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Abstract

One downside of Diffusion models (DMs) is their slow iterative process. Recent
algorithms for fast sampling are designed from the differential equations. However,
in the fast algorithms, estimating the derivative of the score function evaluations
becomes intractable due to the complexity of large-scale, well-trained neural
networks. In this work, we introduce the recursive difference method to calculate
the derivative of the score function networks. Building upon, we propose SciRE-
Solver with the convergence order guarantee for accelerating DMs sampling. Our
proposed sampling algorithms attain SOTA FIDs in comparison to existing training-
free sampling algorithms, under various number of score function evaluations
(NFE). Such as, we achieve 3.48 FID with 12 NFE, and 2.42 FID with 20 NFE for
continuous-time model on CIFAR-10. Moreover, we also test the pretrained model
of EDM on CIFAR-10 and achieve 2.29 FID with 12 NFE, as well as 1.76 FID
with 100 NFE. Empirically, SciRE-Solver with multi-step methods can achieve
high-quality samples on the text-to-image generation tasks with only 6∼20 NFEs.

1 Introduction

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c) have
recently gained significant progress on various tasks, including image generation (Dhariwal & Nichol,
2021; Meng et al., 2022), text-to-image generation (Ramesh et al., 2022), video synthesis (Ho et al.,
2022), and voice synthesis (Chen et al., 2021; Liu et al., 2022a). DMs are composed of two diffusion
stages. The forward stage of DMs is to add randomness with Gaussian noise in order to slowly disrupt
the data distribution, without any training. The reverse stage of DMs is tasked with recovering the
original input data from the diffused data by learning to reverse the forward diffusion process, step by
step. DMs learn models by emulating the ground-truth inverse process of a fixed forward process.

One key downside of DMs is their slow iterative sampling process (Song et al., 2021a; Karras
et al., 2022). Two distinct categories of methods have arisen to tackle this challenge: training-based
and training-free methods. Training-based methods require additional training, such as knowledge
distillation (Salimans & Ho, 2021; Meng et al., 2023) and consistency models (Song et al., 2023), noise
level learning (Nichol & Dhariwal, 2021), or models combined with other generative models (Xiao
et al., 2022; Vahdat et al., 2021a; Zhang & Chen, 2021). Training-free methods strive to accelerate the
sampling process through numerical algorithms without requiring extra training. Recent training-free
fast sampling methods can be attributed to the design of numerical algorithms for solving diffusion
ODEs, benefiting from the fact that the sampling process of DMs can be reformulated as solving
the corresponding diffusion ODE, as confirmed by DDIM (Song et al., 2021a) and Score-based
models (Song et al., 2021c). Following this framework, several fast numerical algorithms with
impressive results on DMs have been suggested, including PNDM (Liu et al., 2022b), DPM-Solver
(Lu et al., 2022b), DEIS (Zhang & Chen, 2023), UniPC (Zhao et al., 2023), and ERA-Solver (Li et al.,
2023). The core differences of these algorithms can be attributed to various derivative estimation or
discretization methods, which imply that employing different methods to estimate the derivative of
the score function will result in varying sampling performance.

In this work, we introduce a new derivative estimation method, called the Recursive Difference (RD),
to calculate the derivative of the score function networks. The FID-measured ablation experiments
demonstrate the effectiveness of using the RD method. Based on the RD method and the truncated
Taylor expansion of score-integrand, we propose SciRE-Solver with the convergence order guarantee
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Figure 1: Generated samples of the pre-trained DM on ImageNet 256×256 (classifier scale: 2.5) using
10-50 sampling steps from different sampling methods with the same random seed and codebase. Our
algorithm, SciRE-V1 Solver, generates high-quality results in a fewer number of steps.

for accelerating DMs sampling. Our proposed sampling algorithms with RD method advance the
sampling efficiency of the training-free sampling method to a new level. Such as, we achieve 3.48
FID with 12 NFE and 2.42 FID with 20 NFE for continuous-time DMs on CIFAR-10, respectively.
Furthermore, we observe that SciRE-V1 with a small NFEs demonstrates the promising potential to
surpass the FIDs achieved in the original papers of some pre-trained models, distinguishing itself
from other samplers. For example, we reach SOTA value of 2.40 FID with 100 NFE for continuous-
time DM and of 3.15 FID with 84 NFE for discrete-time DM on CIFAR-10, as well as of 2.17
(2.02) FID with 18 (50) NFE for discrete-time DM on CelebA 64×64. Experiments demonstrate
that SciRE-Solver (V1 and V2) exhibit also the ability to generate high-quality results with fewer
iterations when applied to high-resolution image datasets, as shown in Figures 1, 6, 8.

2 Background

2.1 Diffusion ODEs

A Markov sequence {xt}t∈[0,T ] with T > 0 starting with x0, in the forward diffusion of DMs for
D-dimensional data, is defined by the following transition kernel:

q (xt | x0) = N
(
xt;αtx0, σ

2
t I

)
. (2.1)

This transition kernel is equivalent to the stochastic differential equation (SDE) (Kingma et al., 2021):
dxt = f (t)xt dt + g(t)dωt, x0 ∼ q0 (x0) , (2.2)

where ωt ∈ R
D denotes a standard Wiener process, and f (t) = d logαt

dt , g2(t) = dσ2
t

dt − 2 d logαt
dt σ2

t . This
forward diffusion has the following equivalent reverse diffusion from time T to 0 (Song et al., 2021c):

dxt =
[
f (t)xt − g2(t)∇x log qt (xt)

]
dt + g(t)dωt, xT ∼ qT (xT ) , (2.3)

where ωt represents a standard Wiener process. In score-based models, Song et al. (2021c) derived
the following ordinary differential equation (ODE):

dxt

dt
= f (t)xt −

1
2

g2(t)∇x log qt (xt) , xT ∼ qT (xT ) , (2.4)

where the marginal distribution qt (xt) of xt is equivalent to the marginal distribution of xt of the SDE
in Eq. (2.3). By substituting the trained noise prediction model ϵθ (xt, t) for the scaled score function:
−σt∇x log qt (xt), Song et al. (2021c) defined the diffusion ODE for DMs:

dxt

dt
= f (t)xt +

g2(t)
2σt

ϵθ (xt, t) , xT ∼ N
(
0, σ̂2I

)
. (2.5)

Since the data prediction model xθ (xt, t) and the noise prediction model ϵθ (xt, t) satisfying:
xθ (xt, t) = (xt − σtϵθ (xt, t))/αt (Kingma et al., 2021), there exists an equivalent diffusion ODE:

dxt

dt
=

(
f (t) +

g2(t)
2σ2

t

)
xt − αt

g2(t)
2σ2

t
xθ (xt, t) , xT ∼ N

(
0, σ̂2I

)
. (2.6)
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2.2 NumericalMethods of Diffusion ODEs

Traditional numerical techniques for solving ODEs find their roots in concepts like Taylor expansions,
the trapezoidal rule, and Simpson’s rule. These foundational ideas have paved the way for the
development of well-known approaches such as Euler’s method, Runge-Kutta methods, and linear
multi-step methods (Süli, 2010). In the realm of diffusion ODEs, a similar lineage of inspiration
from these classical methods can be observed in the construction of various numerical approaches.

DDIM (Song et al., 2021a) can be accurately interpreted as the forward Euler method from the
perspective of the diffusion ODE in Eq. 2.5. Song et al. (2021c) tested the Runge-Kutta Fehlberg
method for diffusion ODEs. Liu et al. (2022b) investigated the Runge-Kutta methods and linear
multi-step methods, and based on this, further proposed the PNDM. Lu et al. (2022b) introduced
the exponential integrator with the semi-linear structure from the ODE literature (Atkinson et al.,
2011), and employed Taylor expansion techniques to handle the remaining integration, resulting in
the proposed DPM-Solver. Zhang & Chen (2023) proposed DEIS by introducing the exponential
integrator and further leveraging the assistance of both Runge-Kutta methods and linear multi-step
(Adams-Bashforth) methods. Li et al. (2023) explored the use of linear multi-step (implicit Adams)
methods with Lagrange interpolation function, and further proposed ERA-Solver.

In this work, our main focus is on algorithms based on Taylor expansions. We introduce sampling
algorithms that are predicated on the recursive difference method, which stands out as one of the
distinctions between our algorithm and the DPM-Solver.

3 Sampling Algorithms based on Recursive Difference for DiffusionModels

This section introduces the recursive difference (RD) method, which is employed to compute the
derivative of score function within sampling algorithms for DMs based on Taylor expansion. Based
on the RD method and the truncated Taylor expansion of the score-integrand, we propose the
SciRE-Solver with the convergence order guarantee to accelerating sampling of DMs.

3.1 Recursive DifferenceMethod for Diffusion ODEs

Since samples can generated by solving the diffusion ODEs numerically from T to 0, sampling
algorithms can be designed from the numerical solutions of differential equations. By applying the
variation-of-constants formula (Hale & Lunel, 2013) to ODEs (2.5) and (2.6), we have

xt = e
∫ t

s f (r)dr
(∫ t

s
h1(r)ϵθ (xr, r) dr + xs

)
, xt = eh2(t)

(
−

∫ t

s
e−h2(r)αrg2(r)

2σ2
r

xθ (xr, r) dr + xs

)
, (3.1)

where h1(r) := e−
∫ r

s f (z)dz g2(r)
2σr

, h2(r) :=
∫ r

s f (z) + g2(z)
2σ2

z
dz, and xs represents the given initial value.

Then, the most simplified solution formulas for the diffusion ODEs can be obtained, as follows.

Proposition 3.1 Let xs be a given initial value at time s > 0. Then, the diffusion ODEs in Eq. (2.5)
and Eq. (2.6) has the following solution formulas, respectively:

xt

αt
−

xs

αs
=

∫ NSR(t)

NSR(s)
ϵθ

(
xrNSR(τ), rNSR(τ)

)
dτ, (3.2)

xt

σt
−

xs

σs
=

∫ 1/NSR(t)

1/NSR(s)
xθ

(
xrNSR(1/τ), rNSR(1/τ)

)
dτ, (3.3)

where NSR(γ) := σγ
αγ

, we refer to it as the time-dependent noise-to-signal-ratio (NSR) function;
rNSR(·) is the inverse function of NSR(·), satisfying γ = rNSR (NSR(γ)) for any diffusion time γ. We
provide the detailed derivation in Appendix B for two solution formulas.

As the integral term in the r.h.s. of (3.2) is solely dependent on the evaluation network ϵθ (xs, s)
of scaled score function, we refer to such a concise solution formula as “score-integrand form” of
diffusion ODEs. Compared to the exponential-product-score-based solution formula in (Lu et al.,
2022b), empirically, the algorithm based on the score-integrand form generates more stable samples
when using a few NFEs (≤ 10), as shown in Figures 1 and 5. In score-integrand form, we can solve
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the diffusion ODE by directly integrating the ϵθ
(
xrNSR(τ), rNSR(τ)

)
. In theory, directly tackling this

problem is very challenging because ϵθ (xt, t) is a large-scale, well-trained complex neural network.
Nevertheless, we can solve it using numerical methods. For example, we can perform a Taylor
expansion on the score-integrand to obtain a rough iterative scheme.

Denote hti := NSR(ti−1) − NSR(ti), τti := NSR(ti), ψ(τ) := rNSR(τ), and ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
:=

dkϵθ(xψ(τ),ψ(τ))
d τk as k-th order total derivative of ϵθ

(
xψ(τ), ψ(τ)

)
w.r.t. τ. For n ≥ 1, the n-th order

Taylor expansion of ϵθ
(
xψ(τti−1 ), ψ(τti−1 )

)
w.r.t. τ at τti is

ϵθ
(
xψ(τti−1 ), ψ(τti−1 )

)
=

n∑
k=0

hk
ti

k!
ϵ(k)
θ

(
xψ(τti ), ψ(τti )

)
+ O(hn+1

ti ). (3.4)

By substituting this Taylor expansion into Eq. (3.2), we get

xti−1 =
αti−1

αti
xti + αti−1

n∑
k=0

hk+1
ti

(k + 1)!
ϵ(k)
θ

(
xψ(τti ), ψ(τti )

)
+ O(hn+2

ti ). (3.5)

Consequently, Eq. (3.5) provides an iterative scheme for solving the diffusion ODE. By following the
classical thought path, we can develop an n-th order solver for diffusion ODEs by omitting the error
term O(hn+1

ti ) and approximating the first (n − 1)-order derivatives ϵ(k)
θ

(
xψ(τti ), ψ(τti )

)
for k ≤ n − 1 in

turn (Atkinson et al., 2011). Such as, we can obtain the first-order iterative algorithm when n = 1:

x̃ti−1 =
αti−1

αti
x̃ti + αti−1 hiϵθ

(
x̃ψ(τti ), ψ(τti )

)
, (3.6)

where x̃ is an approximation of the true value x, and x̃tN = xT is the given initial value.

Beneath the surface of smooth operations, a pivotal challenge emerges: how to assess derivatives in
Taylor expansions when dealing with n ≥ 2. When it comes to estimating derivatives, one preferred
choice is the finite difference (FD) method. Clearly, the FD method truncates all challenging higher-
order derivative terms (k ≥ 2) and possesses a truncation error of O(hti ). Some indications suggest
that the FD method often lacks outstanding numerical performance in practice. For example, in the
pursuit of enhanced numerical performance, it is common to replace (eh − h − 1)/h2 with (eh − 1)/h
as the new FD coefficient within the framework of exponential integrators (Hochbruck & Ostermann,
2005; Lu et al., 2022b; Zhang & Chen, 2023), guided by the concept of equivalent infinitesimal
w.r.t h. In light of such indication, we speculate that utilizing the conventional FD method directly
to evaluate the derivative of the score function may be a suboptimal choice. Our experiments have
further substantiated this conjecture, as illustrated in Figure 3.

To improve the FD method while avoiding the intricacies of higher-order derivatives, we recursively
apply the principles of FD to handle terms involving higher-order derivatives at the evaluation point.
For example, when dealing with third-order derivative terms, our approach is outlined as follows:

Γ(3)(τti ) =
Γ(2)(τti−1 ) − Γ(2)(τti )

hti
+ O(hti ) =

Γ(2)(τti−1 )
hti

−

Γ(1)(τti−1 )−Γ(1)(τti )
hti

hti
+ O(hti )

=
Γ(1)(τti )

h2
ti

−
Γ(1)(τti−1 )

h2
ti

+
Γ(2)(τti−1 )

hti
+ O(hti ),

(3.7)

where τti represents the evaluation point and Γ(k)(τ) is used to denote ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
for simplicity.

Under such recursive rule, each high-order derivative term in Eq. (3.4) can be rewritten as the sum
of a scaled first-order derivative function at τti and a function w.r.t. τti−1 , while this representation
incurs a truncation error of O(hti ). Subsequently, by merging the resulting series of scaled first-order
derivatives, we can obtain a new derivative estimate for the score function. We refer to such structured
estimation method as the recursive difference (RD) method. In Appendix D, we present a detailed
derivation of the RD method, with the results as stated in Theorem 3.1 and Corollary 3.1.

Denote NSRmin := min
i
{NSR(ti)}, NSRmax := max

i
{NSR(ti)}. We derive the following recursive

results for the derivative at the evaluation point.
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First-order 

difference

Figure 2: Schematic diagram of the recursive difference method tailored for sampling algorithms of
diffusion models. The diagram exhibits the derivative process of Γ(1)(τs) with Γ(0)(τt) given as input.
Similarly, we can obtain the Γ(k)(τs),∀k ∈ Z+ with Γ(0)(τt) as input using analogous procedures.

Theorem 3.1 Let xs be a given initial value at time s > 0, xt be the estimated value at time t obtained
by the first-order iterative algorithm in Eq. (3.6). Assume that ϵθ

(
xψ(τ), ψ(τ)

)
∈ C∞[NSRmin,NSRmax].

Then, we have

ϵ(1)
θ

(
x̃ψ(τs), ψ(τs)

)
=

e
e − 1

ϵθ
(
x̃ψ(τt), ψ(τt)

)
− ϵθ

(
x̃ψ(τs), ψ(τs)

)
hs

−
ϵ(1)
θ

(
x̃ψ(τt), ψ(τt)

)
e − 1

−
(e − 2)hs

2(e − 1)
ϵ(2)
θ

(
x̃ψ(τt), ψ(τt)

)
+ O(h2

s),

(3.8)

where C∞[NSRmin,NSRmax] denotes ϵθ
(
xψ(τ), ψ(τ)

)
is an infinitely continuously differentiable func-

tion w.r.t. τ over the interval [NSRmin,NSRmax].

We observe that the differentiability constraint imposed by Theorem 3.1 appears to be rather restrictive.
To enhance its broad applicability, we further derive the recursive result with limited differentiability.

