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Abstract

Multiple Instance Regression (MIR) and Learning
from Label Proportions (LLP) are useful learning
frameworks, where the training data is partitioned
into disjoint sets or bags, and only an aggregate
label, i.e., bag-label for each bag is available to
the learner. In the case of MIR, the bag-label is
the label of an undisclosed instance from the bag,
while in LLP, the bag-label is the mean of the bag’s
labels. In this paper, we study for various loss func-
tions in MIR and LLP, what is the optimal way to
partition the dataset into bags such that the utility
for downstream tasks like linear regression is max-
imized. We theoretically provide utility guarantees,
and show that in each case, the optimal bagging
strategy (approximately) reduces to finding an op-
timal clustering of the feature vectors and/or the
labels with respect to natural objectives such as k-
means. We also show that our bagging mechanisms
can be made label-differentially private, incurring
an additional utility error. We then generalize our
results to the setting of Generalized Linear Models
(GLMs). Finally, we experimentally validate our
theoretical results.

1 INTRODUCTION

In traditional supervised learning, the training dataset is a
set of n tuples of the form (x, y), where x is an instance
or feature-vector with label y (denote the sets of tuples by
X,Y respectively). The objective is to train a model on the
training data (X,Y ), that predicts the labels of unseen test
instances. In this paper, we study the paradigm of learning
from aggregate labels, in which X is partitioned into m
disjoint sets or bags of instances B = {B1, . . . , Bm}, and
for each bag Bl only one bag-label (yl) is available to the

*Work done during an internship at Google DeepMind

learner. yl is derived from the instance-labels present in the
bag via some aggregation function depending on the sce-
nario. The goal, similar to standard supervised learning, is to
train a model that predicts the labels of individual instances.
This paradigm of learning from aggregate labels directly
generalizes traditional supervised learning, the latter being
the special case of unit-sized bags. The two formalizations
of our focus are (i) Multiple Instance Regression (MIR),
where yl is one of the instance-labels of Bl1, and the in-
stance whose label is chosen as the bag-label is not revealed,
and (ii) Learning from Label Proportions (LLP), in which
yl is the average of Bl’s instance-labels.

The MIR and LLP frameworks are becoming increasingly
prevalent, and we briefly discuss two use cases (see Section
1.2 for a more detailed discussion). There are many practical
scenarios (eg., medical tests) in which labels are much more
private than the features, and we wish to protect the privacy
of individual labels from the learner (and any downstream
observer of the learners output). In the MIR and LLP setups,
if the bags are of large size, revealing only the aggregate bag-
label to the learner provides a layer of privacy protection for
individual labels. Due to increasing concerns over data pri-
vacy, recent regulations on sharing user-level signals across
platforms have resulted in aggregation of data, resulting in
LLP and MIR formulations for predictive model training on
revenue critical advertising datasets (e.g. Apple SKAN and
Chrome Privacy Sandbox, see O’Brien et al. [2022]).

In addition to privacy, in many applications, obtaining la-
beled data is very costly, but unlabeled data is relatively
easy to acquire. This is especially relevant as training data is
getting increasingly complex, and skilled human annotators
are required for data-labeling, leading to semi-supervised
learning settings [Van Engelen and Hoos, 2020]. Given a
large amount of unlabeled data, and a limited labeling bud-
get, one could partition the data into bags, and query an
annotator for the label of one of the instances in each bag.
This setting naturally lends itself to the MIR formulation

1We consider the popular case where yl is uniformly random.
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that we study.

In some scenarios, the bags of instances may already be
fixed, whereas in other scenarios like semi-supervised learn-
ing, there might be flexibility in curating the bags. We
study the question of finding the optimal bagging strat-
egy, for the purpose of maximising utility of downstream
tasks trained on these bags and corresponding bag-labels.
We distinguish between baggings based on whether or not
labels are available for constructing the bags. We call them
(i) label-agnostic bagging, which occur in settings like semi-
supervised learning, and (ii) label-dependent bagging, which
occur naturally in privacy motivated scenarios.

