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Abstract

Identifying the common structure of neural dynamics across subjects is key for
extracting unifying principles of brain computation and for many brain machine
interface applications. Here, we propose a novel probabilistic approach for aligning
stimulus-evoked responses from multiple animals in a common low dimensional
manifold and use hierarchical inference to identify which stimulus drives neural
activity in any given trial. Our probabilistic decoder is robust to a range of features
of the neural responses and significantly outperforms existing neural alignment
procedures. When applied to recordings from the mouse olfactory bulb, our
approach reveals low-dimensional population dynamics that are odor specific
and have consistent structure across animals. Thus, our decoder can be used for
increasing the robustness and scalability of neural-based chemical detection.

1 Introduction

Collective network dynamics are the foundation of neural computation, from early sensory encoding
[1], to working memory [2], decision making [3], or motor control [4]. Neural population activity
often has low-dimensional structure that is qualitatively preserved across sessions [3], behavioral
states [5], and even animals [6–8]. Aligning neural datasets from multiple recordings and animal
subjects into a common latent space could provide a powerful tool for extracting unifying principles
of brain computations. Nonetheless, progress is hampered by the lack of robust statistical tools for
extracting shared neural population dynamics across datasets.

The alignment of low-dimensional neural manifolds is equally important in brain-computer interface
(BCI) applications, where the assumption of a common low dimensional structure in neural responses
is used to compensate for instability in neural recordings and ensure robust performance over time
[9, 10]. This is not only restricted to motor control; in the sensory domain, a new generation of
chemical detectors exploit the unsurpassed sensitivity of rodent olfactory receptors, but bypass the
limitations of training animals to report odor identity by directly decoding it from neural responses
[11–13]. Unfortunately, the applicability of this idea is limited by the need to learn the mapping
between neural activity and chemical identity on an animal-by-animal basis, which involves costly
data collection [14]. Statistical tools that make use of data from previous animals to quickly calibrate
the decoder in a new animal could dramatically increase the practical use of such technologies.

The basic structure of the rodent olfactory bulb (OB) is well-understood [15]: a vast number of differ-
ent olfactory receptors project to distinct OB subpopulations (glomeruli) whose spatial organization
is largely preserved across animals [16, 17]. Odor identity is encoded in low-dimensional transients
of their population dynamics [1, 18, 13], though how the glomerular topography translates into
stimulus-dependent network dynamics is less clear. Nonetheless, given the anatomical and functional
similarity of the rodent olfactory bulb, it is likely that the OB response to individual odors is itself
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Figure 1: Overview of the model. A. Different odors elicit distinct trajectories in a shared neural
latent dynamical space, with animal-specific measurements resulting in distinct observations. The
goal is to decode the identity of a test odor, given parameters estimated from a dataset that combines
measurements from all animals. B. amLDS graphical model with latent dynamics zt specified by
odor-specific k parameters, and animal-specific observation model for measurements xt.

somewhat stereotyped across animals. With appropriate alignment, one could construct ‘universal’
odor decoders, applicable across animals.

Here we propose a novel probabilistic approach to aligning observations across neural recordings
taken from different mice so as to extract commonalities in their circuit-level representations of
different odors. Our estimation procedure, which uses our ‘aligned mixture of latent dynamical
systems’ (amLDS) graphical model, learns independent mappings of different recordings into a
common latent manifold.1 In this space, neural trajectories are similar across animals but distinct
across odors which allows for robust odor identification. Moreover, our probabilistic decoder provides
uncertainty estimates which can be used for optimal decision making. We used extended numerical
simulations to evaluate the properties of the decoder in response to a range of biologically relevant
manipulations, such as variations in measurement noise, dimensionality and across-trial variability in
the latent dynamics, (mis)alignment of electrodes across animals, etc. We then tested our procedure
on recordings from the OB of mice in response to several monomolecular odors. When fit to this data,
our model confirmed that encoding of odors relies on transient dynamics in a shared low-dimensional
manifold and that these dynamics are largely preserved across animals. Taking advantage of this
reproducible structure, we were able to obtain remarkable improvements in odor identification
performance relative to alternative approaches.

