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ABSTRACT

One downside of Diffusion models (DMs) is their slow iterative process. Recent
algorithms for fast sampling are designed from the differential equations. However,
in the fast algorithms, estimating the derivative of the score function evaluations
becomes intractable due to the complexity of large-scale, well-trained neural
networks. In this work, we introduce the recursive difference method to calculate
the derivative of the score function networks. Building upon, we propose SciRE-
Solver with the convergence order guarantee for accelerating DMs sampling. Our
proposed sampling algorithms attain SOTA FIDs in comparison to existing training-
free sampling algorithms, under various number of score function evaluations
(NFE). Such as, we achieve 3.48 FID with 12 NFE, and 2.42 FID with 20 NFE for
continuous-time model on CIFAR-10. Moreover, we also test the pretrained model
of EDM on CIFAR-10 and achieve 2.29 FID with 12 NFE, as well as 1.76 FID
with 100 NFE. Empirically, SciRE-Solver with multi-step methods can achieve
high-quality samples on the text-to-image generation tasks with only 6~20 NFEs.

1 INTRODUCTION

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., |2020; |Song et al., |2021c) have
recently gained significant progress on various tasks, including image generation (Dhariwal & Nichol|
2021;[Meng et al., 2022)), text-to-image generation (Ramesh et al.,[2022), video synthesis (Ho et al.|
2022)), and voice synthesis (Chen et al., 2021} [Liu et al.,[2022a). DMs are composed of two diffusion
stages. The forward stage of DMs is to add randomness with Gaussian noise in order to slowly disrupt
the data distribution, without any training. The reverse stage of DMs is tasked with recovering the
original input data from the diffused data by learning to reverse the forward diffusion process, step by
step. DMs learn models by emulating the ground-truth inverse process of a fixed forward process.

One key downside of DMs is their slow iterative sampling process (Song et al. [2021a; [Karras
et al.,[2022). Two distinct categories of methods have arisen to tackle this challenge: training-based
and training-free methods. Training-based methods require additional training, such as knowledge
distillation (Salimans & Ho}2021;|Meng et al.|[2023) and consistency models (Song et al.,|2023)), noise
level learning (Nichol & Dhariwal, [2021)), or models combined with other generative models (Xiao
et al.,|2022;|Vahdat et al.,|2021a; Zhang & Chenl|[2021). Training-free methods strive to accelerate the
sampling process through numerical algorithms without requiring extra training. Recent training-free
fast sampling methods can be attributed to the design of numerical algorithms for solving diffusion
ODEzs, benefiting from the fact that the sampling process of DMs can be reformulated as solving
the corresponding diffusion ODE, as confirmed by DDIM (Song et al, [2021a) and Score-based
models (Song et al.l 2021c). Following this framework, several fast numerical algorithms with
impressive results on DMs have been suggested, including PNDM (Liu et al., [2022b)), DPM-Solver
(Lu et al.| [2022b), DEIS (Zhang & Chen, 2023), UniPC (Zhao et al., 2023, and ERA-Solver (Li et al.|
2023)). The core differences of these algorithms can be attributed to various derivative estimation or
discretization methods, which imply that employing different methods to estimate the derivative of
the score function will result in varying sampling performance.

In this work, we introduce a new derivative estimation method, called the Recursive Difference (RD),
to calculate the derivative of the score function networks. The FID-measured ablation experiments
demonstrate the effectiveness of using the RD method. Based on the RD method and the truncated
Taylor expansion of score-integrand, we propose SciRE-Solver with the convergence order guarantee
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Figure 1: Generated samples of the pre-trained DM on ImageNet 256x256 (classifier scale: 2.5) using
10-50 sampling steps from different sampling methods with the same random seed and codebase. Our
algorithm, SciRE-V1 Solver, generates high-quality results in a fewer number of steps.

for accelerating DMs sampling. Our proposed sampling algorithms with RD method advance the
sampling efficiency of the training-free sampling method to a new level. Such as, we achieve 3.48
FID with 12 NFE and 2.42 FID with 20 NFE for continuous-time DMs on CIFAR-10, respectively.
Furthermore, we observe that SCIRE-V1 with a small NFEs demonstrates the promising potential to
surpass the FIDs achieved in the original papers of some pre-trained models, distinguishing itself
from other samplers. For example, we reach SOTA value of 2.40 FID with 100 NFE for continuous-
time DM and of 3.15 FID with 84 NFE for discrete-time DM on CIFAR-10, as well as of 2.17
(2.02) FID with 18 (50) NFE for discrete-time DM on CelebA 64x64. Experiments demonstrate
that SciRE-Solver (V1 and V2) exhibit also the ability to generate high-quality results with fewer
iterations when applied to high-resolution image datasets, as shown in Figures|T] [} [8]

2 BACKGROUND

2.1 DrirrusioNn ODEs

A Markov sequence {X;},jor; With T > 0O starting with Xo, in the forward diffusion of DMs for
D-dimensional data, is defined by the following transition kernel:

q (% | X0) = N (X3 X, 07T).. Q.1

This transition kernel is equivalent to the stochastic differential equation (SDE) (Kingma et al., 2021]):
dx; = f(Ox, dr + g(dw;,  Xo ~ qo (Xo), 2.2)

where w, € RP denotes a standard Wiener process, and f(f) = dk’dgta’, gX (1) = di - dk)g"’ o?. This
forward diffusion has the following equivalent reverse diffusion from time T to O Song et al.l 2021c):
dx, = [£(Ox, - 8 (1)Vxlog g, (x)| dt + g()dw,, X7 ~ qr (x7). 23)

where W, represents a standard Wiener process. In score-based models, [Song et al.|(2021c) derived
the following ordinary differential equation (ODE):

d

X’ = f(Ox, - —g 20)\Vylog g (%), Xr ~ qr (x7), 2.4

where the marginal diStI‘lbuthI’l q; (X;) of X, is equivalent to the marginal distribution of x, of the SDE
in Eq. @) By substituting the trained noise prediction model €4 (X;, ¢) for the scaled score function:
—0,Vxlog g, (x;),|Song et al.|(2021c) defined the diffusion ODE for DMs:

g()

= fOx, +

Since the data predictlon model Ty (x,,t) and the noise prediction model €4 (x;,?) satisfying:
g (X, 1) = (X, — 01€9 (X,, 1))/, (Kingma et al.,[2021)), there exists an equivalent diffusion ODE:

x (f()+g<2>) I 0

t

S X0, xr~N(0,671). (2.5)

Ty (1), xr~N(0,67I). (2.6)

t
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2.2 NumericaAL MeTHODS OF D1rrusioN ODEs

Traditional numerical techniques for solving ODE:s find their roots in concepts like Taylor expansions,
the trapezoidal rule, and Simpson’s rule. These foundational ideas have paved the way for the
development of well-known approaches such as Euler’s method, Runge-Kutta methods, and linear
multi-step methods (Siili, 2010). In the realm of diffusion ODE:s, a similar lineage of inspiration
from these classical methods can be observed in the construction of various numerical approaches.

DDIM (Song et al., [2021a) can be accurately interpreted as the forward Euler method from the
perspective of the diffusion ODE in Eq. Song et al.|(2021c) tested the Runge-Kutta Fehlberg
method for diffusion ODE:s. |Liu et al.| (2022b) investigated the Runge-Kutta methods and linear
multi-step methods, and based on this, further proposed the PNDM. [Lu et al.|(2022b)) introduced
the exponential integrator with the semi-linear structure from the ODE literature (Atkinson et al.|
2011}, and employed Taylor expansion techniques to handle the remaining integration, resulting in
the proposed DPM-Solver. [Zhang & Chen| (2023) proposed DEIS by introducing the exponential
integrator and further leveraging the assistance of both Runge-Kutta methods and linear multi-step
(Adams-Bashforth) methods. [Li et al.|(2023) explored the use of linear multi-step (implicit Adams)
methods with Lagrange interpolation function, and further proposed ERA-Solver.

In this work, our main focus is on algorithms based on Taylor expansions. We introduce sampling
algorithms that are predicated on the recursive difference method, which stands out as one of the
distinctions between our algorithm and the DPM-Solver.

3 SAMPLING ALGORITHMS BASED ON RECURSIVE DIFFERENCE FOR DIFFUSION MODELS

This section introduces the recursive difference (RD) method, which is employed to compute the
derivative of score function within sampling algorithms for DMs based on Taylor expansion. Based
on the RD method and the truncated Taylor expansion of the score-integrand, we propose the
SciRE-Solver with the convergence order guarantee to accelerating sampling of DMs.

3.1 REcURSIVE DIFFERENCE METHOD FOR DirrusioNn ODEs

Since samples can generated by solving the diffusion ODEs numerically from 7T to 0, sampling
algorithms can be designed from the numerical solutions of differential equations. By applying the
variation-of-constants formula (Hale & Lunel| 2013) to ODEs (2.5) and (2.6), we have

. y ' 2
x, = el Far ( f hy()eg (x,,r)dr+xx), x, = 0 (— f X8 s Ddrx,). G

2
s 20—r

where hi(r) 1= e~ f.yrf(Z)d“”;—((r"), ho(r) = fs " f2) + %dz, and X, represents the given initial value.
Then, the most simplified solution formulas for the diffusion ODEs can be obtained, as follows.

Proposition 3.1 Let X, be a given initial value at time s > 0. Then, the diffusion ODEs in Eq. (2.5)
and Eq. (2.6) has the following solution formulas, respectively:

X, X, NSR(?)

XX _ f €5 (Xeskes INSR(D) d, (3.2)
ay Qg NSR(s)

X, X 1/NSR(r)

A f g (XrNSR(l/T)v I'NSR(I/T)) dT, (33)
gy Oy 1/NSR(s)

where NSR(y) := Z—’ we refer to it as the time-dependent noise-to-signal-ratio (NSR) function;
Y

NSR(:) is the inverse function of NSR(), satisfying y = iNSR (NSR(y)) for any diffusion time y. We
provide the detailed derivation in Appendix[B|for two solution formulas.

As the integral term in the r.h.s. of @]) is solely dependent on the evaluation network €y (X, 5)
of scaled score function, we refer to such a concise solution formula as “score-integrand form” of
diffusion ODEs. Compared to the exponential-product-score-based solution formula in (Lu et al.|
2022b), empirically, the algorithm based on the score-integrand form generates more stable samples
when using a few NFEs (< 10), as shown in Figures[[|and[5] In score-integrand form, we can solve
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the diffusion ODE by directly integrating the €y (Xnsr(r)» INSR(7)). In theory, directly tackling this
problem is very challenging because € (X;, ) is a large-scale, well-trained complex neural network.
Nevertheless, we can solve it using numerical methods. For example, we can perform a Taylor
expansion on the score-integrand to obtain a rough iterative scheme.

Denote , := NSR(1i-1) = NSR(1), 7, := NSR(), Y(r) := INSR(z), and €}’ (Xy(r), (7)) :=

d - ..
w as k-th order total derivative of €y (Xw(r),!l/(T)) w.rt. 7. For n > 1, the n-th order

Taylor expansion of €y(Xy(r, ) ¥(77,)) W.r.t. T at 7, is

€0 (Xyer, ) ¥0(7;,)) Z g et (Xur, w(T,)) + OH™). (3.4)

By substituting this Taylor expansion into Eq. (3.2)), we get

n hk+1

¥ = T 2 Gy (ot ) + O (3.5)

Consequently, Eq. (3.5) provides an iterative scheme for solving the diffusion ODE. By following the
classical thought path, we can develop an n-th order solver for diffusion ODEs by omitting the error
term O(hg*l) and approximating the first (n — 1)-order derivatives eék)(xl/,(n‘_), Y(ry,)) fork<n—1in
turn (Atkinson et al.l 2011). Such as, we can obtain the first-order iterative algorithm when n = 1:

~ a’, ~ ~
%, = a_‘x, + i, hig (Ryce, ), (1) (3.6)
ti

where X is an approximation of the true value x, and X,, = Xy is the given initial value.

Beneath the surface of smooth operations, a pivotal challenge emerges: how to assess derivatives in
Taylor expansions when dealing with n > 2. When it comes to estimating derivatives, one preferred
choice is the finite difference (FD) method. Clearly, the FD method truncates all challenging higher-
order derivative terms (k > 2) and possesses a truncation error of O(/;,). Some indications suggest
that the FD method often lacks outstanding numerical performance in practice. For example, in the
pursuit of enhanced numerical performance, it is common to replace (e — h — 1)/h* with (¢" — 1)/h
as the new FD coefficient within the framework of exponential integrators (Hochbruck & Ostermann,
2005; Lu et al. |2022b; |[Zhang & Chenl, [2023), guided by the concept of equivalent infinitesimal
w.r.t h. In light of such indication, we speculate that utilizing the conventional FD method directly
to evaluate the derivative of the score function may be a suboptimal choice. Our experiments have
further substantiated this conjecture, as illustrated in Figure 3]

To improve the FD method while avoiding the intricacies of higher-order derivatives, we recursively
apply the principles of FD to handle terms involving higher-order derivatives at the evaluation point.
For example, when dealing with third-order derivative terms, our approach is outlined as follows:

@ @ D ) )
r ) - r ) .
= (TtH)h +O(hy,) = }(:"*‘) - ;: +O0(h,)
1 r( y 1 r(l) ti F(z) (37)
(ZTTI) (Z ) (Tt,‘,l) + O(ht[),
/1[/ h hy,

i

where 7, represents the evaluation point and I ®)(7) is used to denote eg‘) (X.//(r), zﬁ(r)) for simplicity.
Under such recursive rule, each high-order derivative term in Eq. can be rewritten as the sum
of a scaled first-order derivative function at 7,, and a function w.r.t. 7,_,, while this representation
incurs a truncation error of O(h;,). Subsequently, by merging the resulting series of scaled first-order
derivatives, we can obtain a new derivative estimate for the score function. We refer to such structured
estimation method as the recursive difference (RD) method. In Appendix [D] we present a detailed
derivation of the RD method, with the results as stated in Theorem and Corollary

Denote NSRpin := min{NSR(#;)}, NSRyax := max{NSR(#;)}. We derive the following recursive

results for the derivative at the evaluation point.
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Figure 2: Schematic diagram of the recursive difference method tailored for sampling algorithms of
diffusion models. The diagram exhibits the derivative process of I'V(t,) with I'9(r,) given as input.
Similarly, we can obtain the T'¥(z;), Yk € Z, with T¥)(t,) as input using analogous procedures.