We consider a regression setting, where instances x lie in Rd,
with labels y ∈ R. We adopt a standard way to model linear
regression, where label yi = xTi θ

∗ + γi , γi ∼ N (0, σ2),
for a fixed underlying model θ∗. Given the bags and corre-
sponding bag-labels, the learner’s task is to find an estimator
θ̂ with minimal estimation error, by minimizing some loss
function. A common loss function is instance-level loss, that
basically assigns the aggregate label of the bag to each point
in the bag. An estimator θ̂ minimizes instance-level loss, if

θ̂ := argmin
θ

1

n

m∑
l=1

∑
i∈Bl

`(yl, fθ(xi)) , (1)

where ` is the squared loss. Another popular loss function
is bag-level loss, which measures the mismatch between the
bag-label and mean of the bag’s instance level predictions.
An estimator θ̂ minimizes bag-level loss, if

θ̂ := argmin
θ

1

m

m∑
l=1

`

(
yl,

∑
i∈Bl fθ(xi)

|Bl|

)
. (2)

We also consider aggregate-level loss, which penalises the
difference between the bag-label and prediction of the mean
of the bag instances. An estimator θ̂ minimizes aggregate-
level loss, if

θ̂ := argmin
θ

1

m

m∑
l=1

`

(
yl, fθ

(∑
i∈Bl xi

|Bl|

))
. (3)

Given the learning setup (either MIR or LLP, and a loss
function), the optimal bagging strategy involves finding
the bagging configuration that maximizes the utility of θ̂
trained using the loss function, with utility defined in terms
of closeness to θ∗. Note that each bag has size at least k
which is a fixed value.

Remark. Given a dataset with a certain number of samples,
the minimum bag size constraint implicitly upper bounds
the number of bags or clusters. In addition, smaller bags
lead to better utility, as they provide more information about
the labels, the number of bags is equal to the upper bound.
However, the minimum bag size constraint is essential to
define a meaningful problem, otherwise the optimal bag-
ging would be the trivial strategy of putting each point in

a separate bag. However, larger bags are more suitable in
cases where MIR and LLP are deployed, such as privacy
motivated and semi-supervised learning scenarios, since
larger bags provide more privacy, and require less labels,
respectively.

1.1 OUR RESULTS

We briefly summarize our contributions below.

1) Label-dependent Bagging: Intuitively, a bagging pro-
vides good utility if the bags are homogeneous, i.e., the
instances and/or instance-labels within a bag are similar.
We formalize this intuition below, and study the following
learning setups.

a) MIR, Instance-level loss: By deriving a sharp upper bound
on the estimation error in Theorem 1, we show that find-
ing the optimal bagging reduces to the following k-means
clustering over the labels,

min
B

m∑
l=1

∑
ỹi∈Bl

(ỹi − µl)2, with |Bl| ≥ k,∀l ∈ [m] (4)

where µl is the mean of the labels in Bl, ỹi denotes the
expected value of the label of xi, i.e., ỹi := xTi θ

∗, and
B denotes the set of all baggings of the n samples. This
is just a (size-constrained) k-means clustering of ỹ2, and
intuitively creates bags that are homogeneous w.r.t. labels.
The 1d clustering problem above can be solved exactly in
polynomial time, and turns out to result in a bagging that just
sorts the labels in order, and partitions contiguous segments
into bags (see Lemma 9).

b) LLP, Bag-level loss: By deriving an upper bound on
the error in Theorem 2, we show that finding the optimal
bagging reduces to the following optimization problem.

min
B

λmax(f(X))

λmin(f(X))
, subject to|Bl| = k, ∀l ∈ [m], (5)

where λmax/λmin denote the maximum/minimum eigen-
values of a matrix, and f(X) = g(X)g(X)T , for g(X) =[(∑

i∈B1
xi

|B1|

)
, . . . ,

(∑
i∈Bm xi

|Bm|

)]
. Essentially, f(X) is the

(sample) covariance matrix of each bag’s instance-mean.
The optimal bagging strategy involves minimizing the con-
dition number (λmax/λmin ratio) of f(X), and intuitively
creates bags that are homogeneous w.r.t. instances. The
above discusses equal sized bags, and in Theorem we show
a corresponding result without the equality constraint.

c) MIR, Aggregate-level loss: As seen from the error bound
in Theorem 3, the optimal bagging strategy here involves
simultaneously minimizing the condition number of f(X),

2ỹ is unavailable, but one can instead use y as a proxy, leading
to an additional utility error of n

(
1− 1

k

)
σ2, see Lemma 10.



and minimizing the k-means clustering objective of ỹ, in-
tuitively creating bags that are homogeneous w.r.t. both
instances and their labels.