Corollary 3.1 Let xs be a given initial value at time s > 0, xt be the estimated value at time t obtained
by the first-order iterative algorithm in Eq. (3.6). Assume that ϵθ

(
xψ(τ), ψ(τ)

)
∈ Cm[NSRmin,NSRmax],

i.e., m times continuously differentiable, where m ≥ 3. Then, we have

ϵ(1)
θ

(
x̃ψ(τs), ψ(τs)

)
=

1
ϕ1(m)

ϵθ
(
x̃ψ(τt), ψ(τt)

)
− ϵθ

(
x̃ψ(τs), ψ(τs)

)
hs

−
ϕ2(m)
ϕ1(m)

ϵ(1)
θ

(
x̃ψ(τt), ψ(τt)

)
−
ϕ3(m)hs

ϕ1(m)
ϵ(2)
θ

(
x̃ψ(τt), ψ(τt)

)
+ O(h2

s),

(3.9)

where ϕ1(m) =
m∑

k=1

(−1)k−1

k! , ϕ2(m) =
m∑

k=2

(−1)k

k! , and ϕ3(m) =
m∑

k=3

(−1)k+1

k! .

A simplified truncation form for the RD method is given by Γ(1)(τti ) =
Γ(τti−1 )−Γ(τti )

ϕ1(m)hti
, obtained by

substituting the RD estimation formula from Eq. (3.9) into Eq. (3.5). The complete recursive process
of such simplified form is illustrated in Figure 2. Further details are provided in Appendix E.1. Since
other truncated forms of the RD method necessitate derivative evaluation at point τt beyond the
evaluation point τs, we leave this exploration for future research. The main characteristic of such
simplified RD version is that this novel estimation incorporates low-order derivative information
hidden in the higher-order derivative terms of the Taylor expansion. Compared to FD method, such
RD method incorporates additional information 1−ϕ1(m)

ϕ1(m)
Γ(τti−1 )−Γ(τti )

hti
from other higher-order derivative

terms, which may counterbalance with these higher-order terms to a certain level. In Appendix E.2,
we provide essential analyses concerning the simplified RD method.

3.2 Sampling Algorithms based on Recursive DifferenceMethod

Since Proposition 3.1 involves distinct differential equations that result in different discretization
results, we propose two solver versions called SciRE-V1 and SciRE-V2 for the diffusion ODE
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corresponding to the noise prediction model and the data prediction model, respectively. Now, based
on the Eq. (3.5) and the RD methods stated by Corollary 3.1 and Theorem 3.1, we propose two
algorithms named SciRE-V1-2 and SciRE-V1-3 for n = 2 and n = 3, respectively. Under mild
assumptions, we provide the convergence order for SciRE-V1-k (k = 2, 3), as stated in the following
theorem. The proof is given in Appendix F. Due to the typically increased complexity of higher-order
algorithms, the treatment of k ≥ 4 will be left for future research. The iteration schemes of SciRE-V1
using multi-step methods are provided in Appendix G.1. In Appendix G.2, we propose SciRE-V2 for
the ODE Eq. (3.3) using the mentioned-above thought process and the RD method.

Algorithm 1 SciRE-V1-2

Require: initial value xT , time trajectory {ti}Ni=0, model ϵθ,m ≥ 3
1: x̃tN ← xT , r1 ←

1
2

2: for i← N to 1 do
3: hi ← NSR(ti−1) − NSR(ti)
4: si ← rNSR (NSR(ti) + r1hi)
5: x̃si ←

αsi
αti

x̃ti + αsi r1hiϵθ
(
x̃ti , ti

)
6: x̃ti−1 ←

αti−1
αti

x̃ti + αti−1 hiϵθ
(
x̃ti , ti

)
+ αti−1

hi
2ϕ1(m)r1

(
ϵθ

(
x̃si , si

)
− ϵθ

(
x̃ti , ti

))
7: end for

Return: x̃0.

Algorithm 2 SciRE-V1-3

Require: initial value xT , time trajectory {ti}Ni=0, model ϵθ,m ≥ 3
1: x̃tN ← xT , r1 ←

1
3 , r2 ←

2
3

2: for i← N to 1 do
3: hi ← NSR(ti−1) − NSR(ti)
4: si1 , si2 ← rNSR (NSR(ti) + r1hi) , rNSR (NSR(ti) + r2hi)
5: x̃si1

←
αsi1
αti

x̃ti + αsi1
r1hiϵθ

(
x̃ti , ti

)
6: x̃si2

←
αsi2
αti

x̃ti + αsi2
r2hiϵθ

(
x̃ti , ti

)
+ αsi2

hi
ϕ1(m)

(
ϵθ

(
x̃si1

, si1

)
− ϵθ

(
x̃ti , ti

))
7: x̃ti−1 ←

αti−1
αti

x̃ti + αti−1 hiϵθ
(
x̃ti , ti

)
+ αti−1

hi
2ϕ1(m)r2

(
ϵθ

(
x̃si2

, si2

)
− ϵθ

(
x̃ti , ti

))
8: end for

Return: x̃0.

Theorem 3.2 Assume that ϵθ
(
xψ(τ), ψ(τ)

)
∈ Cm[NSRmin,NSRmax]. Then, for k = 2, 3, the global

convergence order of SciRE-V1-k is no less than k − 1.

4 Assessing the Efficacy of the RD Method through Ablation Studies

This section demonstrates the effectiveness of the RD method from two perspectives: 1. Comparing
it with traditional finite difference (FD) method; 2. Introducing the RD method into the exponential-
based calculation formula and comparing it with its counterpart algorithm, DPM-Solver-2.

In Corollary 3.1, the RD method degenerates into the FD method, if we set ϕ1(m) = 1 and drop other
terms. Thus, we set ϕ1(m) = 1 in our SciRE-V1 codebase to represent the sampling algorithm based
on FD method. Comparative experiments are presented in Figure 3 under identical settings.

To further investigate the RD method, we introduce SciREI-Solver (n=2), a variant combining the
RD method and the exponential-based calculation formula from DPM-Solver. Refer to Appendix C
for the details of SciREI-Solver. We compare the generative performance of SciREI-Solver-2 and
DPM-Solver-2 with the identical settings on the CIFAR-10 and CelebA 64 datasets using various time
trajectories and termination times, the experiment results are presented in Figure 4. More generally,
we also provide the sampling comparison between the RD-based sampling algorithms (SciRE-V1-2
and SciREI-Solver-2) and the baseline algorithm (DPM-Solver-2) on high-resolution image datasets,
as shown in Figure 5. More comparisons are provided in Appendix C.
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Figure 3: Comparisons of FID ↓ obtained by employing RD and FD in SciRE-V1 codebase. The
RD-based method is consistently superior to the FD-based method across different cases.
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Figure 4: Comparisons of FID ↓ obtained by SciREI-2 and DPM-2 solvers across different trajectories.
SciREI-2 is more robust than DPM-2 across different time trajectories under the same sampling step.

5 Experiments

This section show that SciRE-Solver can improve the sampling efficiency of pre-trained DPM models,
including continuous-time and discrete-time DMs. We conduct sampling experiments using individual
SciRE-V1-2 and SciRE-V1-3 on the pre-trained models of DM. When comparing with existing fast
sampling algorithms, we will compare the best FID values reported by these algorithms in the relevant
literature with the FID obtained by our proposed SciRE-V1 under the same NFE, as shown in Table
1. Moreover, we also investigate the SciRE-Solver (V1 and V2) algorithms on image-text generation
tasks, as shown in Figures 6 and 8. More details and experiments can be found in Appendix H.

5.1 Experiment Setting and Ablation Study

When running our proposed SciRE-V1-k in Algorithms 1 and 2, it is necessary to assign a value m to
ϕ1(m). As stated in Corollary 3.1, when assigning m, we need to ensure that m ≥ 3. Considering that
the limit of ϕ1(m) is e−1

e , then our experiments only consider these two extreme cases, i.e., we only
choose to allocate m as 3 or directly set ϕ1(m) = e−1

e . We provide ablation experiments for these two
cases in Appendix H. The earlier experiments were all run on TITAN-V GPUs.

5.2 Comparisons of SamplingMethods using Discrete-Time and Continuous-TimeModels

We compare SciRE-V1 proposed in Section 3.2 with existing discrete-time training-free methods
in Table 1. Specifically, we use the discrete-time model trained by Lsimple in (Ho et al., 2020) on
CIFAR-10 and CelebA 64×64 datasets with linear noise schedule, and assign m = 3 to ϕ1(m). Under
this setting, we use the same NSR-type time trajectory with fixed parameter for both SciRE-V1-2
and SciRE-V1-3, the details are available in Appendix H. SciRE-V1 almost reaches convergence at
around 66 NFE and 18 NFE, achieving the new SOTA values of 3.15 FID with 84 NFE, and of 2.17
FID with 18 NFE on CIFAR-10 and CelebA 64×64, respectively.

We compare SciRE-V1-k and SciRE-V1-agile with DPM-Solver-k (Lu et al., 2022b), DPM-Solver-
fast and DEIS (Zhang & Chen, 2023), where k = 2, 3. On CIFAR-10, we use “VP deep” model
(Song et al., 2021c) with the linear noise schedule. When NFE ≥ 15, we employ the identical
NSR-type time trajectories with consistent parametric functions for SciRE-V1-2 and SciRE-V1-3,
respectively, the details are available in Appendix H. Meanwhile, we consider using the sigmoid-type
time trajectory only when NFE is less than 15. The superior of SciRE-V1 is particularly evident in its
ability to generate high-quality samples with 2.42 FID in just 20 NFE, as shown in (b) of Figure 7.
Furthermore, supported by several experimental validations, SciRE-V1 achieves 2.40 FID in just 100
NFE, which attains a new SOTA value under the VP-deep model (Song et al., 2021c) that we used.
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NFE=6 NFE=12 NFE=24 NFE=36

DPM-2

SciREI-
2(ours)

SciRE-
2(ours)

DPM-2

SciREI-
2(ours)

SciRE-
2(ours)

Figure 5: Compare the generation results of the RD-based methods (Solvers: SciRE-V1-2, SciREI-2)
and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the uniform time trajectory
and identical settings, on pre-trained models with ImageNet 128×128 and LSUN bedroom 256×256.

(a) DPM-Solver++ (multistep). (b) SciRE-V1-2m, Algorithm 4. (c) SciRE-V2-2m, Algorithm 7.

Figure 6: Random samples of Stable-Diffusion, using only 6 NFE and text prompt “A beautiful
mansion beside a waterfall in the woods, by josef thoma, matte painting, trending on artstation HQ”.
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(a) CIFAR-10 (discrete)
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(b) CIFAR-10 (continuous)
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(c) CelebA 64×64 (discrete)
Figure 7: The comparative diagram of FID ↓ of different training-free sampling methods on the
CIFAR-10 and CelebA 64×64 datasets. In these three cases, our samplers reach SOTA.

6 Conclusions

In this work, we introduce the recursive difference (RD) method to calculate the derivative of the
score function evaluations in the realm of diffusion models. By applying the RD method to the
truncated Taylor expansion of the score-integrand, we propose the SciRE-Solver with the convergence
order guarantee to accelerate the sampling process of DMs. The effectiveness of the RD method
in evaluating the derivative of the score function in regular diffusion modes has been confirmed

8
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Sampling method \NFE 12 15 20 50 200 1000
CIFAR-10 (discrete-time model (Ho et al., 2020), linear noise schedule)
DDPM 246.3 197.6 137.3 32.6 4.03 3.16
DDIM 11.02 8.92 6.94 4.73 4.07 3.95
Analytic-DDIM 11.68 9.16 7.20 4.28 3.60 3.86
tAB3-DEIS 7.12(10NFE) 4.53 3.78 \ \

DPM-Solver-2 6.15 †5.23 3.95 3.50 3.46 3.46
DPM-Solver-3 8.20 5.21 †3.81 †3.49 †3.45 †3.45
F-PNDM 7.03(10NFE) 4.61 3.68 3.47 3.26
ERA-Solver 4.38 3.86 3.79 3.42 3.51(100NFE)

SciRE-V1-2 (ours) 4.41 †4.09 3.67 3.28 3.26(100NFE)
SciRE-V1-3 (ours) 5.00 4.12 †3.80 †3.23 3.15 (84NFE)
CIFAR-10 (VP deep continuous-time model (Song et al., 2021c))

DPM-Solver-2 4.88 †4.23 3.26 2.69 2.60 2.59
DPM-Solver-3 5.53 3.55 †2.90 †2.65 †2.62 †2.62
DPM-Solver-fast 4.93 3.35 2.87 \ \ \
tAB3-DEIS \ 3.37 2.86 2.57 \ \

SciRE-V1-2 (ours) 4.33 †3.84 3.03 2.57 2.48 (100NFE)
SciRE-V1-3 (ours) 3.48 3.06 †2.68 †2.54 †2.44 (100NFE)
SciRE-V1-agile (ours) 4.80 3.47 2.42 2.52 2.40 (100NFE)
CIFAR-10 (edm (Karras et al., 2022))

EDM-Heun 7.28 †4.47 2.38 1.83 1.84 (100NFE)

SciRE-V1-2 2.29 †2.16 1.94 1.79 1.76 (100NFE)
CelebA 64×64 (discrete-time model (Song et al., 2021a), linear noise schedule)
Sampling method \NFE 10 12 15 20 50 1000
DDIM 10.85 9.99 7.78 6.64 5.23 4.88
DPM-Solver 5.83 3.71 3.05 2.82 2.71 (36NFE)
F-PNDM 7.71 \ \ 5.51 3.34 2.71
tAB3-DEIS 6.95 \ \ 3.41 2.95 \

SciRE-V1-2 (ours) 4.91 3.91 †3.38 2.56 2.30 −

SciRE-V1-3 (ours) †9.72 4.07 2.53 †2.17 †2.02 −

Table 1: Generation qual-
ity measured by FID ↓ of
different sampling meth-
ods for DMs on CIFAR-
10 and CelebA 64×64. In
this Table, we compare the
best FID reported in ex-
isting literature with the
FID achieved by our pro-
posed SciRE-V1 at the
same NFE. The bold black
represents the best result
obtained under the same
NFE (column). The re-
sults with † means the ac-
tual NFE is smaller than
the given NFE because the
given NFE cannot be di-
vided by 2 or 3. Some re-
sults are missing in their
original papers, which are
replaced by “ \ ”. Here,
we used the same time tra-
jectory scheme to evalu-
ate the results of SciRE-V1
on CIFAR-10 and CelebA
64×64 datasets with dis-
crete models. The set-
ting of continuous-time on
CIFAR-10 are described in
Section 5.2. More compar-
isons and additional details
are shown in Appendix H.

through comparative experiments involving FID and generated samples. These experiments were
conducted for ablation comparisons with both the finite-based difference algorithm and the popular
DPM-Solver-2 algorithm. SciRE-Solver (versions: V1 and V2 ) is a new type of algorithm that
provides an alternative sampling scheme for accelerating diffusion models. Numerical experiments
indicate that SciRE-Solver not only can generates high-quality samples across various datasets
using fewer-steps but also, using a small NFEs demonstrates promising potential to surpass the FID
achieved by some pre-trained models in their original papers using no fewer than 1000 NFEs.

NFE=5 NFE=12 NFE=20 NFE=50

SciRE-
V1-
2m,

Algo-
rithm

4.

SciRE-
V2-
2m,

Algo-
rithm

7.

Figure 8: Random samples of Stable-Diffusion by SciRE-V1 and SciRE-V2, using varying NFEs and
the text prompt “a girl face in Disney style, physically-based rendering, ultimate painting, UHD”.
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A Preliminaries

Related Work:

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c) have
recently gained remarkable generation ability on image generation (Dhariwal & Nichol, 2021; Karras
et al., 2022), yielding extensive applications such as speech, singing and video synthesis (Chen
et al., 2021; Liu et al., 2022a; Ho et al., 2022), controllable image generation, translation and editing
(Nichol et al., 2022; Ramesh et al., 2022; Rombach et al., 2022; Meng et al., 2022; Zhao et al., 2022;
Couairon et al., 2023; Zhang & Agrawala, 2023), likelihood estimation (Song et al., 2021b; Kingma
et al., 2021; Lu et al., 2022a; Zheng et al., 2023). As diffusion models gradually achieve success in
various fields, the downside of slow diffusion sampling is also gaining more attention. Therefore,
improving the output quality and/or reducing the computational cost of sampling is an important
topic in diffusion models research, e.g., (Dockhorn et al., 2022; Jolicoeur-Martineau et al., 2021; Liu
et al., 2022b; Lu et al., 2022b;c; Luhman & Luhman, 2021; Nichol & Dhariwal, 2021; Salimans &
Ho, 2022; Vahdat et al., 2021b; Karras et al., 2022; Zhang & Chen, 2023).

