.3 97.6/99.2/96.4 97.9/99.2/96.6 98.5/99.8/97.7 97.0/99.5/97.3 99.8/99.9/99.1

Leather 100./100./100. 100./100./100. 100./100./100. 99.2/99.8/98.9 99.8/99.7/97.6 100./100./100. 100./100./100.
Tile 98.3/99.3/96.4 99.3/99.8/98.2 99.3/99.8/98.8 97.0/98.9/95.3 96.8/99.9/98.4 99.2/99.8/98.2 100./99.9/98.8

Wood 99.2/99.8/98.3 98.6/99.6/96.6 98.4/99.5/96.7 99.9/100./99.2 99.7/100./100. 97.2/99.6/97.4 99.0/99.8/98.3

Mean 94.6/96.5/95.2 96.5/98.8/96.2 95.3/98.4/95.8 89.2/95.5/91.6 97.2/99.0/96.5 98.0/99.5/97.5 98.8/99.7/98.5

Table 5. Comparison with SoTA methods on MVTec-AD dataset for multi-class anomaly localization with AU-ROC/AP/F1 max
metrics/AU-PRO metrics.

Category RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

O
bj

ec
t

Bottle 97.8/68.2/67.6/94.0 98.1/66.0/69.2/93.1 97.2/53.8/62.4/89.0 93.3/61.7/56.0/67.5 98.4/52.2/54.8/86.6 98.3/71.8/70.2/94.6 98.6/74.9/73.8/95.6
Cable 85.1/26.3/33.6/75.1 97.3/39.9/45.2/86.1 96.7/42.4/51.2/85.4 89.3/37.5/40.5/49.4 96.8/50.1/57.8/80.5 98.1/52.4/59.0/87.5 98.3/60.5/62.9/91.8

Capsule 98.8/43.4/50.0/94.8 98.5/42.7/46.5/92.1 98.5/05.4/44.3/84.5 95.8/47.9/48.9/62.1 97.1/42.0/45.3/87.2 98.8/45.3/49.7/90.7 98.9/48.1/52.0/92.5
Hazelnut 97.9/36.2/51.6/92.7 98.1/55.2/56.8/94.1 98.4/44.6/51.4/87.4 98.2/65.8/61.6/84.5 98.3/79.2/80.4/91.5 98.8/62.7/63.2/92.5 98.6/59.6/59.9/94.3
MetalNut 94.8/55.5/66.4/91.9 62.7/14.6/29.2/81.8 98.0/83.1/79.4/85.2 84.2/42.0/22.8/53.0 97.3/30.0/38.3/90.6 96.3/67.1/75.5/90.9 96.5/66.6/75.6/90.3

Pill 97.5/63.4/65.2/95.8 95.0/44.0/53.9/95.3 96.5/72.4/67.7/81.9 96.2/61.7/41.8/27.9 95.7/46.0/51.4/89.0 97.1/50.1/57.6/94.9 96.6/56.8/60.7/95.9
Screw 99.4/40.2/44.6/96.8 98.3/28.7/37.6/95.2 96.5/15.9/23.2/84.0 93.8/19.9/25.3/47.3 97.9/60.6/59.6/95.0 98.9/28.8/36.2/94.3 99.5/38.7/43.5/97.2

Toothbrush 99.0/53.6/58.8/92.0 98.4/34.9/45.7/87.9 98.4/46.9/52.5/87.4 96.2/52.9/58.8/30.9 99.0/78.7/72.8/95.0 98.6/40.8/51.4/89.2 98.7/40.5/56.2/91.1
Transistor 85.9/42.3/45.2/74.7 97.9/59.5/64.6/93.5 95.8/58.2/56.0/83.2 73.6/38.4/39.2/43.9 95.1/15.6/31.7/90.0 97.9/71.2/67.2/95.4 98.4/73.4/72.5/96.1

Zipper 98.5/53.9/60.3/94.1 96.8/40.1/49.9/92.6 97.9/53.4/54.6/90.7 97.3/64.7/59.2/66.9 96.2/60.7/60.0/91.6 97.5/38.7/48.8/91.7 98.6/52.7/59.3/95.6

Te
xt

ur
e

Carpet 99.0/58.5/60.4/95.1 98.5/49.9/51.1/94.4 97.4/38.7/43.2/90.6 93.6/59.9/58.9/89.3 98.6/42.2/46.4/90.6 98.7/57.5/57.7/94.7 98.5/52.9/54.8/94.6
Grid 96.5/23.0/28.4/97.0 63.1/00.7/01.9/92.9 96.8/20.5/27.6/88.6 97.0/42.1/46.9/86.8 96.6/66.0/64.1/94.0 97.0/24.5/30.5/89.5 98.5/35.4/37.1/95.5

Leather 99.3/38.0/45.1/97.4 98.8/32.9/34.4/96.8 98.7/28.5/32.9/92.7 99.5/71.5/66.5/91.1 98.8/56.1/62.3/91.3 98.8/33.7/36.6/97.6 98.9/36.3/39.4/96.9
Tile 95.3/48.5/60.5/85.8 91.8/42.1/50.6/78.4 95.7/60.5/59.9/90.6 93.0/71.0/66.2/87.1 92.4/65.7/64.1/90.7 92.2/41.6/52.9/81.2 92.7/47.5/54.7/82.2