2) Label-agnostic Bagging: As seen above, a good bag-
ging has bags that are homogeneous w.r.t. instances and/or
labels. A label-agnostic bagging can create baggings that
are homogeneous w.r.t. instances, but is not able to directly
optimize for homogeneity w.r.t. labels. We consider the fol-
lowing 2 label-agnostic bagging strategies.

a) Instance k-means We justify that the optimal k-means
clustering of the instances X is an effective label-agnostic
bagging strategy for each learning setup we consider. In
Instance-MIR, the optimal strategy is a k-means clustering
of the labels Y . We use the fact that Ỹ = Xθ∗ to justify that
k-means of the instances X is a good heuristic for k-means
of the labels Y (see Section 3.1). In the case of Bag-LLP,
the optimal bagging strategy does not involve knowledge
of the labels, and minimizes the condition number of the
sample covariance matrix of the instance-means of each bag.
An eigenvalue of a covariance matrix measures the variance
along the corresponding eigenvector. In order to minimize
the condition number, we intuitively maximize variance in
every direction. We show that maximizing the variance of
bag-centroids along a direction is equivalent to finding an
optimal k-means on X projected on that direction. Hence,
we want to reduce the k-means objective along every direc-
tion, and we justify that k-means of X is a good heuristic
for the same. For Aggregate-MIR, we must simultaneously
minimize the condition number of f(X), and the k-means
objective over the labels ỹ, and k-means of X is a good
heuristic for both objectives.

b) Random bagging We analyse random bagging in Section
3.2. Random bagging serves as a good baseline to compare
our proposed bagging strategies with, and has been experi-
mentally evaluated in many previous works [Liu et al., 2019,
Yu et al., 2013]. In addition, unlike data-dependent bagging
strategies, random bagging leaks no information about the
data., it can be useful in privacy-motivated deployments,
such as in online advertising, where incoming user interac-
tions can be partitioned into random bags [Section 2.1 of
O’Brien et al. [2022]]. We upper bound the error of random
bagging in both Bag-LLP and Aggregate-MIR. Since bound-
ing the condition number term in Equation (5) as a whole
is challenging, we provide an upper bound for λmax, and a
lower bound for λmin. As shown in Lemma 2 via an applica-
tion of Cauchy-Schwarz, aggregating feature vectors does
not increase λmax. For lower bounding λmin we consider a
partitioning strategy where the instances are randomly di-
vided into 2k-sized super-bags. Independently from each
super-bag, one k-sized bag is is sampled, resulting in a col-
lection of m/2 bags which are distributed identically to
a random collection of m/2 disjoint bags and therefore a
lower bound on λmin for these bags is sufficient. Observing

that bags are independent in this collection (after fixing the
super-bags), we compute µmin, which is the expected value
of λmin for these bags, and use Matrix Chernoff to find a
high probability lower bound for λmin, as stated in Lemma
3.

3) Privacy Apart from the inherent privacy that MIR and
LLP offer, we can perturb the labels to obtain formal pri-
vacy guarantees in the sense of label differential privacy, a
popular notion of privacy that measures and prevents the
leakage of label information [Chaudhuri and Hsu, 2011].
This incurs an additional utility error, that we formally quan-
tify in Section 4. A larger minimum bag-size k intuitively
provides more privacy, and as expected, the error increases
with a decrease in k.

4) GLM’s Subsequently, in Appendix E, we generalize
the previous results for linear regression to the setting of
Generalized Linear Model’s (GLMs), which includes pop-
ular paradigms such as logistic regression. We study both
instance-level and aggregate-level losses for MIR under the
GLM framework. For Instance-MIR, we derive an upper
bound that leads to label k-means clustering as the optimal
bagging strategy. This holds across all distributions within
the exponential family. For Aggregate-MIR, our objective
suggests minimizing the difference between the maximum
and minimum instance-labels within a bag, implying that
features with similar labels should be grouped together,
yielding a clustering-based objective. This holds for expo-
nential distributions which have a monotonic first derivative.