Theorem 3.1 Let x; be a given initial value at time s > 0, X, be the estimated value at time t obtained
by the first-order iterative algorithm in Eq. @) Assume that €g (Xw(-r), l//(T)) € C®[NSRpnin, NSRjax -
Then, we have

e €0 (iw(r,)’ l/’("'t)) — € (f(.//(rs), ‘J/(Ts))
1 h,

(9 ) (ti(‘r,) W(Tt)) (6 - 2)/’15 (2)

e—1 2e—1)

e (Rytry» Y(1y)) =
(3.8)

(Rytry» W) + OR2),

where C*°[NSRpin, NSR x| denotes €y (Xw(r), w(‘r)) is an infinitely continuously differentiable func-
tion w.r.t. T over the interval [NSR nin, NSRnax ).

We observe that the differentiability constraint imposed by Theorem 3.T]appears to be rather restrictive.
To enhance its broad applicability, we further derive the recursive result with limited differentiability.

Corollary 3.1 Let X, be a given initial value at time s > 0, X; be the estimated value at time t obtained
by the first-order iterative algorithm in Eq. . Assume that €y (XMT), w(T)) € C™[NSRmin, NSRpnax ],
i.e., m times continuously differentiable, where m > 3. Then, we have

| el 80) - )
$1(m) h 59)
zzim; éU( w(r,)’lﬁ(rz)) ‘15;;(’;1))Y 22) (Xw(rmlﬁ(ﬂ)) +OUD),

Z k' ,and¢3(m)— Z (1

ey (Rue,w(@y) =

where ¢1(m) = )m

F(Tr,-,] )*F(Tr;)
1,
substituting the RD estimation formula from Eq. (3.9) into Eq. (3.5). The complete recursive process
of such simplified form is illustrated in Figure 2] Further details are provided in Appendix Since
other truncated forms of the RD method necessitate derivative evaluation at point 7, beyond the
evaluation point 7, we leave this exploration for future research. The main characteristic of such
simplified RD version is that this novel estimation incorporates low-order derivative information

hidden in the higher-order derivative terms of the Taylor expansion. Compared to FD method, such
1=y om) T, )-T(x,)
¢1(m) hq
terms, which may counterbalance with these higher-order terms to a certain level. In Appendix [E.2}
we provide essential analyses concerning the simplified RD method.

A simplified truncation form for the RD method is given by I'V(7,) = , obtained by

RD method incorporates additional information

from other higher-order derivative

3.2 SAMPLING ALGORITHMS BASED ON RECURSIVE DIFFERENCE METHOD

Since Proposition [3.1] involves distinct differential equations that result in different discretization
results, we propose two solver versions called SciRE-VI and SciRE-V2 for the diffusion ODE
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corresponding to the noise prediction model and the data prediction model, respectively. Now, based
on the Eq. and the RD methods stated by Corollary [3.1] and Theorem [3.1] we propose two
algorithms named SciRE-VI-2 and SciRE-VI-3 for n = 2 and n = 3, respectively. Under mild
assumptions, we provide the convergence order for SciRE-V1-k (k = 2, 3), as stated in the following
theorem. The proof is given in Appendix[F] Due to the typically increased complexity of higher-order
algorithms, the treatment of £ > 4 will be left for future research. The iteration schemes of SciRE-V1
using multi-step methods are provided in Appendix [G.I] In Appendix[G.2] we propose SciRE-V2 for
the ODE Eq. using the mentioned-above thought process and the RD method.

Algorithm 1 SciRE-V1-2

Require: initial value x7, time trajectory {t,-}?i o» model €g,m > 3
1: i,N<—XT,r1<—%

2: fori < Nto1do

3: h; < NSR(#;,_;1) — NSR(#)

4: s;i « rNSR(NSR(t;) + r1h;)

5: X, Z—[i, + agrihi€q (X, 1)
1
~ @ ~ Iy = ~
6: Xy, < (;r‘l X, + (Y,H/’l,fg (th l,‘) + ay,_, 36 0mn (69 (XS’, S,‘) — €y (X,’, l,‘))
7: end for

Return: X.

Algorithm 2 SciRE-V1-3

Require: initial value x7, time trajectory {t; }fi o> model €g,m > 3
I: X, < X7, 1] <—%, %
2: fori — Nto1do

3. h « NSR(#i;) - NSR()

Iy <

4 Siy> Siy € rNSR (NSR(I,) + rlh,-) y rNSR (NSR(I,) + rzhi)
@y -

5: Ky, & 2%, + @y, rihigg (%, 1)

- aff’z 5 5 3 5 5
6 Xsi2 — a_,.xti + s, rhi€g (Xt,., li) + as, 50 (69 (Xsi1 , Sil) — €y (Xti, li))

- @ | o - By - -
7. Xy, < ﬁx,,. +ay hi€g (Xt,., li) + ., m (69 (Xsi2 , S,’z) — €9 (X[i, li))
8: end for

Return: X.

Theorem 3.2 Assume that €g(Xy(r), (7)) € C"[NSRpin, NSRpyy]. Then, for k = 2.3, the global
convergence order of SCiRE-VI-k is no less than k — 1.

4 ASSEeSSING THE EFricacy oF THE RD METHOD THROUGH ABLATION STUDIES

This section demonstrates the effectiveness of the RD method from two perspectives: 1. Comparing
it with traditional finite difference (FD) method; 2. Introducing the RD method into the exponential-
based calculation formula and comparing it with its counterpart algorithm, DPM-Solver-2.

In Corollary 3.1} the RD method degenerates into the FD method, if we set ¢ (mm) = 1 and drop other
terms. Thus, we set ¢1(m) = 1 in our SciRE-V1 codebase to represent the sampling algorithm based
on FD method. Comparative experiments are presented in Figure [3|under identical settings.

To further investigate the RD method, we introduce SciREI-Solver (n=2), a variant combining the
RD method and the exponential-based calculation formula from DPM-Solver. Refer to Appendix
for the details of SciREI-Solver. We compare the generative performance of SciREI-Solver-2 and
DPM-Solver-2 with the identical settings on the CIFAR-10 and CelebA 64 datasets using various time
trajectories and termination times, the experiment results are presented in Figure 4] More generally,
we also provide the sampling comparison between the RD-based sampling algorithms (SciRE-V1-2
and SciREI-Solver-2) and the baseline algorithm (DPM-Solver-2) on high-resolution image datasets,
as shown in Figure [5] More comparisons are provided in Appendix
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(a) CIFAR-10 (discrete) (b) CelebA 64x64 (discrete)

Figure 3: Comparisons of FID | obtained by employing RD and FD in SciRE-V1 codebase. The
RD-based method is consistently superior to the FD-based method across different cases.

(a) CIFAR-10 (1e - 3) (b) CIFAR-10 (1le — 4) (c) CelebA 64 (1e - 3) (d) CelebA 64 (1e — 4)

Figure 4: Comparisons of FID | obtained by SciREI-2 and DPM-2 solvers across different trajectories.
SciREI-2 is more robust than DPM-2 across different time trajectories under the same sampling step.

5 EXPERIMENTS

This section show that SciRE-Solver can improve the sampling efficiency of pre-trained DPM models,
including continuous-time and discrete-time DMs. We conduct sampling experiments using individual
SciRE-V1-2 and SciRE-V1-3 on the pre-trained models of DM. When comparing with existing fast
sampling algorithms, we will compare the best FID values reported by these algorithms in the relevant
literature with the FID obtained by our proposed SciRE-V1 under the same NFE, as shown in Table
Moreover, we also investigate the SciRE-Solver (V1 and V2) algorithms on image-text generation
tasks, as shown in Figures[6|and[8] More details and experiments can be found in Appendix [H]

5.1 EXPERIMENT SETTING AND ABLATION STUDY

When running our proposed SciRE-V1-k in Algorithms [[|and[2] it is necessary to assign a value m to

¢1(m). As stated in Corollary [3.1] when assigning m, we need to ensure that m > 3. Considering that

the limit of ¢ (m) is %, then our experiments only consider these two extreme cases, i.e., we only
e—1

choose to allocate m as 3 or directly set ¢1(m) = “~. We provide ablation experiments for these two

cases in Appendix [H] The earlier experiments were all run on TITAN-V GPUs.

5.2 CoOMPARISONS OF SAMPLING METHODS USING DISCRETE-TIME AND CoNTINUOUS-TIME MODELS

We compare SciRE-V1 proposed in Section [3.2] with existing discrete-time training-free methods
in Table E} Specifically, we use the discrete-time model trained by Lgimpre in (Ho et al., [2020) on
CIFAR-10 and CelebA 64x64 datasets with linear noise schedule, and assign m = 3 to ¢;(m). Under
this setting, we use the same NSR-type time trajectory with fixed parameter for both SciRE-V1-2
and SciRE-V1-3, the details are available in Appendix [H} SciRE-V1 almost reaches convergence at
around 66 NFE and 18 NFE, achieving the new SOTA values of 3.15 FID with 84 NFE, and of 2.17
FID with 18 NFE on CIFAR-10 and CelebA 64x64, respectively.

We compare SciRE-V1-k and SciRE-V1-agile with DPM-Solver-k (Lu et al., 2022b), DPM-Solver-
fast and DEIS (Zhang & Chen, 2023)), where k = 2, 3. On CIFAR-10, we use “VP deep” model
(Song et al. 2021c) with the linear noise schedule. When NFE > 15, we employ the identical
NSR-type time trajectories with consistent parametric functions for SciRE-V1-2 and SciRE-V1-3,
respectively, the details are available in Appendix [H Meanwhile, we consider using the sigmoid-type
time trajectory only when NFE is less than 15. The superior of SciRE-V1 is particularly evident in its
ability to generate high-quality samples with 2.42 FID in just 20 NFE, as shown in (b) of Figure[7]
Furthermore, supported by several experimental validations, SCiRE-V1 achieves 2.40 FID in just 100
NFE, which attains a new SOTA value under the VP-deep model (Song et al., [2021c) that we used.
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Figure 5: Compare the generation results of the RD-based methods (Solvers: SciRE-V1-2, SciREI-2)
and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the uniform time trajectory
and identical settings, on pre-trained models with ImageNet 128x128 and LSUN bedroom 256x256.

(a) DPM-Solver++ (multistep). (b) SciRE-V1-2m, Algorithmfd (c) SciRE-V2-2m, Algorithm[7]

Figure 6: Random samples of Stable-Diffusion, using only 6 NFE and text prompt “A beautiful
mansion beside a waterfall in the woods, by josef thoma, matte painting, trending on artstation HQ”.

N Y 1 [ —— tAB3DEIS T -+ DDIM

\ DPM-solver
-+ F-PNDM
~~ 1AB3-DEIS

D

3 202 T v
215 20 50 66 84100 200 1000 s 20 5066 100 200 1000 o015 20 30 50 To00
NFE NFE NFE

(a) CIFAR-10 (discrete) (b) CIFAR-10 (continuous) (c) CelebA 64x64 (discrete)

Figure 7: The comparative diagram of FID | of different training-free sampling methods on the
CIFAR-10 and CelebA 64x64 datasets. In these three cases, our samplers reach SOTA.

6 CONCLUSIONS

In this work, we introduce the recursive difference (RD) method to calculate the derivative of the
score function evaluations in the realm of diffusion models. By applying the RD method to the
truncated Taylor expansion of the score-integrand, we propose the SciRE-Solver with the convergence
order guarantee to accelerate the sampling process of DMs. The effectiveness of the RD method
in evaluating the derivative of the score function in regular diffusion modes has been confirmed
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Sampling method \NFE 12 15 20 50 200 1000

CIFAR-10 (discrete-time model (Ho et al'}[2020), linear noise schedule)

DDPM 2463 197.6 1373  32.6 4.03 3.16
DDIM 11.02 8.92 694 473 407 3.95
Analytic-DDIM 11.68 916 720 428  3.60 3.86
tAB3-DEIS 7.12(10NFE) 453 378 \ \
DPM-Solver-2 6.15 7523 395 350 346 3.46
DPM-Solver-3 8.20 521 1381 7349 7345 73.45
F-PNDM 7.03(10NFE) 461 3.68 347 3.26
ERA-Solver 438  3.86 379 342  3.51(100NFE)
SciRE-V1-2 (ours) 441 7409 3.67 328  3.26(100NFE)
SciRE-V1-3 (ours) 500 412 73.80 73.23 3.15 (84NFE)
CIFAR-10 (VP deep continuous-time model (Song et al.|[2021c))
DPM-Solver-2 4.88 7423 326 269 260 2.59
DPM-Solver-3 5.53 355 1290 T2.65 72.62 72.62
DPM-Solver-fast 4.93 3.35 2.87 \ \ \
tAB3-DEIS \ 3.37 286 257 \ \
SciRE-V1-2 (ours) 433 7384 3.03 257  2.48 (100NFE)
SciRE-V1-3 (ours) 348 306 268 7254 7244 (100NFE)

SciRE-V1-agile (ours) 4.80 3.47 242 252 2.40 (100NFE)

CIFAR-10 (edm (Karras et al},[2022))

EDM-Heun 728 1447 238 1.83  1.84 (100NFE)

SciRE-V1-2 2.29 7216 194 179 1.76 (100NFE)

CelebA 64x64 (discrete-time model (Song et all 202Ta), linear noise schedule)

Sampling method \NFE 10 12 15 20 50 1000

DDIM 1085 999 778 6.64 523 4.88
DPM-Solver 583 371 305 282 271 (36NFE)

F-PNDM 771 \ \ 551 334 271
tAB3-DEIS 6.95 \ \ 341 295 \
SciRE-V1-2 (ours) 491 391 7338 256 230 -
SciRE-V1-3 (ours) 1972 407 253 217 12.02 -

Table 1: Generation qual-
ity measured by FID | of
different sampling meth-
ods for DMs on CIFAR-
10 and CelebA 64x64. In
this Table, we compare the
best FID reported in ex-
isting literature with the
FID achieved by our pro-
posed SciRE-V1 at the
same NFE. The bold black
represents the best result
obtained under the same
NFE (column). The re-
sults with ¥ means the ac-
tual NFE is smaller than
the given NFE because the
given NFE cannot be di-
vided by 2 or 3. Some re-
sults are missing in their
original papers, which are
replaced by “\ 7. Here,
we used the same time tra-
jectory scheme to evalu-
ate the results of SciRE-V 1
on CIFAR-10 and CelebA
64x64 datasets with dis-
crete models. The set-
ting of continuous-time on
CIFAR-10 are described in
Section@ More compar-
isons and additional details
are shown in Appendix [H}

through comparative experiments involving FID and generated samples. These experiments were
conducted for ablation comparisons with both the finite-based difference algorithm and the popular
DPM-Solver-2 algorithm. SciRE-Solver (versions: V1 and V2 ) is a new type of algorithm that
provides an alternative sampling scheme for accelerating diffusion models. Numerical experiments
indicate that SciRE-Solver not only can generates high-quality samples across various datasets
using fewer-steps but also, using a small NFEs demonstrates promising potential to surpass the FID
achieved by some pre-trained models in their original papers using no fewer than 1000 NFEs.