Wood 95.3/47.8/51.0/90.0 93.2/37.2/41.5/86.7 91.4/34.8/39.7/76.3 95.9/77.3/71.3/83.4 93.3/43.3/43.5/97.5 92.4/37.2/42.6/86.6 94.2/44.5/48.0/88.5

Mean 96.1/48.6/53.8/91.1 96.8/43.4/49.5/90.7 96.9/45.9/49.7/86.5 93.1/54.3/50.9/64.8 96.8/52.6/55.5/90.7 97.3/48.2/53.3/91.4 97.7/52.6/56.7/93.2

Table 6. Comparison with SoTA methods on VisA dataset for multi-class anomaly detection with AU-ROC/AP/F1 max metrics.
Category RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

Complex

structure

PCB1 96.2/95.5/91.9 92.8/92.7/87.8 91.6/91.9/86.0 87.6/83.1/83.7 88.1/88.7/80.7 96.7/93.2/87.7 97.8/97.4/95.1
PCB2 97.8/97.8/94.2 87.8/87.7/83.1 92.4/93.3/84.5 86.5/85.8/82.6 91.4/91.4/84.7 93.4/94.8/88.0 97.8/98.5/94.1
PCB3 96.4/96.2/91.0 78.6/78.6/76.1 89.1/91.1/82.6 93.7/95.1/87.0 86.2/87.6/77.6 92.0/87.1/79.5 96.7/95.1/87.6
PCB4 99.9/99.9/99.0 98.8/98.8/94.3 97.0/97.0/93.5 97.8/97.8/92.7 99.6/99.5/97.0 99.5/99.0/97.0 100./100./99.0

Multiple

instances

Macaroni 1 75.9/61.5/76.8 79.9/79.8/72.7 85.9/82.5/73.1 76.6/69.0/71.0 85.7/85.2/78.8 93.1/84.1/79.8 97.3/97.5/92.8
Macaroni 2 88.3/84.5/83.8 71.6/71.6/69.9 68.3/54.3/59.7 68.9/62.1/67.7 62.5/57.4/69.6 86.2/84.1/81.5 85.1/83.3/79.5
Capsules 82.2/90.4/81.3 55.6/55.6/76.9 74.1/82.8/74.6 87.1/93.0/84.2 58.2/69.0/78.5 77.1/83.4/77.5 85.7/89.0/78.8
Candles 92.3/92.9/86.0 94.1/94.0/86.1 84.1/73.3/76.6 94.9/94.8/89.2 92.8/92.0/87.6 96.8/98.0/93.1 97.4/98.6/93.4

Single

instance

Cashew 92.0/95.8/90.7 92.8/92.8/91.4 88.0/91.3/84.7 92.0/96.1/88.1 91.5/95.7/89.7 94.9/96.8/90.4 93.3/96.4/90.9
Chewing gum 94.9/97.5/92.1 96.3/96.2/95.2 96.4/98.2/93.8 95.8/98.3/94.7 99.1/99.5/95.9 99.4/99.6/97.5 99.2/99.8/97.5

Fryum 95.3/97.9/91.5 83.0/83.0/85.0 88.4/93.0/83.3 92.1/96.1/89.5 89.8/95.0/87.2 90.4/94.5/84.9 94.0/96.5/88.5
Pipe fryum 97.9/98.9/96.5 94.7/94.7/93.9 90.8/95.5/88.6 94.1/97.1/91.9 96.2/98.1/93.7 98.5/98.4/94.0 98.9/99.4/97.0

Mean 92.4/92.4/89.6 85.5/85.5/84.4 87.2/87.0/81.8 88.9/89.0/85.2 86.8/88.3/85.1 93.2/92.8/87.6 95.3/96.0/91.2
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Table 7. Comparison with SoTA methods on VisA dataset for multi-class anomaly localization with AU-ROC/AP/F1 max/AU-PRO
metrics.

Category RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

Complex

structure

PCB1 99.4/66.2/62.4/95.8 93.3/03.9/08.3/64.1 99.2/86.1/78.8/83.6 95.8/46.4/49.0/83.2 98.7/49.6/52.8/80.2 99.4/63.1/58.8/87.4 99.7/70.8/66.2/93.0
PCB2 98.0/22.3/30.0/90.8 93.9/04.2/09.2/66.9 96.6/08.9/18.6/85.7 97.3/14.6/28.2/79.9 95.2/07.5/16.7/67.0 98.0/10.1/18.2/82.0 98.9/16.6/22.2/87.1
PCB3 97.9/26.2/35.2/93.9 97.3/13.8/21.9/70.6 97.2/31.0/36.1/85.1 97.7/28.1/33.4/62.4 96.7/08.0/18.8/68.9 98.3/21.1/23.7/80.5 99.1/29.7/30.4/87.2
PCB4 97.8/31.4/37.0/88.7 94.9/14.7/22.9/72.3 93.9/23.9/32.9/61.1 95.8/53.0/53.2/76.9 97.0/17.6/27.2/85.0 97.7/21.1/29.8/85.9 98.1/42.0/44.1/86.4