5) Experiments To corroborate our theoretical results, we
study the proposed bagging mechanisms through extensive
experimentation in Section 5, and demonstrate their effec-
tiveness on each learning setup we consider. We analyse
trends obtained by varying various parameters such as the
minimum bag size, and privacy budget.

1.2 RELATED WORK

LLP started with the work of de Freitas and Kück [2005] and
has been studied in the context of privacy concerns [Rueping,
2010], lack of supervision due to cost [Chen et al., 2004], or
coarse instrumentation [Dery et al., 2017]. While previous
works [Quadrianto et al., 2009, Yu et al., 2013, Kotzias et al.,
2015, Liu et al., 2019, Scott and Zhang, 2020, Saket et al.,
2022] have developed specialized techniques for model
training on LLP training data, Yu et al. [2014] defined it in
the PAC framework, while Saket [2021, 2022] have shown
worst case algorithmic and hardness bounds, and recently
Brahmbhatt et al. [2023] gave PAC learning algorithms for
Gaussian feature vectors and random bags.

MIR, introduced in Ray and Page [2001], has mostly been
studied in applied settings related to remote sensing and im-
age analysis. Popular baseline techniques apply Aggregate-



MIR, or Instance-MIR [Wang et al., 2008, Ray and Craven,
2005], whereas several expectation-maximization (EM)
based methods have also been proposed [Ray and Page,
2001, Wang et al., 2008, 2012, Wagstaff et al., 2008, Trabelsi
and Frigui, 2018]. Recent work of Chauhan et al. [2024]
proved bag-to-instance generalization error bounds as well
as hardness results for MIR, in the first theoretical explo-
ration of this problem.

Both the above problems, LLP and MIR, have gained re-
newed interest due to recent restrictions on user data on
advertising platforms leading to aggregate conversion labels
in reporting systems [O’Brien et al., 2022]. With the goal
of preserving the utility of models trained on the aggregate
labels, model training techniques for either randomly sam-
pled [Busa-Fekete et al., 2023] or curated bags [Chen et al.,
2023, Javanmard et al., 2024] have been proposed.

Comparison with Javanmard et al. [2024]: The case of
instance-level loss for LLP has been studied in Javanmard
et al. [2024], where they show that the optimal bagging
strategy reduces to finding the best k-means clustering of
the labels, very similar to our Instance-MIR objective. This
is not very surprising, as LLP and MIR are closely related.
Indeed, the expected label of each bag in the MIR setup is
exactly the label of the bag in the LLP case. Our focus is on
MIR which has not been studied before, and in addition we
analyse the popular bag-level loss [Ardehaly and Culotta,
2017] for LLP. They provide an adaptive label-agnostic
bagging heuristic, which assumes access to an oracle that
provides bag-labels in an online setting. Our work provides
label-agnostic bagging algorithm in each case, without as-
suming access to an online oracle. We provide formal pri-
vacy guarantees for each of our methods. They also discuss
privacy guarantees for their heuristic algorithm; however,
their approach does not provide formal privacy guarantees
for label-dependent bagging, which we circumvent by using
a private clustering algorithm.

2 LABEL-DEPENDENT BAGGING

X has rank d, and all expectations henceforth are condi-
tioned on a fixed X , unless otherwise stated. The results
below provides an upper bound on the error of the estimator
θ̂, in terms of a bagging B. Most proofs are deferred to
Appendix A.

Theorem 1 (Error Upper Bound, Instance-MIR). For θ̂ as
in (1), for a given bagging B,

E
[
||θ̂ − θ∗||22

]
≤ C1

(
C2 −

m∑
`=1

(∑
i∈B` ỹi

)2
|B`|

)
, (6)

where constants C1, C2 are independent of B.

In Lemma 9 in Appendix B, we show that finding the

optimal k-means clustering of the (expected) labels ỹ ex-

actly minimizes
∑m
`=1

(∑
i∈B`

ỹi
)2

|B`| . Hence, minimizing the
bound in (6) over the set of all baggings amounts to the
k-means optimization problem in (4).