NFE=5 NFE=12 NFE=20

NFE=50

Figure 8: Random samples of Stable-Diffusion by SciRE-V1 and SciRE-V2, using varying NFEs and
the text prompt “a girl face in Disney style, physically-based rendering, ultimate painting, UHD”.
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A PRELIMINARIES

Related Work:

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; |Ho et al., |2020; |Song et al., |2021c) have
recently gained remarkable generation ability on image generation (Dhariwal & Nichol, 2021} |Karras
et al 2022), yielding extensive applications such as speech, singing and video synthesis (Chen
et al.} 2021} [Liu et al.,|2022a; Ho et al.} 2022), controllable image generation, translation and editing
(Nichol et al.| 2022} [Ramesh et al.,2022; Rombach et al., 2022; |Meng et al., |[2022} Zhao et al., 2022;
Couairon et al., 2023 |Zhang & Agrawalal |[2023), likelihood estimation (Song et al., |2021b} Kingma
et al.,[2021}; |Lu et al.}2022a; Zheng et al.| [2023). As diffusion models gradually achieve success in
various fields, the downside of slow diffusion sampling is also gaining more attention. Therefore,
improving the output quality and/or reducing the computational cost of sampling is an important
topic in diffusion models research, e.g., (Dockhorn et al., 2022; |Jolicoeur-Martineau et al., {20215 Liu
et al., [2022b; [Lu et al., [2022bic; \[Luhman & Luhman, [2021;|Nichol & Dhariwal, 2021} [Salimans &
Hol 2022} |Vahdat et al.,|2021b} |[Karras et al.,[2022; Zhang & Chen| 2023).

The forward stage of DMs is to add randomness with Gaussian noise in order to slowly disrupt the
data distribution, without any training. The reverse stage of DMs is tasked with recovering the original
input data from the diffused (noisy) data by learning to reverse the forward diffusion process, step
by step. Both the forward and reverse diffusion stages can be explained using differential equations.
Next, we provide an introduction to diffusion models from the perspective of differential equations.

A.1 DrrrusioNn SDEs

In the forward diffusion process of DMs for D-dimensional data, a Markov sequence {X;},c[0 7} With
T > 0O starting with X is defined by the transition distribution

(x| %1) = N (% Bxic1, (1= 2)1), (A1)

where B, € R" is the variance schedule function, which is differentiable w.r.t r and possesses a
bounded derivative. Given a transition distribution, one can formulate the transition kernel function
for noisy data x, conditioned on clean data X, through the superposition of Gaussian distributions:

q (% | X0) = N (X %, 071). (A2)

In DDPM (Ho et al., 2020), a; is defined as []/_, B, and o + @7 = 1 is referred to as the variance-
preserving (VP) setting. DMs choose noise schedules for o, and o, to ensure that the marginal

distribution qr (Xr) approximates N (XT; 0, 6'21) for & > 0. [Kingma et al.| (2021) generalized this
fixed schedule of Eq. (A.1)) through the parameterization

o7 = sigmoid (yn(1)), (A3)

where v, (#) is a monotonic neural network with parameters 1. Under the schedule defined in Eq.

(A.3) and the VP setting, o?/0? is strictly decreasing w.r.t. ¢ and is referred to as the signal-to-
noise-ratio (SNR). With the schedule of Eq. (A.3), Kingma et al.| (2021) established the equivalence
between the transition kernel of the following SDE and the one in Eq. (A.2)) for Vz € [0, T']:

dx, = f(Ox, dr + g(dw,, X0 ~ qo (X0), (A4)
where w, € RP denotes a standard Wiener process, and

dlog o, 5 do? _dloga; ,
)= ———, H=——-2 .

JO=—4— §0="y4 a
Further, [Song et al.|(2021c) demonstrated with some regularity conditions that the forward process in

Eq. (A.2) has the following equivalent reverse process (reverse SDE) from time 7 to 0:
dx, = [f(l)Xt - g ()Vxlogg, (Xz)] dr + g(Ndw,, X7 ~ gr (X7), (A.0)

where w;, represents a standard Wiener process in the reverse time. Since f(f) and g(¢) are determined
by the noise schedule (o;, ;) in the reverse SDE (A.6), the sole term that remains unknown is the
score function Vi log g, (x;) at each time ¢. Therefore, DMs train the model by using a neural network

(A5)
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€y (x;, 1) parameterized by 6 to approximate the scaled score function: —o,Vy log ¢, (X;), where the
parameter 6 is trained by a re-weighted variant of the evidence lower bound (ELBO) (Ho et al.,|2020;
Song et al., [2021c):

1 T
L6:20) = 5 fo AOEq x|l 0.0+ 7,9 Tog gy ) a
(A7)

1 T

=3 f ADEqy 0 Byco [ll€o (1, 1) — el3| di + C,
0

where € ~ g(e) = N(€0,1),x, = a;Xy + 0,€, A(t) represents a weighting function, and C is a

6-independent constant. After the model is trained, DMs replace the score function in Eq. (A.4) with

—€g (X, 1) /o and define the following diffusion SDE:

|dr+ g(dw,,  x7 ~ N(0,67I). (A.8)

2
dx, = [f(r)x, + £

(o]

DMs can generate samples by numerically solving the diffusion SDE stated in Eq. (A.8) using
discretization methods that span from T to 0.

A.2  Drrrusion ODEs

Based on the reverse SDE in Eq. (A.6),Song et al.|(2021c) derived a Liouville equation by investi-
gating the evolution equation (Fokker-Planck Equation) of the probability density function of the
variable x,. This Liouville equation has the same probability density function w.r.t. the variable x; as
that of the reverse SDE. As a result, the reverse SDE can be transformed into the following ODE:

d dx,
X flx, - —g 20)Vilog g, (X)), Xr ~ qr (X7) (A9)

where x; has a marginal distribution ¢; (X;), which is equivalent to the marginal distribution of x,
of the reverse SDE in Eq. (A.6). Since the €4 (x,, ?) trained in Eq. can also be thought of as
predicting the Gaussian noise added to x,, it is commonly referred to as the noise prediction model.
By substituting the trained noise prediction model for the score function in Eq. (A.9), Song et al.
(2021c) defined the following diffusion ODE for DMs:

% = f(Ox, + g_()€6 (X, 1), Xr~ N(O,&ZI). (A.10)

Therefore, one can also generate samples by solving the diffusion ODE from T to 0. Alternatively,
the data prediction model x4 (X;, ) and the noise prediction model €y (X;, ¢) satisfying: xq (X;,1) =
(x; — 0,€9 (X4, 1))/ 0y (Kingma et al.| [2021), there exists an equivalent diffusion ODE w.r.t. a4 (X, 1):

d;
X (f()+g(2)) _a,g()

t

Ty (x.1), xr ~N(0,67°I). (A.11)

t
B Proor or ProposiTION 3.1

We first demonstrate the simplified solution formula based on the noise prediction model.

The solution formula of the semi-linear ODE (A.10) can be formulated by the variation-of-constants
formula (Hale & Lunell, 2013)):

X; = efsf Fondy (f hi(y)eq (xy,y) dy + Xx) , (B.1)

s

d log(ay)

= o [ 10d £ o ,
where h(y) := e 5> and X, represents the given initial value. Since f(y) = , thus
Y

2
hi(y) = Z—y %'Z) We observe that h;(y) can be rewritten as

h(y) =

ay [ﬁ ,dlogay 2]=as(day ”Yd‘”):asw, (B.2)

2a,0, | dy B dy 7T, dy
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where NSR(y) := ?, and we refer to it as the time-dependent noise-to-signal-ratio (NSR) function.
Y

Note that the NSR function defined above differs from the signal-to-noise-ratio (SNR) function
defined in (Kingma et al.;|2021]), but there is a relationship between them: SNR = @. Then, based

on Eq. (B:2)), we can rewrite Eq. (B) as
a; f " ANSR(y)
——¢

X; = —X§ + a;
dy

S
Since NSR(+) is a monotonically function w.r.t. time, we can define its reverse function as tNSR(:),
such that y = rNSR (NSR(y)) for any diffusion time y. Thus, using the change-of-variables for
NSR(y) to Eq. (B.3), we can obtain

@ " ANSR(y)
X, = —x, + a,f d—yyee (Xy,y)dy

o (xy.7)dy. (B.3)

y

= x,+a f €5 (Xy,7) ANSR(y) (B.4)

A

a, NSR(7)
= —X, +a f € (XiNsr(r), INSR(7)) dr.
(e NSR(s)

Thus, we complete the proof of the simplified solution formula in the Proposition|3.1|based on the
noise prediction model.

Next, we demonstrate the simplified solution formula based on the data prediction model. By applying
the variation-of-constants formula to Eq. (A.11)), we have

¢ 2
x; = (— f e _arzg gr)'wa (x,r)dr + XJ) , (B.5)
s gy

where hy(r) := fs g f@+ %”?dz, and x; represents the given initial value. /,(r) can be rewritten as

" dlo 1 do? dlo
hz(r)=f e

dy 202 dy dy
Eq. (B.5) can then be rewritten as

‘ 2
X, = at (— f Is &8 (r) xg (X, r)dr + xs)

r 1 d S
dy:f Ty = 10g 2t (B.6)
s 0y dy O

O oy 207
s 1 . 2
= ﬂxx—atf s (r)xg(x,,r)dr
O s Oy 2072
¢ 2
oy a 1 (do; dloga, ,
= —X;— — -2 1 d
o-sx‘ (Trfx o, 20'%( dr ar °r o (%, r) dr
"o, (dl , 1 do?
=ﬂxx+mf D[ 2 ) gy (x, i dr
o s O dr 202 dr B.7)
oy "o (1 da, 1 do, .
= —X; + 0} ——— - —— | >y (x,, ) dr
o s o \a, dr o, dr
!
oy 1 de, «, do,
=X, + — -— ) d
O'SX‘ a-tﬁ(oy dr o2 dr)acg(X r)dr
i3 d .
= 2xs+a'tf mg(x,,r)—(a—)dr
o s dr\o,
r
= ﬂxwo-tf 2o (%,,r) AL,
Ty s r
by change-of-variables,
o o
X; = OTtXS+O',ﬁ‘ :Bg(Xh3(T),h3(T))dT, (BS)
where h3(2) := y for any diffusion time y. Note that NSR(y) = 2, then = = m and

hi(t) = rNSR(%). Therefore, we complete the proof of the simplified solution formula in the
Proposition [3.1|based on the data prediction model.
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Hints Eq. (B.4) implies that the solution of the diffusion ODE can be decomposed into a linear
part and a nonlinear part, and this structure arises from the use of the variation-of-constants formula
(Hale & Lunel, 2013). The linear part can be computed analytically, while the remaining nonlinear
part is an integral involving the neural network of score function evaluations. Compared with directly
numerically solving the diffusion ODE, such decomposition method can reduce numerical errors and
improve calculation accuracy because the linear part can be analytically computed, as demonstrated
by DPM-Solver 2022b). We observe that the integral term on the r.h.s. of Eq. (B.4) appears
to be a traditional integration problem, involving the score function as the integrand solely. Thus,
we could use conventional numerical methods for solving integrals to evaluate it. However, caution
must be exercised when employing these methods, as the integrand is merely an approximation of
the scaled score function, and its explicit expression remains unknown, while the integrand involves
some large-scale neural networks. Therefore, using traditional techniques to accelerate the sampling
process of diffusion models may amplify the numerical error in such scenarios. Nonetheless, in the
realm of diffusion models, we can draw inspiration from traditional numerical techniques to develop
fast sampling algorithms suitable for diffusion models.

NFE=6 NFE=12 NFE=24 NFE=36

DPM-2

SciREI-
2(ours)

SciRE-
2(ours)

DPM-2

SciREI-
2(ours) W

SciRE-
2(ours)

Figure 9: Compare the generation results of the RD-based methods (Solvers: SciRE-V1-2, SciREI-2)
and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the uniform time trajectory
and identical settings, on pre-trained models with ImageNet 256x256 and 512x512 datasets.
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Table 2: Comparison of Quality Generation between FD-based and RD-based Algorithms. We use
consistent NSR trajectory (k=2) and the same codebase.

ED or RD Initial time\ NFE 12 15 20 50 100
The discrete-time model of CIFAR-10 dataset (Ho et al., [2020)

le -3 700 1600 476 410 4.03

FD (Solver-2) /4 903 7710 505 371 3.57

) le-3 449 412 374 370 3.6

RD (S¢iRE-VI-2) 4 591 476 388 330 3.8

le -3 691 525 t467 7404 T4.02

FD (Solver-3) 10.19  6.12 7503 7356 13.52

) le—3 529 4.19 7394 376 371

RD (SCiRE-VI-3) 4 9.10 452 1407 1324 1317
The discrete-time model of CelebA 64x64 dataset (Ho et al., 2020)

le -3 782 1687 548 448 433

FD (Solver-2) 704 1587 417 305 2.89

) le—3 467 423 3.63 360 3.9

RD (S¢iRE-VI-2) ) 4 399 1343 263 232 243

le -3 809 629 535 7428 7427

FD (Solver-3) 766 520 1425 1288 12.83

) le-3 479 337 13.08 '3.18 13.54

RD (SCiRE-VI-3) ) 4 450 270 1230 7202 220

C  SciREI-SorLver, AND COMPARED TO DPM-SOLVER-2 FOR ASSESSING THE BENEFITS
wiITH RD

In order to further explore the effectiveness of the RD method, we propose a variant named SciREI-
Solver, which incorporates the RD method and the exponential-based calculation formula provided
by DPM-Solver. We provide numerical experiments to demonstrate the benefits of the RD method.

C.1 SciREI-SoLver

In this work, we introduced the RD method to evaluating the derivative of the scaled score function,
in light of these results, we proposed the SciRE-V1 with the truncated Taylor expansion of the
score-integrand. To further investigate the effectiveness the RD method in the realm of sampling
for diffusion models, we apply the RD method to the exponential-based contextualisation provided
by the DPM-Solver (Lu et al.| [2022b)), and proposed the SciREI-Solver. We specifically investigate
the RD method in the context of “the generalized version of DPM-Solver-2, i.e., the Algorithm 4
in the Appendix of the DPM-Solver paper” (referred to as DPM-Solver-2 throughout this paper for
simplicity). Since both SciREI-Solver and DPM-Solver-2 are derived when n = 2, we occasionally
refer to SciREI-Solver as SciREI-Solver-2 for to enhance clarity in comparisons.