The forward stage of DMs is to add randomness with Gaussian noise in order to slowly disrupt the
data distribution, without any training. The reverse stage of DMs is tasked with recovering the original
input data from the diffused (noisy) data by learning to reverse the forward diffusion process, step
by step. Both the forward and reverse diffusion stages can be explained using differential equations.
Next, we provide an introduction to diffusion models from the perspective of differential equations.

A.1 Diffusion SDEs

In the forward diffusion process of DMs for D-dimensional data, a Markov sequence {xt}t∈[0,T ] with
T > 0 starting with x0 is defined by the transition distribution

q (xt | xt−1) := N
(
xt; βtxt−1,

(
1 − β2

t

)
I
)
, (A.1)

where βt ∈ R
+ is the variance schedule function, which is differentiable w.r.t t and possesses a

bounded derivative. Given a transition distribution, one can formulate the transition kernel function
for noisy data xt conditioned on clean data x0 through the superposition of Gaussian distributions:

q (xt | x0) = N
(
xt;αtx0, σ

2
t I

)
. (A.2)

In DDPM (Ho et al., 2020), αt is defined as
∏t

i=1 βi, and σ2
t + α

2
t = 1 is referred to as the variance-

preserving (VP) setting. DMs choose noise schedules for αt and σt to ensure that the marginal
distribution qT (xT ) approximates N

(
xT ; 0, σ̂2I

)
for σ̂ > 0. Kingma et al. (2021) generalized this

fixed schedule of Eq. (A.1) through the parameterization

σ2
t = sigmoid

(
γη(t)

)
, (A.3)

where γη(t) is a monotonic neural network with parameters η. Under the schedule defined in Eq.
(A.3) and the VP setting, α2

t /σ
2
t is strictly decreasing w.r.t. t and is referred to as the signal-to-

noise-ratio (SNR). With the schedule of Eq. (A.3), Kingma et al. (2021) established the equivalence
between the transition kernel of the following SDE and the one in Eq. (A.2) for ∀t ∈ [0,T ]:

dxt = f (t)xt dt + g(t)dωt, x0 ∼ q0 (x0) , (A.4)

where ωt ∈ R
D denotes a standard Wiener process, and

f (t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2

t . (A.5)

Further, Song et al. (2021c) demonstrated with some regularity conditions that the forward process in
Eq. (A.2) has the following equivalent reverse process (reverse SDE) from time T to 0:

dxt =
[
f (t)xt − g2(t)∇x log qt (xt)

]
dt + g(t)dωt, xT ∼ qT (xT ) , (A.6)

where ωt represents a standard Wiener process in the reverse time. Since f (t) and g(t) are determined
by the noise schedule (αt, σt) in the reverse SDE (A.6), the sole term that remains unknown is the
score function ∇x log qt (xt) at each time t. Therefore, DMs train the model by using a neural network
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ϵθ (xt, t) parameterized by θ to approximate the scaled score function: −σt∇x log qt (xt), where the
parameter θ is trained by a re-weighted variant of the evidence lower bound (ELBO) (Ho et al., 2020;
Song et al., 2021c):

L(θ; λ(t)) =
1
2

∫ T

0
λ(t)Eqt(xt)

[∥∥∥ϵθ (xt, t) + σt∇x log qt (xt)
∥∥∥2

2

]
dt

=
1
2

∫ T

0
λ(t)Eq0(x0)Eq(ϵ)

[
∥ϵθ (xt, t) − ϵ∥22

]
dt +C,

(A.7)

where ϵ ∼ q(ϵ) = N(ϵ; 0, I), xt = αtx0 + σtϵ, λ(t) represents a weighting function, and C is a
θ-independent constant. After the model is trained, DMs replace the score function in Eq. (A.4) with
−ϵθ (xt, t) /σt and define the following diffusion SDE:

dxt =

[
f (t)xt +

g2(t)
σt

ϵθ (xt, t)
]

dt + g(t)dωt, xT ∼ N
(
0, σ̂2I

)
. (A.8)

DMs can generate samples by numerically solving the diffusion SDE stated in Eq. (A.8) using
discretization methods that span from T to 0.

A.2 Diffusion ODEs

Based on the reverse SDE in Eq. (A.6), Song et al. (2021c) derived a Liouville equation by investi-
gating the evolution equation (Fokker-Planck Equation) of the probability density function of the
variable xt. This Liouville equation has the same probability density function w.r.t. the variable xt as
that of the reverse SDE. As a result, the reverse SDE can be transformed into the following ODE:

dxt

dt
= f (t)xt −

1
2

g2(t)∇x log qt (xt) , xT ∼ qT (xT ) , (A.9)

where xt has a marginal distribution qt (xt), which is equivalent to the marginal distribution of xt
of the reverse SDE in Eq. (A.6). Since the ϵθ (xt, t) trained in Eq. (A.7) can also be thought of as
predicting the Gaussian noise added to xt, it is commonly referred to as the noise prediction model.
By substituting the trained noise prediction model for the score function in Eq. (A.9), Song et al.
(2021c) defined the following diffusion ODE for DMs:

dxt

dt
= f (t)xt +

g2(t)
2σt

ϵθ (xt, t) , xT ∼ N
(
0, σ̂2I

)
. (A.10)

Therefore, one can also generate samples by solving the diffusion ODE from T to 0. Alternatively,
the data prediction model xθ (xt, t) and the noise prediction model ϵθ (xt, t) satisfying: xθ (xt, t) =
(xt − σtϵθ (xt, t))/σt (Kingma et al., 2021), there exists an equivalent diffusion ODE w.r.t. xθ (xt, t):

dxt

dt
=

(
f (t) +

g2(t)
2σ2

t

)
xt − αt

g2(t)
2σ2

t
xθ (xt, t) , xT ∼ N

(
0, σ̂2I

)
. (A.11)

B Proof of Proposition 3.1

We first demonstrate the simplified solution formula based on the noise prediction model.

The solution formula of the semi-linear ODE (A.10) can be formulated by the variation-of-constants
formula (Hale & Lunel, 2013):

xt = e
∫ t

s f (γ)dγ
(∫ t

s
h1(γ)ϵθ

(
xγ, γ

)
dγ + xs

)
, (B.1)

where h1(γ) := e−
∫ γ

s f (z)dz g2(γ)
2σγ

, and xs represents the given initial value. Since f (γ) = d log(αγ)
dγ , thus

h1(γ) = αs
αγ

g2(γ)
2σγ

. We observe that h1(γ) can be rewritten as

h1(γ) =
αs

2αγσγ

dσ2
γ

dγ
− 2

d logαγ
dγ

σ2
γ

 = αs

αγ

(
dσγ
dγ
−
σγ

αγ

dαγ
dγ

)
= αs

dNSR(γ)
dγ

, (B.2)
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where NSR(γ) := σγ
αγ

, and we refer to it as the time-dependent noise-to-signal-ratio (NSR) function.
Note that the NSR function defined above differs from the signal-to-noise-ratio (SNR) function
defined in (Kingma et al., 2021), but there is a relationship between them: SNR = 1

NSR2 . Then, based
on Eq. (B.2), we can rewrite Eq. (B.1) as

xt =
αt

αs
xs + αt

∫ t

s

dNSR(γ)
dγ

ϵθ
(
xγ, γ

)
dγ. (B.3)

Since NSR(·) is a monotonically function w.r.t. time, we can define its reverse function as rNSR(·),
such that γ = rNSR (NSR(γ)) for any diffusion time γ. Thus, using the change-of-variables for
NSR(γ) to Eq. (B.3), we can obtain

xt =
αt

αs
xs + αt

∫ t

s

dNSR(γ)
dγ

ϵθ
(
xγ, γ

)
dγ

=
αt

αs
xs + αt

∫ t

s
ϵθ

(
xγ, γ

)
dNSR(γ)

=
αt

αs
xs + αt

∫ NSR(t)

NSR(s)
ϵθ

(
xrNSR(τ), rNSR(τ)

)
dτ.

(B.4)

Thus, we complete the proof of the simplified solution formula in the Proposition 3.1 based on the
noise prediction model.

Next, we demonstrate the simplified solution formula based on the data prediction model. By applying
the variation-of-constants formula to Eq. (A.11), we have

xt = eh2(t)
(
−

∫ t

s
e−h2(r)αrg2(r)

2σ2
r

xθ (xr, r) dr + xs

)
, (B.5)

where h2(r) :=
∫ r

s f (z) + g2(z)
2σ2

z
dz, and xs represents the given initial value. h2(r) can be rewritten as

h2(r) =
∫ r

s

d logαγ
dγ

+
1

2σ2
γ

dσ2
γ

dγ
−

d logαγ
dγ

dγ =
∫ r

s

1
σγ

dσγ
dγ

dγ = log
σr

σs
. (B.6)

Eq. (B.5) can then be rewritten as

xt =
σt

σs

(
−

∫ t

s

σs

σr

αrg2(r)
2σ2

r
xθ (xr, r) dr + xs

)
=
σt

σs
xs − σt

∫ t

s

1
σr

αrg2(r)
2σ2

r
xθ (xr, r) dr

=
σt

σs
xs − σt

∫ t

s

αr

σr

1
2σ2

r

(
dσ2

r

dr
− 2

d logαr

dr
σ2

r

)
xθ (xr, r) dr

=
σt

σs
xs + σt

∫ t

s

αr

σr

(
d logαr

dr
−

1
2σ2

r

dσ2
r

dr

)
xθ (xr, r) dr

=
σt

σs
xs + σt

∫ t

s

αr

σr

(
1
αr

dαr

dr
−

1
σr

dσr

dr

)
xθ (xr, r) dr

=
σt

σs
xs + σt

∫ t

s

(
1
σr

dαr

dr
−
αr

σ2
r

dσr

dr

)
xθ (xr, r) dr

=
σt

σs
xs + σt

∫ t

s
xθ (xr, r)

d
dr

(
αr

σr

)
dr

=
σt

σs
xs + σt

∫ t

s
xθ (xr, r) d

αr

σr
,

(B.7)

by change-of-variables,

xt =
σt

σs
xs + σt

∫ αt
σt

αs
σs

xθ
(
xh3(τ), h3(τ)

)
dτ, (B.8)

where h3( αγ
σγ

) := γ for any diffusion time γ. Note that NSR(γ) = σγ
αγ

, then αγ
σγ
= 1

NSR(γ) and

h3(τ) = rNSR
(

1
τ

)
. Therefore, we complete the proof of the simplified solution formula in the

Proposition 3.1 based on the data prediction model.
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Hints Eq. (B.4) implies that the solution of the diffusion ODE can be decomposed into a linear
part and a nonlinear part, and this structure arises from the use of the variation-of-constants formula
(Hale & Lunel, 2013). The linear part can be computed analytically, while the remaining nonlinear
part is an integral involving the neural network of score function evaluations. Compared with directly
numerically solving the diffusion ODE, such decomposition method can reduce numerical errors and
improve calculation accuracy because the linear part can be analytically computed, as demonstrated
by DPM-Solver (Lu et al., 2022b). We observe that the integral term on the r.h.s. of Eq. (B.4) appears
to be a traditional integration problem, involving the score function as the integrand solely. Thus,
we could use conventional numerical methods for solving integrals to evaluate it. However, caution
must be exercised when employing these methods, as the integrand is merely an approximation of
the scaled score function, and its explicit expression remains unknown, while the integrand involves
some large-scale neural networks. Therefore, using traditional techniques to accelerate the sampling
process of diffusion models may amplify the numerical error in such scenarios. Nonetheless, in the
realm of diffusion models, we can draw inspiration from traditional numerical techniques to develop
fast sampling algorithms suitable for diffusion models.

NFE=6 NFE=12 NFE=24 NFE=36

DPM-2

SciREI-
2(ours)

SciRE-
2(ours)

DPM-2

SciREI-
2(ours)

SciRE-
2(ours)

Figure 9: Compare the generation results of the RD-based methods (Solvers: SciRE-V1-2, SciREI-2)
and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the uniform time trajectory
and identical settings, on pre-trained models with ImageNet 256×256 and 512×512 datasets.
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Table 2: Comparison of Quality Generation between FD-based and RD-based Algorithms. We use
consistent NSR trajectory (k=2) and the same codebase.

FD or RD Initial time\ NFE 12 15 20 50 100

The discrete-time model of CIFAR-10 dataset (Ho et al., 2020)

FD (Solver-2) 1e − 3 7.00 †6.00 4.76 4.10 4.03
1e − 4 9.03 †7.10 5.05 3.71 3.57

RD (SciRE-V1-2) 1e − 3 4.49 †4.12 3.74 3.70 3.76
1e − 4 5.91 †4.76 3.88 3.30 3.28

FD (Solver-3) 1e − 3 6.91 5.25 †4.67 †4.04 †4.02
1e − 4 10.19 6.12 †5.03 †3.56 †3.52

RD (SciRE-V1-3) 1e − 3 5.29 4.19 †3.94 †3.76 †3.71
1e − 4 9.10 4.52 †4.07 †3.24 †3.17

The discrete-time model of CelebA 64×64 dataset (Ho et al., 2020)

FD (Solver-2) 1e − 3 7.82 †6.87 5.48 4.48 4.33
1e − 4 7.04 †5.87 4.17 3.05 2.89

RD (SciRE-V1-2) 1e − 3 4.67 †4.23 3.63 3.60 3.79
1e − 4 3.99 †3.43 2.63 2.32 2.43

FD (Solver-3) 1e − 3 8.09 6.29 †5.35 †4.28 †4.27
1e − 4 7.66 5.20 †4.25 †2.88 †2.83

RD (SciRE-V1-3) 1e − 3 4.79 3.37 †3.08 †3.18 †3.54
1e − 4 4.50 2.70 †2.30 †2.02 2.20

C SciREI-Solver, and Compared to DPM-Solver-2 for Assessing the Benefits
with RD

In order to further explore the effectiveness of the RD method, we propose a variant named SciREI-
Solver, which incorporates the RD method and the exponential-based calculation formula provided
by DPM-Solver. We provide numerical experiments to demonstrate the benefits of the RD method.

C.1 SciREI-Solver

In this work, we introduced the RD method to evaluating the derivative of the scaled score function,
in light of these results, we proposed the SciRE-V1 with the truncated Taylor expansion of the
score-integrand. To further investigate the effectiveness the RD method in the realm of sampling
for diffusion models, we apply the RD method to the exponential-based contextualisation provided
by the DPM-Solver (Lu et al., 2022b), and proposed the SciREI-Solver. We specifically investigate
the RD method in the context of “the generalized version of DPM-Solver-2, i.e., the Algorithm 4
in the Appendix of the DPM-Solver paper” (referred to as DPM-Solver-2 throughout this paper for
simplicity). Since both SciREI-Solver and DPM-Solver-2 are derived when n = 2, we occasionally
refer to SciREI-Solver as SciREI-Solver-2 for to enhance clarity in comparisons.

Formally, Lu et al. (2022b) provides an exponential contextualized solution formula for the diffusion
ODE:

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵ̂θ (x̂λ, λ) dλ (C.1)

where λt = log αt
σt

, ϵ̂θ (x̂λ, λ) = ϵθ
(
xt(λ), t(λ)

)
, and t(λ) is the inverse function of λt w.r.t. time t. Under

this solution formula of exponential-based contextualisation, the formula below is obtained by Taylor
expansion around λ:

xt =
αt

αs
xs − σt

n∑
k=0

hk+1φk+1(h)ϵ̂(k)
θ

(
x̂λs , λs

)
+ O(hn+2), (C.2)

where φk(h) =
∫ 1

0 e(1−δ)h δk−1

(k−1)! dδ, φ0(h) = eh.
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Algorithm 3 SciREI-Solver (or SciREI-Solver-2)

Require: initial value xT , time trajectory {ti}Ni=0, model ϵθ,m ≥ 3
1: x̃tN ← xT , r1 ←

1
2

2: for i← N to 0 do
3: hi ← λti−1 − λti
4: si ← tλ

(
λti + r1hi

)
5: x̃si ←

αsi
αti

x̃ti − σsi

(
er1hi − 1

)
ϵθ

(
x̃ti , ti

)
6: x̃ti−1 ←

αti−1
αti

x̃ti − σti−1 (ehi − 1)ϵθ(x̃ti , ti) −
σti−1

ϕ1(m)r1hi
(ehi − hi − 1)

(
ϵθ(x̃si , si) − ϵθ(x̃ti , ti)

)
7: end for

Return: x̃0.