Theorem 2 (Error Upper Bound, Bag-LLP). For θ̂ as in (2),
for a given bagging B such that |Bl| = k, ∀l ∈ [m],

E
[
‖θ̂ − θ∗‖22

]
≤ σ2m

k

(
λmax(f(X))

λmin(f(X))

)2

. (7)

Minimizing the bound in (7) over the set of all baggings
amounts to the optimization problem in (5). Theorem 2 is
for equal sized bags, and we also show a corresponding
result without the equality constraint in Theorem .

Theorem 3 (Error Upper Bound, Aggregate-MIR). For θ̂
in (3), given a bagging B such that |Bl| = k, ∀l ∈ [m],

E
[
‖θ̂ − θ∗‖22

]
≤

C1

(
λmax(f(X))

λmin(f(X))

)2
C2 +

m∑
l=1

∑
ỹi∈Bl

(ỹi − µl)2

 (8)

where constants C1, C2 are independent of B.

Minimizing the first term in (8) corresponds to minimizing
the condition number of f(X), and minimizing the second
term corresponds to finding the optimal k-means clustering
of ỹ. Theorem 3 is for equal sized bags, and we also show
a corresponding result without the equality constraint in
Theorem .

3 LABEL-AGNOSTIC BAGGING

3.1 INSTANCE k-MEANS

We justify that k-means of the instances X is an effective
label-agnostic bagging heuristic for each setting we con-
sider.

Instance-MIR Note that in our setting of linear regres-
sion, Ỹ = Xθ∗. In other words, Ỹ is just the projection
of X along the axis normal to the hyperplane determined
by θ∗. Hence, finding an optimal k-means clustering of Ỹ
is equivalent to minimizing the k-means objective of pro-
jections along this axis. However, the labels are not given,
and this axis is unknown, since θ∗ is unknown. Hence, in
order to do a label-agnostic bagging, one must minimize
some objective that simultaneously reduces the k-means
objective along every direction. In Lemma 12, we show that
for a given clustering, the k-means objective of a dataset is
the sum of k-means objective of the dataset projected along
each coordinate. Given an arbitrary clustering C over X



drawn from an isotropic distribution D, in expectation the
k-means clustering objective over X will split equally into
d components along each axis (due to symmetry), i.e.,

E[k-means(C(Xi))] =
1

d
E [k-means(C(X))] ,∀i,

where the expectation is over X drawn from D. Hence, for
isotropic distribution D, we would expect that the k-means
clustering objective along each direction to be roughly equal.
Hence, we would also expect that settingC to be the optimal
k-means clustering over X would simultaneously keep the
k-means clustering objective low along each direction.

However, the above reasoning holds only for an isotropic
distribution. For a non-isotropic distribution, directions with
large variance will dominate the k-means objective, and
therefore directions with small variance might then have
a relatively large k-means objective. For an isotropic dis-
tribution, we avoid the above problem of directions with
large variance dominating. However, note that even for a
non-isotropic distribution, Σ−

1
2X is isotropic, where Σ is

the covariance matrix of the distribution. Essentially, we
stretch each direction so that each direction has the same
variance. We can now find an optimal k-means clustering
over Σ−

1
2X . We will then avoid the problem of directions

in X with large variance dominating, while also keeping the
k-means objective along each direction low.

Bag-LLP We want to maximize the condition number of
f(X). λmax/λmin of a covariance matrix measures the vari-
ance along the direction of most/least variance. In Lemma
13, we show that maximizing the variance of bag’s instance-
centroids along a direction is equivalent to finding an op-
timal k-means on X projected on that direction. Since we
want to maximize the condition number of f(X), we want
the variance to be roughly balanced across all directions.
Hence, we must simultaneously reduce the k-means objec-
tive along every direction, and in the previous section, we
justified k-means of the instances X is an effective heuristic
for this.

Aggregate-MIR Note that in order to minimize the error
bound, we must simultaneously minimize the condition
number of f(X), and the k-means objective over the labels
Ỹ . Earlier, we justified that k-means of the instances X is a
good heuristic for both objectives.

3.2 RANDOM BAGGING

We first state the Matrix Chernoff bound, that we use heavily
in this section.