Formally, [Lu et al.|(2022b) provides an exponential contextualized solution formula for the diffusion
ODE:

o7’ &

X = — X — a,f e '€y (X1, 1) dA (C.1)

g A
where A, = log Z—i, €9 (X1, ) = €9 (Xy), 1(2)), and #(2) is the inverse function of A; w.r.t. time ¢. Under
this solution formula of exponential-based contextualisation, the formula below is obtained by Taylor
expansion around A:

n
(0%

X = —th -0y Z hk+150k+1(h)éé(}k) (ﬁ/l.n )+ O(hn+2)’ (€.2)

aS k=0

l _ c—
where @ (h) = [} =" (]fi]])[d69 wo(h) = €".
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Algorithm 3 SciREI-Solver (or SciREI-Solver-2)

Require: initial value x7, time trajectory {ti}fi o» model €g,m > 3
I: X, < X7,7] < %
2: fori < N to0do
3: h,‘ — /1,,71 —/lll.
4: S [/1(/lt[+l’1hi)

5: X, « Z_,Iif -0y (e”h" - 1) € (X, 1)

~ @, o~ ) - oy ) ~ ~
6: K, — L%, - o, (€ = Deg(R,,, 1) — m(eh’ = hi — 1) (€g(Xy;, 50) — €9(X;,, 1))
7: end for

Return: X.

When n = 1in Eq. (C.2), we have then

(67 A A n ~
X; = a—’xs — oher(Wég(Ra,, As) — TP oa (e Ra,, As) + O(h®) (C3)
where \ i
e"—1 e"—h-1
prh) = ——, @) = —>—. (C4)

The following iteration is obtained by DPM-Solver-2:

a PPN g, A ra PPN
X = =X, — (e = DégRa, 4y) — 5 (€ = 1) (&Ra, . Ay)) — (R, Ay)). (C5)
a 2}"1 1

N

With our proposed the recursive difference (RD) method to evaluate é(al)(f( 1,» As), we get the following
new iteration:

a A~ ey A 2 A A
% = %~ oyle! — DégRy,, ) - (eo(ka,,- As) — €9(%1,, 1)), (C.6)
where the definition of ¢;(m) is referred to in Corollary Thus, we will refer this new iteration
algorithm to as SciREI-Solver shown in Algorithm [3] which incorporates the RD method and the
exponential-based calculation formula recommended by DPM-Solver.

C.2  DrrrereNCES WITH DPM-SOLVER

Clearly, there are differences between SciREI-Solver and DPM-Solver-2, as indicated by the blue
and orange labels in Eq. (C.3) and Eq. (C.6).

In the following, we present a straightforward comparison between SciRE-V 1, proposed by us in the
main content of this paper, and DPM-Solver. Firstly, the score-integrand form in Eq. is different
the solution formula of exponential-based contextualisation in Eq. (C.I). Secondly, different solution
forms of diffusion ODE result in different integrands and distinct Taylor series expansions around
different function spaces. Specifically, we expand €y(Xy(r), ¥/(7)) in a Taylor series around 7, which is
distinct from DPM-Solver where €y(X/(y), #(1)) is expanded w.r.t. 4, as T # A. Such differences lead
to different results, as expressed in Eq. [3.5]and Eq. [C.2] The differences of Eq. [3.5]and Eq. [C.2]
illustrate that, despite reparameterizing the diffusion ODE in both cases, different changes-of-variable
have resulted in distinct algorithmic sources based on Taylor expansion concept. Finally, and most
importantly, SciRE-V1 is a numerical algorithm based on the RD method we introduced, which
fundamentally distinguishes it from the DPM-Solver, much like the difference (the blue and orange
labels) between SciREI-Solver and DPM-Solver-2.

C.3 THE BENEFITS WITH RD: EFFECTIVENESS AND ROBUSTNESS

In order to validate the benefits of the RD method, we compare the FID scores obtained for generated
samples from the RD-based methods and other methods with the same settings and codebase on
the CIFAR-10 and CelebA 64x64 datasets. Specifically, we compare the RD method with the
traditional finite difference (FD) method, and we also compare the RD-based SciREI-Solver-2 with
its counterpart algorithm, DPM-Solver-2. For high-resolution image datasets, we conduct sampling
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Table 3: Comparison of Quality Generation between DPM-Solver-2 and SciREI-Solver-2 (our)
Algorithms. We use consistent NSR trajectory (k=3.1) and the same codebase.

Trajectory Initial Time  Sampling method \NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al., 2020), linear noise schedule)
. . o DPM-Solver-2 11.81 71016 755 505 451
Uniform time ¢ = 10 SciREL-Solver-2 (ours) ~ 6.65 1583 475 415 429
) ) T DPM-Solver-2 3367 129.16 2050 878 534
Uniform time ¢ = 10 SCiRELSolver-2 (ours) ~ 9.93 1853 650 451  3.98
L DPM-Solver-2 523 448 408 398 399
logSNR e=10 SciREL-Solver-2 (ours) ~ 5.78  T4.83 405 3.65 3.72
logSNR R DPM-Solver-2 647 7533 404 355 352
h SciREI-Solver-2 (ours) 7.06 76.03 4.33 3.33 3.28
_ o DPM-Solver-2 503 T464 427 407 401
NSR(k=3.1) e=10 SCiREL-Solver-2 (ours)  5.01 451 396 379 3.82
DPM-Solver-2 520 7433 370 348 3476

= = —4 +
NSR(k=3.1) e=10 SciRELSolver2 (ours) 579 1472 381 321 3.23

CelebA 64x64 (discrete-time model (Song et al., 2021a)), linear noise schedule)

. . DPM-Solver-2 1523 '13.63 1099 741 546
Uniform time ¢ = 10 SCiREL-Solver-2 (ours) ~ 7.25 1693 632 572 506
Uniform time < — 10+ DPM-Solver2 61.00 75340 38.10 16908 724

B SciREI-Solver-2 (ours) 20.05 717.98 14.24 7.93 4.40

. DPM-Solver-2 397 1396 407 422 425

logSNR e=10 SciREL-Solver-2 (ours) ~ 3.78  13.58 333 341  3.69
. DPMSolver2 327 313 290 280 2.799

logSNR e=10 SGiREL-Solver-2 (ours) 344  73.18 271 229 239
_ . DPM-Solver-2 624 1554 472 427 424
NSR(k=3.1) e=10 SCiREL-Solver-2 (ours) ~ 4.97 7448 381 359 379
DPM-Solver-2 367 304 279 277 278

= = —4 +
NSR(k=3.1) e=10 SCiREL-Solver-2 (ours)  3.30 1298 256 225 2.39

comparisons under the same settings and codebase for ImageNet at resolutions of 128x128, 256x256,
and 512x512, as well as for the LSUN bedroom dataset at a resolution of 256x256, due to server
limitations. To ensure fairness in our experiments, we maintain the same settings and codebase for
each sampling algorithm to evaluate the various methods of RD-based and RD-none.

Firstly, we use FID to measure the sampling performance of the sampling algorithms when estimating
derivatives using finite difference (FD) method and recursive derivative (RD) method, respectively.
Here, we set ¢ (m) = 1 in SciRE-V1 to represent the sampling algorithm based on FD method. Based
on the FID metric of generated samples, with the same codebase, we assess the performance of these
two derivative estimation methods using discrete diffusion models trained on the CIFAR-10 and
CelebA 64x64 datasets. Without loss of generality, we use a consistent NSR trajectory with k = 2,
because SciRE-V1 can achieve the better quality of generated samples for k € [2, 7], as mentioned in
Section[H.2} Our numerical experiments demonstrate that, across different initial times, the quality
of generated samples achieved by the SciRE-V1 using RD method consistently outperforms that
of the solver using FD method, as shown in Table 2] These numerical experiments measured by
FID demonstrate that in the domain of diffusion ODEs, the use of the RD method for estimating
derivatives of score function evaluation networks consistently outperforms the traditional FD method.

Secondly, for further investigation of the RD method, we introduce SciREI-Solver (n = 2) in section
referring to it as SciREI-Solver-2 to align it in form with its counterpart, DPM-Solver-2. We
compare the generative performance of SciREI-Solver-2 and DPM-Solver-2 with the identical settings
on the CIFAR-10 and CelebA 64x64 datasets using various time trajectories and termination times,
as illustrated in Table[3] Table[3]demonstrates that SciREI-Solver-2 based on the RD method exhibits
greater robustness than the DPM-Solver-2 across different time trajectories, especially on the CelebA
64x64 dataset. These experiments measured by FID also simultaneously demonstrate that as NFE
increases, SciREI-Solver-2 based on the RD method consistently outperforms its counterpart DPM-
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Solver-2. Next, we will conduct some sampling comparison experiments for both of SciREI-Solver-2
and the DPM-Solver-2.

Thirdly, we provide the sampling comparisons between the RD-based sampling algorithms (including
SciRE-V1-2 and SciREI-Solver-2) and the baseline algorithm (DPM-Solver-2) on high-resolution
image datasets. In Figure[5] we compare the generation results of the RD-based methods (Solvers:
SciRE-2, SciREI-2) and the baseline method (Solver: DPM-2) using 6-36 sampling steps with the
uniform time trajectory and identical settings, on pre-trained models with ImageNet 128x128 and
LSUN bedroom 256x256. Here, we further compare the generation results of the RD-based methods
and the baseline method on pre-trained models with ImageNet 256x256 and 512x512 datasets, using
6-36 sampling steps with the uniform time trajectory and identical settings. In these experiments, we
can observe that when using 36 NFEs, samples generated by the popular DPM-Solver-2 still exhibit
more noise compared to our proposed SciREI-Solver-2 and SciRE-V1-2 based on the RD method.
Therefore, all these sampling experiments on high-resolution image datasets also demonstrate the
effectiveness of the RD method.

In summary, all experiments-above under the same settings and codebase indicate that the RD method
brings benefits to Taylor-based numerical algorithms in the realm of diffusion ODEs. Therefore,
we strongly recommend using the RDE method, if the sampling algorithms require evaluating the
derivative of the score function evaluation networks.

D Proor ofF THEOREM 3.1 AND COROLLARY 1

D.1 PRELIMINARIES

Throughout this section, we denote NSR i := min{NSR(#;)}, NSRy.x := max{NSR(#;)}, and assume
1 1

k
that € (x,,,m, zﬁ(r)) € C®[NSRin, NSRnax ], which means that the total derivatives W exist

and are continuous for k € Z,. Notice that 7 := NSR(?), (1) := rNSR(7) and the reverse function of
NSR, i.e. INSR, satisfying = INSR(NSR(#)) = ¥(7). Denote &, := NSR(¢) — NSR(s) = 7, — 7§, and

d o .
eg‘) (x.,,(r), zﬂ(r)) = Feo(xun 4) as k-th order total derivative of €y (xw(f), w(T)) w.r.t. 7. Forn > 1, the

drk

n-th order Taylor expansion of €y (Xw(m, lﬁ(‘[‘t)) w.I.t. T at 7y is

n k

h
€ (x¢(ff), :,b(‘r,)) = k—‘:eg‘) (Xw(n), w(‘rs)) +O(h™). (D.1)
=0 "

For any k > 0, we can approximate the k-th order total derivative term eg‘) (xw(m, l,[/(TS)) in Eq. |i
by using the first-order difference formula:

€D (XW’)’ l//(T[)) el (le(n)’ z//(Ts))

. — O(hy). D.2)

e (Xute,, 0(1y) =

For ease of notation, we denote efgk) <x¢,(T>, :,D(T)) as I'® (7). Notice that €, (Xw(r), zp(-r)) =TO(7). Then
Eq. can be represented as:
D (z,) —T¢ (7))

Iz, = - — O(hy). (D.3)

D.2 Proor or THEOREM 3.1

Proof. While n — oo, Eq. (D.I) becomes:

(o]

I
M) = ) 5T @)

k=0 "

- (D.4)
=)+’ LA
k=1 "
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Moving I'®(r,) from the right-hand side of the above equation to the left-hand side and then dividing
both sides of the equation by &g, we can obtain:

) -1,
hy
© hk 1
= Z ]Z F(k)(TS)
k=1
0 k-1

h
=)+’ =T

k=2

k-1 (k—1) _ 1*k-1)
— F(])(Ts) + Z h (F (7; )h r (Ts) )

- pk-2 > k

=r<l>(T.Y)+th’ (T% () -1 D(ry) - Z s O(h)

k=2 k=2
————
remainder Q

o hk—2 s hk—2
=10 - ) T @)+ ) =T Va) -0
k=2 ! k=2 '

R,
1 o phe2 (D.5)
= (1) — (k=1)
_(1 2)r () Z =T )+ R -0
N\ o N (-2) >
=[1-3 )10 - 3 = (M) - T4 2@ - 0u) + Ry - ©
k=3
1 o W3 o WP
= (1 - E) ) + Z ;—'r““”(n) - Z ﬁr“—”(n) ~O(h?) + R,
k=3 ’ k=3 ’
Ry
L Do " A ) 2
={1-5+¢r (rs>+z — TP + Ry + Ry — O(h)
L L i M - )+ Ry + Ry + Ry — O(hy)
AU TR TRRDT) S k! PR T
—i( D 1r<1>(r)+ZR o),
= -
k=1
where
o N7
Ri= ) — T @)
k=2 ’
sl hk—3
Ry=-> #r““z)(r,)
k=3 ’
R (D.6)
Ry= ) =T @)
k=4 '

(1)’“2 o r“‘ Dz,), i€Zs.

k=i+1

22



Under review as a conference paper at ICLR 2024

Adding the first term and second term of R;, i € Z, separately, we can derive

iRi — i (_k_l‘)kr(l)(Tt) Z - 1) F(Z)( )+ Z Z MF(D( ). (D.7)

i=1 k=2 k=3 i=3 k=i+1

O(h?)
Notice that

(1)k+zlhz]l e (-1 ,
Z Z ' )—Z( DR )Z = 0, (D.8)

i=3 k=i+1 k=i+1
(o)
because Y * k, ,Vl € Z, are all convergent alternating series which can be easily proved with
k=i+1

Leibniz’s test. Then Eq. (D.3)) can be shown as:

(0) _ 10 O 1\k— k+i—17,i—1
r (Tt)h () _ ( 2 (1)( O+ Z Z (- 1) h (’)(T) O(hz) (D.9)
s k=1 ) i=1 k=i+1

Consequently, we can get T'V(1,) by simple manipulation of rearranging and affine transformation
applied to above equation:

e TOE,)-1O0()) (=1)k+= lh" :
M) = - e_lzlzl——————ﬁ%m+0m%

-1 hs i=1 k=i+1
T —TOr.
_ e (Tl) (T_,) _ € F(l)( )+ h r(Z)(Tt) +O(l’l2) (D]O)
e—1 hy e—1
e TO@)-T%) TV(@) (e- Z)h
= S - ‘@ o),
| I, 12— @ +OH)
where
i -1 k—1
Z : k)v =1-¢
k=1
00 -1 k
Z ( k‘) =¢! (D.11)
=2
© 1)kl 1 2
Z(k)! ety =
k=3 ¢
for ¢* = kfog—‘!' with x = —1.