When n = 1 in Eq. (C.2), we have then

xt =
αt

αs
xs − σthφ1(h)ϵ̂θ(x̂λs , λs) − σth2φ2(h)ϵ̂(1)

θ (x̂λs , λs) + O(h3) (C.3)

where

φ1(h) =
eh − 1

h
, φ2(h) =

eh − h − 1
h2 . (C.4)

The following iteration is obtained by DPM-Solver-2:

xt =
αt

αs
xs − σt(eh − 1)ϵ̂θ(x̂λs , λs) −

σt

2r1
(eh − 1)

(
ϵ̂θ(x̂λs1

, λs1 ) − ϵ̂θ(x̂λs , λs)
)
. (C.5)

With our proposed the recursive difference (RD) method to evaluate ϵ̂(1)
θ (x̂λs , λs), we get the following

new iteration:

xt =
αt

αs
xs − σt(eh − 1)ϵ̂θ(x̂λs , λs) −

σt

ϕ1(m)r1h
(eh − h − 1)

(
ϵ̂θ(x̂λs1

, λs1 ) − ϵ̂θ(x̂λs , λs)
)
, (C.6)

where the definition of ϕ1(m) is referred to in Corollary 3.1. Thus, we will refer this new iteration
algorithm to as SciREI-Solver shown in Algorithm 3, which incorporates the RD method and the
exponential-based calculation formula recommended by DPM-Solver.

C.2 Differences with DPM-Solver

Clearly, there are differences between SciREI-Solver and DPM-Solver-2, as indicated by the blue
and orange labels in Eq. (C.5) and Eq. (C.6).

In the following, we present a straightforward comparison between SciRE-V1, proposed by us in the
main content of this paper, and DPM-Solver. Firstly, the score-integrand form in Eq. (3.2) is different
the solution formula of exponential-based contextualisation in Eq. (C.1). Secondly, different solution
forms of diffusion ODE result in different integrands and distinct Taylor series expansions around
different function spaces. Specifically, we expand ϵθ

(
xψ(τ), ψ(τ)

)
in a Taylor series around τ, which is

distinct from DPM-Solver where ϵθ
(
xt(λ), t(λ)

)
is expanded w.r.t. λ, as τ , λ. Such differences lead

to different results, as expressed in Eq. 3.5 and Eq. C.2. The differences of Eq. 3.5 and Eq. C.2
illustrate that, despite reparameterizing the diffusion ODE in both cases, different changes-of-variable
have resulted in distinct algorithmic sources based on Taylor expansion concept. Finally, and most
importantly, SciRE-V1 is a numerical algorithm based on the RD method we introduced, which
fundamentally distinguishes it from the DPM-Solver, much like the difference (the blue and orange
labels) between SciREI-Solver and DPM-Solver-2.

C.3 The benefits with RD: Effectiveness and Robustness

In order to validate the benefits of the RD method, we compare the FID scores obtained for generated
samples from the RD-based methods and other methods with the same settings and codebase on
the CIFAR-10 and CelebA 64×64 datasets. Specifically, we compare the RD method with the
traditional finite difference (FD) method, and we also compare the RD-based SciREI-Solver-2 with
its counterpart algorithm, DPM-Solver-2. For high-resolution image datasets, we conduct sampling
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Table 3: Comparison of Quality Generation between DPM-Solver-2 and SciREI-Solver-2 (our)
Algorithms. We use consistent NSR trajectory (k=3.1) and the same codebase.

Trajectory Initial Time Sampling method \NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al., 2020), linear noise schedule)

Uniform time ϵ = 10−3 DPM-Solver-2 11.81 †10.16 7.55 5.05 4.51
SciREI-Solver-2 (ours) 6.65 †5.83 4.75 4.15 4.29

Uniform time ϵ = 10−4 DPM-Solver-2 33.67 †29.16 20.50 8.78 5.34
SciREI-Solver-2 (ours) 9.93 †8.53 6.50 4.51 3.98

logSNR ϵ = 10−3 DPM-Solver-2 5.23 †4.48 4.08 3.98 3.99
SciREI-Solver-2 (ours) 5.78 †4.83 4.05 3.65 3.72

logSNR ϵ = 10−4 DPM-Solver-2 6.47 †5.33 4.04 3.55 3.52
SciREI-Solver-2 (ours) 7.06 †6.03 4.33 3.33 3.28

NSR (k = 3.1) ϵ = 10−3 DPM-Solver-2 5.03 †4.64 4.27 4.07 4.01
SciREI-Solver-2 (ours) 5.01 †4.51 3.96 3.79 3.82

NSR (k = 3.1) ϵ = 10−4 DPM-Solver-2 5.22 †4.33 3.70 3.48 3.476
SciREI-Solver-2 (ours) 5.79 †4.72 3.81 3.21 3.23

CelebA 64×64 (discrete-time model (Song et al., 2021a), linear noise schedule)

Uniform time ϵ = 10−3 DPM-Solver-2 15.23 †13.63 10.99 7.41 5.46
SciREI-Solver-2 (ours) 7.25 †6.93 6.32 5.72 5.06

Uniform time ϵ = 10−4 DPM-Solver-2 61.90 †53.40 38.19 16.98 7.24
SciREI-Solver-2 (ours) 20.05 †17.98 14.24 7.93 4.40

logSNR ϵ = 10−3 DPM-Solver-2 3.97 †3.96 4.07 4.22 4.25
SciREI-Solver-2 (ours) 3.78 †3.58 3.33 3.41 3.69

logSNR ϵ = 10−4 DPM-Solver-2 3.27 †3.13 2.90 2.80 2.799
SciREI-Solver-2 (ours) 3.44 †3.18 2.71 2.29 2.39

NSR (k = 3.1) ϵ = 10−3 DPM-Solver-2 6.24 †5.54 4.72 4.27 4.24
SciREI-Solver-2 (ours) 4.97 †4.48 3.81 3.59 3.79

NSR (k = 3.1) ϵ = 10−4 DPM-Solver-2 3.67 †3.04 2.79 2.77 2.78
SciREI-Solver-2 (ours) 3.30 †2.98 2.56 2.25 2.39

comparisons under the same settings and codebase for ImageNet at resolutions of 128×128, 256×256,
and 512×512, as well as for the LSUN bedroom dataset at a resolution of 256×256, due to server
limitations. To ensure fairness in our experiments, we maintain the same settings and codebase for
each sampling algorithm to evaluate the various methods of RD-based and RD-none.

Firstly, we use FID to measure the sampling performance of the sampling algorithms when estimating
derivatives using finite difference (FD) method and recursive derivative (RD) method, respectively.
Here, we set ϕ1(m) = 1 in SciRE-V1 to represent the sampling algorithm based on FD method. Based
on the FID metric of generated samples, with the same codebase, we assess the performance of these
two derivative estimation methods using discrete diffusion models trained on the CIFAR-10 and
CelebA 64×64 datasets. Without loss of generality, we use a consistent NSR trajectory with k = 2,
because SciRE-V1 can achieve the better quality of generated samples for k ∈ [2, 7], as mentioned in
Section H.2. Our numerical experiments demonstrate that, across different initial times, the quality
of generated samples achieved by the SciRE-V1 using RD method consistently outperforms that
of the solver using FD method, as shown in Table 2. These numerical experiments measured by
FID demonstrate that in the domain of diffusion ODEs, the use of the RD method for estimating
derivatives of score function evaluation networks consistently outperforms the traditional FD method.

Secondly, for further investigation of the RD method, we introduce SciREI-Solver (n = 2) in section
C.1, referring to it as SciREI-Solver-2 to align it in form with its counterpart, DPM-Solver-2. We
compare the generative performance of SciREI-Solver-2 and DPM-Solver-2 with the identical settings
on the CIFAR-10 and CelebA 64×64 datasets using various time trajectories and termination times,
as illustrated in Table 3. Table 3 demonstrates that SciREI-Solver-2 based on the RD method exhibits
greater robustness than the DPM-Solver-2 across different time trajectories, especially on the CelebA
64×64 dataset. These experiments measured by FID also simultaneously demonstrate that as NFE
increases, SciREI-Solver-2 based on the RD method consistently outperforms its counterpart DPM-
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Solver-2. Next, we will conduct some sampling comparison experiments for both of SciREI-Solver-2
and the DPM-Solver-2.

Thirdly, we provide the sampling comparisons between the RD-based sampling algorithms (including
SciRE-V1-2 and SciREI-Solver-2) and the baseline algorithm (DPM-Solver-2) on high-resolution
image datasets. In Figure 5, we compare the generation results of the RD-based methods (Solvers:
SciRE-2, SciREI-2) and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the
uniform time trajectory and identical settings, on pre-trained models with ImageNet 128×128 and
LSUN bedroom 256×256. Here, we further compare the generation results of the RD-based methods
and the baseline method on pre-trained models with ImageNet 256×256 and 512×512 datasets, using
6-36 sampling steps with the uniform time trajectory and identical settings. In these experiments, we
can observe that when using 36 NFEs, samples generated by the popular DPM-Solver-2 still exhibit
more noise compared to our proposed SciREI-Solver-2 and SciRE-V1-2 based on the RD method.
Therefore, all these sampling experiments on high-resolution image datasets also demonstrate the
effectiveness of the RD method.

In summary, all experiments-above under the same settings and codebase indicate that the RD method
brings benefits to Taylor-based numerical algorithms in the realm of diffusion ODEs. Therefore,
we strongly recommend using the RDE method, if the sampling algorithms require evaluating the
derivative of the score function evaluation networks.

D Proof of Theorem 3.1 and Corollary 1

D.1 Preliminaries

Throughout this section, we denote NSRmin := min
i
{NSR(ti)}, NSRmax := max

i
{NSR(ti)}, and assume

that ϵθ
(
xψ(τ), ψ(τ)

)
∈ C∞[NSRmin,NSRmax], which means that the total derivatives dkϵθ(xψ(τ),ψ(τ))

dτk exist
and are continuous for k ∈ Z+. Notice that τ := NSR(t), ψ(τ) := rNSR(τ) and the reverse function of
NSR, i.e. rNSR, satisfying t = rNSR(NSR(t)) = ψ(τ). Denote hs := NSR(t) − NSR(s) = τt − τs, and
ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
:= dkϵθ(xψ(τ),ψ(τ))

dτk as k-th order total derivative of ϵθ
(
xψ(τ), ψ(τ)

)
w.r.t. τ. For n ≥ 1, the

n-th order Taylor expansion of ϵθ
(
xψ(τt), ψ(τt)

)
w.r.t. τ at τs is

ϵθ
(
xψ(τt), ψ(τt)

)
=

n∑
k=0

hk
s

k!
ϵ(k)
θ

(
xψ(τs), ψ(τs)

)
+ O(hn+1

s ). (D.1)

For any k ≥ 0, we can approximate the k-th order total derivative term ϵ(k)
θ

(
xψ(τs), ψ(τs)

)
in Eq. (D.1)

by using the first-order difference formula:

ϵ(k)
θ

(
xψ(τs), ψ(τs)

)
=

ϵ(k−1)
θ

(
xψ(τt), ψ(τt)

)
− ϵ(k−1)

θ

(
xψ(τs), ψ(τs)

)
hs

− O(hs). (D.2)

For ease of notation, we denote ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
as Γ(k)(τ). Notice that ϵθ

(
xψ(τ), ψ(τ)

)
= Γ(0)(τ). Then

Eq. (D.2) can be represented as:

Γ(k)(τs) =
Γ(k−1)(τt) − Γ(k−1)(τs)

hs
− O(hs). (D.3)

D.2 Proof of Theorem 3.1

Proof. While n→ ∞, Eq. (D.1) becomes:

Γ(0)(τt) =
∞∑

k=0

hk
s

k!
Γ(k)(τs)

= Γ(0)(τs) +
∞∑

k=1

hk
s

k!
Γ(k)(τs).

(D.4)
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Moving Γ(0)(τs) from the right-hand side of the above equation to the left-hand side and then dividing
both sides of the equation by hs, we can obtain:

Γ(0)(τt) − Γ(0)(τs)
hs

=

∞∑
k=1

hk−1
s

k!
Γ(k)(τs)

= Γ(1)(τs) +
∞∑

k=2

hk−1
s

k!
Γ(k)(τs)

= Γ(1)(τs) +
∞∑

k=2

hk−1
s

k!

(
Γ(k−1)(τt) − Γ(k−1)(τs)

hs
− O(hs)

)

= Γ(1)(τs) +
∞∑

k=2

hk−2
s

k!

(
Γ(k−1)(τt) − Γ(k−1)(τs)

)
−

∞∑
k=2

hk−1
s

k!
O(hs)︸           ︷︷           ︸

remainder Q

= Γ(1)(τs) −
∞∑

k=2

hk−2
s

k!
Γ(k−1)(τs) +

∞∑
k=2

hk−2
s

k!
Γ(k−1)(τt)︸                ︷︷                ︸

R1

−Q

=

(
1 −

1
2

)
Γ(1)(τs) −

∞∑
k=3

hk−2
s

k!
Γ(k−1)(τs) + R1 − Q

=

(
1 −

1
2

)
Γ(1)(τs) −

∞∑
k=3

hk−3
s

k!

(
Γ(k−2)(τt) − Γ(k−2)(τs) − O(h2

s)
)
+ R1 − Q

=

(
1 −

1
2

)
Γ(1)(τs) +

∞∑
k=3

hk−3
s

k!
Γ(k−2)(τs)−

∞∑
k=3

hk−3
s

k!
Γ(k−2)(τt)︸                   ︷︷                   ︸

R2

−O(h2
s) + R1

=

(
1 −

1
2
+

1
6

)
Γ(1)(τs) +

∞∑
k=4

hk−3
s

k!
Γ(k−2)(τs) + R2 + R1 − O(h2

s)

=

(
1 −

1
2!
+

1
3!
−

1
4!

)
Γ(1)(τs) −

∞∑
k=5

hk−4
s

k!
Γ(k−3)(τs) + R1 + R2 + R3 − O(h2

s)

· · ·

=

∞∑
k=1

(−1)k−1

k!
Γ(1)(τs) +

∞∑
i=1

Ri − O(h2
s),

(D.5)

where

R1 =

∞∑
k=2

hk−2
s

k!
Γ(k−1)(τt)

R2 = −

∞∑
k=3

hk−3
s

k!
Γ(k−2)(τt)

R3 =

∞∑
k=4

hk−4
s

k!
Γ(k−3)(τt)

· · ·

Ri = (−1)i+1
∞∑

k=i+1

hk−i−1
s

k!
Γ(k−i)(τt), i ∈ Z+.

(D.6)
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Adding the first term and second term of Ri, i ∈ Z+ separately, we can derive
∞∑

i=1

Ri =

∞∑
k=2

(−1)k

k!
Γ(1)(τt) +

∞∑
k=3

(−1)k+1hs

k!
Γ(2)(τt) +

∞∑
i=3

∞∑
k=i+1

(−1)k+i−1hi−1
s

k!
Γ(i)(τt)︸                               ︷︷                               ︸

O(h2
s )

. (D.7)

Notice that
∞∑

i=3

∞∑
k=i+1

(−1)k+i−1hi−1
s

k!
Γ(i)(τt) =

∞∑
i=3

(−1)i−1hi−1
s Γ

(i)(τt)
∞∑

k=i+1

(−1)k

k!
= O(h2

s), (D.8)

because
∞∑

k=i+1

(−1)k

k! ,∀i ∈ Z+ are all convergent alternating series which can be easily proved with

Leibniz’s test. Then Eq. (D.5) can be shown as:

Γ(0)(τt) − Γ(0)(τs)
hs

=

∞∑
k=1

(−1)k−1

k!
Γ(1)(τs) +

2∑
i=1

∞∑
k=i+1

(−1)k+i−1hi−1
s

k!
Γ(i)(τt) − O(h2

s). (D.9)

Consequently, we can get Γ(1)(τs) by simple manipulation of rearranging and affine transformation
applied to above equation:

Γ(1)(τs) =
e

e − 1
Γ(0)(τt) − Γ(0)(τs)

hs
−

e
e − 1

2∑
i=1

∞∑
k=i+1

(−1)k+i−1hi−1
s

k!
Γ(i)(τt) + O(h2

s)

=
e

e − 1
Γ(0)(τt) − Γ(0)(τs)

hs
−

e
e − 1

(
1
e
Γ(1)(τt) +

e − 2
2e

hsΓ
(2)(τt)

)
+ O(h2

s)

=
e

e − 1
Γ(0)(τt) − Γ(0)(τs)

hs
−
Γ(1)(τt)
e − 1

−
(e − 2)hs

2(e − 1)
Γ(2)(τt) + O(h2

s),

(D.10)

where
∞∑

k=1

(−1)k−1

k!
= 1 − e−1

∞∑
k=2

(−1)k

k!
= e−1

∞∑
k=3

(−1)k+1

k!
= −e−1 +

1
2
=

e − 2
2e

,

(D.11)

for ex =
∞∑

k=0

xk

k! with x = −1.

Notice that we denote ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
as Γ(k)(τ). While using x̃ to approximate x and replacing the

terms like Γ(k)(τ) in Eq. (D.10) with terms like ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
, we can get the results shown in

Theorem 3.1. □

D.3 Proof of Corollary 1

We observe that the differentiability constraint imposed by Theorem 3.1 appears to be rather restrictive.
In order to enhance its broad applicability, we further propose a recursive derivative estimation method
under the assumption of limited differentiability. The corresponding proof process is as follows:

Proof. Assume that ϵθ
(
xψ(τ), ψ(τ)

)
∈ Cn[NSRmin,NSRmax]. While n is a finite positive integer, Eq.