Multiple

instances

Macaroni 1 99.4/02.9/06.9/95.3 97.4/03.7/09.7/84.0 98.9/03.5/08.4/92.0 99.1/05.8/13.4/62.4 94.1/10.2/16.7/68.5 99.4/09.9/19.3/91.2 99.7/20.1/29.8/96.3
Macaroni 2 99.7/13.2/21.8/97.4 95.2/00.9/04.3/76.6 93.2/00.6/03.9/77.8 98.5/06.3/14.4/70.0 93.6/00.90/2.8/73.1 98.5/05.5/13.8/91.3 99.4/08.5/15.4/94.0
Capsules 99.4/60.4/60.8/93.1 88.7/03.0/07.4/43.7 97.1/52.9/53.3/73.7 96.9/33.2/09.1/76.7 97.3/10.0/21.0/77.9 99.0/51.9/55.2/76.3 99.4/62.7/59.6/90.8

candle 99.1/25.3/35.8/94.9 98.5/17.6/27.9/91.6 97.6/08.4/16.5/87.6 98.7/39.9/45.8/69.0 97.3/12.8/22.8/89.4 99.2/20.4/30.6/92.7 99.4/25.7/35.1/97.1

Single

instance

Cashew 91.7/44.2/49.7/86.2 98.6/51.7/58.3/87.9 98.9/68.9/66.0/84.1 87.9/47.6/52.1/66.3 90.9/53.1/60.9/61.8 99.2/58.3/60.9/89.3 97.2/46.3/55.3/83.8
Chewing gum 98.7/59.9/61.7/76.9 98.8/54.9/56.1/81.3 97.9/26.8/29.8/78.3 98.8/86.9/81.0/68.3 94.7/11.9/25.8/59.5 98.8/43.7/44.4/81.7 98.8/58.0/55.6/73.1

Fryum 97.0/47.6/51.5/93.4 95.9/34.0/40.6/76.2 93.0/39.1/45.4/85.1 88.1/35.2/38.5/47.7 97.6/58.6/60.1/81.3 97.7/50.8/55.3/83.6 97.7/47.7/55.2/87.2
Pipe fryum 99.1/56.8/58.8/95.4 98.9/50.2/57.7/91.5 98.5/65.6/63.4/83.0 98.9/78.8/72.7/45.9 99.4/72.7/69.9/89.9 99.4/64.6/65.8/93.4 99.2/56.2/60.1/94.5

Mean 98.1/38.0/42.6/91.8 95.9/21.0/27.0/75.6 96.8/34.7/37.8/81.4 96.1/39.6/43.4/67.4 96.0/26.1/33.0/75.2 98.7/35.0/39.6/86.3 98.9/40.4/44.1/89.2

Table 8. Comparison with SoTA methods on MPDD dataset for multi-class anomaly detection with AU-ROC/AP/F1 max metrics.

Normal Indices RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

Bracket Black 81.1/86.5/83.6 92.7/94.2/87.9 78.7/85.3/80.4 82.3/87.9/81.2 81.7/87.0/84.6 90.2/94.5/89.4 92.8/95.4/90.9
Bracket Brown 84.0/85.3/91.1 94.0/92.8/91.9 92.4/95.3/93.5 96.9/97.2/98.1 76.4/87.3/83.2 89.7/88.5/89.3 94.9/94.2/90.3
Bracket White 81.1/79.8/77.1 78.6/81.4/75.0 88.4/91.4/83.0 94.3/95.8/91.5 72.6/74.7/75.0 78.0/78.4/75.0 87.4/92.7/85.2

Connector 59.8/47.8/54.9 90.7/87.2/86.7 99.3/98.5/96.6 97.1/94.5/87.5 94.3/87.1/84.8 89.5/80.1/80.0 95.7/96.6/90.3
Metal Plate 100./100./100. 63.4/81.1/86.6 100./100./100. 100./100./100. 65.3/83.6/85.5 97.3/99.9/98.6 99.7/100./100.

Tubes 98.6/99.5/97.8 73.6/85.7/82.6 84.6/94.1/84.6 87.4/94.9/85.0 57.5/72.6/81.7 74.3/87.3/82.6 91.4/94.1/88.7

Mean 84.1/83.2/84.1 82.2/87.1/85.1 90.6/94.1/89.7 93.0/95.1/90.6 74.6/82.1/82.5 86.5/88.1/85.8 93.7/95.5/90.9

Table 9. Comparison with SoTA methods on MPDD dataset for multi-class anomaly localization with AU-ROC/AP/F1 max/AU-PRO
metrics.

Normal Indices RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

Bracket Black 97.4/09.5/19.0/92.1 94.4/00.8/01.9/82.0 94.9/03.6/09.1/89.3 95.1/09.5/21.9/49.0 91.5/01.1/02.9/74.7 96.1/01.1/02.7/87.3 98.1/03.7/08.4/94.8
Bracket Brown 97.3/13.0/23.4/94.8 98.7/34.3/41.0/90.9 94.9/08.8/17.0/87.4 83.9/05.4/12.5/24.9 95.6/08.1/16.7/84.6 98.2/32.3/36.4/86.5 98.9/42.8/44.9/93.8
Bracket White 98.3/2.6/6.4/92.2 94.8/00.8/03.7/76.3 97.8/02.2/05.6/86.4 95.8/04.6/12.3/63.1 90.8/00.5/01.6/77.4 94.1/00.6/02.6/79.8 98.3/07.3/18.8/90.8