2 Shared odor encoding dynamics across animals

We start by mathematically formalizing the idea of shared stimulus-specific neural dynamics with
animal-specific measurements (Fig. 1A). The amLDS graphical model assumes d-dimensional latent
variables zt, which evolve according to stochastic linear dynamics with odor-specific parameters
(Fig. 1B):

zt = Akzt−1 + bk,t + wt, (1)

where t = {2 . . . T} indexes time within trial; Ak and bk denote parameters specifying the dynamics
in response to odor k, with independent noise, wt ∼ N (0,Qk). The prior for the initial conditions
z1 is normal, with zero mean and covariance Q0.

The shared odor-specific dynamics are mapped into measured neural responses via an animal-specific
linear Gaussian observation model, shared across all odor conditions

x
(m)
t = Cmzt + vt, (2)

with i.i.d. noise vt ∼ N (0,Rm); Cm and Rm are observation model parameters specific to animal
m. We will use Nm to denote the size of observations for animal m. Note that the animal-specific
observation model means that it is not strictly required for the neural measurements to be tightly
matched. For instance, different animals may have different numbers of measurement channels (e.g.
due to some electrodes becoming damaged). Moreover, the model accounts for variability in the
SNR of different electrodes (across channels and devices). Assuming that the measurement process

1Code available: github.com/pedroherrerovidal/amLDS.

2

https://github.com/pedroherrerovidal/amLDS


is consistent in terms of the properties of the electrodes and their alignment on the olfactory bulb
surface, one can additionally define a prior that encourages Cs to be similar across animals. To keep
the procedure general, we only consider the unconstrained version here.

Parameter learning

The dataset D combines measurements from M animals, jointly covering all K stimulus conditions.
For each animal-stimulus pair, (m, k), we have Im,k trials.2 The goal of the parameter estimation
procedure is to derive maximum likelihood estimates of all model parameters, jointly denoted by
θ = {A1:K ,b1:K ,Q0:K ,C1:M ,R1:M}. We use expectation maximization (EM) to optimize the
parameters, by introducing the variational distribution q(z) and using it to lower-bound the marginal
likelihood [19]:3

log P(D|θ) =
∑
i,m,k

∫
z

log P(x|θ)q(z)dz

=
∑
i,m,k

∫
z

q(z) (log P(z,x|θ)− log P(z|x, θ)) dz

=
∑
i,m,k

∫
z

q(z) log
P(x, z|θ)
q(z)

dz−
∑
i,m,k

∫
z

q(z) log
P(z|x, θ)
q(z)

dz


= L(q, θ) +

∑
i,m,k

KL(q(z)||P(z|x, θ)).

Due to the Markovian structure of the dynamics, the joint probability of the latent and observations
has a relatively simple joint Gaussian structure. The E-step optimizes L w.r.t. q, by setting q(z) =
P(z|x, θ); this is computed by traditional Kalman smoothing using the appropriate trial-specific
parameters (Suppl. S1).

The M-step optimizes L w.r.t. to θ. The cost function decomposes into the sum of terms that only
depend on the subject-specific observation parameters (Cm,Rm) and the condition-specific latent
dynamic parameters (Ak,Qk,Q0,bk,t), respectively, and can be optimized separately. Taking the
derivative of the loss and setting it to zero results in parameter updates:

bnew
k,1 =

1

Ik

∑
i

E[z1] (3)

Qnew
0 =

1

Ik

∑
i

(
E[z1z1

>] − E[z1]E[z1]>
)
, (4)

where the indicator i covers all trials of the same stimulus type, across all animals Ik =
∑

m Im,k;
expectations are taken under posterior for trial i (explicit indexing omitted for brevity).