Notice that we denote €'’ (Xw(r), lp(T)) as '™ (7). While using % to approximate x and replacing the

terms like T®(7) in Eq. li with terms like e(ek) (X¢(7), lﬁ(‘r)), we can get the results shown in
Theorem 3.11 m]

D.3 Proor oF COROLLARY 1

We observe that the differentiability constraint imposed by Theorem [3.T]appears to be rather restrictive.
In order to enhance its broad applicability, we further propose a recursive derivative estimation method
under the assumption of limited differentiability. The corresponding proof process is as follows:

Proof. Assume that € (x,m), z//(T)) € C"[NSRyin, NSR1ax]- While 7 is a finite positive integer, Eq.

(D:1)) becomes:

n

%) = Z hy ANCOR U
k=0

. (D.12)

n h
=0+ ) T0@) + o™,
k=1 "
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Same as the derivation process in (D.5), we can obtain

rOa) -1%()
hs
n hk
= =10, + o)
k=1 k

=T V() + Z F(k)(‘rb) + O

=1 V(zy) - Z r“ ‘>(T)+Z r“‘ D(z)—OMh2) + O’
————

k=2
O(h})-O(h)=0(h?)
Ry
! n ko3 n k3 (D.13)
:(I—E)FU)(TS)+Z#FU(2)(TS)— k = 1® (1)) ~O(h*) + R,
k=3 ' k=3
Ry
11 Ly Rkt n ke
= (1 -5+ g)r“)(n) - Z H = 1*I )+ ﬁr“‘-@(r,) ~O(h*) + Ry + R,
k=4 k=4
R3
S (-DF! S
= 0 F(')(T)+ZR - o),
k=1
where
ol
Ri=) — T4
k=2
n hk—3
O -2
D TP
(D.14)

n hkn
Rimi = (<1)" ) =T Dy,

k=n
Hence adding the first term and second term of R;,i = 1,2,...,n — 1 separately, we also have

n—1 noo vk n-l n k+i—1pi-1

R= ) e 3 E0 e, L 5 5 O o
i=1 k;Z i=3 k=i+1 (DIS)
oy e r<1>(r)+Z( D ) +OH).

Denote ¢ (n) = D.13) and (D.15), we

z CLand ¢s(n) =

o] k=3
can easily derive F(TS, 1) by

P3(m)h;

1 TO —TO(r,
e, = T W, B0k o) om). @16
¢1(n) hs ¢1(n) ¢1(n)
Similarly, while using % to approximate x and replacing the terms like I'®¥(7) in Eq. (D.16) with
terms like eg‘) (Xz//(‘r), lﬁ(T)), we can get the results shown in Corollary o
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E ANALYSIS OF RECURSIVE DIFFERENCE

In this Section, we provide some analysis of recursive difference (RD) method. Taking practical
considerations into account for the iterative algorithm, we first introduce a simplified truncation of
the RD method. Subsequently, we conduct a three-tier analysis of this simplified truncation.

E.1 TaeE Most SIMPLIFIED TRUNCATION OF RECURSIVE DIFFERENCE

We review that the n-th order Taylor expansion of €5(Xyz,), ¥(7T)) W.I.t. T at 7, is

€0 (Xuce, ¥1(7) Z F &) (Xute» (@) + OU™). (E.1)

After substituting this Taylor expansion into the score-integrand form presented in Eq. (3.2)) for the
diffusion ODEs, we derive

n

s W w w2
%= +asz TSI (Xuce» () + OC™2). (E.2)

When n = 2, we have then the followmg truncation formula:
%= x (htee(xw W)+ L <”(xw,> b))+ <2>(x¢(,,) W(T) + 0<h4>) (E.3)
1
where X, represents the approximate value of x;.

By the RD method in Corollary [3.1] we have
1 € (ilf/(fsl)’ W(Tsl )) — € (an/(r,), w(Tz))
¢ ( ) rlht (E4)

92(m) ds(mrihy
¢2(Z) (91) ( Xy(r,1)» w(Tsl )) - i;;nTrl)eg) (X,/,(TH), W(TSI)) + O(htz)

where 751 — 7, = rih;. Combining (E.3) with Eq. (E.4), we have
h? €o (Xw(m) Y(T 31)) - € (Xw(n) Y(t z))

€ (Xu(epo (1)) =

(oS
Xs = _Xt + %hﬁa (Xll/(r,) lﬂ(“'z)) + s~

“ 2 $1(myrihy
h $a(m) 1 ¢s(m)r (E.5)
%Y a0 e ¥T0) +ashf(g e )eif) (CMNTCR)

+O(h).

By truncating the term containing /? in Eq. (E.5), we obtain the algorithm shown in Algorithm 1}

e €0 (Roces- U(s1)) = €0 (Xuce- (1)
“7 d1(m)ry '

According to Eq. (E.3), it appears that we can easily conclude from Eq. (E.6) that the preliminary
result has a local truncatlon error of O(h?). Nevertheless, our numerical experiments conducted
on different datasets demonstrate that the algorithm [I] derived through this truncation method can
generate high-quality samples with a restricted number of score function evaluations (NFE). Further
details can be found in Appendix [H| After careful observation, in fact, this technique partially
eliminates the dependence on derivatives while still containing derivative-related information (such
as the difference between two score function evaluations), thereby mitigating the error propagation
caused by derivative estimation to a certain extent. By repeatedly using this technique, we can derive
our SciRE-V1-3 in Algorithm

Note that the truncation method in Eq. (E.6) is just a simplified truncation for RD method. In
(el) (xw(m), 1//(1"?1)), we can further truncate the term
containing /2, leading to a generalized SciRE-Solver. We leave it for future study.

%, — %Xt + arshy€q (Xy(ep, (1)) + (E.6)

fact, with an even more accurate estimate for €
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E.2 AnNALYSIS OF THE MOST SIMPLIFIED TRUNCATION IN RD

Generally, the expression for the first-order derivative can be written as follows by utilizing Eq. (E.I)):
I, )-T() < h' .

T > —T0@) + o). (E.7)

! k=2

) =
%)

where I'Y(7) is used to denote €, (x(,,(T), zﬂ(r)) for simplicity. By simply truncating all higher-order
terms, the FD approximation can be obtained:

I'(7,,) - T'(7,)
ht' ’

i

', ~ (E.8)
where we refer to the coefficient % of the term I'(t,,_,) — I'(ty,) as the coefficient of FD for ease of
description in the rest of this section. Clearly, the FD method exhibits an approximate error of O(h,).
In the preceding section, we elucidated the simplified truncation form of the RD method, which
approximates the first-order derivative in the following manner:

1 F(Tl,;]) - l—‘(Tt,')
¢1(m) ht,- .

1"(1)(7.[/_) ~ (E.9)

In the following, we will conduct a three-tier analysis of this simplified truncation form.

Firstly, we observe that it is common to replace (e" — h — 1)/h?> with (¢" — 1)/h as the new FD
coefficient within the framework of exponential integrators. We demonstrate that the coefficient of
the simplified RD method exhibits numerical trends similar to the coefficient (¢ — 1)/h employed
in the exponential integrator. Clearly, (e" = 1)/h = (he" — h)/h%. Due to the fundamental difference
between their numerators, we only need to consider the numerical behavior between these numerators.
Let g(h) = (he" — h) — (¢" — h — 1). Clearly, g(h) = he" — " + 1 and gV(h) = he". Then, g(h)
reaches its minimum value at & = 0, i.e., £(0) = 0. Then (k) > 0 and (¢" — 1)/h > (¢" — h = 1)/K?
when & # 0. This means that the essence of using (¢" — 1)/A in the exponential integrator algorithm
is to appropriately amplify the coefficients of the FD method. Besides, since ¢(m) < 1, the RD
approximation in Eq. also amplifies the coefficients of FD method. Therefore, the RD method
and the equivalent infinitesimal substitution in the exponential integrator share the same numerical
trend. This explains the numerical commonality between different coefficients in Eq. (C.5) and Eq.
(C.6). In Figures[5and[9] the sampling comparisons for DPM-2 and SciREI-2 vividly illustrate this
numerical commonality.

351
e"-1)h
3l 3/2* (e" - h-1)/h?
(" - h -1)/h?

Figure 10: Comparison of coeflicients between different difference methods. The red curve represents
the recursive difference coefficient ¢, (m) at m = 3. The blue and yellow curves represent the coeffi-
cients used in the exponential integrator (DPM-Solver and DEIS) and finite difference, respectively.
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Secondly, we present the numerical performance of coefficients among different difference methods,
as shown in Figure[I0] Clearly, RD amplifies the coefficients of FD, but overall maintains a similar
trend to FD method. It can be seen as a numerical stretching of FD by a recursive factor. When # is
large, the coefficients based on the exponential integrator exhibit a more pronounced increasing trend
in the positive direction of 7 compared to RD. In the negative direction of &, two scenarios arise: on
the left side of the intersection point between the RD coefficient function and the coefficient function
employed by the exponential integrator, the RD coefficient value is slightly greater than the value
employed by the exponential integrator; on the right side of the intersection point, the coefficient
value employed by the exponential integrator is noticeably greater than the RD coefficient value. This
difference explain why the algorithm based on the coeflicient of the exponential integrator exhibits
over-rendering in a small number of steps, as depicted in Figure[5] Another notable difference is
that, as i approaches 0, both the coefficient and its rate of change for the difference terms using the
exponential integrator surpass those for the RD counterparts. This difference clarifies why algorithms
based on the coefficients of the exponential integrator fail to achieve optimal sample quality in the
case of a larger number of sampling steps, because FD can effectively approximate derivatives when
h — 0 under the assumption of model continuity and differentiability. This is evidenced in Table 3]

Lastly, we analyze this simplified RD method purely from the perspective of derivative estimation.
Compared to FD method, specifically, such RD method incorporates additional information
1= ¢1(m) I'(zy,,) = T'(7y)
¢1(m) hy,
from other higher-order derivative terms, which may counterbalance with these higher-order terms to
a certain level. The consideration of this counterbalance is mainly based on two factors.

(E.10)

The first piece of evidence is its origin; clearly, as demonstrated in Eq. and Figure[2] this addi-
tional information arises from recursive operations on other higher-order derivative terms. Therefore,
this additional information encompasses partial information from approximations of higher-order
derivatives, providing a more comprehensive consideration of the complexity involved in derivative
estimation. We believe that this integrated source of information has the potential to offset, to some
extent, the trends in higher-order terms in Eq. (E.7), making such RD method potentially more
accurate and reliable in estimating derivatives for complex functions.

The second piece of evidence is grounded in the idea that, under certain assumptions, the RD method
can achieve a truncation error of O(h,zi). For example, when considering m = 3, one can subtract Eq.

(E.9) from Eq. (E.7), resulting in:
1T, ) -T(,) 1 1
AT (r,)) = ET + 5ht,r@(f,i) + 5h,%,r@)(r,i) +O0(1}). (E.11)
By employing Eq. (E.I) in Eq. (E.IT), we obtain:

1 1 1 1 1
AT (,) = ST + (5 + 1) Eh,il"(z)(r,,.) + (5 + 1) §h§F(3)(T,i) +O(1;)
' E.12
3(2rm @ 1 EPpe 3 12
= Z gr (Tt;) + h,iF (TT,') + 5 +1 ;htlf (T[i) + O(ht,)

According to Lagrange mean value theorem, there exist 7; and 7, satisfying 7, € (7y,72) and
hy, = 7o — 71, such that
F(w,)(r2 = 11) = IV(r2) - T(0).
The most direct assumption is that if IV (7)) = ['¥(1;) + %F(l)(‘r,i), then
A (r“)(n,.)) = O(h}).
Certainly, the condition can be further relaxed to if V(1) = I'®(1;) + 3TV(1;,) + O(h?), then
AT (z,)) = O().

The above analysis of derivative estimation suggests from a simple perspective that, for certain
functions, such RD method can achieve better truncation errors.

Our numerical experiments confirm the applicability of this recursive approach to accelerating
diffusion sampling. Additionally, it is worth noting that the effectiveness of this recursive method
may be associated with specific properties of the diffusion model. We leave the exploration of these
specific attributes for future research.
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F Proor oF THEOREM 3.2
Under reasonable assumptions, SciRE-V1-k is a k-th order solver.

F.1 PRELIMINARIES

Assumption F.1 The function €y (X;, 1) is set to be in C", meaning that €y (X;,t) is m times continu-
ously differentiable. Specifically, m > 3 in this paper.

Assumption F.2 €, (x;, 1) is a Lipschitz continuous function w.r.t. X;.

Assumption E.3 For Vt, there exists 6 > 0 such that Jp € U(t,9),( + %)eg) x,0nH = 1+

%)eg) (x;, 1) = le(el) (xp,p) if n € N is large enough. Here U denotes the neighbourhood of t.

As in Appendix@ we denote 7 := NSR(?), (1) := tNSR(7) and &, := 7, — 7. In Appendix we
transform the form of the solution to diffusion ODEs as in Eq. to the form as in by using
the change of variable formula. The resulting solution can be formed as:

a; i
X; = a—sxs + j; €y (Xw(f), Lp(‘r)) dr. (F.1)
Then by substituting the n-th order Taylor expansion of € (xw(rl), W(T,)) w.r.t. T at 7
n hls(,
o (Xoep (1)) = ) ey (Suce- (7)) + OCHS*™), (F2)
k=0 "

for the €g (XW,), zﬁ(n)) in Eq. li we can derive the exact solution of x; in Eq. li as follows:

n

@; B 12
X, = —X, + Z (Xw(n), W(Ts)) +O(h™)

a TN LG
= F3
= o i—§+l 0 (%, ) + OUL™) "
_asxs a, 2, (k+1)!€9 X, § ).

F.2 Proor oF THEOREM 3.2 WHEN k = 2

In this subsection, we prove the global convergence order of SciRE-V1-2 is no less than 1 and is 2
under reasonable assumptions.