Connector 97.4/12.5/20.6/90.6 97.6/18.6/26.1/91.4 98.9/56.0/55.2/96.5 96.2/30.0/35.5/61.7 98.1/25.1/30.7/93.5 97.9/18.8/29.7/92.7 98.9/32.3/41.2/96.3
Metal Plate 99.3/95.9/89.7/94.5 93.2/50.4/63.3/79.4 98.2/88.9/81.3/88.1 98.7/94.8/88.8/74.9 93.8/54.9/65.7/79.6 96.6/73.7/74.4/86.3 98.5/87.4/83.8/93.4

Tubes 99.1/77.8/73.0/96.6 91.7/08.3/14.0/71.4 97.9/42.4/46.1/92.6 94.8/55.2/54.7/85.4 88.3/05.9/09.5/60.4 97.0/38.8/42.8/88.9 98.7/52.3/56.6/94.8

Mean 98.1/35.2/38.7/93.4 95.1/18.9/25.0/81.9 97.1/33.6/35.7/90.0 94.1/33.2/37.6/59.8 93.0/15.9/21.2/78.4 96.7/27.6/31.4/86.9 98.6/37.6/42.3/94.0
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Table 10. Comparison with SoTA methods on Real-IAD dataset for multi-class anomaly detectio with AU-ROC/AP/F1 max metrics.

Normal Indices RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

audiojack 76.2/63.2/60.8 81.4/76.6/64.9 58.4/44.2/50.9 81.1/72.6/64.5 76.5/54.3/65.7 81.0/80.1/74.5 84.5/82.0/77.8
bottlecap 89.5/86.3/81.0 92.5/91.7/81.7 54.1/47.6/60.3 78.1/74.6/68.1 91.6/94.0/87.9 89.0/87.6/77.3 93.7/92.7/85.2

buttonbattery 73.3/78.9/76.1 75.9/81.6/76.3 52.5/60.5/72.4 86.7/89.2/83.5 80.5/71.3/70.6 82.2/88.5/78.9 84.9/90.1/80.1
endcap 79.8/84.0/77.8 80.9/86.1/78.0 51.6/60.8/72.9 77.9/81.1/77.1 85.1/83.4/84.8 79.7/85.2/79.4 79.4/80.4/80.8
eraser 90.0/88.7/79.7 90.3/89.2/80.2 46.4/39.1/55.8 84.6/82.9/71.8 80.0/80.0/77.3 89.2/89.7/81.9 89.5/90.2/84.2

firehood 78.3/70.1/64.5 80.6/74.8/66.4 58.1/41.9/54.4 81.7/72.4/67.7 83.3/81.7/80.5 93.1/85.4/83.1 94.1/87.6/83.3
mint 65.8/63.1/64.8 67.0/66.6/64.6 52.4/50.3/63.7 58.4/55.8/63.7 76.7/76.7/76.0 63.0/75.7/75.1 66.0/77.7/75.0

mounts 88.6/79.9/74.8 87.6/77.3/77.2 58.7/48.1/52.4 74.7/56.5/63.1 75.3/74.5/82.5 92.7/88.2/81.2 95.2/92.3/85.9
pcb 79.5/85.8/79.7 81.0/88.2/79.1 54.5/66.0/75.5 82.0/88.7/79.6 86.0/85.1/85.4 86.6/92.4/82.7 92.2/95.7/87.3

phonebattery 87.5/83.3/77.1 83.6/80.0/71.6 51.6/43.8/58.0 83.3/81.8/72.1 82.3/77.7/75.9 88.0/89.5/80.5 92.6/93.0/84.5
plasticnut 80.3/68.0/64.4 80.0/69.2/63.7 59.2/40.3/51.8 83.1/75.4/66.5 71.9/58.2/65.6 76.2/57.3/53.7 84.2/67.5/62.2

plasticplug 81.9/74.3/68.8 81.4/75.9/67.6 48.2/38.4/54.6 71.7/63.1/60.0 88.7/89.2/90.9 92.2/92.1/84.5 94.1/93.2/86.6
porcelaindoll 86.3/76.3/71.5 85.1/75.2/69.3 66.3/54.5/52.1 78.7/66.2/64.3 72.6/66.8/65.2 84.7/81.5/72.9 86.1/84.5/76.3

regulator 66.9/48.8/47.7 56.9/41.5/44.5 50.5/29.0/43.9 79.2/63.5/56.9 72.1/71.4/78.2 69.7/27.3/37.8 89.5/69.3/67.2
rolledstripbase 97.5/98.7/94.7 98.7/99.3/96.5 59.0/75.7/79.8 96.5/98.2/93.0 68.4/55.9/56.8 99.3/99.7/98.4 99.8/99.9/98.9

simcardset 91.6/91.8/84.8 89.7/90.3/83.2 63.1/69.7/70.8 95.5/96.2/89.2 72.6/53.7/61.5 97.2/98.1/92.8 95.9/97.3/91.6
switch 84.3/87.2/77.9 85.5/88.6/78.4 62.2/66.8/68.6 90.1/92.8/83.1 73.4/49.4/61.2 87.5/93.1/85.0 94.8/96.9/91.5
tape 96.0/95.1/87.6 97.2/96.2/89.4 49.9/41.1/54.5 94.5/93.4/85.9 73.9/57.8/66.1 97.6/97.3/92.8 98.0/98.0/93.7