Lemma 1 (Matrix Chernoff (Corollary 5.2 [Tropp, 2012])).
Consider a finite sequence {Xk} of independent, ran-
dom, self-adjoint matrices that satisfy Xk � 0 and
λmax(Xk) ≤ R almost surely. Compute the minimum and

maximum eigenvalues of the sum of expectations, µmin :=
λmin (

∑
k EXk) . Then, for δ ∈ [0, 1]

P
[
λmin

(∑
k
Xk

)
≤ (1− δ)µmin

]
≤

d ·
[

e−δ

(1− δ)1−δ

]µmin/R

.

Bag-LLP We prove the following bound.

Theorem 4 (Random Bagging Upper Bound, Bag-LLP).
For θ̂ as in (2) and random bagging given by random parti-
tioning into k-sized bags,

E
[
‖θ̂ − θ∗‖22

]
≤ 16σ2nk2

(1− δ)2

(
λmax(XTX)

λmin(XTX)

)2

.

w.p. greater than 1− d ·
[

e−δ

(1−δ)1−δ

]µmin
kβ

.

Proof. The proof follows from Theorem 2 and Lemmas 2
and 3.

Lemma 2 (λmax Upper Bound).

λmax (f(X)) ≤ λmax(XTX).

Lemma 3 (λmin Lower Bound).

P
[
λmin (f(X)) > (1− δ)λmin(XTX)

4k2

]
≥

1− d ·
[

e−δ

(1− δ)1−δ

]µmin
kβ

.

Proof. Let Xl represent the feature matrices of Bl for
l ∈ [m] We consider the randomized Algorithm 1 which out-
puts a collection of m/2 disjoint bags which are distributed
identically to a random subset of m/2 disjoint bags, and
thus a lower bound for this collection suffices. We have,
λmin (f(X)) = 1

k2λmin
(∑m

l=1X
T
l Xl

)
. The feature ma-

Algorithm 1: Random Bagging, Bag-LLP
Input: : Instances X , fixed bag size k.
Steps:

1. Randomly partition X into r 2k-sized super-bags,
where r = n/2k.

X = ∪r
l=1Xl and Xl ∩ Xl′ = φ for all l 6= l′

2. For l = 1, . . . , r, a k-sized bag B′l is sampled u.a.r
from Xl.

3. Output B′ where B′ = {B′l}l∈[r]

Figure 1: Algorithm 1: Random Bagging, Bag-LLP



trix for bag B′l sampled using Algorithm 1 can be repre-
sented by X ′l for all l ∈ [r].

1

k2
λmin

(
m∑
l=1

XT
l Xl

)
≥ 1

k2
λmin

(
r∑
l=1

X ′l
T
X ′l

)
(9)

Let µmin = λmin

(∑r
l=1 E

[
X ′l

T
X ′l

])
/k2. We expand

X ′l
T
X ′l and find µmin:

µmin =
1

k2
λmin

 r∑
l=1

E

 ∑
xi,xj∈B′l

xix
T
j


=

1

k2
λmin

 r∑
l=1

E

 ∑
xi∈B′l

xix
T
i

+ E

∑
i 6=j

xix
T
j


In Algorithm 1, xi ∈ Xl get sampled in B′l with probability
1/2. Similarly, the probability of sampling the ordered pair
(xi, xj) is 22k−2Ck−2/

2kCk = (k − 1)/(2k − 1). Let x̂ =∑
xi∈Xl xi.

µmin =

λmin
k2

 r∑
l=1

∑
xi∈Xl

1

2
xix

T
i +

∑
(xi,xj)∈Xl

k − 1

2k − 1
xix

T
j

 =

λmin
k2

(
r∑
l=1

1

2

(
1− k − 1

2k − 1

) ∑
xi∈Xl

xix
T
i +

k − 1

2(2k − 1)
x̂x̂T

)

=
λmin
k2

(
r∑
l=1

(
k

2(2k − 1)

) ∑
xi∈Xl

xix
T
i +

k − 1

2(2k − 1)
x̂x̂T

)

=
λmin

2k2(2k − 1)

(
kXTX + (k − 1)

r∑
l=1

x̂x̂T

)
Since the second term is a summation of p.s.d matrices, we
get µmin > λmin(XTX)/4k2. We assume ‖x‖22 ≤ β for
all x ∈ X .