Proof. For each iteration step, we first update according to:

hy =1, — 7y, (F4)

s1= U(Ts + rihy), (ES)

= x4 riheq (%, 9), (E6)
e

2

a; s
= —Ix, + ashsey Xy, §) + @y ———— ,51) — €9 (X5, 9)) E7
X asx ahseg (Xg, 5) s T (eg (uy, 51) — € (X, 5)) (E7)

where X, denotes the approximate solution of x, computed by SciRE-V1-2, r; € (0, 1) is a hyperpa-
rameter so that 5| € (¢, s).

Next, taking n = 1 in Eq. (F3)), we can get the exact solution of x;, as follows:

h?
X = x, + ashyeq (X, ) + a5 €y (X 5) + O(h) (F.8)

S

Then by subtracting the last equation from Eq. (F.7) and using u; — x,, = O(h?), we have

x—% h3 4
o "2 (X, ) TRCTT (€g (uy, 51) — €9 (Xy, 5)) + O(hy)

F9
€9 (Xy,, 51) — €9 (Xy, 8) 9

¢1(m)rlhs

h2
= 7 (eg“ (X, §) — +O(h),
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where ||€g (uy, 51) — €4 (Xy,, 51) || = O(llu; — Xy, ||) = O(h?) under Assumption
By Assumption [F:2]and Lagrange’s mean value theorem, we find that
lleg (X5, 51) — €6 (X5, ) | < LlIxs, = Xll = LIX;,(s1 = 9)Il = LKy (7e)(T5, = 7)ll, (F.10)

where n € (Y(7y,), Y(7y)), T¢ € (T4, 7,) and L is the Lipschitz constant. Since ||ry, — 74l < It — 7]l =
O(hy), the r.h.s. of the above inequation is O(ky).

Besides, by Assumption[F.I] we also have
S19 - ) O /’l .
€o (X, 51) — € (X5, 5) _ oy~ 2
¢1(m)r1 hs hs
Hence x;, — X, = O(hf). We prove that SciRE-V1-2 is at least a first order solver.

= o). (F.11)

1
6.(9 ) (X, 5) —

Furthermore, we will prove that SciRE-V1-2 is a second order solver under mild condition.

Specifically, while ¢1(m) = ¢1(3) = 2/3, by the Lagrange’s mean value theorem, there exists
& € (51, 5) such that

€9 (X5, 51) — € (X._»,f,f) )

= &)+ O(hy). F.12

d1(mrih, 0’ (xe.¢) + Ok E12)

Note that ¢ (m)rihy = 751 — 7z and (1 — ¢1(m))rhs = 7 — 74, hence

€9 (Xy,,51) — €9 (X,,8) €0 (Xs581) — € (Xf’f) €9 (Xf’g) ~ €0 X5 9)

$iGmrihe  gi(myrih 10mrihg
1 € (Xg,f) — €9 (Xs, 8) (F.13)
= Cél) (Xfaf> =+ O(hb) + 5 (1 — ¢1(m))r1hs

1
=€) (xe8) + 3¢ (%09 + O

Combining the above equation with Eq. (F.9), we have

B € (X, 51) — €9 (X 5)

2
X — Xy ﬂe(l)

3

P S e R
A (o 1 3 Fl4
=56 (x05) = > (e (xf,g)+§eg (X, 5)| + O(Y) (F.14)

= hZ% (eél) (s, 5) — 26[(_)1) (xg,f)) +O(h),

where £ € (51, 5). By Assumption eéz) (X4, s) is bounded hence the first term in the r.h.s. of above
equation is O(1?). While for the second term, we find that

egl) (X5, 8) — 26(81) (X,f, f)

1
_ [eg“ (X5, 5) — (1 + E)e;“ (X, 51) | +

1
1+ E)egl) (X5,5 51) — 26;1) (Xg,f)}

- [eg“ (X;,8) — (1 + i>eg1> (xe.€)| +

U+%ky@&ﬂ—ﬂ+%k?@mﬁ4 (E15)

1 11
(a+ E)eﬁ,‘) (Xgo51) = (1 + = + el (x4, 8)

+
2" 4

+

11
(145 + Z)e;“ (s, 5) — 2€. (xf,g)]

We now define group, for example, eg') (X5, 8) — (1 + %)Gé]) (xs,, 51), which is grouped by “[1”. We
also find that for each group, if the coefficient of the first term is /, then the coefficient of the second
term is / + 3. after using dichotomy for n times. Note that / € [1,2) such that [ + 5; € (1,2],Yn € N.
Besides, ¢ takes two different values in {s, s1,&}. By Eq. and Assumption if n is large
enough, each group is O(hy), for example,

1
le” (X, 51) — (l + 2—) ey (x5, 5) = ley (X, 51) — €y (%0, p) = O(hy). (E.16)
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Hence e(gl) (X5, 8) — 26571) (Xg,f) is O(2"hy). In practice, n is finite, meaning that 2" is bounded and

O2"h,) = O(hy). Subquently, the proof is completed by
X

. o) + —O(h )+0() = O(hY).

F.3 Proor oF THEOREM 3.2 WHEN k = 3

In this subsection, we prove the global convergence order of SciRE-V1-3 is no less than 2.

Proof. For each iteration step, we first update according to:
hy =1 — T4,
s1 = Y(ty + rhy),
52 = Y(T5 + nhy),

@y,
u = —Xs + aslrlhseé’ (Xs’ S) s
s

[ hx
W = —2X, + @y, i€ (Xy, 5) + @y, ——— (€9 (U, 51) — €5 (Xy, 8)),

g ¢1(m)
%, = Lx, + ayhyey (x,, 5) + e s2) — € (%o )
= as Xy al s€o S N at 2¢1(m)r2hs 0 25 S2 0 S N B

where X, denotes the approximate solution of x, computed by SciRE-V1-3, r; € (0,1) and r, =

are hyperparameters so that sy, s € (z, 5).

We firstly prove that u, — x;, = O(h?):

a/ hs
Uy = —2x, + @y, rhen (X, 8) + @5, —— (€9 (g, 51) — € (Xy, 5))

ay ¢1(m)
= Db @rahen (%5, 8) + @ (9 (X 1) — €4 (s, 5)) +O(RY),
as $1(m ( ) ‘

X5,

by u; — x;, = O(h?) and Assumption
Next, taking n = 2 in Eq. (E3)), we can get the exact solution of x, as follows:

+1
X, = —xs + arhyeq (g, 8) + a,z (k o el (x,, 5) + O(h?)
Then by subtracting the last equation from Eq. (F.23) and using u; — x,;, = O(h2), we have
I 2

X, — X, n
- Z (k+ 1)! (ak) (X5, 8) = m (€6 (U2, 52) — €5 (Xy, 8)) + O(h?)

h} ) h @ "2 € (Xy,, $2) — € (Xy, 5) 4
= 5 s a5 s28) — h s
260 Bt gye o) T o, T O
where ||€g (U2, 52) — €4 (Xy,, 52) || = O(|luy — X,,||) = O(h3). Similar to the proof in @ we have
— Xy _ Z hk+l é,k)( X,. s )_ h_Eg (szy 52) €y (XSs S) + O(l’lf)
a; = (k+ D! $1(m)rahg ’

h? h? |
= 3—je§2> (X5, 8) + = 5 € >(xs,s) ( 591)()(§’§)Jr 5621)(Xs’s))+0(h2)

" 12
= ye? (%09 + (e %y ) — 26 (x¢.£)) + O(RY)

= O(h}) + 2"O(h}) + O(h}) = O(hY),

(F.17)

]

(F.18)
(F.19)
(F.20)

(F21)

(F.22)

(F.23)

1—}’1

(F.24)

(F.25)

(F.26)

(F.27)

where £ € (s, s) and n € N is finite. Hence we prove that the global convergence order of SciRE-V1-3

is no less than 2.
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G AvrcoriTHMS OF SCIRE-SOLVER

In Section we propose the recursive difference (RD) method for approximating derivatives, the
conclusion as shown in Theorem [3.1] and Corollary 3.1] In this section, we discuss in detail the
SciRE-Solver based on RD method.

G.1 SciRE-V1 witH BACKWARD DIFFERENCE

Here, we introduce a simple variant based on SciRE-V1-2, which utilizes RD method and backward
difference estimation for the estimation of derivative of the score function. The specific details are as
described in Algorithm 4]

Algorithm 4 SciRE-V1-2m

Require: initial value xr, time trajectory {z, }l —o» model 69, m > 3, empty cache R.
1: Denote h;_; := NSR(#;_;) — NSR(¢;), where i = 1, .

- cache
2 Xy —XxXr, R « 69(Xr,v’ N)

-~ t
3%, < & ‘X,N + ay, hveg Xy, ty)

cache
R — (%, ,tn-1)

fori « N-2to lhdo
ri = pim), Disy — €9(X,5 tin1) = €9(Xy,, Tir2)

~ @ . ~ hs
Xy = oKy + @hi€o (Riy s lit) + @ g Div

AR

i

cache -
& € (X, 1)

9: end for
Return: X.

o]

G.2 AvrcgoritHMS OF SCIRE-V2

In this section, we introduce SciRE-V2, which is based on ODE Eq. (3.3) and the RD method.
The derivation principle and convergence order of the SciRE-V2 algorithms remain consistent with
SciRE-V1, while the specific iteration details are shown in Algorithms[5] [6] and

Algorithm 5 SciRE-V2-2

Require: initial value x7, time trajectory {t; }fi o> model xg,m > 3.
I Xy, < X7, 7| < %

2: fori < Ntoldo

3: h; < 1/NSR(#;_1) — 1/NSR(t;)

4: S; rNSR(l/(l/NSR(t,) + rihy))

5: X, < —x, + o, rihixg (X, 1)
6: ififl A g—_,_xti + O-Ithwﬁ (Xti’ tl) + 0y, W (:139 (isi’ S,') — Ty (ifi’ ti))
7: end for

Return: X.

G.3 AnALyTICAL FORMULATION OF THE FUNCTION TNSR(-)

The computational costs associated with computing rNSR(-) are negligible. This is due to the fact that
for the noise schedules of @; and o, employed in previous DMs (referred to as “linear” and “cosine”
in (Ho et al., 2020; Nichol & Dhariwal, [2021))), both rNSR(+) and its inverse function NSR(#) have
analytic formulations. We mainly consider the variance preserving type here, since it is the most
widely-used type. The functions for other types (variance exploding and sub-variance preserving
type) can be similarly derived.
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Linear Noise Schedule (Ho et al.,2020). In fact,
( B1 = Bo) ﬁo) _Bo t)

a; = exp

4 2

where 8y = 0.1 and 8 = 20, following (Song et al.| [2021c; |Lu et al., 2022b). As oy = /1 — atz, we
can compute NSR(t) analytically. Speciﬁcally, the iverse function is

o (VB 26 - tog(1+7) - ).

where 7 = NSR(?). In order to mltlgate the influence of numerical issues, we have the option of
calculating the value of ¢ using the alternative expression provided below:

2l0g (1 +17?)

JB+ 28— Bolog (1 +7) + o

t = 1NSR(7) =

t =1NSR(7) =

Algorithm 6 SciRE-V2-3

Require: initial value x7, time trajectory {t,-}fi o> model g, m > 3.
1: X;, < X7,7] < %,
2: fori — Nto1do

33 h < 1/NSR(#_;) — 1/NSR()

2
r2<—3

4 Si;, Si, — INSR(1/(1/NSR(#) + r1h;)) ,tNSR (1/(1/NSR(#) + r2h;))
o
5: iSil — O__',']iti + Oy, rih;axe (it., t,’)
< (rJiIz < _nhi < <
6 Ry, & 52X, + 0y, e (R, 1) + 0y, 5550 2¢1(m)r1 ( Ty (xsil , sil) -z (X, t,-))
~ Oty o~ - ~
7. X, < ,T'—r_'Xt, + oy hixg (X, 1) + 0y, W ( Tq (XS,'27 Siz) -z (X, fi))

8: end for
Return: X.

Algorithm 7 SciRE-V2-2m

Require: initial value x7, time trajectory {t,-}fi o> model @y, m > 3, empty cache R.
1: Denote h;_; := 1/NSR(t;,_;) — 1/NSR(z)), By = NSR(#;_1) — NSR(¢;), where i = 1, ..., N.

- cache
20 X, XT,R — Xy (X,N,tN)

3: ilN L e XZN + O—ZN,thmH (X,N, IN)

cache
4: — a:g(x,N S IN-1)
5: fori < N-2to 1 do
Ry < o
6 nioe G, Dt @Ky Tint) = Bo(Kis s iv2)
~ [ S hi
7: Xy, _Xll'“ + O-I,’hix(‘) (Xl,'”’ ti+1) + O-liWDi+l
cache
8: — xp (X, 1)
9: end for

Return: X.

Moreover, we solve diffusion ODEs within the interval [€, T], where T is set to 1.

Cosine Noise Schedule (Nichol & Dhariwal,2021). Denote

(71 t+s/ N )
@y =COS|— -
! 2 1+sl1+s)’

where s = 0.008, following (Nichol & Dhariwal, 2021). As o = /1 — aftz, we can compute NSR(t)
analytically. Denote 7 = NSR(#), and define the function ¢(7) as follows:

(1) = —llog(l 7).
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Then the inverse function is

21
{ = INSR(r) = 20 *8

) arccos (e¢(1)+10g cos(ﬁ)) s

Moreover, we solve diffusion ODEs within the interval [e, T], where T is set to 0.9946, following
(Lu et al.| 2022Db)).

G.4 SciRE-V1-AGILE

In order to facilitate the exploration of more possibilities of the SCiRE-V1 our proposed and to fully
utilize the given number of score function evaluations (NFE), we defined a simple combinatorial
version based on SciRE-V1-k and named as SciRE-V1-agile. This version is based on whether the
given NFE is divisible by k. If it is not divisible, solver-k is used as much as possible first, and then
smaller order SciRE-V1 or DDIM are used to supplement.

To achieve this, when given a fixed budget N for the number of score function evaluations, we
evenly divide the given interval into M = ([N/3] + 1) segments. Subsequently, we carry out M
sampling steps, adjusting based on the remainder R when dividing N by 3 to ensure a precise total of
N evaluations.

When R = 0, we initiate M — 2 SciRE-V1-3 steps, succeeded by 1 SciRE-V1-2 step and 1 DDIM
step. This results in a total of 3 - (% - 1) + 2 + 1 = N evaluations.

In the case of R = 1, we begin with M — 1 SciRE-V1-3 steps, followed by 1 DDIM step. This yields
a total of 3 - (%) + 1 = N evaluations.