The same set of trials are used for updating the latent dynamics, and the input drive:

Anew
k =

(
Ik∑
i=1

T∑
t=2

(
E[ztzt−1

>]− bk,tE[zt−1
>]
))( Ik∑

k=1

T∑
t=2

E[zt−1zt−1
>]

)−1
(5)

bnew
k,t =

1

Ik

Ik∑
i=1

(E[zt]−Anew
k E[zt−1]) . (6)

Finally, the updated noise covariance is computed as

Qnew
k =

1

Ik(T − 1)

Ik∑
i=1

T∑
t=2

(
E[ztzt

>]−Anew
k E[zt−1zt

>]− E[ztzt−1
>]Anew

k
>

+ Anew
k E[zt−1zt−1

>]Anew
k
> − E[zt]b

new
k,t
> − bnew

k,t E[zt]
> + Anew

k E[zt−1]bnew
k,t
>

+bnew
k,t E[zt−1]>Anew

k
> + bnew

k,t bnew
k,t
>) . (7)

2Note that it is not necessary that all stimuli are presented to all animals, nor that the number of stimulus
presentations is identical across animals and conditions.

3To keep notation simple, we drop the explicit indexing by time, trial, stimulus type, and animal of x and z.
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The updates for the observation model are the standard Kalman ones, with the distinction that
the index i iterates across all trials and stimulus conditions for a particular animal (total number
Im =

∑
k Im,k):

Cnew
m =

(
Im∑
i=1

T∑
t=1

xtE[zt]

)(
Im∑
i=1

T∑
t=1

E[ztzt
>]

)−1
(8)

Rnew
m =

1

ImT

∑
i,t

(
xtxt

> −Cnew
m E[zt]xt

> − xtE[zt]
>Cnew

m
> + Cnew

m E[ztzt
>]Cnew

m
>) (9)

All the required posterior moments are obtained during the E step via Kalman smoothing as E[zt] =
µt|T , E[ztzt

>] = Σt|T − µt|Tµt|T
> (see Suppl. S1 for further details).

As an important practical side note, the quality of the estimated parameter depends critically on a
good initialization of θ. We achieve this by fitting a simpler factor analysis model (FA), which ignores
all temporal dependencies. This directly yields initial conditions for Cm and Rm. The inputs bk,t

are initialized to the average of the corresponding inferred latent variable zt, using all trials from
stimulus condition k, while parameters Ak and Q0:K are initialized heuristically by linear regression
using the FA-inferred posterior mean estimates of the latents.

We used Bayesian model comparison to determine the dimensionality of the latent space from data
(evaluated on a separate validation set). As a more intuitive measure of goodness-of-fit, we also
estimated the reconstruction error when predicting unobserved measurement dimensions (also known
as leave-neuron-out error), commonly used for assessing the quality of models of neural population
dynamics [20, 21]. More specifically, we use trials from the validation dataset, infer the posterior over
the latent trajectory given data measurements in all electrodes except the j-th by Kalman smoothing
P (z1:T |x¬j , θ), which is used to predict the values of the response of the jth neuron, x̂j

t = Cj
mµ

(¬j)
t|T ,

where Cj
m is the jth row of Cm. We report reconstruction error as the squared distance between the

reconstructed and measured activity, 〈‖xj
t − x̂j

t‖22〉j,i, where ‖ · ‖2 is the L2 norm and 〈·〉j,i is the
mean over trials and choices for j.

Odor decoding as hierarchical inference

At test time, one needs to infer the identity of the stimulus given the observations x1:T in animal
M , and the estimated parameters θ, obtained by Bayes rule, P(k|x1:T , θ) ∝ P(x1:T |k, θ)P(k).
This requires estimating the marginal likelihood for each possible stimulus condition, which can be
computed iteratively during the Kalman filtering procedure. More specifically, using the chain rule
and then the Markov structure of the stimulus-specific LDS, we have

P(x1:T |k, θ) =
T∏

t=1

P(xt|x1:t−1, k, θ) =
T∏

t=1

∫
P(xt, zt|x1:t−1, k, θ)dzt.