Lemma 4. λmax(X ′l
T
X ′l) ≤ kβ.

Using Lemma 1 and Lemma 4, we get

P

[
1

k2
λmin

(
m∑
l=1

X ′l
T
X ′l

)
≤ (1− δ)µmin

]
≤

d ·
[

e−δ

(1− δ)1−δ

]µmin
kβ

Using Equation 9 we get

P
[
λmin (f(X)) > (1− δ)λmin(XTX)

4k2

]
≥

1− d ·
[

e−δ

(1− δ)1−δ

]µmin
kβ

Aggregate-MIR We consider a random bagging algo-
rithm similar to the one for Bag-LLP (Algorithm 1) for
Aggregate-MIR. The upper bound for Aggregate-MIR (The-
orem 3) is product of the label k-means objective and the
condition number of the bag’s instance-centroids. Algorithm
2 takes both these objectives into account. We first sort the
instances in increasing order of ỹ and then parition them
into contiguous super-bags of sizes 2k. From each super
bag, one k-sized bag is independently sampled, resulting in
a collection of m/2 bags. In Theorem 4, we derive an error
bound (Lemma 3) for any arbitrary partitioning of instances
into super-bags, and the same bound holds for Algorithm 2.
Next, we show that arbitrarily dividing the super-bag into
two equal sized bags leads to a decrease in the k-means
objective in Proposition 1.

Algorithm 2: Random Bagging, Aggregate-MIR
Input: : Instances X , fixed bag size k, true labels ỹ.
Steps:

1. Sort points X in increasing order of ỹ.

2. Partition sorted points into r contiguous super-bags of
sizes 2k, where r = n/2k.

X = ∪r
l=1Xl and Xl ∩ Xl′ = φ for all l 6= l′

3. For l = 1, . . . , r, a k-sized bag B′l is sampled u.a.r
from Xl.

4. Output B′ where B′ = {B′l}l∈[r]

Figure 2: Algorithm 2: Random Bagging, Aggregate-MIR

Let B′l denote a super-bag of size 2k for l ∈ [r] as defined
in Algorithm 2. We arbitrarily sample k instances to create
a bag B(1)

l and the remaining instances form another bag
B

(2)
l . We know B

(1)
l ∩B

(2)
l = φ, and |B(1)

l | = |B
(2)
l | = k.

Proposition 1 (Optimizing k-means in Equation 8). For
super-bags B′l as defined in Algorithm 2 with arbitrary non-
overlapping partitions B(1)

l and B(2)
l ,

r∑
l=1

kmc
(
{ỹi}i∈B′l

)
≥

r∑
l=1

kmc
(
{ỹi}i∈B(1)

l

)
+ kmc

(
{ỹi}i∈B(2)

l

)
where kmc(C) is the k-means clustering loss for cluster C.
kmc(C) =

∑
yi∈C(yi − µ)2, where µ denotes the mean of

cluster C.

We defer the proof to Appendix B.3. The error for Aggregate
MIR, as described in Equation (8) is the the product of the
condition number of the bag centroids and a label k-means
objective. Since analysis of Theorem 4 in Section 3.2 holds
for any arbitrary partitioning of instances into super-bags,



we obtain corresponding bound on the condition number.
Proposition 1 shows that the loss of the k-bagging will be at
most that of the optimal 2k clustering.

4 DIFFERENTIAL PRIVACY

In each of the previous scenarios, the aggregator can modify
the bagging procedure to obtain formal label-differential pri-
vacy guarantees [Chaudhuri and Hsu, 2011], defined below.

Definition 1 (Label DP). A randomized algorithm A taking
a dataset as an input is (ε, δ)-label-DP if for two datasets D
and D′ which differ only on the label of one instance, for
any subset S of outputs of A,

P[A(D) ∈ S] ≤ eεP[A(D′) ∈ S] + δ.

To guarantee label-DP, it is necessary to assume a sensitivity
bound on labels, which we achieve by bounding the norm of
the labels by a constant R. The results below quantifies the
additional loss in utility that is incurred due to private bag-
ging in the cases of Instance-MIR, and Bag-LLP. We discuss
the corresponding result for Aggregate-MIR in Appendix C,
along with the proofs.