Lastly, when R = 2, we conduct M — 1 SciRE-V1-3 steps, succeeded by 1 SciRE-V1-2 step. This
leads to a cumulative count of 3 - (Nsz) + 2 = N score function evaluations.

Our empirical observations show that using this time step design can enhance the quality of image
generation. With the implementation of the SCiRE-V1 algorithm, high-quality samples can be
generated in just 20 steps, such as achieving a 2.42 FID result on CIFAR-10 with just 20 NFE.

G.5 SampPLING FROM DIScRETE-TIME DMs

SciRE-V1 aims to solve continuous-time diffusion ODEs. For DMs trained on discrete-time labels,
we need to firstly wrap the model function to a noise prediction model that accepts the continuous
time as the input. In the subsequent discussion, we examine the broader scenario of discrete-time
DMs, specifically focusing on two variants: the 1000-step DMs (Ho et al.,2020) and the 4000-step
DMs (Nichol & Dhariwal| 2021). Discrete-time DMs (Ho et al., [2020)) train the noise prediction
model at N fixed time steps {tn}nNzl, and the value of N is typically set to either 1000 or 4000 in
practice. The implementation of the 4000-step DMs (Nichol & Dhariwall, 2021)) entails mapping the
time steps of the 4000-step DMs to the range of the 1000-step DMs. Specifically, the noise prediction

model is parameterized as & (xn, 1000”), where x,, is corresponding to the value at time 7, and n

N
ranges from 0 to N — 1. In practice, these discrete-time DMs commonly employ uniform time steps

between [0, T], then 7, = %, forn=1,...,N.

As sated by |Lu et al.| (2022b), the discrete-time noise prediction model is limited in predicting noise
levels for times less than the smallest time #;. Given that | = % and the corresponding discrete-time
noise prediction model at time #; is &g (Xp, 0), it is necessary to “scale” the discrete time steps from

[t,ty] = [1%, T] to the continuous time range [€, T]. However, the question of which scaling approach
would be beneficial to the corresponding sampling algorithm remains an open problem.
In our codebase, we employ two types of scaling recommended by [Lu et al.|(2022b) as follows.

T
*N
the continuous time range [1%, T]. Then, the continuous-time noise prediction model is defined by

Discrete-1. Let €4(-, 1) = €¢ (~, %) fort e [E ], and scale the discrete time steps [f, fy] = [%, T] to

T
@mgza@JmUme—Nﬁ»
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where the continuous time ¢ € [E, %] maps to the discrete input O , and the continuous time 7" maps to

. . 1000(N~-1)
the discrete input ———.

Discrete-2. Scale the discrete time steps [#1, fy] = [%, T] to the continuous time range [0, T']. In this
case, the continuous-time noise prediction model is defined by

(N - l)t)
NT )’

€9(X,1) = € (X, 1000 -

where the continuous time 0 maps to the discrete input O , and the continuous time 7" maps to the
discrete input %.

By such reparameterization, the noise prediction model can adopt the continuous-time steps as
input, which enables SciRE-V1 to perform sampling not only for continuous-time DMs but also for
discrete-time DMs.

G.6 CONDITIONAL SAMPLING BY SCIRE-SOLVER

With a simple modification, following the settings provided by |Lu et al.|(2022b), SciRE-Solver can
be used for conditional sampling. The conditional generation requires sampling from a conditional
diffusion ODE, as stated in (Song et al., 202 1c; Dhariwal & Nichol, |2021). Specifically, by following
the classifier guidance method (Dhariwal & Nichol, 2021}, the conditional noise prediction model can
defied as €y (X;,1,y) := €9 (X, 1) — s - 0,V log p, (v | X;; 6). Here, p; (v | X;; 0) represents a pre-trained
classifier, and s denotes the classifier guidance scale. Thus, one can utilize SciRE-Solver to solve this
diffusion ODE for fast conditional sampling.

G.7 SupPorTED MODELS

SciRE-Solver support four types of diffusion probabilistic models, including the noise prediction
model €4 (Ho et al.,2020; Rombach et al.,2021), the data prediction model x4 (Ramesh et al.| [2022),
the velocity prediction model vy (Ho et al.||2022) and marginal score function sy (Song et al.|, [2021c).
Here, we follow the configurations provided by [Lu et al.|(2022bic).

H EXPERIMENT DETAILS

In this section, we provide more details on SciRE-V1 and further demonstrate the performance
of SciRE-V1 on both discrete-time DMs and continuous-time DMs. Specifically, we consider the
1000-step DMs (Ho et al.| [2020) and the 4000-step DMs (Nichol & Dhariwal, [2021), and consider the
end time € and time trajectory for sampling. We test our method for sampling the most widely-used
variance-preserving (VP) type DMs (Sohl-Dickstein et al.,[2015;Song et al.,[2021c). In this case, we
have a? + 02 = 1 for all ¢ € [0, T]. In spite of this, our method and theoretical results are general and
independent of the choice of the noise schedule @, and o. In all experiments, the number of NFE
represents the sampling steps. For early experiments, we evaluate SCiRE-V1 on NVIDIA TITAN
X GPUs. For each experiments, we draw 50K samples and assess sample quality using the widely
adopted FID score (Heusel et al.|[2017)), where lower FID generally indicate better sample quality. In
order to facilitate the exploration of more possibilities of the SCiRE-V1 our proposed and to fully
utilize the given number of score function evaluations (NFE), we defined a simple combinatorial
version based on SciRE-V1-k and named as SciRE-V1-agile, as detailed in Appendix

H.1 Enp TIME OF SAMPLING

Theoretically, we need to solve diffusion ODEs from time 7 to time O to generate samples. Practically,
the training and evaluation for the noise prediction model € (X, f) usually start from time T to time €
to avoid numerical issues for t near to 0, where € > 0 is a hyperparameter (Song et al.,2021c). In
contrast to the sampling methods based on diffusion SDEs (Ho et al.| 2020; |Song et al., [2021c)), we,
like DPM-Solver (Lu et al., |2022b)), do not incorporate the “denoising” trick (i.e., setting the noise
variance to zero) in the final step at time €. Instead, we solely solve diffusion ODEs from T to € using
the SciRE-V1.
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H.2 TIME TRAJECTORIES

In SciRE-V1, it is necessary to specify a time trajectory. Although SciRE-V1 can generate high-
quality samples in a few steps using existing quadratic and uniform time trajectories, it has been
demonstrated in experiments in (Lu et al., 2022b) and (Zhang & Chenl [2023)) that the optimal
time trajectory can further improve the sampling efficiency. Here, we present two parametrizable
alternative methods for the NSR function to compute the time trajectory, named as NSR-type and
Sigmoid-type time trajectories. Let {t,-}?i o be the time trajectory of diffusion probabilistic models,
where ty = T and fy = € > 0. In the context of fast sampling, it is always desirable for the number N
of time points in the time trajectory to be as small as possible. However, the selection of the optimal
time trajectory remains an open problem for the few-step sampling regime of diffusion probabilistic
models. In this work, we hypothesize that selecting a time trajectory with sparser time points in
the middle and relatively denser time points at the two ends would be beneficial for improving the
quality of sample generation. To validate this hypothesis, inspired by the logarithmic and sigmoid
functions, we propose two parametrizable alternative methods for the NSR function to compute the
time trajectory, named as NSR-type and Sigmoid-type time trajectories, respectively.

NSR-type: For a given starting time #7 and ending time f; of the sampling, the time values at the
intermediate endpoints #; of NSR-type time trajectory are obtained as follows:

transy = —1og(NSR(#7) + k - NSR(%)),
transg = — log(NSR(#) + k - NSR(%))),
transp—transy

trans; = transy +i- — =,
t; = INSR(e™""% — k - NSR(1)),

L=

where k is a hyperparameter that controls the flexibility of NSR-type time trajectory.
In our experiments, we found that relatively good results can be obtained when k € [2,7]. This means
that when using this kind of time trajectory, one can consider setting the value of k within this range.

Sigmoid-type: For a given starting time 77 and ending time ¢y of the sampling, the time values at
the intermediate endpoints #; of Sigmoid-type time trajectory are obtained as follows:

1. transy = —1og(NSR(#7)), transy = —log(NSR(#)),
2. central = k - trans7 + (1 — k) - transy,

3. shifty = transy — central, shift, = trans, — central,
4. scale = shifty + shiftg,

5. sigmg, = sigmoid (il:jg) , sigmg, = sigmoid (i};fltg ),
6. sigm; = sigmy + i - SERCIE

7. trans; = scale - logistic(sigm;) + central,

8. 1; = INSR(e™"s),

where k is a hyperparameter that controls the flexibility of Sigmoid-type time trajectory.

Empirically, we suggest using the NSR-type time trajectory. However, when NFE is less than or
equal to 15, it is recommended to try using the Sigmoid-type time trajectory. The generation quality
measured by FID of NSR-type time trajectory and Sigmoid-type time trajectory are shown in Table (9)
and Table (8), respectively. Besides, we also demonstrate the efficiency of our proposed algorithms
by using conventional time-quadratic trajectory in Table (). In these experimental results, NSR-type
time trajectory is better than time-quadratic trajectory.

H.3 COMPARING SAMPLE QUALITY WITH DIFFERENT SAMPLERS

We show the detailed FID results of different sampling methods for DMs on CIFAR-10 and CelebA
64x64 with discrete-time or continuous-time pre-trained models in Table[I] We utilize the code and
checkpoint provided in (Ho et al.,|2020; |Song et al., 2021c; Nichol & Dhariwal, [2021). Specifically,
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Table 4: Generation quality measured by FID | of different sampling methods for DMs on the
pre-trained discrete-time models (Ho et al., 2020; [Song et al., |2021a) of CIFAR-10 and CelebA
64x64.

Trajectory Initial Time  Sampling method \NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al.} 2020), linear noise schedule)
DDIM 16.08 1243 928 536 4.55
DPM-Solver-2 518 442 405 397 3.97
logSNR €e=10" DPM.-Solver-3 739 460 7433 1398  13.97
SciRE-V1-2 (ours) 548 455 396  3.66 3.71
SciRE-V1-3 (ours) 8.53 500 %434 7366 13.62
DDIM 17.40  13.12 954 5.03 4.13
DPM-Solver-2 6.40 7526 4.02 3.6 3.51
logSNR e=10"" DPM-Solver-3 952 517 7380 1353 1350
SciRE-V1-2 (ours) 6.48 7535 401 334 3.27
SciRE-V1-3 (ours) 11.71 599 T4.15 73.30 73.163
DDIM 13.58 1063 812 5.03 4.40
DPM-Solver-2 491 451 419  4.00 3.96
NSR(k=2) e=10" DPM-Solver-3 733 497 T456 400  13.96
SciRE-V1-2 (ours) 449 412 374 3.0 3.76
SciRE-V1-3 (ours) 5.29 419 1394 7376  3.71
DDIM 1551 1186 877 486 4.07
B DPM-Solver-2 538 T446 378 353 3.51
NSR(k=2) =10 DPM-Solver-3 729 403 '3.66 7352 1350
SciRE-V1-2 (ours) 591 476 3.88 330 3.28
SciRE-V1-3 (ours) 9.10 452 T4.07 13.24 13167
CelebA 64x64 (discrete-time model (Song et al.,[2021a)), linear noise schedule)
DDIM 1437 1191 966 6.13 5.15
DPM-Solver-2 3.952 73953 405 421 4.24
logSNR e=10" DPM.-Solver-3 379 391 f4.05 426  T4.25
SciRE-V1-2 (ours) 539 451 376  3.49 3.71
SciRE-V1-3 (ours) 491 3.65 7329 300 7341
DDIM 1281 1028 798 452 3.59
DPM-Solver-2 326 314 292 282 2.82
logSNR e=10" DPM-Solver-3 393 291 285 728 1281
SciRE-V1-2 (ours) 429 370 287 237 243
SciRE-V1-3 (ours) 5.04 3.43 258 72,06  2.20
DDIM 13.08 1099 896 5.88 4.40
, DPM-Solver-2 539 493 437 424 4236
NSR (k=2) e=10" DPM-Solver-3 6.14 477 T441 T424  T424
SciRE-V1-2 (ours) 461 420 358 3.6 3.76
SciRE-V1-3 (ours) 475 333 3.04 7315  73.51
DDIM 11.88 959 753 438 3.54
DPM-Solver-2 311 291 288 279 2.81
NSR (k=2) e=10" DPM-Solver-3 294 288 7287 1280 1281
SciRE-V1-2 (ours) 395 339 261 231 243
SciRE-V1-3 (ours) 4.47 2.68 229 72,03 220

we employ their checkpoint_8 of the “VP deep” type. In this table, we compare the FID achieved
by our proposed SciRE-V1 with the best FID reported in existing literature at the same NFE. We
consistently use the NSR-type time trajectory with parameter k = 3.1 for SciRE-V1 on the discrete
models of CIFAR-10 and CelebA 64x64 datasets. For continuous models on the CIFAR-10 dataset,
we use a Sigmoid-type time trajectory with parameter k = 0.65 for the SciRE-Solver when the NFE
is less than 15. When NFE is greater than or equal to 15, we consistently use an NSR-type time
trajectory with k = 3.1. In order to objectively compare the quality of generated samples for the
CelebA 64x64 dataset, given the presence of different FID statistical data, we utilized the FID stats
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employed by Liu et al.| (2022b)) in Tables I} [6|and [9] and utilized the FID stats employed by [Lu et al.
(2022b) in Tables 4] [3|and |2} Figure[7]illustrates the FIDs achieved by different samplers at various
NFE levels. Moreover, in Table 5] we also evaluate SciRE-V1, DPM-Solver and DDIM with the
same settings on the pre-trained model of high-resolution ImageNet 128x128 dataset (Dhariwal &
Nichol, [2021), refer to Figures and[12]for the comparisons of generated samples. In all tables, the
results " means the actual NFE is smaller than the given NFE.

In Table[d] in order to ensure fairness, we compare the generation performance of SciRE-V1 with
DPM-Solver and DDIM on discrete models (Ho et al.,[2020; Song et al.,[2021a)) of CIFAR-10 and
CelebA 64x64 datasets using the same trajectories, settings and codebase. In this experiment, we
employ different time trajectories to evaluate the sampling performance of each sampling algorithm,
such as the NSR trajectory and the logNSR trajectory (Lu et al., 2022b). Unlike in Table [I| with
parameter k = 3.1, we consistently use parameter k = 2 for the NSR time trajectory in Table[d] in
order to showcase the impact of different k values on the samplers. Meanwhile, we also compare the
performance of generative samples for these three samplers at different sampling endpoints, such as
le—3 and le — 4.