(D.1) becomes:

Γ(0)(τt) =
n∑

k=0

hk
s

k!
Γ(k)(τs) + O(hn+1

s )

= Γ(0)(τs) +
n∑

k=1

hk
s

k!
Γ(k)(τs) + O(hn+1

s ).

(D.12)
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Same as the derivation process in (D.5), we can obtain

Γ(0)(τt) − Γ(0)(τs)
hs

=

n∑
k=1

hk−1
s

k!
Γ(k)(τs) + O(hn

s)

= Γ(1)(τs) +
n∑

k=2

hk−1
s

k!
Γ(k)(τs) + O(hn

s)

= Γ(1)(τs) −
n∑

k=2

hk−2
s

k!
Γ(k−1)(τs) +

n∑
k=2

hk−2
s

k!
Γ(k−1)(τt)︸                ︷︷                ︸

R1

− O(h2
s) + O(hn

s)︸           ︷︷           ︸
O(h2

s )−O(hn
s )=O(h2

s )

=

(
1 −

1
2

)
Γ(1)(τs) +

n∑
k=3

hk−3
s

k!
Γ(k−2)(τs)−

n∑
k=3

hk−3
s

k!
Γ(k−2)(τt)︸                   ︷︷                   ︸

R2

−O(h2
s) + R1

=

(
1 −

1
2
+

1
6

)
Γ(1)(τs) −

n∑
k=4

hk−4
s

k!
Γ(k−3)(τs)+

n∑
k=4

hk−4
s

k!
Γ(k−3)(τt)︸                   ︷︷                   ︸

R3

−O(h2
s) + R1 + R2

· · ·

=

n∑
k=1

(−1)k−1

k!
Γ(1)(τs) +

n−1∑
i=1

Ri − O(h2
s),

(D.13)

where

R1 =

n∑
k=2

hk−2
s

k!
Γ(k−1)(τt)

R2 = −

n∑
k=3

hk−3
s

k!
Γ(k−2)(τt)

R3 =

n∑
k=4

hk−4
s

k!
Γ(k−3)(τt)

· · ·

Rn−1 = (−1)n
n∑

k=n

hk−n
s

k!
Γ(k−n+1)(τt).

(D.14)

Hence adding the first term and second term of Ri, i = 1, 2, . . . , n − 1 separately, we also have

n−1∑
i=1

Ri =

n∑
k=2

(−1)k

k!
Γ(1)(τt) +

n∑
k=3

(−1)k+1hs

k!
Γ(2)(τt) +

n−1∑
i=3

n∑
k=i+1

(−1)k+i−1hi−1
s

k!
Γ(i)(τt)

=

n∑
k=2

(−1)k

k!
Γ(1)(τt) +

n∑
k=3

(−1)k+1hs

k!
Γ(2)(τt) + O(h2

s).

(D.15)

Denote ϕ1(n) =
n∑

k=1

(−1)k−1

k! , ϕ2(n) =
n∑

k=2

(−1)k

k! , and ϕ3(n) =
n∑

k=3

(−1)k+1

k! . Combining (D.13) and (D.15), we

can easily derive Γ(τs, 1) by

Γ(1)(τs) =
1

ϕ1(n)
Γ(0)(τt) − Γ(0)(τs)

hs
−
ϕ2(n)
ϕ1(n)

Γ(1)(τt) −
ϕ3(n)hs

ϕ1(n)
Γ(2)(τt) + O(h2

s). (D.16)

Similarly, while using x̃ to approximate x and replacing the terms like Γ(k)(τ) in Eq. (D.16) with
terms like ϵ(k)

θ

(
xψ(τ), ψ(τ)

)
, we can get the results shown in Corollary 3.1. □
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E Analysis of Recursive Difference

In this Section, we provide some analysis of recursive difference (RD) method. Taking practical
considerations into account for the iterative algorithm, we first introduce a simplified truncation of
the RD method. Subsequently, we conduct a three-tier analysis of this simplified truncation.

E.1 TheMost Simplified Truncation of Recursive Difference

We review that the n-th order Taylor expansion of ϵθ
(
xψ(τs), ψ(τs)

)
w.r.t. τ at τt is

ϵθ
(
xψ(τs), ψ(τs)

)
=

n∑
k=0

hk
t

k!
ϵ(k)
θ

(
xψ(τt), ψ(τt)

)
+ O(hn+1

t ). (E.1)

After substituting this Taylor expansion into the score-integrand form presented in Eq. (3.2) for the
diffusion ODEs, we derive

xs =
αs

αt
xt + αs

n∑
k=0

hk+1
t

(k + 1)!
ϵ(k)
θ

(
xψ(τt), ψ(τt)

)
+ O(hn+2

t ). (E.2)

When n = 2, we have then the following truncation formula:

x̃s =
αs

αt
xt + αs

(
htϵθ(xψ(τt), ψ(τt)) +

h2
t

2
ϵ(1)
θ (xψ(τt), ψ(τt)) +

h3
t

6
ϵ(2)
θ (xψ(τt), ψ(τt)) + O(h4

t )
)
, (E.3)

where x̃s represents the approximate value of xs.

By the RD method in Corollary 3.1, we have

ϵ(1)
θ

(
xψ(τt), ψ(τt)

)
=

1
ϕ1(m)

ϵθ
(
x̃ψ(τs1), ψ(τs1)

)
− ϵθ

(
xψ(τt), ψ(τt)

)
r1ht

−
ϕ2(m)
ϕ1(m)

ϵ(1)
θ

(
xψ(τs1), ψ(τs1)

)
−
ϕ3(m)r1ht

ϕ1(m)
ϵ(2)
θ

(
xψ(τs1), ψ(τs1)

)
+ O(h2

t ).

(E.4)

where τs1 − τt = r1ht. Combining (E.3) with Eq. (E.4), we have

x̃s =
αs

αt
xt + αshtϵθ

(
xψ(τt), ψ(τt)

)
+ αs

h2
t

2

ϵθ
(
x̃ψ(τs1), ψ(τs1)

)
− ϵθ

(
xψ(τt), ψ(τt)

)
ϕ1(m)r1ht

− αs
h2

t

2
ϕ2(m)
ϕ1(m)

ϵ(1)
θ

(
xψ(τs1), ψ(τs1)

)
+ αsh3

t

(
1
6
−
ϕ3(m)r1

2ϕ1(m)

)
ϵ(2)
θ

(
xψ(τs1), ψ(τs1)

)
+ O(h4

t ).

(E.5)

By truncating the term containing h2
t in Eq. (E.5), we obtain the algorithm shown in Algorithm 1:

x̃s ←
αs

αt
xt + αshtϵθ

(
xψ(τt), ψ(τt)

)
+ αs

ht

2

ϵθ
(
x̃ψ(τs1), ψ(τs1)

)
− ϵθ

(
xψ(τt), ψ(τt)

)
ϕ1(m)r1

. (E.6)

According to Eq. (E.5), it appears that we can easily conclude from Eq. (E.6) that the preliminary
result has a local truncation error of O(h2

t ). Nevertheless, our numerical experiments conducted
on different datasets demonstrate that the algorithm 1 derived through this truncation method can
generate high-quality samples with a restricted number of score function evaluations (NFE). Further
details can be found in Appendix H. After careful observation, in fact, this technique partially
eliminates the dependence on derivatives while still containing derivative-related information (such
as the difference between two score function evaluations), thereby mitigating the error propagation
caused by derivative estimation to a certain extent. By repeatedly using this technique, we can derive
our SciRE-V1-3 in Algorithm 2.

Note that the truncation method in Eq. (E.6) is just a simplified truncation for RD method. In
fact, with an even more accurate estimate for ϵ(1)

θ

(
xψ(τs1), ψ(τs1)

)
, we can further truncate the term

containing h3
t , leading to a generalized SciRE-Solver. We leave it for future study.
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E.2 Analysis of theMost Simplified Truncation in RD

Generally, the expression for the first-order derivative can be written as follows by utilizing Eq. (E.1):

Γ(1)(τti ) =
Γ(τti−1 ) − Γ(τti )

hti
−

n∑
k=2

hk−1
ti

k!
Γ(k)(τti ) + O(hn

ti ), (E.7)

where Γ(k)(τ) is used to denote ϵ(k)
θ

(
xψ(τ), ψ(τ)

)
for simplicity. By simply truncating all higher-order

terms, the FD approximation can be obtained:

Γ(1)(τti ) ≈
Γ(τti−1 ) − Γ(τti )

hti
, (E.8)

where we refer to the coefficient 1
hti

of the term Γ(τti−1 ) − Γ(τti ) as the coefficient of FD for ease of
description in the rest of this section. Clearly, the FD method exhibits an approximate error of O(hti ).
In the preceding section, we elucidated the simplified truncation form of the RD method, which
approximates the first-order derivative in the following manner:

Γ(1)(τti ) ≈
1

ϕ1(m)
Γ(τti−1 ) − Γ(τti )

hti
. (E.9)

In the following, we will conduct a three-tier analysis of this simplified truncation form.

Firstly, we observe that it is common to replace (eh − h − 1)/h2 with (eh − 1)/h as the new FD
coefficient within the framework of exponential integrators. We demonstrate that the coefficient of
the simplified RD method exhibits numerical trends similar to the coefficient (eh − 1)/h employed
in the exponential integrator. Clearly, (eh − 1)/h = (heh − h)/h2. Due to the fundamental difference
between their numerators, we only need to consider the numerical behavior between these numerators.
Let ĝ(h) = (heh − h) − (eh − h − 1). Clearly, ĝ(h) = heh − eh + 1 and ĝ(1)(h) = heh. Then, ĝ(h)
reaches its minimum value at h = 0, i.e., ĝ(0) = 0. Then ĝ(h) > 0 and (eh − 1)/h > (eh − h − 1)/h2

when h , 0. This means that the essence of using (eh − 1)/h in the exponential integrator algorithm
is to appropriately amplify the coefficients of the FD method. Besides, since ϕ1(m) < 1, the RD
approximation in Eq. (E.9) also amplifies the coefficients of FD method. Therefore, the RD method
and the equivalent infinitesimal substitution in the exponential integrator share the same numerical
trend. This explains the numerical commonality between different coefficients in Eq. (C.5) and Eq.
(C.6). In Figures 5 and 9, the sampling comparisons for DPM-2 and SciREI-2 vividly illustrate this
numerical commonality.
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Figure 10: Comparison of coefficients between different difference methods. The red curve represents
the recursive difference coefficient ϕ1(m) at m = 3. The blue and yellow curves represent the coeffi-
cients used in the exponential integrator (DPM-Solver and DEIS) and finite difference, respectively.
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Secondly, we present the numerical performance of coefficients among different difference methods,
as shown in Figure 10. Clearly, RD amplifies the coefficients of FD, but overall maintains a similar
trend to FD method. It can be seen as a numerical stretching of FD by a recursive factor. When h is
large, the coefficients based on the exponential integrator exhibit a more pronounced increasing trend
in the positive direction of h compared to RD. In the negative direction of h, two scenarios arise: on
the left side of the intersection point between the RD coefficient function and the coefficient function
employed by the exponential integrator, the RD coefficient value is slightly greater than the value
employed by the exponential integrator; on the right side of the intersection point, the coefficient
value employed by the exponential integrator is noticeably greater than the RD coefficient value. This
difference explain why the algorithm based on the coefficient of the exponential integrator exhibits
over-rendering in a small number of steps, as depicted in Figure 5. Another notable difference is
that, as h approaches 0, both the coefficient and its rate of change for the difference terms using the
exponential integrator surpass those for the RD counterparts. This difference clarifies why algorithms
based on the coefficients of the exponential integrator fail to achieve optimal sample quality in the
case of a larger number of sampling steps, because FD can effectively approximate derivatives when
h→ 0 under the assumption of model continuity and differentiability. This is evidenced in Table 3.

Lastly, we analyze this simplified RD method purely from the perspective of derivative estimation.
Compared to FD method, specifically, such RD method incorporates additional information

1 − ϕ1(m)
ϕ1(m)

Γ(τti−1 ) − Γ(τti )
hti

(E.10)

from other higher-order derivative terms, which may counterbalance with these higher-order terms to
a certain level. The consideration of this counterbalance is mainly based on two factors.

The first piece of evidence is its origin; clearly, as demonstrated in Eq. (3.7) and Figure 2, this addi-
tional information arises from recursive operations on other higher-order derivative terms. Therefore,
this additional information encompasses partial information from approximations of higher-order
derivatives, providing a more comprehensive consideration of the complexity involved in derivative
estimation. We believe that this integrated source of information has the potential to offset, to some
extent, the trends in higher-order terms in Eq. (E.7), making such RD method potentially more
accurate and reliable in estimating derivatives for complex functions.

The second piece of evidence is grounded in the idea that, under certain assumptions, the RD method
can achieve a truncation error of O(h2

ti ). For example, when considering m = 3, one can subtract Eq.
(E.9) from Eq. (E.7), resulting in:

∆
(
Γ(1)(τti )

)
=

1
2
Γ(τti−1 ) − Γ(τti )

hti
+

1
2

htiΓ
(2)(τti ) +

1
3!

h2
tiΓ

(3)(τti ) + O(h3
ti ). (E.11)

By employing Eq. (E.1) in Eq. (E.11), we obtain:

∆
(
Γ(1)(τti )

)
=

1
2
Γ(1)(τti ) +

(
1
2
+ 1

)
1
2

htiΓ
(2)(τti ) +

(
1
2
+ 1

)
1
3!

h2
tiΓ

(3)(τti ) + O(h3
ti )

=
3
4

(
2
3
Γ(1)(τti ) + htiΓ

(2)(τti )
)
+

(
1
2
+ 1

)
1
3!

h2
tiΓ

(3)(τti ) + O(h3
ti ).

(E.12)

According to Lagrange mean value theorem, there exist τ1 and τ2 satisfying τti ∈ (τ1, τ2) and
hti = τ2 − τ1, such that

Γ(2)(τti )(τ2 − τ1) = Γ(1)(τ2) − Γ(1)(τ1).
The most direct assumption is that if Γ(1)(τ1) = Γ(2)(τ2) + 2

3Γ
(1)(τti ), then

∆
(
Γ(1)(τti )

)
= O(h2

ti ).

Certainly, the condition can be further relaxed to if Γ(1)(τ1) = Γ(2)(τ2) + 2
3Γ

(1)(τti ) + O(h2
ti ), then

∆
(
Γ(1)(τti )

)
= O(h2

ti ).

The above analysis of derivative estimation suggests from a simple perspective that, for certain
functions, such RD method can achieve better truncation errors.

Our numerical experiments confirm the applicability of this recursive approach to accelerating
diffusion sampling. Additionally, it is worth noting that the effectiveness of this recursive method
may be associated with specific properties of the diffusion model. We leave the exploration of these
specific attributes for future research.
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F Proof of Theorem 3.2

Under reasonable assumptions, SciRE-V1-k is a k-th order solver.

F.1 Preliminaries

Assumption F.1 The function ϵθ (xt, t) is set to be in Cm, meaning that ϵθ (xt, t) is m times continu-
ously differentiable. Specifically, m ≥ 3 in this paper.

Assumption F.2 ϵθ (xt, t) is a Lipschitz continuous function w.r.t. xt.

Assumption F.3 For ∀t, there exists δ > 0 such that ∃ρ ∈ U(t, δ), (l + 1
2n )ϵ(1)

θ (xt, t) = l(1 +
1

2nl )ϵ
(1)
θ (xt, t) = lϵ(1)

θ

(
xρ, ρ

)
if n ∈ N is large enough. Here U denotes the neighbourhood of t.

As in Appendix D, we denote τ := NSR(t), ψ(τ) := rNSR(τ) and hs := τt − τs. In Appendix B, we
transform the form of the solution to diffusion ODEs as in Eq. (B.3) to the form as in (B.4) by using
the change of variable formula. The resulting solution can be formed as:

xt =
αt

αs
xs + αt

∫ τt

τs

ϵθ
(
xψ(τ), ψ(τ)

)
dτ. (F.1)

Then by substituting the n-th order Taylor expansion of ϵθ
(
xψ(τt), ψ(τt)

)
w.r.t. τ at τs

ϵθ
(
xψ(τt), ψ(τt)

)
=

n∑
k=0

hk
s

k!
ϵ(k)
θ

(
xψ(τs), ψ(τs)

)
+ O(hn+1

s ), (F.2)

for the ϵθ
(
xψ(τt), ψ(τt)

)
in Eq. (F.1), we can derive the exact solution of xt in Eq. (F.1) as follows:

xt =
αt

αs
xs + αt

n∑
k=0

hk+1
s

(k + 1)!
ϵ(k)
θ

(
xψ(τs), ψ(τs)

)
+ O(hn+2

s )

=
αt

αs
xs + αt

n∑
k=0

hk+1
s

(k + 1)!
ϵ(k)
θ (xs, s) + O(hn+2

s ).