terminalblock 89.4/89.7/83.1 87.5/89.1/81.0 59.8/64.7/68.8 83.1/86.2/76.6 62.1/36.4/47.8 95.0/96.3/90.5 98.4/99.0/96.1
toothbrush 82.0/83.8/77.2 78.4/80.1/75.6 65.9/70.0/70.1 83.7/85.3/79.0 91.2/93.7/90.9 87.0/92.6/84.4 90.7/94.8/86.9

toy 69.4/74.2/75.9 68.4/75.1/74.8 57.8/64.4/73.4 70.3/74.8/75.4 66.2/57.3/59.8 74.6/82.1/83.1 89.5/93.2/87.6
toybrick 63.6/56.1/59.0 77.0/71.1/66.2 58.3/49.7/58.2 73.2/68.7/63.3 68.4/45.3/55.9 82.5/83.7/72.6 85.0/85.5/74.8

transistor1 91.0/94.0/85.1 93.7/95.9/88.9 62.2/69.2/72.1 90.2/92.1/84.6 73.1/63.1/62.7 93.8/97.5/91.8 96.2/98.3/92.9
ublock 89.5/85.0/74.2 88.8/84.2/75.5 62.4/48.4/51.8 80.1/73.9/64.3 75.2/68.4/67.9 88.5/81.1/72.9 90.1/83.4/74.5

usb 84.9/84.3/75.1 78.7/79.4/69.1 57.0/55.3/62.9 87.8/88.0/78.3 58.9/37.4/45.7 92.0/91.2/85.3 95.5/94.1/90.2
usbadaptor 71.1/61.4/62.2 76.8/71.3/64.9 47.5/38.4/56.5 80.1/74.9/67.4 76.9/60.2/67.2 77.9/75.0/69.3 82.6/82.4/72.6

vcpill 85.1/80.3/72.4 87.1/84.0/74.7 59.0/48.7/56.4 83.8/81.5/69.9 64.1/40.4/56.2 89.8/88.8/81.6 91.4/90.7/82.8
woodenbeads 81.2/78.9/70.9 78.4/77.2/67.8 55.1/52.0/60.2 82.4/78.5/73.0 62.1/56.4/65.9 79.7/84.9/76.6 77.0/83.5/74.9

woodstick 76.9/61.2/58.1 80.8/72.6/63.6 58.2/35.6/45.2 80.4/69.2/60.3 74.1/66.0/62.1 88.9/65.4/63.2 92.3/65.9/60.5
zipper 95.3/97.2/91.2 98.2/98.9/95.3 77.2/86.7/77.6 96.9/98.1/93.5 86.0/87.0/84.0 98.8/99.7/97.3 99.8/99.9/99.0

Mean 82.4/79.0/73.9 83.0/80.9/74.3 57.2/53.4/61.5 82.3/79.2/73.2 75.6/66.4/69.9 86.6/84.9/79.4 90.1/88.6/82.8
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Table 11. Comparison with SoTA methods on Real-IAD dataset for multi-class anomaly localization with AU-ROC/AP/F1 max/AU-PRO
metrics.

Normal Indices RD4AD UniAD SimpleNet DeSTSeg DiAD HVQ-Trans Ours

audiojack 96.6/12.8/22.1/79.6 97.6/20.0/31.0/83.7 74.4/00.9/04.8/38.0 95.5/25.4/31.9/52.6 91.6/01.0/03.9/63.3 98.5/31.9/41.0/88.0 99.0/47.1/51.4/91.5
bottlecap 99.5/18.9/29.9/95.7 99.5/19.4/29.6/96.0 85.3/02.3/05.7/45.1 94.5/25.3/31.1/25.3 94.6/04.9/11.4/73.0 98.4/15.6/22.8/90.0 99.4/23.4/29.0/95.2

buttonbattery 97.6/33.8/37.8/86.5 96.7/28.5/34.4/77.5 75.9/03.2/06.6/40.5 98.3/63.9/60.4/36.9 84.1/01.4/05.3/66.9 99.0/58.1/59.2/85.3 99.2/61.0/60.4/91.9
endcap 96.7/12.5/22.5/89.2 95.8/08.8/17.4/85.4 63.1/00.5/20.8/25.7 89.6/14.4/22.7/29.5 81.3/02.0/06.9/38.2 95.6/06.0/14.5/84.7 97.2/09.2/14.4/91.3
eraser 99.5/30.8/36.7/96.0 99.3/24.4/30.9/94.1 80.6/02.7/07.1/42.8 95.8/52.7/53.9/46.7 91.1/07.7/15.4/67.5 99.2/31.6/38.4/92.4 99.3/39.5/44.2/93.3

firehood 98.9/27.7/35.2/87.9 98.6/23.4/32.2/85.3 70.5/00.3/02.2/25.3 97.3/27.1/35.3/34.7 91.8/03.2/09.2/66.7 98.9/35.0/42.7/93.3 98.9/43.3/48.6/94.6
mint 95.0/11.7/23.0/72.3 94.4/07.7/18.1/62.3 79.9/00.9/03.6/43.3 84.1/10.3/22.4/09.9 91.1/05.7/11.6/64.2 94.8/17.4/26.8/58.1 96.6/29.6/38.7/67.4