Taking the logarithm, rearranging the terms and taking advantage of the fact that the poste-
rior marginals are normal with parameters obtained by Kalman filtering (see Suppl. Info. S1),
P(zt|x1:t−1, k, θ) = N (µt|t−1,Σt|t−1), yields:

log P(x1:T |k, θ) =

T∑
t=1

log

∫
P(xt|zt,x1:t−1, θk)P(zt|x1:t−1, k, θ)dzt

=

T∑
t=1

logN
(
xt; Cmµt|t−1,CmΣt|t−1Cm

> + Rm

)
Lastly, here we assume a uniform prior over possible stimuli, to match the statistics of our OB dataset.
Nonetheless, for real world applications the prior should reflect natural stimulus statistics.

3 Numerical experiments on simulated data

To validate the parameter estimation and decoding procedure, we constructed artificial datasets with
the same statistical regularities assumed in the graphical model. More specifically, we defined a
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Figure 2: Parameter estimation and decoding on simulated data. A. Example latent dynamics
for different odor stimuli; solid lines indicate the average latent trajectory and dashed lines are five
random trials. B. Measurements of an example trial in two animals. C. Latents recovered with
amLDS: dashed lines shows posterior mean of individual trials, solid lines show across-trials average.
D. Reconstruction error as a function of assumed latent dimensionality, d (ground truth d = 3). E.
amLDS decoding performance measured using MAP estimates of the stimulus; K = 50. F. Decoding
accuracy as a function of the magnitude of noise in the observations (top), and the latent dynamics
(bottom). G. Decoding accuracy for parametric changes in model hyperparameters: alignment of
axes across animals, C (left), the number of stimulus classes, K (middle) and the dimensionality
of the latent space, d (right). H. Decoding accuracy as a function of the amount of data available
for a target animal (M = 5) for amLDS when the target data covers all stimuli (red) or only one
of the K = 50 stimuli (green), compared to using the same probabilistic model in only the target
animal (blue), alignment by canonical correlation analysis (gray), mCCA (dark gray) and Procrustes
alignment combined with factor analysis dimensionality reduction (pink). Solid lines show mean
accuracy, shaded areas s.e.m. estimated across 5 independent experiments (random seeds).

shared low dimensional manifold (d = 3) and embedded K = 50 latent trajectories evolving over
T = 41 time steps (Fig.2A). The stimulus-dependent inputs bk were constructed using a common
template with stimulus-specific amplitude (individual dimensions scaled by a value drawn from
N (1; 0.0004)) and rotation (evenly spaced over 170 degrees). The other latent dynamics parameters
were set randomly: matrices Ak have diagonal entries drawn from N (0.4; 0.01) and off-diagonal
drawn from N (0; 0.04) and the noise covariances Qk and Q0 are diagonal with variances drawn
from N (0.55; 0.0025). To model across-animal variability in the observation model we started from
a prototype projection matrix C∗, which we then morph into animal specific parameters Cm by
corrupting the individual latent axes with independent additive noise N (0;α2), and rescaling their
norm to a noisy value around 1.0 (gaussian noise with variance 0.03). Parameter α controls the degree
of alignment of measurements across animals, with default value 0.1. Finally, the observation noise
covariance is set to be diagonal with variances set to the absolute value of independent draws from
N (0; 0.25) (Fig.2B). This setup results in latent dynamics qualitatively similar to odor responses,
and has the advantage of explicitly parametrizing the similarity across animals and stimuli.

As a first test of the estimator we simulated 5 animals, with Im,k = 50 trials for each stimulus
condition, which is on the same order of magnitude to the amount of data one may be able to collect
in experiments. amLDS has low computational and memory demands; on a 2.9GHz CPU it takes
58 minutes for parameter learning (with 12500 trials; average over 5 runs) and 4 seconds to infer
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stimulus class in a given trial (averaged over 2500 trials). In this setup, model comparison based on
reconstruction error was able to correctly discover the dimensionality of the latent dynamics (Fig.2D)
and reconstruct the underlying trajectories (Fig.2C), up to the expected degeneracies in the latent
space scale and alignment [19]. Moreover, the decoding of stimulus identity of unseen test trials (20
per condition) revealed that hierarchical inference is able to correctly identify the true stimulus out of
the 50 possible classes (Fig.2E), where we measure decoding accuracy as the fraction of test trials for
which the MAP estimate of the stimulus class recovers the ground truth stimulus identity.