(F.3)

F.2 Proof of Theorem 3.2 when k = 2

In this subsection, we prove the global convergence order of SciRE-V1-2 is no less than 1 and is 2
under reasonable assumptions.

Proof. For each iteration step, we first update according to:
hs = τt − τs, (F.4)
s1 = ψ(τs + r1hs), (F.5)

u1 =
αs1

αs
xs + αs1 r1hsϵθ (xs, s) , (F.6)

x̃t =
αt

αs
xs + αthsϵθ (xs, s) + αt

h2
s

2ϕ1(m)r1hs
(ϵθ (u1, s1) − ϵθ (xs, s)) , (F.7)

where x̃t denotes the approximate solution of xt computed by SciRE-V1-2, r1 ∈ (0, 1) is a hyperpa-
rameter so that s1 ∈ (t, s).

Next, taking n = 1 in Eq. (F.3), we can get the exact solution of xt as follows:

xt =
αt

αs
xs + αthsϵθ (xs, s) + αt

h2
s

2
ϵ(1)
θ (xs, s) + O(h3

s) (F.8)

Then by subtracting the last equation from Eq. (F.7) and using u1 − xs1 = O(h2
s), we have

xt − x̃t

αt
=

h2
s

2
ϵ(1)
θ (xs, s) −

h2
s

2ϕ1(m)r1hs
(ϵθ (u1, s1) − ϵθ (xs, s)) + O(h4

s)

=
h2

s

2

(
ϵ(1)
θ (xs, s) −

ϵθ
(
xs1 , s1

)
− ϵθ (xs, s)

ϕ1(m)r1hs

)
+ O(h3

s),
(F.9)
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where ∥ϵθ (u1, s1) − ϵθ
(
xs1 , s1

)
∥ = O(∥u1 − xs1∥) = O(h2

s) under Assumption F.2.

By Assumption F.2 and Lagrange’s mean value theorem, we find that

∥ϵθ
(
xs1 , s1

)
− ϵθ (xs, s) ∥ ≤ L∥xs1 − xs∥ = L∥x′η(s1 − s)∥ = L∥x′ηψ

′(τξ)(τs1 − τs)∥, (F.10)

where η ∈ (ψ(τs1 ), ψ(τs)), τξ ∈ (τs1 , τs) and L is the Lipschitz constant. Since ∥τs1 − τs∥ ≤ ∥τt − τs∥ =
O(hs), the r.h.s. of the above inequation is O(hs).

Besides, by Assumption F.1, we also have

ϵ(1)
θ (xs, s) −

ϵθ
(
xs1 , s1

)
− ϵθ (xs, s)

ϕ1(m)r1hs
= O(1) −

O(hs)
hs
= O(1). (F.11)

Hence xt − x̃t = O(h2
s). We prove that SciRE-V1-2 is at least a first order solver.

Furthermore, we will prove that SciRE-V1-2 is a second order solver under mild condition.

Specifically, while ϕ1(m) = ϕ1(3) = 2/3, by the Lagrange’s mean value theorem, there exists
ξ ∈ (s1, s) such that

ϵθ
(
xs1 , s1

)
− ϵθ

(
xξ, ξ

)
ϕ1(m)r1hs

= ϵ(1)
θ

(
xξ, ξ

)
+ O(hs). (F.12)

Note that ϕ1(m)r1hs = τs1 − τξ and (1 − ϕ1(m))r1hs = τξ − τs, hence

ϵθ
(
xs1 , s1

)
− ϵθ (xs, s)

ϕ1(m)r1hs
=

ϵθ
(
xs1 , s1

)
− ϵθ

(
xξ, ξ

)
ϕ1(m)r1hs

+
ϵθ

(
xξ, ξ

)
− ϵθ (xs, s)

ϕ1(m)r1hs

= ϵ(1)
θ

(
xξ, ξ

)
+ O(hs) +

1
2

ϵθ
(
xξ, ξ

)
− ϵθ (xs, s)

(1 − ϕ1(m))r1hs

= ϵ(1)
θ

(
xξ, ξ

)
+

1
2
ϵ(1)
θ (xs, s) + O(hs).

(F.13)

Combining the above equation with Eq. (F.9), we have

xt − x̃t

αt
=

h2
s

2
ϵ(1)
θ (xs, s) −

h2
s

2
ϵθ

(
xs1 , s1

)
− ϵθ (xs, s)

ϕ1(m)r1hs
+ O(h3

s)

=
h2

s

2
ϵ(1)
θ (xs, s) −

h2
s

2

(
ϵ(1)
θ

(
xξ, ξ

)
+

1
2
ϵ(1)
θ (xs, s)

)
+ O(h3

s)

=
h2

s

4

(
ϵ(1)
θ (xs, s) − 2ϵ(1)

θ

(
xξ, ξ

))
+ O(h3

s),

(F.14)

where ξ ∈ (s1, s). By Assumption F.1, ϵ(2)
θ (xs, s) is bounded hence the first term in the r.h.s. of above

equation is O(h3
s). While for the second term, we find that

ϵ(1)
θ (xs, s) − 2ϵ(1)

θ

(
xξ, ξ

)
=

[
ϵ(1)
θ (xs, s) − (1 +

1
2

)ϵ(1)
θ

(
xs1 , s1

)]
+

[
(1 +

1
2

)ϵ(1)
θ

(
xs1 , s1

)
− 2ϵ(1)

θ

(
xξ, ξ

)]
=

[
ϵ(1)
θ (xs, s) − (1 +

1
4

)ϵ(1)
θ

(
xξ, ξ

)]
+

[
(1 +

1
4

)ϵ(1)
θ

(
xξ, ξ

)
− (1 +

1
2

)ϵ(1)
θ

(
xs1 , s1

)]
+

[
(1 +

1
2

)ϵ(1)
θ

(
xs1 , s1

)
− (1 +

1
2
+

1
4

)ϵ(1)
θ (xs, s)

]
+

[
(1 +

1
2
+

1
4

)ϵ(1)
θ (xs, s) − 2ϵ(1)

θ

(
xξ, ξ

)]
· · ·

(F.15)

We now define group, for example, ϵ(1)
θ (xs, s) − (1 + 1

2 )ϵ(1)
θ

(
xs1 , s1

)
, which is grouped by “[]”. We

also find that for each group, if the coefficient of the first term is l, then the coefficient of the second
term is l + 1

2n after using dichotomy for n times. Note that l ∈ [1, 2) such that l + 1
2n ∈ (1, 2],∀n ∈ N.

Besides, t takes two different values in {s, s1, ξ}. By Eq. (F.10) and Assumption F.3, if n is large
enough, each group is O(hs), for example,

lϵ(1)
θ

(
xs1 , s1

)
−

(
l +

1
2n

)
ϵ(1)
θ (xs, s) = lϵ(1)

θ

(
xs1 , s1

)
− lϵ(1)

θ

(
xρ, ρ

)
= O(hs). (F.16)

29



Under review as a conference paper at ICLR 2024

Hence ϵ(1)
θ (xs, s) − 2ϵ(1)

θ

(
xξ, ξ

)
is O(2nhs). In practice, n is finite, meaning that 2n is bounded and

O(2nhs) = O(hs). Subquently, the proof is completed by
xt − x̃t

αt
= O(h3

s) +
h2

s

4
O(hs) + O(h3

s) = O(h3
s). (F.17)

□

F.3 Proof of Theorem 3.2 when k = 3

In this subsection, we prove the global convergence order of SciRE-V1-3 is no less than 2.

Proof. For each iteration step, we first update according to:
hs = τt − τs, (F.18)
s1 = ψ(τs + r1hs), (F.19)
s2 = ψ(τs + r2hs), (F.20)

u1 =
αs1

αs
xs + αs1 r1hsϵθ (xs, s) , (F.21)

u2 =
αs2

αs
xs + αs2 r2hsϵθ (xs, s) + αs2

hs

ϕ1(m)
(ϵθ (u1, s1) − ϵθ (xs, s)) , (F.22)

x̃t =
αt

αs
xs + αthsϵθ (xs, s) + αt

h2
s

2ϕ1(m)r2hs
(ϵθ (u2, s2) − ϵθ (xs, s)) , (F.23)

where x̃t denotes the approximate solution of xt computed by SciRE-V1-3, r1 ∈ (0, 1) and r2 = 1 − r1
are hyperparameters so that s1, s2 ∈ (t, s).

We firstly prove that u2 − xs2 = O(h3
s):

u2 =
αs2

αs
xs + αs2 r2hsϵθ (xs, s) + αs2

hs

ϕ1(m)
(ϵθ (u1, s1) − ϵθ (xs, s))

=
αs2

αs
xs + αs2 r2hsϵθ (xs, s) + αs2

hs

ϕ1(m)
(
ϵθ

(
xs1 , s1

)
− ϵθ (xs, s)

)
︸                                                                           ︷︷                                                                           ︸

xs2

+O(h3
s), (F.24)

by u1 − xs1 = O(h2
s) and Assumption F.2.

Next, taking n = 2 in Eq. (F.3), we can get the exact solution of xt as follows:

xt =
αt

αs
xs + αthsϵθ (xs, s) + αt

2∑
k=1

hk+1
s

(k + 1)!
ϵ(k)
θ (xs, s) + O(h4

s) (F.25)

Then by subtracting the last equation from Eq. (F.23) and using u1 − xs1 = O(h2
s), we have

xt − x̃t

αt
=

2∑
k=1

hk+1
s

(k + 1)!
ϵ(k)
θ (xs, s) −

h2
s

2ϕ1(m)r2hs
(ϵθ (u2, s2) − ϵθ (xs, s)) + O(h4

s)

=
h2

s

2
ϵ(1)
θ (xs, s) +

h3
s

3!
ϵ(2)
θ (xs, s) −

h2
s

2
ϵθ

(
xs2 , s2

)
− ϵθ (xs, s)

ϕ1(m)r2hs
+ O(h4

s),

(F.26)

where ∥ϵθ (u2, s2) − ϵθ
(
xs2 , s2

)
∥ = O(∥u2 − xs2∥) = O(h3

s). Similar to the proof in F.2, we have

xt − x̃t

αt
=

2∑
k=1

hk+1
s

(k + 1)!
ϵ(k)
θ (xs, s) −

h2
s

2
ϵθ

(
xs2 , s2

)
− ϵθ (xs, s)

ϕ1(m)r2hs
+ O(h4

s)

=
h3

s

3!
ϵ(2)
θ (xs, s) +

h2
s

2
ϵ(1)
θ (xs, s) −

h2
s

2

(
ϵ(1)
θ

(
xξ, ξ

)
+

1
2
ϵ(1)
θ (xs, s)

)
+ O(h3

s)

=
h3

s

3!
ϵ(2)
θ (xs, s) +

h2
s

4

(
ϵ(1)
θ (xs, s) − 2ϵ(1)

θ

(
xξ, ξ

))
+ O(h3

s)

= O(h3
s) + 2nO(h3

s) + O(h3
s) = O(h3

s),

(F.27)

where ξ ∈ (s2, s) and n ∈ N is finite. Hence we prove that the global convergence order of SciRE-V1-3
is no less than 2. □
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G Algorithms of SciRE-Solver

In Section 3.2, we propose the recursive difference (RD) method for approximating derivatives, the
conclusion as shown in Theorem 3.1 and Corollary 3.1. In this section, we discuss in detail the
SciRE-Solver based on RD method.

G.1 SciRE-V1 with Backward Difference

Here, we introduce a simple variant based on SciRE-V1-2, which utilizes RD method and backward
difference estimation for the estimation of derivative of the score function. The specific details are as
described in Algorithm 4.

Algorithm 4 SciRE-V1-2m

Require: initial value xT , time trajectory {ti}Ni=0, model ϵθ,m ≥ 3, empty cache R.
1: Denote hi−1 := NSR(ti−1) − NSR(ti),where i = 1, . . . ,N.

2: x̃tN ← xT , R
cache
← ϵθ

(
x̃tN , tN

)
3: x̃tN−1 ←

αtN−1
αtN

x̃tN + αtN−1 hNϵθ
(
x̃tN , tN

)
4: R

cache
← ϵθ

(
x̃tN−1 , tN−1

)
5: for i← N − 2 to 1 do
6: ri ← ϕ1(m) hi

hi−1
, Di+1 ← ϵθ(x̃ti+1 , ti+1) − ϵθ(x̃ti+2 , ti+2)

7: x̃ti ←
αti
αti+1

x̃ti+1 + αti hiϵθ
(
x̃ti+1 , ti+1

)
+ αti

hi
2ϕ1(m)ri

Di+1

8: R
cache
← ϵθ

(
x̃ti , ti

)
9: end for

Return: x̃0.

G.2 Algorithms of SciRE-V2

In this section, we introduce SciRE-V2, which is based on ODE Eq. (3.3) and the RD method.
The derivation principle and convergence order of the SciRE-V2 algorithms remain consistent with
SciRE-V1, while the specific iteration details are shown in Algorithms 5, 6, and 7.

Algorithm 5 SciRE-V2-2

Require: initial value xT , time trajectory {ti}Ni=0, model xθ,m ≥ 3.
1: x̃tN ← xT , r1 ←

1
2

2: for i← N to 1 do
3: hi ← 1/NSR(ti−1) − 1/NSR(ti)
4: si ← rNSR (1/(1/NSR(ti) + r1hi))
5: x̃si ←

σsi
σti

x̃ti + σsi r1hixθ
(
x̃ti , ti

)
6: x̃ti−1 ←

σti−1
σti

x̃ti + σti−1 hixθ
(
x̃ti , ti

)
+ σti−1

hi
2ϕ1(m)r1

(
xθ

(
x̃si , si

)
− xθ

(
x̃ti , ti

))
7: end for

Return: x̃0.

G.3 Analytical Formulation of the function rNSR(·)

The computational costs associated with computing rNSR(·) are negligible. This is due to the fact that
for the noise schedules of αt and σt employed in previous DMs (referred to as “linear” and “cosine”
in (Ho et al., 2020; Nichol & Dhariwal, 2021)), both rNSR(·) and its inverse function NSR(t) have
analytic formulations. We mainly consider the variance preserving type here, since it is the most
widely-used type. The functions for other types (variance exploding and sub-variance preserving
type) can be similarly derived.
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Linear Noise Schedule (Ho et al., 2020). In fact,

αt = exp
(
−

(β1 − β0)
4

t2 −
β0

2
t
)
,

where β0 = 0.1 and β1 = 20, following (Song et al., 2021c; Lu et al., 2022b). As σt =

√
1 − α2

t , we
can compute NSR(t) analytically. Specifically, the inverse function is

t = rNSR(τ) =
1

β1 − β0

(√
β2

0 + 2 (β1 − β0) log
(
1 + τ2) − β0

)
,

where τ = NSR(t). In order to mitigate the influence of numerical issues, we have the option of
calculating the value of t using the alternative expression provided below:

t = rNSR(τ) =
2 log

(
1 + τ2

)
√
β2

0 + 2 (β1 − β0) log
(
1 + τ2) + β0

.

Algorithm 6 SciRE-V2-3

Require: initial value xT , time trajectory {ti}Ni=0, model xθ,m ≥ 3.
1: x̃tN ← xT , r1 ←

1
3 , r2 ←

2
3

2: for i← N to 1 do
3: hi ← 1/NSR(ti−1) − 1/NSR(ti)
4: si1 , si2 ← rNSR (1/(1/NSR(ti) + r1hi)) , rNSR (1/(1/NSR(ti) + r2hi))
5: x̃si1

←
σsi1
σti

x̃ti + σsi1
r1hixθ

(
x̃ti , ti

)
6: x̃si2

←
σsi2
σti

x̃ti + σsi2
r2hixθ

(
x̃ti , ti

)
+ σsi2

r2hi
2ϕ1(m)r1

(
xθ

(
x̃si1

, si1

)
− xθ

(
x̃ti , ti

))
7: x̃ti−1 ←

σti−1
σti

x̃ti + σti−1 hixθ
(
x̃ti , ti

)
+ σti−1

hi
2ϕ1(m)r2

(
xθ

(
x̃si2

, si2

)
− xθ

(
x̃ti , ti

))
8: end for

Return: x̃0.

Algorithm 7 SciRE-V2-2m

Require: initial value xT , time trajectory {ti}Ni=0, model xθ,m ≥ 3, empty cache R.
1: Denote hi−1 := 1/NSR(ti−1) − 1/NSR(ti), ĥi−1 := NSR(ti−1) − NSR(ti),where i = 1, . . . ,N.