mounts 99.3/30.6/37.1/94.9 99.4/28.0/32.8/95.2 80.5/02.2/06.8/46.1 94.2/30.0/41.3/43.3 84.3/00.4/01.1/48.8 99.6/30.2/37.0/97.7 99.7/39.2/40.0/98.6
pcb 97.5/15.8/24.3/88.3 97.0/18.5/28.1/81.6 78.0/01.4/04.3/41.3 97.2/37.1/40.4/48.8 92.0/03.7/07.4/66.5 97.7/28.7/37.2/84.1 99.0/48.8/51.2/92.1

phonebattery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/00.1/00.9/11.8 79.5/25.6/33.8/39.5 96.8/05.3/11.4/85.4 98.0/24.1/31.5/87.3 99.2/41.1/44.5/94.0
plasticnut 98.8/21.1/29.6/91.0 98.4/20.6/27.1/88.9 77.4/00.6/03.6/41.5 96.5/44.8/45.7/38.4 81.1/00.4/03.4/38.6 97.0/16.2/26.8/84.9 98.3/27.2/31.1/90.1

plasticplug 99.1/20.5/28.4/94.9 98.6/17.4/26.1/90.3 78.6/00.7/01.9/38.8 91.9/20.1/27.3/21.0 92.9/08.7/15.0/66.1 99.2/23.6/29.7/95.0 99.5/37.1/41.3/97.1
porcelaindoll 99.2/24.8/34.6/95.7 98.7/14.1/24.5/93.2 81.8/02.0/06.4/47.0 93.1/35.9/40.3/24.8 93.1/01.4/04.8/70.4 97.9/11.4/18.6/89.9 98.8/18.3/26.3/93.8

regulator 98.0/07.8/16.1/88.6 95.5/09.1/17.4/76.1 76.6/00.1/00.6/38.1 88.8/18.9/23.6/17.5 84.2/00.4/01.5/44.4 98.0/07.0/16.2/89.7 99.7/37.4/42.2/98.6
rolledstripbase 99.7/31.4/39.9/98.4 99.6/20.7/32.2/97.8 80.5/01.7/05.1/52.1 99.2/48.7/50.1/55.5 87.7/00.6/03.2/63.4 98.9/16.1/25.9/96.2 99.7/32.4/42.5/98.9

simcardset 98.5/40.2/44.2/89.5 97.9/31.6/39.8/85.0 71.0/06.8/14.3/30.8 99.1/65.5/62.1/73.9 89.9/01.7/05.8/60.4 99.1/39.7/43.2/93.9 99.3/48.9/50.1/95.4
switch 94.4/18.9/26.6/90.9 98.1/33.8/40.6/90.7 71.7/03.7/09.3/44.2 97.4/57.6/55.6/44.7 90.5/01.4/05.3/64.2 99.0/51.5/55.2/91.5 99.5/63.6/63.4/95.8
tape 99.7/42.4/47.8/98.4 99.7/29.2/36.9/97.5 77.5/01.2/03.9/41.4 99.0/61.7/57.6/48.2 81.7/00.4/02.7/47.3 99.6/20.5/29.8/98.3 99.7/29.8/36.4/98.8

terminalblock 99.5/27.4/35.8/97.6 99.2/23.1/30.5/94.4 87.0/00.8/03.6/54.8 96.6/40.6/44.1/34.8 75.5/00.1/01.1/38.5 99.6/35.5/39.3/97.1 99.8/48.3/51.0/98.9
toothbrush 96.9/26.1/34.2/88.7 95.7/16.4/25.3/84.3 84.7/07.2/14.8/52.6 94.3/30.0/37.3/42.8 82.0/01.9/06.6/54.5 98.4/37.2/44.4/90.6 98.8/39.8/47.9/93.8

toy 95.2/05.1/12.8/82.3 93.4/04.6/12.4/70.5 67.7/00.1/00.4/25.0 86.3/08.1/15.9/16.4 82.1/01.1/04.2/50.3 94.2/05.4/10.4/82.2 97.8/19.8/25.5/90.8
toybrick 96.4/16.0/24.6/75.3 97.4/17.1/27.6/81.3 86.5/05.2/11.1/56.3 94.7/24.6/30.8/45.5 93.5/03.1/08.1/66.4 97.5/28.9/37.3/82.7 98.6/44.3/48.7/89.6

transistor1 99.1/29.6/35.5/95.1 98.9/25.6/33.2/94.3 71.7/05.1/11.3/35.3 97.3/43.8/44.5/45.4 88.6/07.2/15.3/58.1 98.1/27.1/31.8/91.4 99.1/40.2/43.6/95.9
ublock 99.6/40.5/45.2/96.9 99.3/22.3/29.6/94.3 76.2/04.8/12.2/34.0 96.9/57.1/55.7/38.5 88.8/01.6/05.4/54.2 99.2/19.0/27.1/94.1 99.5/24.2/35.6/97.8

usb 98.1/26.4/35.2/91.0 97.9/20.6/31.7/85.3 81.1/01.5/04.9/52.4 98.4/42.2/47.7/57.1 78.0/01.0/03.1/28.0 99.2/29.0/38.1/93.6 99.6/43.4/48.3/97.0
usbadaptor 94.5/09.8/17.9/73.1 96.6/10.5/19.0/78.4 67.9/00.2/01.3/28.9 94.9/25.5/34.9/36.4 94.0/02.3/06.6/75.5 94.5/11.8/21.1/73.0 96.8/18.1/27.3/84.2