Qualitatively similar results can be obtained for a wide range of model choices. Performance is
consistent across a wide range of noise levels in the observations (Fig.2F, top), which account
for differences in recording quality. The same robustness can be measured for noise in the latent
dynamics, due to potential changes in encoding owed to masking odors, variability in sniffing, etc
(Q ∼ N (µ, 0.0025), µ ∈ [0.1, 0.9]; Fig.2F, bottom). The estimation is also relatively robust to
different degrees of variability of the projections Cm across animals (Fig.2G, left), which may arise
for example due to variability in the alignment of the electrodes on the OB surface. We also varied the
dimensionality of the latent dynamics (Fig.2G, middle) and the number of stimulus classes (Fig.2G,
right) and found that our decoding procedure shows robust performance for a wide range of settings.
Given the relatively modest data requirements (50 trials per subject, and condition), these observations
suggest that our approach is robust enough to be applicable to experimentally relevant data regimes.

To better quantify decoding performance as a function of the amount of data that needs to be collected
in a new animal, we fixed the amount of data collected from 4 ‘source’ animals (K = 50, Im,k = 50)
and varied the amount of new data collected in a fifth ‘target’ animal, for which we evaluated decoding
accuracy. We found that in this setup amLDS yields high performance with a minimal amount of
additional data (Fig.2F, red; one measurement per stimulus condition). Reaching the same decoding
performance with data collected in the target animal alone would require many more trials, because
the dynamics of all K stimuli need to be learned de novo (Fig.2F, blue). In the case of amLDS
however, (effectively) one only needs to align the new measurements to the manifolds estimated
based on data from previous animals.4 In fact, observing a few trials for a single stimulus is enough
to achieve reasonable performance in the target animal (Fig.2F, green).

We compared the decoding performance of our method to three state-of-the-art methods: 1) across
condition alignment by canonical correlation analysis (CCA) [22, 23] 2) multi-set CCA (mCCA)
[24] and 3) Procrustes alignment with FA-based dimensionality reduction (FA+Procrustes) [9, 6]. In
general, for all these approaches the latent dimensions are determined from data that combines all
stimulus conditions, without explicit knowledge of the stimulus identity. Decoders are trained based
on the resulting representation using stimulus labels.

CCA takes pairs of measurements from two animals and projects them into a shared low dimensional
manifold so as to maximize the correlation between them. Since there is no meaningful way of
pairing single trials, CCA requires averaging responses across trials within condition and pairing
these average responses by stimulus type. Moreover, unlike our approach, both procedures treat
measurements as independent over time, ignoring temporal structure in the neural responses. Since
simple CCA can only be used for pairs of animals, we increased the number of trials in the single
source animal to match the other methods. Additionally, we also used multi-set CCA, a generalization
of CCA for more than two animals.

The alternative FA+Procrustes alignment is similar to CCA in that it requires across-trial averages
and only considers similarity between pairs of measures; however, it can be applied multiple times to
align animals 2−M to the prototype axes given by animal 1 (the target animal data was used for FA
and Procrustes parameter estimates in this case). More formally, we use orthogonal Procrustes [25, 9]
where given a set of prototype zk∗1:T and misaligned Ozk1:T trajectory pairs finds a rotation between
the two, by minimizing the average misalignment after applying a rotation O, argminO

∑
k ‖zk∗1:T −

Ozk1:T ‖2F , under the constraint of orthogonality, OO> = I; where ‖ · ‖F is the Frobenius norm. The
stimulus-specific latent trajectories zk1:T are obtained via a dimensionality reduction step, performed
independently in each animal by factor analysis. As there is no standard way for establishing the
shared latent dimensionality based on data for (m)CCA and FA+Procrustes, we set it to the ground
truth d in all cases. Having established a linear map between observations and a common latent