2: x̃tN ← xT , R
cache
← xθ

(
x̃tN , tN

)
3: x̃tN−1 ←

σtN−1
σtN

x̃tN + σtN−1 hNxθ
(
x̃tN , tN

)
4: R

cache
← xθ

(
x̃tN−1 , tN−1

)
5: for i← N − 2 to 1 do
6: ri ← ϕ1(m) ĥi

ĥi−1
, Di+1 ← xθ(x̃ti+1 , ti+1) − xθ(x̃ti+2 , ti+2)

7: x̃ti ←
σti
σti+1

x̃ti+1 + σti hixθ
(
x̃ti+1 , ti+1

)
+ σti

hi
2ϕ1(m)ri

Di+1

8: R
cache
← xθ

(
x̃ti , ti

)
9: end for

Return: x̃0.

Moreover, we solve diffusion ODEs within the interval [ϵ,T ], where T is set to 1.

Cosine Noise Schedule (Nichol & Dhariwal, 2021). Denote

αt = cos
(
π

2
·

t + s
1 + s

/ s
1 + s

)
,

where s = 0.008, following (Nichol & Dhariwal, 2021). As σt =

√
1 − α2

t , we can compute NSR(t)
analytically. Denote τ = NSR(t), and define the function φ(τ) as follows:

φ(τ) = −
1
2

log
(
1 + τ2

)
.
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Then the inverse function is

t = rNSR(τ) =
2(1 + s)

π
arccos

(
eφ(τ)+log cos

(
πs

2(1+s)

))
− s.

Moreover, we solve diffusion ODEs within the interval [ϵ,T ], where T is set to 0.9946, following
(Lu et al., 2022b).

G.4 SciRE-V1-agile

In order to facilitate the exploration of more possibilities of the SciRE-V1 our proposed and to fully
utilize the given number of score function evaluations (NFE), we defined a simple combinatorial
version based on SciRE-V1-k and named as SciRE-V1-agile. This version is based on whether the
given NFE is divisible by k. If it is not divisible, solver-k is used as much as possible first, and then
smaller order SciRE-V1 or DDIM are used to supplement.

To achieve this, when given a fixed budget N for the number of score function evaluations, we
evenly divide the given interval into M = (⌊N/3⌋ + 1) segments. Subsequently, we carry out M
sampling steps, adjusting based on the remainder R when dividing N by 3 to ensure a precise total of
N evaluations.

When R = 0, we initiate M − 2 SciRE-V1-3 steps, succeeded by 1 SciRE-V1-2 step and 1 DDIM
step. This results in a total of 3 ·

(
N
3 − 1

)
+ 2 + 1 = N evaluations.

In the case of R = 1, we begin with M − 1 SciRE–V1-3 steps, followed by 1 DDIM step. This yields
a total of 3 ·

(
N−1

3

)
+ 1 = N evaluations.

Lastly, when R = 2, we conduct M − 1 SciRE–V1-3 steps, succeeded by 1 SciRE–V1-2 step. This
leads to a cumulative count of 3 ·

(
N−2

3

)
+ 2 = N score function evaluations.

Our empirical observations show that using this time step design can enhance the quality of image
generation. With the implementation of the SciRE–V1 algorithm, high-quality samples can be
generated in just 20 steps, such as achieving a 2.42 FID result on CIFAR-10 with just 20 NFE.

G.5 Sampling from Discrete-Time DMs

SciRE-V1 aims to solve continuous-time diffusion ODEs. For DMs trained on discrete-time labels,
we need to firstly wrap the model function to a noise prediction model that accepts the continuous
time as the input. In the subsequent discussion, we examine the broader scenario of discrete-time
DMs, specifically focusing on two variants: the 1000-step DMs (Ho et al., 2020) and the 4000-step
DMs (Nichol & Dhariwal, 2021). Discrete-time DMs (Ho et al., 2020) train the noise prediction
model at N fixed time steps {tn}Nn=1, and the value of N is typically set to either 1000 or 4000 in
practice. The implementation of the 4000-step DMs (Nichol & Dhariwal, 2021) entails mapping the
time steps of the 4000-step DMs to the range of the 1000-step DMs. Specifically, the noise prediction
model is parameterized as ϵ̃θ

(
xn,

1000n
N

)
, where xn is corresponding to the value at time tn+1, and n

ranges from 0 to N − 1. In practice, these discrete-time DMs commonly employ uniform time steps
between [0,T ], then tn = nT

N , for n = 1, . . . ,N.

As sated by Lu et al. (2022b), the discrete-time noise prediction model is limited in predicting noise
levels for times less than the smallest time t1. Given that t1 = T

N and the corresponding discrete-time
noise prediction model at time t1 is ϵ̃θ (x0, 0), it is necessary to ”scale” the discrete time steps from
[t1, tN] =

[
T
N ,T

]
to the continuous time range [ϵ,T ]. However, the question of which scaling approach

would be beneficial to the corresponding sampling algorithm remains an open problem.

In our codebase, we employ two types of scaling recommended by Lu et al. (2022b) as follows.

Discrete-1. Let ϵθ(·, t) = ϵθ
(
·, T

N

)
for t ∈

[
ϵ, T

N

]
, and scale the discrete time steps [t1, tN] =

[
T
N ,T

]
to

the continuous time range
[

T
N ,T

]
. Then, the continuous-time noise prediction model is defined by

ϵθ(x, t) = ϵ̃θ

(
x, 1000 ·max

(
t −

T
N
, 0

))
,
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where the continuous time t ∈
[
ϵ, T

N

]
maps to the discrete input 0 , and the continuous time T maps to

the discrete input 1000(N−1)
N .

Discrete-2. Scale the discrete time steps [t1, tN] =
[

T
N ,T

]
to the continuous time range [0,T ]. In this

case, the continuous-time noise prediction model is defined by

ϵθ(x, t) = ϵ̃θ

(
x, 1000 ·

(N − 1)t
NT

)
,

where the continuous time 0 maps to the discrete input 0 , and the continuous time T maps to the
discrete input 1000(N−1)

N .

By such reparameterization, the noise prediction model can adopt the continuous-time steps as
input, which enables SciRE-V1 to perform sampling not only for continuous-time DMs but also for
discrete-time DMs.

G.6 Conditional Sampling by SciRE-Solver

With a simple modification, following the settings provided by Lu et al. (2022b), SciRE-Solver can
be used for conditional sampling. The conditional generation requires sampling from a conditional
diffusion ODE, as stated in (Song et al., 2021c; Dhariwal & Nichol, 2021). Specifically, by following
the classifier guidance method (Dhariwal & Nichol, 2021), the conditional noise prediction model can
defied as ϵθ (xt, t, y) := ϵθ (xt, t) − s · σt∇x log pt (y | xt; θ). Here, pt (y | xt; θ) represents a pre-trained
classifier, and s denotes the classifier guidance scale. Thus, one can utilize SciRE-Solver to solve this
diffusion ODE for fast conditional sampling.

G.7 SupportedModels

SciRE-Solver support four types of diffusion probabilistic models, including the noise prediction
model ϵθ (Ho et al., 2020; Rombach et al., 2021), the data prediction model xθ (Ramesh et al., 2022),
the velocity prediction model vθ (Ho et al., 2022) and marginal score function sθ (Song et al., 2021c).
Here, we follow the configurations provided by Lu et al. (2022b;c).

H Experiment Details

In this section, we provide more details on SciRE-V1 and further demonstrate the performance
of SciRE-V1 on both discrete-time DMs and continuous-time DMs. Specifically, we consider the
1000-step DMs (Ho et al., 2020) and the 4000-step DMs (Nichol & Dhariwal, 2021), and consider the
end time ϵ and time trajectory for sampling. We test our method for sampling the most widely-used
variance-preserving (VP) type DMs (Sohl-Dickstein et al., 2015; Song et al., 2021c). In this case, we
have α2

t + σ
2
t = 1 for all t ∈ [0,T ]. In spite of this, our method and theoretical results are general and

independent of the choice of the noise schedule αt and σt. In all experiments, the number of NFE
represents the sampling steps. For early experiments, we evaluate SciRE-V1 on NVIDIA TITAN
X GPUs. For each experiments, we draw 50K samples and assess sample quality using the widely
adopted FID score (Heusel et al., 2017), where lower FID generally indicate better sample quality. In
order to facilitate the exploration of more possibilities of the SciRE-V1 our proposed and to fully
utilize the given number of score function evaluations (NFE), we defined a simple combinatorial
version based on SciRE-V1-k and named as SciRE–V1-agile, as detailed in Appendix H.

H.1 End Time of Sampling

Theoretically, we need to solve diffusion ODEs from time T to time 0 to generate samples. Practically,
the training and evaluation for the noise prediction model ϵθ (xt, t) usually start from time T to time ϵ
to avoid numerical issues for t near to 0, where ϵ ≥ 0 is a hyperparameter (Song et al., 2021c). In
contrast to the sampling methods based on diffusion SDEs (Ho et al., 2020; Song et al., 2021c), we,
like DPM-Solver (Lu et al., 2022b), do not incorporate the “denoising” trick (i.e., setting the noise
variance to zero) in the final step at time ϵ. Instead, we solely solve diffusion ODEs from T to ϵ using
the SciRE-V1.
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H.2 Time trajectories

In SciRE-V1, it is necessary to specify a time trajectory. Although SciRE-V1 can generate high-
quality samples in a few steps using existing quadratic and uniform time trajectories, it has been
demonstrated in experiments in (Lu et al., 2022b) and (Zhang & Chen, 2023) that the optimal
time trajectory can further improve the sampling efficiency. Here, we present two parametrizable
alternative methods for the NSR function to compute the time trajectory, named as NSR-type and
Sigmoid-type time trajectories. Let {ti}Ni=0 be the time trajectory of diffusion probabilistic models,
where tN = T and t0 = ϵ ≥ 0. In the context of fast sampling, it is always desirable for the number N
of time points in the time trajectory to be as small as possible. However, the selection of the optimal
time trajectory remains an open problem for the few-step sampling regime of diffusion probabilistic
models. In this work, we hypothesize that selecting a time trajectory with sparser time points in
the middle and relatively denser time points at the two ends would be beneficial for improving the
quality of sample generation. To validate this hypothesis, inspired by the logarithmic and sigmoid
functions, we propose two parametrizable alternative methods for the NSR function to compute the
time trajectory, named as NSR-type and Sigmoid-type time trajectories, respectively.

NSR-type: For a given starting time tT and ending time t0 of the sampling, the time values at the
intermediate endpoints ti of NSR-type time trajectory are obtained as follows:

1. transT = − log(NSR(tT ) + k · NSR(t0)),
2. trans0 = − log(NSR(t0) + k · NSR(t0)),
3. transi = transT + i · trans0−transT

N ,

4. ti = rNSR(e−transi − k · NSR(t0)),

where k is a hyperparameter that controls the flexibility of NSR-type time trajectory.

In our experiments, we found that relatively good results can be obtained when k ∈ [2, 7]. This means
that when using this kind of time trajectory, one can consider setting the value of k within this range.

Sigmoid-type: For a given starting time tT and ending time t0 of the sampling, the time values at
the intermediate endpoints ti of Sigmoid-type time trajectory are obtained as follows:

1. transT = − log(NSR(tT )), trans0 = − log(NSR(t0)),
2. central = k · transT + (1 − k) · trans0,
3. shiftT = transT − central, shift0 = trans0 − central,
4. scale = shiftT + shift0,

5. sigmT = sigmoid
(

shiftT
scale

)
, sigm0 = sigmoid

(
shift0
scale

)
,

6. sigmi = sigmT + i · sigm0−sigmT
N ,

7. transi = scale · logistic(sigmi) + central,
8. ti = rNSR(e−transi ),

where k is a hyperparameter that controls the flexibility of Sigmoid-type time trajectory.

Empirically, we suggest using the NSR-type time trajectory. However, when NFE is less than or
equal to 15, it is recommended to try using the Sigmoid-type time trajectory. The generation quality
measured by FID of NSR-type time trajectory and Sigmoid-type time trajectory are shown in Table (9)
and Table (8), respectively. Besides, we also demonstrate the efficiency of our proposed algorithms
by using conventional time-quadratic trajectory in Table (6). In these experimental results, NSR-type
time trajectory is better than time-quadratic trajectory.

H.3 Comparing sample quality with different samplers

We show the detailed FID results of different sampling methods for DMs on CIFAR-10 and CelebA
64×64 with discrete-time or continuous-time pre-trained models in Table 1. We utilize the code and
checkpoint provided in (Ho et al., 2020; Song et al., 2021c; Nichol & Dhariwal, 2021). Specifically,
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Table 4: Generation quality measured by FID ↓ of different sampling methods for DMs on the
pre-trained discrete-time models (Ho et al., 2020; Song et al., 2021a) of CIFAR-10 and CelebA
64×64.

Trajectory Initial Time Sampling method \NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al., 2020), linear noise schedule)

logSNR ϵ = 10−3

DDIM 16.08 12.43 9.28 5.36 4.55
DPM-Solver-2 5.18 †4.42 4.05 3.97 3.97
DPM-Solver-3 7.39 4.60 †4.33 †3.98 †3.97
SciRE-V1-2 (ours) 5.48 †4.55 3.96 3.66 3.71
SciRE-V1-3 (ours) 8.53 5.00 †4.34 †3.66 †3.62

logSNR ϵ = 10−4

DDIM 17.40 13.12 9.54 5.03 4.13
DPM-Solver-2 6.40 †5.26 4.02 3.56 3.51
DPM-Solver-3 9.52 5.17 †3.80 †3.53 †3.50
SciRE-V1-2 (ours) 6.48 †5.35 4.01 3.34 3.27
SciRE-V1-3 (ours) 11.71 5.99 †4.15 †3.30 †3.163

NSR (k = 2) ϵ = 10−3

DDIM 13.58 10.63 8.12 5.03 4.40
DPM-Solver-2 4.91 †4.51 4.19 4.00 3.96
DPM-Solver-3 7.33 4.97 †4.56 †4.00 †3.96
SciRE-V1-2 (ours) 4.49 †4.12 3.74 3.70 3.76
SciRE-V1-3 (ours) 5.29 4.19 †3.94 †3.76 †3.71

NSR (k = 2) ϵ = 10−4

DDIM 15.51 11.86 8.77 4.86 4.07
DPM-Solver-2 5.38 †4.46 3.78 3.53 3.51
DPM-Solver-3 7.29 4.03 †3.66 †3.52 †3.50
SciRE-V1-2 (ours) 5.91 †4.76 3.88 3.30 3.28
SciRE-V1-3 (ours) 9.10 4.52 †4.07 †3.24 †3.167

CelebA 64×64 (discrete-time model (Song et al., 2021a), linear noise schedule)

logSNR ϵ = 10−3

DDIM 14.37 11.91 9.66 6.13 5.15
DPM-Solver-2 3.952 †3.953 4.05 4.21 4.24
DPM-Solver-3 3.79 3.91 †4.05 †4.26 †4.25
SciRE-V1-2 (ours) 5.39 †4.51 3.76 3.49 3.71
SciRE-V1-3 (ours) 4.91 3.65 †3.29 †3.09 †3.41

logSNR ϵ = 10−4

DDIM 12.81 10.28 7.98 4.52 3.59
DPM-Solver-2 3.26 †3.14 2.92 2.82 2.82
DPM-Solver-3 3.93 2.91 †2.85 †2.82 †2.81
SciRE-V1-2 (ours) 4.29 †3.70 2.87 2.37 2.43
SciRE-V1-3 (ours) 5.04 3.43 †2.58 †2.06 †2.20

NSR (k = 2) ϵ = 10−3

DDIM 13.08 10.99 8.96 5.88 4.40
DPM-Solver-2 5.39 †4.93 4.37 4.24 4.236
DPM-Solver-3 6.14 4.77 †4.41 †4.24 †4.24
SciRE-V1-2 (ours) 4.61 †4.20 3.58 3.56 3.76
SciRE-V1-3 (ours) 4.75 3.33 †3.04 †3.15 †3.51

NSR (k = 2) ϵ = 10−4

DDIM 11.88 9.59 7.53 4.38 3.54
DPM-Solver-2 3.11 †2.91 2.88 2.79 2.81
DPM-Solver-3 2.94 2.88 †2.87 †2.80 †2.81
SciRE-V1-2 (ours) 3.95 †3.39 2.61 2.31 2.43
SciRE-V1-3 (ours) 4.47 2.68 †2.29 †2.03 †2.20

we employ their checkpoint 8 of the “VP deep” type. In this table, we compare the FID achieved
by our proposed SciRE-V1 with the best FID reported in existing literature at the same NFE. We
consistently use the NSR-type time trajectory with parameter k = 3.1 for SciRE-V1 on the discrete
models of CIFAR-10 and CelebA 64×64 datasets. For continuous models on the CIFAR-10 dataset,
we use a Sigmoid-type time trajectory with parameter k = 0.65 for the SciRE-Solver when the NFE
is less than 15. When NFE is greater than or equal to 15, we consistently use an NSR-type time
trajectory with k = 3.1. In order to objectively compare the quality of generated samples for the
CelebA 64×64 dataset, given the presence of different FID statistical data, we utilized the FID stats
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employed by Liu et al. (2022b) in Tables 1, 6 and 9, and utilized the FID stats employed by Lu et al.
(2022b) in Tables 4, 3 and 2. Figure 7 illustrates the FIDs achieved by different samplers at various
NFE levels. Moreover, in Table 5, we also evaluate SciRE-V1, DPM-Solver and DDIM with the
same settings on the pre-trained model of high-resolution ImageNet 128×128 dataset (Dhariwal &
Nichol, 2021), refer to Figures 11 and 12 for the comparisons of generated samples. In all tables, the
results † means the actual NFE is smaller than the given NFE.