vcpill 98.3/43.1/48.6/88.7 99.1/40.7/43.0/91.3 68.2/01.1/03.3/22.0 97.1/64.7/62.3/42.3 90.2/01.3/05.2/60.8 99.1/61.9/63.3/92.0 99.0/58.4/61.2/92.6
woodenbeads 98.0/27.1/34.7/85.7 97.6/16.5/23.6/84.6 68.1/02.4/06.0/28.3 94.7/38.9/42.9/39.4 85.0/01.1/04.7/45.6 96.6/21.5/30.0/77.2 97.3/26.2/31.4/83.1

woodstick 97.8/30.7/38.4/85.0 94.0/36.2/44.3/77.2 76.1/01.4/06.0/32.0 97.9/60.3/60.0/51.0 90.9/02.6/08.0/60.7 97.8/47.3/50.3/91.4 98.4/48.5/51.9/93.1
zipper 99.1/44.7/50.2/96.3 98.4/32.5/36.1/95.1 89.9/23.3/31.2/55.5 98.2/35.3/39.0/78.5 90.2/12.5/18.8/53.5 98.5/37.3/43.6/94.6 99.0/43.8/49.7/97.4

Mean 97.3/25.0/32.7/89.6 97.3/21.1/29.2/86.7 75.7/02.8/06.5/39.0 94.6/37.9/41.7/40.6 88.0/02.9/07.1/58.1 98.0/27.6/34.4/88.7 98.9/37.7/42.6/93.1

H. Quantitative Analysis of False Positive Rates on Benchmark Datasets:
To further demonstrate the effectiveness of OmiAD, we calculated the False Positive Rate (FPR) for OmiAD, HVQ-Trans,
UniAD, and DiAD across four benchmark datasets: MVTec-AD, VisA, MPDD, and Real-IAD, as shown in Table 12. In
our experiments, the threshold for calculating the FPR was set based on the number of anomaly samples. Specifically, we
ranked the samples by their anomaly scores and set the threshold to the score at the position corresponding to the number of
anomaly samples. This method ensures that false positives are calculated consistently across the different models.

The results consistently show that OmiAD achieves a significantly lower FPR than its counterparts, highlighting its superior
anomaly detection capabilities.

For instance, OmiAD achieves an FPR of 2.50% on MVTec-AD, outperforming HVQ-Trans (3.54%), UniAD (6.12%), and
DiAD (8.70%). Similar improvements are observed on other datasets, with OmiAD achieving 9.50% on VisA, 10.71% on
MPDD, and 18.22% on Real-IAD. These substantial reductions in FPR demonstrate OmiAD’s ability to minimize false
alarms effectively while maintaining high anomaly detection accuracy.

This performance advantage stems from OmiAD’s global modeling strategy, which leverages the adaptive masking (AM)
technique to mitigate shortcut learning by reducing reliance on spurious correlations or local patterns—common sources of
false positives. The adaptive masking dynamically guides the model to focus on global contextual information, improving
anomaly reconstruction and reducing false alarms. Such a capability is critical in real-world industrial applications, where a
low FPR ensures model reliability and minimizes unnecessary interventions caused by false alarms.

I. More Ablation Studies:
I.1. Ablation Study on Initial Time Step tinit:

We conduct an ablation study on the MVTec-AD dataset to assess the effect of the initial diffusion step tinit on the
performance of OmiAD. As shown in Table 13, the model maintains stable and high performance across a broad range of
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Table 12. False Positive Rate (FPR) on four datasets. The values are in percentages (%).

Dataset HVQ-Trans UniAD DiAD Ours

MVTec-AD 3.54 6.12 8.70 2.50
VisA 14.58 14.50 23.67 9.50
MPDD 19.22 19.52 23.07 10.71
Real-IAD 22.67 24.00 34.94 18.22

tinit values (from 800 to 960). However, when tinit is set to 1000, a noticeable performance degradation occurs. This drop is
attributed to the excessive noise introduced at this step, which hinders effective reconstruction and impairs accurate anomaly
localization. Based on our findings, we recommend setting tinit = 960, as it achieves the best performance at both the image
and pixel levels, striking a balance between reconstruction quality and anomaly detection accuracy.

Table 13. Ablation study results on different initial diffusion steps tinit.

tinit 600 700 800 940 960 980 1000

Image AUROC 97.7 98.1 98.3 98.7 98.8 95.9 73.5
Pixel AUROC 96.9 97.1 97.4 97.7 97.7 97.3 80.0

I.2. Ablation Study on Architecture Robustness in Diffusion Models:

To assess the architectural flexibility of our approach, we conduct experiments on the MVTec-AD dataset, evaluating
OmiAD with different architectures for the diffusion model. Specifically, we replace the default U-Net (Ronneberger et al.,
2015) with DiT (Peebles & Xie, 2023) and U-ViT (Bao et al., 2023) as the backbone for the diffusion model. As shown
in Table 14, OmiAD consistently demonstrates strong and stable performance across all three architectures, with minimal
variation in both image-level and pixel-level AUROC metrics. These results underscore the robustness of our method,
highlighting its ability to generalize effectively across different architectures used in the diffusion model.