4While the estimation procedure still uses EM based on the full data, the fractional contribution of the new
measurements to the latent parameter updates is comparatively small, and becomes negligible as the number of
sources increases.
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Figure 3: Mixtures and concentration. A. Estimation of odor identity across concentrations
(right); example trajectories where decreasing concentration induces a compression of the stimulus
trajectories (left). Shaded area shows s.e.m. across simulations. B. Example trajectories for two
odors (A-orange and B-blue) and a 50-50% mixture that linearly interpolates between them (left).
Frequency of the MAP estimate detecting odor A, as a function of the mixture ratio (middle) and
three example posteriors (right); dashed lines show individual simulations, with average in solid line.

space by either procedure, individual trials across conditions were all projected in this space. We
used a linear SVM with L2 regularization to decode stimulus identity from the latent trajectories
[13, 26]. All controls were constructed using the library scikit-learn [27]. We found that although all
three approaches performed above chance, none came close to matching the across animal decoding
performance of amLDS.

Robustness to fluctuations in concentration, odor mixtures

Odor decoding in the wild needs to overcome further challenges that are not explicitly captured in
the amLDS graphical model, such as fluctuations in concentration that rescale the amplitude and
speed of odor specific responses [28]. Moreover, odorants are rarely present in isolation and have to
be detected when presented in mixtures [29]. We used further numerical simulations to test how the
estimator would respond in such scenarios.

We model across-trial variability in odor concentration as changes in the amplitude of the input drive
bt,k [30], with all other parameters the same as before. The parameter learning used data from the
highest concentration and the decoder was applied to test trials with lower concentrations (Fig.3A).
We found that the decoding accuracy degrades gracefully as the amplitude of responses decreases,
remaining above chance for a wide range of concentrations.

It remains unclear how mixtures are encoded in OB responses [31], but a reasonable first approxima-
tion is to use a linear interpolation of sample trajectories for the individual odors present [32, 33].
For simplicity, we used K = 2 and further tied the parameters A and Q of the latent dynamics. We
constructed two component mixtures which interpolate between stimuli labeled A and B (Fig.3B,
left). Using a model trained on individual odors, we estimated decoding performance on mixture test
trials while varying the ratio between the two components (Fig.3B, middle). The posterior over the
two odors appropriately reflects the inherent ambiguity in the observations (Fig.3B, right). Overall,
these results suggest that the decoding procedure is robust to naturalistic odor variations.

4 Across-animal decoding in the rodent olfactory bulb

We tested our model on neural recordings from a 64-site grid-electrode stereotaxically implanted over
the dorsal part of the olfactory bulb in five mice [13]. We simultaneously recorded a pressure readout
of the animal’s sniff cycle. The animals were presented with five different monomolecular odorants
(methyl valerate, ethyl tiglate, benzaldehyde, hexanal and background air), delivered in a temporally
precise window (20-100 trials each). We extracted glomerular responses in a time window of 210ms
from inhalation onset. The neural responses were preprocessed by removing the high frequency
component (100Hz low-pass filter) and electrical noise (60Hz notch filter). Single electrode signals
with peaks exceeding 2mV in a 5 second period were considered damaged and removed from the
study. The electrode-specific signals were extracted by subtracting the instantaneous mean across all
viable electrode sites.

We split the animals into 4 sources, and one target. All data from the source animals and 10% of the
trials from the target animal were used for parameter learning and hyperparameter estimation. The
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remaining data from the target animal was used to assess odor decoding performance. When fitting
the model to the neural recordings we found that the inferred latent trajectories were separable across
stimuli and similar across animals (Fig. 4A). Some across-animal variability in the responses to the
same odor would be expected in the model for a limited number of trials – due to the independent
instantiation of the noise in the latent space, but it may also reflect unaccounted for sources of
across-animal variability. The model comparison revealed a relatively small latent dimensionality
in the data (Fig. 4B; we used d = 7 for all subsequent analyses). The model accurately captured
variability in observed electrodes in the target animals, despite the very limited target data (2-6 trials
per stimulus; Fig. 4C). The inferred map from the neural measurements into the latent space was
similar across animals (Fig. 4D; see also Suppl. Fig. S1), likely reflecting the stereotypy of OB
encoding and a precise alignment of the electrodes on the bulb surface.