Tables [T and [4 demonstrate that the SciRE-V1 attains SOTA sampling performance with limited NFE
on both discrete-time and continuous-time DMs in comparison to existing training-free sampling
algorithms. Such as, in Tablem we achieve 3.48 FID with 12 NFE and 2.42 FID with 20 NFE for
continuous-time DMs on CIFARI10, respectively. Furthermore, with fewer NFE, SciRE-V1 surpass
the benchmark values demonstrated in the original paper of the proposed pre-trained model. For
example, we reach SOTA value of 2.40 FID with no more than 100 NFE for continuous-time DMs
and of 3.15 FID with 84 NFE for discrete-time DMs on CIFAR-10, as well as of 2.17 FID with 18
NEE for discrete-time DMs on CelebA 64x64. Moreover, SciRE-V1 can also achieve SOTA sampling
performance within 100 NFE for both the NSR time trajectory with different parameter values k and
the logSNR time trajectory, as shown in Tables [T|and i} Especially, in Table[d] DPM-Solver is more
likely to achieve better sampling performance within 15 NFE for the logSNR time trajectory and
the NSR time trajectory with k = 2. However, when NFE exceeds 15, ScrRE-Solver becomes more
advantageous. Moreover, when the endpoint of the sampling is set at le — 4, both with the logSNR
time trajectory and NSR time trajectory (k = 2), SciRE-V1 can achieve SOTA sampling performance
between 50 NFE and 100 NFE.

In Table[5] we also evaluate SciRE-V1, DPM-Solver and DDIM on the high-resolution ImageNet
128x128 dataset (Dhariwal & Nichol, [2021). For the sake of fairness, we use the same uniform time
trajectory, the same codebase, and the same settings to evaluate SciRE-V1-2, DPM-Solver-2, and
DDIM for 10, 12, 15, 20, and 50 NFEs. The numerical experiment results report that SCIRE-V1-2
achieved 5.58 FID with 10 NFE and 3.67 FID with 20 NFE, respectively, while DMP-Solver-2 only
achieved 4.17 FID with 50 NFE. In all these different NFEs, SciRE-V1-2 outperforms DPM-Solver-2.

In summary, within 20 NFE, SciRE-V1 with NSR trajectory (k = 3.1) achieves better FID than
existing training-free solvers (Bao et al.,[2022;|Song et al.2021a; Zhang & Chenl 2023} |Lu et al.,
2022b; [L1u et al., 2022b; L1 et al., [2023) for CIFAR-10 and CelebA 64x64 datasets, as shown Table
Meanwhile, within 100 NFE (or even 1000 NFE), existing solvers in the context of discrete
models on CIFAR-10 dataset are hardly able to achieve an FID below 3.45, as shown in Table E}
On the other hand, SciRE-V 1, with different time trajectories such as logNSR trajectory and NSR
trajectory, can achieve an FID below 3.17, and even surpass the 3.16 FID obtained by DDPM at
1000 NFE, as shown in Tables E] and@ For the continuous VP-type model on CIFAR-10, SciRE-V1
also surpasses the 2.41 FID obtained by [Song et al.|(2021c) using SDE solver with 1000 NFE. In
Table {] under the time trajectories, settings and the same codebase, SciRE-V1 outperforms the
DPM-Solver (Lu et al.,[2022b)) widely used in stable diffusion (Rombach et al.|[2021). Specifically,
SciRE-V1 achieves an FID of 3.16 and 2.03 within 100 NFE on CIFAR-10 and CelebA 64x64
datasets respectively, whereas DPM-Solver struggles to achieve FID values lower than 3.50 and 2.79
respectively on the same datasets. Furthermore, the FID comparison on the high-resolution 128x128
dataset presented in Table [5]suggests that SciRE-V1 also possesses advantages in sample generation
tasks involving high-resolution image datasets. For more random sampling sample comparisons on
different high-resolution (>128x128) image datasets, please refer to Figures [IT] 12} [I3] [T7} [I8] [T9)
and 201
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Table 5: Generation quality measured by FID | of different sampling methods with the same codebase
for DMs on the pre-trained discrete-time model of Imagenet 128x128 (Dhariwal & Nichol, 2021)).

Trajectory Initial Time  Sampling method \NFE 10 12 15 20 50

Imagenet 128x128 (with classifier guidance: scale=1.25, under the same codebase)

. . DDIM 933 755 607 491 351
Uniform time e = 1073 DPM-Solver-2 1017 7.78 76.68 546 4.17
SciRE-V1-2 (our) 5.58 473 T427 3.67 3.36

Table 6: SciRE-V1 with time-quadratic trajectory

Initial time  Sampling method \ NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al.,|2020))

= 10°3 SciRE-V1-2 486 410 356 374 3.83
B SciRE-V1-3 19.37 11.18 7748 7394 7385

c = 10~ SciRE-V1-2 6.13 512 3.83 331 ,3'27
- SciRE-V1-3 2239 13.09 7854 7345 73.22

CIFAR-10 (VP deep continuous-time model (Song et al.,|2021c))

SciRE-V1-2 500 424 323 259 253

e=10" SciRE-V1-3 12.53 733 7543 7264 7250
SciRE-V1-agile 5.03 424 321 259 251

Initial time  Sampling method \ NFE 12 15 20 30 50
CelebA 64x64 (discrete-time model (Song et al.|[2021a))

c— 103 SciRE-VI2 583 t4.67 392 377 3.86
- SciRE-V1-3 872 506 7381 7331 %356
_10¢ SciRE-V1-2 424 327 246 223 220

€= SciRE-V1-3 11.08 562 %353 7213 72.03

H.4 ABLATIONS STUDY
H.4.1 DIFFERENT ORDERS AND STARTING TIMES

Order We compare the sample quality with different orders of SciRE-V1-2,3. However, in practice,
the actual NFE may be smaller than the given NFE, for example, given the NFE=15, the actucal
NFE of SciRE-V1-2 is 14. To mitigate this problem, we propose the SciRE-V1-agile method for
continuous models. We compare the results of models with different orders on CIFAR-10 and CelebA
64x64 datasets. Our results indicate that if NFE is less than 20, SciRE-V1-2 outperforms SciRE-V1-3,
or the latter variant is superior — depending on the specific use case.

Starting time We also compare SciRE-V1-2,3 with different starting times € = 107 and € = 107*.
Corresponding results are placed in Tables[6]and[9] We use time-quadratic trajectory and NSR-type

Table 7: SciRE-V1-agile with NSR trajectory and starting time le — 4.

k ¢1(m)\ NFE 12 15 20 50 100
CIFAR-10 (VP deep continuous-time model (Song et al.,[2021c))
k=31 ¢1(m) = ¢1(3) 693 373 242 252 248
o ¢i1(m) = <L 6.79 257 248 261 241
k=22 ¢1(m) = $1(3) 406 334 254 251 242
- ¢1(m) = % 6.15 339 257 261 240
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Table 8: Comparison between different time trajectories, starting time is le — 3.

CIFAR-10 (VP deep continuous-time model (Song et al.,|2021c))

Sampling method  Sampling method\ NFE 12 15
DT v NSR-type(k = 3.2 - 0.005-NFE) 4.41 3.06
SCRE-VI-3 g omoid-type (k = 0.65) 348 347

Table 9: SciRE-V1 with NSR trajectory (k = 3.1).

Initial time  Sampling method \ NFE 12 15 20 50 100
CIFAR-10 (discrete-time model (Ho et al., 2020))

c_ 103 SciRE-VI-2 441 %409 3.67 370 3.80
- SciRE-V1-3 468 4.00 7372 7384 377
c_ 104 SciRE-VI-2 586 t477 387 328 327
- SciRE-V1-3 8.28 451 396 7323 73.17

Initial time  Sampling method \ NFE 12 15 20 30 50
CIFAR-10 (VP deep continuous-time model (Song et al.,[2021c))

SciRE-V1-2 549 419 3.02 255 247

e=10" SciRE-V1-3 6.29 339 268 7256 72.44
SciRE-V1-agile 693 373 242 252 248

CelebA 64x64 (discrete-time model (Song et al., 2021a))

c=10"3 SciRE-V1-2 479 T428 386 3.69 3.82
B SciRE-V1-3 501 332 7312 73.09 73.40

— 10 SciRE-V1-2 391 7338 256 241 230
€= SciRE-V1-3 407 253 217 72.03 72.02

time trajectory for both SciRE-V1-2 and SciRE-V1-3 on CIFAR-10 and CelebA 64 x64 datasets.
In our study on the CIFAR-10 dataset, we have observed that employing a sampling method with
€ = 1073 results in superior sample quality for both continuous and discrete models when NFE is
restricted to either 12 or 15. However, for NFE values greater than 15, we recommend opting for
€ = 107* to ensure the generation of high-quality samples. Moreover, in our analysis of the CelebA
64 x64 dataset, we have found that € = 10~* consistently yields better results than € = 1073 across
different orders and NFEs. It is noteworthy that for NFE=20, SciRE-V1-2,3 show promising results
that are on par with the former.

HA2  ¢1(m) = ¢1(3) or ¢y (m) = <L

When running our proposed SciRE-V1-k in Algorithm [[]and Algorithm 2] it is necessary to assign
a value m to ¢(m). As stated in Corollary [3.1] when assigning m, we need to ensure that m >

. . . . . . . . m _ k-1
3. Considering that the limit of ¢;(m) is <, ie., lim ¢;(m) = lim Y, “2— = <! then our

e b
experiments only consider these two extreme cases, i.e., we only choose to allocate m as 3 or directly
set ¢1(m) = % We provide ablation experiments for these two cases in Table In case of
¢1(m) = %, we reach 2.40 FID SOTA value with 100 NFE on CIFAR-10 dataset.

I COMPARISONS OF SAMPLES GENERATED

In this section, we provide sample comparisons of random sampling using SciRE-V1, DPM-Solver,
and DDIM with the same codebase on different datasets, as depicted in Figures[[T]to[20} Additionally,
we present some generated samples on CIFAR-10, CelebA 64x64, Imagenet 256x256 and Imagenet
512x512, which reported in Figures[21]to 28]
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Figure 11: Generated samples of the pre-trained DM on ImageNet 128128 (classifier scale: 1.25)
using 6-12 sampling steps from different sampling methods with the same settings and codebase.
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Figure 12: Generated samples of the pre-trained DM on ImageNet 128128 (classifier scale: 1.25)
using 10-50 sampling steps from different sampling methods with the same settings and codebase.
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DPM-
Solver

(Lu |

Figure 13: Generated samples of the pre-trained DM on ImageNet 512x512 (classifier scale: 1) using
6-30 sampling steps from different sampling methods with the same settings and codebase.
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DPM-
Solver

Figure 14: Random samples with the same random seed were generated by DDIM (Song et al.,[2021al)
(uniform time steps), DPM-Solver (Lu et al.,|2022b) (logSNR time steps), and SciRE-V1 (NSR time
steps, k = 3.1), employing the pre-trained discrete-time DM 2020) on CIFAR-10.

DPM-
Solver

DDIM

Figure 15: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Song et al.,[2021a) on CelebA 64x64.
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DPM-
Solver

DDIM

Figure 16: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (1ogSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Nichol & Dhariwal, [2021)) on ImageNet 64x64.

NFE=10 NFE=15 NFE=20 NFE=50

DPM-
Solver

DDIM

Figure 17: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained DM (Dhariwal & Nichol, [2021)) on ImageNet 128x128 (classifier scale: 1.25).
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DPM-
Solver

Figure 18: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (1ogSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained discrete-time DM (Dhariwal & Nichol, [2021)) on LSUN bedroom 256x256.

DPM-
Solver

DDIM

Figure 19: Random samples with the same random seed were generated by DDIM (uniform time
steps), DPM-Solver (logSNR time steps), and SciRE-V1 (NSR time steps, k = 3.1), employing the
pre-trained DPM (Dhariwal & Nichol, 2021) on ImageNet 256x256 (classifier scale: 2.5).

45



Under review as a conference paper at ICLR 2024

DPM-
Solver

Figure 20: Random samples with the same random seed were generated by SciRE-V1, DPM-Solver

(Lu et al.|[2022b), and DDIM (Song et al.,[2021a) with the consistently uniform time steps, employing
the pre-trained discrete-time DM (Dhariwal & Nichol, 2021) on LSUN bedroom 256x256.
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Figure 21: Random samples were generated by SciRE-V1 with 12 NFE, employing the pre-trained
discrete-time DM (Song et al.,[2021c) on continious-time CIFAR-10. We achieve an 3.48 FID by
using the Sigmoid-type time trajectory with k = 0.65, and setting the initial time as € = 107>,

46



Under review as a conference paper at ICLR 2024

Figure 22: Random samples were generated by SciRE-V1 with 20 NFE, employing the pre-trained
discrete-time DM (Song et all,[2021c) on continious-time CIFAR-10. We achieve an 2.42 FID by
using the NSR-type time trajectory with k = 3.10, and setting the initial time as € = 107,
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Figure 23: Random samples were generated by SciRE-V1 with 100 NFE, employing the pre-trained
discrete-time DM (Song et al 2021c) on continious-time CIFAR-10. We achieve an 2.40 FID by
using the NSR-type time trajectory with k = 3.10, and setting the initial time as € = 10~
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2021a) on CelebA 64x64. We achieve an 2.17 FID by using the
3.10, and setting the initial time as €
48

(Song et al.}

Figure 24: Random samples were generated by SciRE-V1 with 18 NFE, employing the pre-trained
NSR-type time trajectory with k

discrete-time DM
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Figure 25: Random samples were generated by SciRE-V1-2 with 20 NFE and the uniform time steps,

using the pre-trained discrete-time DM (Dhariwal & Nicholl, 2021)) on Imagenet 512x512 (classifier
scale: 4).
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Figure 26: Random samples were generated by SciRE-V1-3 with 18 NFE and the uniform time steps,

using the pre-trained discrete-time DM (Dhariwal & Nichol, 2021)) on Imagenet 512x512 (classifier
scale: 1).
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Figure 27: Random samples were generated by SciRE-V1-2 with 20 NFE and the uniform time steps,
using the pre-trained discrete-time DM (Dhariwal & Nicholl, [2021)) on Imagenet 256x256 (classifier
scale: 1).
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Figure 28: Random samples were generated by SciRE-V1-3 with 18 NFE and the uniform time steps,

using the pre-trained discrete-time DM (Dhariwal & Nicholl, [2021)) on Imagenet 256x256 (classifier
scale: 1).
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