Table 14. Ablation study on the diffusion model architecture.

Model DiT U-ViT U-Net

Image AUROC 98.2 98.4 98.8
Pixel AUROC 97.5 97.4 97.7

I.3. Ablation Study on Backbone Feature Extractor:

We conduct ablation experiments on the MVTec-AD dataset to evaluate the impact of different feature extractors on
OmiAD’s performance. Specifically, we replace the default EfficientNet (Tan & Le, 2019) backbone with ResNet (He et al.,
2016) variants of increasing depth: ResNet-18, ResNet-34, ResNet-50, and ResNet-101. For the ResNet-based models, we
set the initial diffusion step tinit to 400, in contrast to tinit to 960 for the EfficientNet backbone. As reported in Table 15, all
models demonstrate strong performance, highlighting the robustness of our framework across different feature extractors.
These results confirm that while OmiAD is flexible in backbone selection, EfficientNet achieves the best balance between
semantic richness and localization accuracy.

J. More Qualitative Results:
To further enhance the comparative analysis between OmiAD and existing methodologies, we present a comprehensive
visual exploration of anomaly detection results involving OmiAD, HVQ-Trans, DiAD, and UniAD, as shown in Fig. 4
for MVTec-AD, Fig. 5 for VisA, Fig. 6 for MPDD, Fig. 7 and Fig. 8 for Real-IAD. Benefiting from the global modeling
capability of OmiAD’s masking strategy, the model effectively reduces shortcut learning, thereby achieving more accurate
anomaly localization and significantly reducing false positives.
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Table 15. Ablation study on the impact of different feature extractors.

Backbone ResNet-18 ResNet-34 ResNet-50 ResNet-101 EfficientNet

Image AUROC 97.3 97.2 95.3 94.2 98.8
Pixel AUROC 97.3 97.5 97.3 97.3 97.7

Additionally, we provide detailed visualizations of OmiAD’s anomaly detection results across these datasets. The results,
showcased in Fig. 9 for MVTec-AD, Fig. 10 for VisA, Fig. 11 for MPDD, and Fig . 12 and Fig. 13 for Real-IAD, highlight
the outstanding performance of OmiAD. In these visualizations, OmiAD consistently demonstrates the ability to successfully
transform anomalous samples into their corresponding normal counterparts. These results not only reflect the model’s
accuracy in identifying and localizing anomalous regions but also showcase its robustness in handling diverse types of
anomalies, including object anomalies and texture damages.

By precisely capturing reconstruction differences, OmiAD effectively identifies and highlights regions that deviate from
the normal distribution. These visual insights underscore the model’s capability to accurately discern abnormal regions,
further validating OmiAD as a powerful and versatile solution for anomaly detection and localization across a wide range of
datasets.
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Normal Anormaly GTOurs HVQ-Trans DiAD UniAD Ours HVQ-Trans DiAD UniAD

Figure 4. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly, our
reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly GTOurs HVQ-Trans DiAD UniAD Ours HVQ-Trans DiAD UniAD

Figure 5. Qualitative results for anomaly localization on VisA. From left to right: normal sample as the reference, anomaly, our
reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly GTOurs HVQ-Trans DiAD UniAD Ours HVQ-Trans DiAD UniAD

Figure 6. Qualitative results for anomaly localization on MPDD. From left to right: normal sample as the reference, anomaly, our
reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly GTOurs HVQ-Trans DiAD UniAD Ours HVQ-Trans DiAD UniAD

Figure 7. Qualitative results for anomaly localization on Real-IAD(Part 1). From left to right: normal sample as the reference, anomaly,
our reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly GTOurs HVQ-Trans DiAD UniAD Ours HVQ-Trans DiAD UniAD

Figure 8. Qualitative results for anomaly localization on Real-IAD(Part 2). From left to right: normal sample as the reference, anomaly,
our reconstruction, HVQ-Trans reconstruction, DiAD reconstruction, UniAD reconstruction, ground-truth, our predicted anomaly map,
HVQ-Trans predicted anomaly map, DiAD predicted anomaly map and UniAD predicted anomaly map.
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Normal Anormaly GTRecon Pred Normal Anormaly GTRecon Pred

Figure 9. Qualitative results for anomaly localization on MVTec-AD. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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Normal Anormaly GTRecon Pred Normal Anormaly GTRecon Pred

Figure 10. Qualitative results for anomaly localization on VisA. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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Normal Anormaly GTRecon Pred Normal Anormaly GTRecon Pred

Figure 11. Qualitative results for anomaly localization on MPDD. From left to right: normal sample as the reference, anomaly, our
reconstruction, ground-truth, and our predicted anomaly map.
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Normal Anormaly GTRecon Pred Normal Anormaly GTRecon Pred

Figure 12. Qualitative results for anomaly localization on Real-IAD(Part 1). From left to right: normal sample as the reference, anomaly,
our reconstruction, ground-truth, and our predicted anomaly map.
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Normal Anormaly GTRecon Pred Normal Anormaly GTRecon Pred

Figure 13. Qualitative results for anomaly localization on Real-IAD(Part 2). From left to right: normal sample as the reference, anomaly,
our reconstruction, ground-truth, and our predicted anomaly map.
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