We evaluated the decoding performance of amLDS on a target animal which revealed high accuracy
MAP inference based decoding (Fig. 4E), with generally sharp single trial posteriors (Fig. 4F). We
measured decoding accuracy for all possible choices of target animal and compared it to alternative
estimators (Fig. 4G). The CCA, mCCA and FA+Procrustes estimation procedures were similar to
those described for the simulated data, with the same latent dimensionality inferred for amLDS.
We used across trial averages within each stimulus condition from the source animals and the 10%
fraction of the target animal data for dimensionality reduction and across-animal alignment. We used
the same data to train a linear SVM classifier based on the latent trajectories, which we then used to
predict odor identity for the withheld target data. For CCA [22] we used single source animals and the
training target data for the alignment and SVM training, averaging decoding performance on test data
across all possible sources. Our probabilistic decoder significantly outperformed all three alternative
alignment methods. For all possible choices of target, amLDS also systematically outperformed
probabilistic decoding based on data from the target animal alone, confirming that pooling together
data across animals improves data efficiency and overall decoding performance. While the single
animal performance is close to that of amLDS given enough data, 82%± 8% vs. 76%± 3% when
training with 50% of the target animal’s dataset (Fig. 4G), the difference between the two becomes
dramatic in the low data regime used for amLDS (10% of target data used for training), with single
animal performance going down to 60%± 8%. This reinforces the idea that across-animal decoding
is key to limiting the amount of data that needs to be collected for calibrating any new animal at
deployment time.

5 Discussion

Animals are unparalleled in their ability to sense odors, which makes them an invaluable resource for
a wide range of applications from security to medicine [34–36]. BCI approaches to odor detection
attempt to bypass costly behavioral training by reading out odor information directly from the
olfactory system, but they remain data limited [14]. Here we proposed a novel probabilistic procedure
for mapping neural responses to odors into a shared manifold. This representation allows for robust
odor decoding in a new animal with minimal amounts of further data collection. Calibrating the
decoder to a new animal can be achieved with a small subset of stimuli, limiting the demand for
rare/expensive chemicals. For instance, in our numerical experiments the decoder could extract
odor identity in a new animal with as few as 2 trials for each stimulus, or 50 trials of a single
stimulus. Moreover, we also found the estimation procedure to be robust to modeled fluctuations
in odor concentration and the presence of background odors. These benefits were confirmed in
data from mouse OB, where we found that decoding quality improved dramatically compared to
previously-proposed alignment procedures, particularly when using a limited amount of data.

Our across-animal probabilistic decoding procedure brings neural chemical detection closer to
practical applicability. Not only does it improve scalability and robustness, but it also significantly
reduces data collection requirements. Furthermore, most odor detection applications have asymmetric
costs and need to negotiate complex trade-offs between sensitivity and accuracy. For instance, when
detecting Clostridium difficile [37], the medical costs of missing a positive diagnosis needs to be
balanced against the financial costs of unnecessarily quarantining someone due to a false alarm. Our
probabilistic decoder provides an explicit report of uncertainty associated with possible outcomes,
which is critical for optimal decision making in these contexts.
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Figure 4: Decoding performance on neural data from mouse olfactory bulb. A. Inferred trajec-
tories for two monomolecular odors (colors) in two animals (solid and dashed lines), averaged across
24 trials. B. Model selection based on reconstruction error performance; dashed lines show errors
estimated for each target animal, solid line their average. C. Example odor-evoked responses and
amLDS reconstructions for 2 stimuli and 2 animals. Shaded areas show 95% confidence intervals
based on inferred posterior. D. Similarity of observation model across animals. E. Confusion ma-
trix for amLDS decoding. F. Corresponding single trial posteriors; colors mark different inferred
odors, trials are grouped by presented odor. G. Decoding performance for amLDS and alternative
approaches based on CCA, mCCA, Procrustes alignment and a probabilistic decoder trained using
data from the target animal alone (50% training, 50% test). Lines correspond to different choices for
the target animal. Error bars show s.e.m. across 10 folds of the target data, for CCA s.e.m. across
sources.