In Table 4, in order to ensure fairness, we compare the generation performance of SciRE-V1 with
DPM-Solver and DDIM on discrete models (Ho et al., 2020; Song et al., 2021a) of CIFAR-10 and
CelebA 64×64 datasets using the same trajectories, settings and codebase. In this experiment, we
employ different time trajectories to evaluate the sampling performance of each sampling algorithm,
such as the NSR trajectory and the logNSR trajectory (Lu et al., 2022b). Unlike in Table 1 with
parameter k = 3.1, we consistently use parameter k = 2 for the NSR time trajectory in Table 4, in
order to showcase the impact of different k values on the samplers. Meanwhile, we also compare the
performance of generative samples for these three samplers at different sampling endpoints, such as
1e − 3 and 1e − 4.

Tables 1 and 4 demonstrate that the SciRE-V1 attains SOTA sampling performance with limited NFE
on both discrete-time and continuous-time DMs in comparison to existing training-free sampling
algorithms. Such as, in Table 1, we achieve 3.48 FID with 12 NFE and 2.42 FID with 20 NFE for
continuous-time DMs on CIFAR10, respectively. Furthermore, with fewer NFE, SciRE-V1 surpass
the benchmark values demonstrated in the original paper of the proposed pre-trained model. For
example, we reach SOTA value of 2.40 FID with no more than 100 NFE for continuous-time DMs
and of 3.15 FID with 84 NFE for discrete-time DMs on CIFAR-10, as well as of 2.17 FID with 18
NFE for discrete-time DMs on CelebA 64×64. Moreover, SciRE-V1 can also achieve SOTA sampling
performance within 100 NFE for both the NSR time trajectory with different parameter values k and
the logSNR time trajectory, as shown in Tables 1 and 4. Especially, in Table 4, DPM-Solver is more
likely to achieve better sampling performance within 15 NFE for the logSNR time trajectory and
the NSR time trajectory with k = 2. However, when NFE exceeds 15, ScrRE-Solver becomes more
advantageous. Moreover, when the endpoint of the sampling is set at 1e − 4, both with the logSNR
time trajectory and NSR time trajectory (k = 2), SciRE-V1 can achieve SOTA sampling performance
between 50 NFE and 100 NFE.

In Table 5, we also evaluate SciRE-V1, DPM-Solver and DDIM on the high-resolution ImageNet
128×128 dataset (Dhariwal & Nichol, 2021). For the sake of fairness, we use the same uniform time
trajectory, the same codebase, and the same settings to evaluate SciRE-V1-2, DPM-Solver-2, and
DDIM for 10, 12, 15, 20, and 50 NFEs. The numerical experiment results report that SciRE-V1-2
achieved 5.58 FID with 10 NFE and 3.67 FID with 20 NFE, respectively, while DMP-Solver-2 only
achieved 4.17 FID with 50 NFE. In all these different NFEs, SciRE-V1-2 outperforms DPM-Solver-2.

In summary, within 20 NFE, SciRE-V1 with NSR trajectory (k = 3.1) achieves better FID than
existing training-free solvers (Bao et al., 2022; Song et al., 2021a; Zhang & Chen, 2023; Lu et al.,
2022b; Liu et al., 2022b; Li et al., 2023) for CIFAR-10 and CelebA 64×64 datasets, as shown Table
1. Meanwhile, within 100 NFE (or even 1000 NFE), existing solvers in the context of discrete
models on CIFAR-10 dataset are hardly able to achieve an FID below 3.45, as shown in Table 1.
On the other hand, SciRE-V1, with different time trajectories such as logNSR trajectory and NSR
trajectory, can achieve an FID below 3.17, and even surpass the 3.16 FID obtained by DDPM at
1000 NFE, as shown in Tables 1 and 4. For the continuous VP-type model on CIFAR-10, SciRE-V1
also surpasses the 2.41 FID obtained by Song et al. (2021c) using SDE solver with 1000 NFE. In
Table 4, under the time trajectories, settings and the same codebase, SciRE-V1 outperforms the
DPM-Solver (Lu et al., 2022b) widely used in stable diffusion (Rombach et al., 2021). Specifically,
SciRE-V1 achieves an FID of 3.16 and 2.03 within 100 NFE on CIFAR-10 and CelebA 64×64
datasets respectively, whereas DPM-Solver struggles to achieve FID values lower than 3.50 and 2.79
respectively on the same datasets. Furthermore, the FID comparison on the high-resolution 128×128
dataset presented in Table 5 suggests that SciRE-V1 also possesses advantages in sample generation
tasks involving high-resolution image datasets. For more random sampling sample comparisons on
different high-resolution (≥128×128) image datasets, please refer to Figures 11, 12, 13, 17, 18, 19,
and 20.
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Table 5: Generation quality measured by FID ↓ of different sampling methods with the same codebase
for DMs on the pre-trained discrete-time model of Imagenet 128×128 (Dhariwal & Nichol, 2021).

Trajectory Initial Time Sampling method \NFE 10 12 15 20 50
Imagenet 128×128 (with classifier guidance: scale=1.25, under the same codebase)

Uniform time ϵ = 10−3
DDIM 9.33 7.55 6.07 4.91 3.51
DPM-Solver-2 10.17 7.78 †6.68 5.46 4.17
SciRE-V1-2 (our) 5.58 4.73 †4.27 3.67 3.36

Table 6: SciRE-V1 with time-quadratic trajectory

Initial time Sampling method \ NFE 12 15 20 50 100

CIFAR-10 (discrete-time model (Ho et al., 2020))

ϵ = 10−3 SciRE-V1-2 4.86 †4.10 3.56 3.74 3.83
SciRE-V1-3 19.37 11.18 †7.48 †3.94 †3.85

ϵ = 10−4 SciRE-V1-2 6.13 †5.12 3.83 3.31 3.27
SciRE-V1-3 22.39 13.09 †8.54 †3.45 †3.22

CIFAR-10 (VP deep continuous-time model (Song et al., 2021c))

SciRE-V1-2 5.00 †4.24 3.23 2.59 2.53
ϵ = 10−4 SciRE-V1-3 12.53 7.33 †5.43 †2.64 †2.50

SciRE-V1-agile 5.03 4.24 3.21 2.59 2.51
Initial time Sampling method \ NFE 12 15 20 30 50

CelebA 64×64 (discrete-time model (Song et al., 2021a))

ϵ = 10−3 SciRE-V1-2 5.83 †4.67 3.92 3.77 3.86
SciRE-V1-3 8.72 5.06 †3.81 †3.31 †3.56

ϵ = 10−4 SciRE-V1-2 4.24 †3.27 2.46 2.23 2.20
SciRE-V1-3 11.08 5.62 †3.53 †2.13 †2.03

H.4 Ablations study

H.4.1 Different orders and Starting times

Order We compare the sample quality with different orders of SciRE-V1-2,3. However, in practice,
the actual NFE may be smaller than the given NFE, for example, given the NFE=15, the actucal
NFE of SciRE-V1-2 is 14. To mitigate this problem, we propose the SciRE-V1-agile method for
continuous models. We compare the results of models with different orders on CIFAR-10 and CelebA
64×64 datasets. Our results indicate that if NFE is less than 20, SciRE-V1-2 outperforms SciRE-V1-3,
or the latter variant is superior – depending on the specific use case.

Starting time We also compare SciRE-V1-2,3 with different starting times ϵ = 10−3 and ϵ = 10−4.
Corresponding results are placed in Tables 6 and 9. We use time-quadratic trajectory and NSR-type

Table 7: SciRE-V1-agile with NSR trajectory and starting time 1e − 4.

k ϕ1(m)\ NFE 12 15 20 50 100

CIFAR-10 (VP deep continuous-time model (Song et al., 2021c))

k = 3.1 ϕ1(m) = ϕ1(3) 6.93 3.73 2.42 2.52 2.48
ϕ1(m) = e−1

e 6.79 2.57 2.48 2.61 2.41

k = 2.2 ϕ1(m) = ϕ1(3) 4.06 3.34 2.54 2.51 2.42
ϕ1(m) = e−1

e 6.15 3.39 2.57 2.61 2.40
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Table 8: Comparison between different time trajectories, starting time is 1e − 3.

CIFAR-10 (VP deep continuous-time model (Song et al., 2021c))

Sampling method Sampling method\ NFE 12 15

SciRE-V1-3 NSR-type(k = 3.2 − 0.005·NFE) 4.41 3.06
Sigmoid-type (k = 0.65) 3.48 3.47

Table 9: SciRE-V1 with NSR trajectory (k = 3.1).

Initial time Sampling method \ NFE 12 15 20 50 100

CIFAR-10 (discrete-time model (Ho et al., 2020))

ϵ = 10−3 SciRE-V1-2 4.41 †4.09 3.67 3.70 3.80
SciRE-V1-3 4.68 4.00 †3.72 †3.84 †3.77

ϵ = 10−4 SciRE-V1-2 5.86 †4.77 3.87 3.28 3.27
SciRE-V1-3 8.28 4.51 †3.96 †3.23 †3.17

Initial time Sampling method \ NFE 12 15 20 30 50

CIFAR-10 (VP deep continuous-time model (Song et al., 2021c))

SciRE-V1-2 5.49 †4.19 3.02 2.55 2.47
ϵ = 10−4 SciRE-V1-3 6.29 3.39 †2.68 †2.56 †2.44

SciRE-V1-agile 6.93 3.73 2.42 2.52 2.48

CelebA 64×64 (discrete-time model (Song et al., 2021a))

ϵ = 10−3 SciRE-V1-2 4.79 †4.28 3.86 3.69 3.82
SciRE-V1-3 5.01 3.32 †3.12 †3.09 †3.40

ϵ = 10−4 SciRE-V1-2 3.91 †3.38 2.56 2.41 2.30
SciRE-V1-3 4.07 2.53 †2.17 †2.03 †2.02

time trajectory for both SciRE-V1-2 and SciRE-V1-3 on CIFAR-10 and CelebA 64 ×64 datasets.
In our study on the CIFAR-10 dataset, we have observed that employing a sampling method with
ϵ = 10−3 results in superior sample quality for both continuous and discrete models when NFE is
restricted to either 12 or 15. However, for NFE values greater than 15, we recommend opting for
ϵ = 10−4 to ensure the generation of high-quality samples. Moreover, in our analysis of the CelebA
64 ×64 dataset, we have found that ϵ = 10−4 consistently yields better results than ϵ = 10−3 across
different orders and NFEs. It is noteworthy that for NFE=20, SciRE-V1-2,3 show promising results
that are on par with the former.

H.4.2 ϕ1(m) = ϕ1(3) or ϕ1(m) = e−1
e

When running our proposed SciRE-V1-k in Algorithm 1 and Algorithm 2, it is necessary to assign
a value m to ϕ1(m). As stated in Corollary 3.1, when assigning m, we need to ensure that m ≥

3. Considering that the limit of ϕ1(m) is e−1
e , i.e., lim

m→∞
ϕ1(m) = lim

m→∞

m∑
k=1

(−1)k−1

k! = e−1
e , then our

experiments only consider these two extreme cases, i.e., we only choose to allocate m as 3 or directly
set ϕ1(m) = e−1

e . We provide ablation experiments for these two cases in Table 7. In case of
ϕ1(m) = e−1

e , we reach 2.40 FID SOTA value with 100 NFE on CIFAR-10 dataset.

I Comparisons of samples generated

In this section, we provide sample comparisons of random sampling using SciRE-V1, DPM-Solver,
and DDIM with the same codebase on different datasets, as depicted in Figures 11 to 20. Additionally,
we present some generated samples on CIFAR-10, CelebA 64×64, Imagenet 256×256 and Imagenet
512×512, which reported in Figures 21 to 28.

39



Under review as a conference paper at ICLR 2024

NFE=6 NFE=8 NFE=10 NFE=12

DDIM
(Song
et al.,
2021a)

DPM-
Solver
(Lu

et al.,
2022b)

SciRE-
V1

(ours)

Figure 11: Generated samples of the pre-trained DM on ImageNet 128×128 (classifier scale: 1.25)
using 6-12 sampling steps from different sampling methods with the same settings and codebase.
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NFE=10 NFE=15 NFE=20 NFE=50

DDIM
(Song
et al.,
2021a)

DPM-
Solver
(Lu

et al.,
2022b)

SciRE-
V1

(ours)

Figure 12: Generated samples of the pre-trained DM on ImageNet 128×128 (classifier scale: 1.25)
using 10-50 sampling steps from different sampling methods with the same settings and codebase.
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NFE=6 NFE=12 NFE=24 NFE=30

DDIM
(Song
et al.,
2021a)

DPM-
Solver
(Lu

et al.,
2022b)

SciRE-
V1

(ours)

Figure 13: Generated samples of the pre-trained DM on ImageNet 512×512 (classifier scale: 1) using
6-30 sampling steps from different sampling methods with the same settings and codebase.
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NFE=10 NFE=15 NFE=20 NFE=50

SciRE-
V1

(ours)

DPM-
Solver
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Figure 14: Random samples with the same random seed were generated by DDIM (Song et al., 2021a)
(uniform time steps), DPM-Solver (Lu et al., 2022b) (logSNR time steps), and SciRE-V1 (NSR time
steps, k = 3.1), employing the pre-trained discrete-time DM (Ho et al., 2020) on CIFAR-10.
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Figure 15: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Song et al., 2021a) on CelebA 64×64.
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Figure 16: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Nichol & Dhariwal, 2021) on ImageNet 64×64.
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Figure 17: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained DM (Dhariwal & Nichol, 2021) on ImageNet 128×128 (classifier scale: 1.25).
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Figure 18: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on LSUN bedroom 256×256.
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Figure 19: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained DPM (Dhariwal & Nichol, 2021) on ImageNet 256×256 (classifier scale: 2.5).
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Figure 20: Random samples with the same random seed were generated by SciRE-V1, DPM-Solver
(Lu et al., 2022b), and DDIM (Song et al., 2021a) with the consistently uniform time steps, employing
the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on LSUN bedroom 256×256.

Figure 21: Random samples were generated by SciRE-V1 with 12 NFE, employing the pre-trained
discrete-time DM (Song et al., 2021c) on continious-time CIFAR-10. We achieve an 3.48 FID by
using the Sigmoid-type time trajectory with k = 0.65, and setting the initial time as ϵ = 10−3.
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Figure 22: Random samples were generated by SciRE-V1 with 20 NFE, employing the pre-trained
discrete-time DM (Song et al., 2021c) on continious-time CIFAR-10. We achieve an 2.42 FID by
using the NSR-type time trajectory with k = 3.10, and setting the initial time as ϵ = 10−4.

Figure 23: Random samples were generated by SciRE-V1 with 100 NFE, employing the pre-trained
discrete-time DM (Song et al., 2021c) on continious-time CIFAR-10. We achieve an 2.40 FID by
using the NSR-type time trajectory with k = 3.10, and setting the initial time as ϵ = 10−4.
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Figure 24: Random samples were generated by SciRE-V1 with 18 NFE, employing the pre-trained
discrete-time DM (Song et al., 2021a) on CelebA 64×64. We achieve an 2.17 FID by using the
NSR-type time trajectory with k = 3.10, and setting the initial time as ϵ = 10−4.
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Figure 25: Random samples were generated by SciRE-V1-2 with 20 NFE and the uniform time steps,
using the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on Imagenet 512×512 (classifier
scale: 4).
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Figure 26: Random samples were generated by SciRE-V1-3 with 18 NFE and the uniform time steps,
using the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on Imagenet 512×512 (classifier
scale: 1).
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Figure 27: Random samples were generated by SciRE-V1-2 with 20 NFE and the uniform time steps,
using the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on Imagenet 256×256 (classifier
scale: 1).
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Figure 28: Random samples were generated by SciRE-V1-3 with 18 NFE and the uniform time steps,
using the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on Imagenet 256×256 (classifier
scale: 1).
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