Alternative procedures for neural datasets alignment are usually not explicitly probabilistic.5 Instead,
they rely on a sequence of independent steps: first a (usually off-the-shelf) dimensionality reduction
procedure. Dimensionality reduction is followed by across-condition data alignment within the
latent manifold, using approaches such as CCA (and its multivariate generalizations [39, 40]), or
Procrustes alignment [6, 41, 9]. Lastly, a common decoder is trained on the aligned across-condition
data [22, 10, 9]. These procedures are popular as a replacement for costly and inconvenient BCI
re-calibration in prosthetics [42], but their application to across-animal alignment remains rare [7, 6].
The multi-step procedure, although formally suboptimal, allows for some degree of flexibility in the
individual component steps. For instance, the map into the latent manifold could be nonlinear, e.g.
using Isomap [7, 43]. There also exist several nonlinear alignment procedures, such as kernel CCA or
Distance Covariance Analysis, although such extensions have yet to translate into BCI practice [44].
In contrast, the hierarchical model proposed here is jointly estimated and linear in both the map and
the latent dynamics. The linearity assumption here is not just a simplifying mathematical assumption,
but it reflects domain-specific knowledge about the underlying neurophysiology of the system.

Neural activity has complex temporal dynamics and structured across-trial variability [45]. Previous
approaches to aligning population activity across conditions via CCA or Procrustes alignment fail to
capture either of these key statistical regularities. First, they treat the measurements across time as
independent. Second, they intrinsically rely on paired measures, and since the correspondence of
individual moments in time across trials in different animals is essentially arbitrary, they are restricted
to across-trial average responses that may obscure important features of the underlying computation
[46, 47]. It is also less clear how to determine the latent dimensionality of the data using these
procedures. In contrast, amLDS extracts common low-dimensional dynamics using single trials,
exploiting known features of the underlying computation. Moreover, the animal-specific observation
model provides a principled framework for determining data dimensionality and for handling different
sources of experimental variability (e.g. due to grid misalignment or missing data from defective
electrodes). The probabilistic formulation also lends itself to a variety of generalizations. One could
easily convert from Gaussian to Poisson observation noise for modeling spiking data instead of

5Some exceptions exist, such as probabilistic CCA [38], but they are not commonly used in practice.
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the raw electric signals in our data [48, 49], or replace the linear dynamics with shared nonlinear
equivalents [50, 51]. It should also be possible to extend the prior over trajectories to allow for
some degree of heterogeneity across animals – for instance by allowing the parameters of the
latent dynamics to slightly vary across animals, or to fall into a few distinct ‘dynamics classes’
(formally, an LDS mixture) [8]. Hence, amLDS can be thought of as yet another building block in
the expanding statistical toolkit for understanding neural computation through the lens of dynamics
in low-dimensional manifolds.

The representational stereotypy in the rodent olfactory bulb and the low-dimensional structure of
its odor-induced dynamics are well documented [16–18, 13] make this system an ideal test case for
out model. Nonetheless, we expect the same statistical tools to prove useful in other systems. The
shared latent dynamics are best thought as reflecting a common computational solution, not a literal
neuron-to-neuron, or subpopulation-to-subpopulation, match (in contrast to the hierarchical switching
linear dynamical system approach of Ref. [8]). Hence, our model assumptions remain reasonable in
circuits where representations are learned, rather than genetically encoded, as long as the dynamical
system underlying the computation is low dimensional and the task strongly restricts the topology
of the solution [52] (e.g. attractor dynamics for evidence integration [3]). We hope that our results
inspire the search for common dynamic signatures in other brain areas and model systems.
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