Theorem 5 (Private Error Upper Bound, Instance-MIR).
There exists a baggingB with |Bl| = k,∀l ∈ [m], satisfying
(ε, δ) label-DP, such that for θ̂ in (1), we have

E
[
||θ̂ − θ∗||22

]
≤ (10)

C1

(
C2 +OPT + n

(
1− 1

k

)
α2 +

dα2

k2

)
,

where α2 =
16R2 log( 1.25

δ/2 )
ε2 , OPT is the objective value of

the optimal k-means clustering over ỹ, and constantsC1, C2

are independent of B.

In the label-agnostic setting, one would just need to add
noise to the bag-labels. MIR outputs one label at random,
hence the sensitivity of the output is 2R. Due to privacy
amplification via subsampling Balle et al. [2018], we add
N
(

0, α
2

k2

)
noise to the label value to ensure ( ε2 ,

δ
2 ) label-

DP, where α2 =
16R2 log( 1.25

δ/2 )
ε2 , leading to an additional

error of dα
2

k2 . In addition, since the objective here is a label-
dependent clustering, we must use a differentially private
k-means algorithm, leading to additional loss in utility. We
show that the simple approach of adding N

(
0, α2

)
noise

to each label, and then find an optimal clustering over the
noise labels, leads to an additional error of n

(
1− 1

k

)
α2.

In Appendix C, we discuss how it is possible to achieve
better utility, since the above method satisfies the more
stringent notion of local-DP, while we only need to satisfy
the standard notion of central-DP.

k Bagging Method ‖θ̂ − θ∗‖22
LLP Bag Loss

10
Instance k-means 0.0082± 0.002

Label k-means 0.0458± 0.012
Random 0.0099± 0.002

50
Instance k-means 0.0392± 0.008

Label k-means 0.0629± 0.008
Random 0.0423± 0.009

MIR Instance Loss

10
Instance k-means 0.0088± 0.002

Label k-means 0.0072± 0.002
Random 0.0085± 0.002

50
Instance k-means 0.0388± 0.006

Label k-means 0.0404± 0.007
Random 0.0419± 0.006

MIR Aggregate Loss

10
Instance k-means 0.0102± 0.002

Label k-means 0.0453± 0.008
Random 0.0221± 0.004

50
Instance k-means 0.0437± 0.008

Label k-means 0.0601± 0.008
Random 0.0619± 0.012

Table 1: Non-Private Bagging

Theorem 6 (Private Error Upper Bound, Bag-LLP). There
exists a baggingB with |Bl| = k, ∀l ∈ [m], satisfying (ε, δ)

label-DP, such that for θ̂ in (2), we have

E
[
‖θ̂ − θ∗‖22

]
= OPT

(
d

k
α2 + σ2m

k

)
,

where α2 =
4R2 log( 1.25

δ )
ε2 , and OPT is the optimal value of(

λmax(f(X))
λmin(f(X))

)2

.

In this case, the optimal bagging strategy in independent of
the labels. Hence, one just needs to add noise to the bag-
labels, and not add noise for a private clustering of the labels.
LLP outputs the mean of k labels, hence the sensitivity of the
output is 2R

k . We add N
(

0, α
2

k2

)
noise to the label value to

ensure (ε, δ) label-DP, leading to an additional error of α
2m
k2

over the corresponding non-private bagging mechanism.

5 EXPERIMENTS

We conduct experiments on on both real-world, and synthet-
ically generated data.

Synthetic Data We generate data of the form (X ∈
Rn×d, Y ∈ Rn), by first sampling a random ground truth
model θ∗ from the standard d-dimensional Gaussian dis-
tribution, sampling each of the rows of X i.i.d. from the



k Bagging Method ε ‖θ̂ − θ∗‖22

10

Instance k-means
0.5 0.0621± 0.009
1.0 0.0537± 0.009
2.0 0.0390± 0.008

Label k-means
0.5 0.0505± 0.005
1.0 0.0362± 0.006
2.0 0.0189± 0.004

50

Instance k-means
0.5 0.0656± 0.012
1.0 0.0595± 0.012
2.0 0.0521± 0.009

Label k-means
0.5 0.0559± 0.008
1.0 0.0480± 0.005
2.0 0.0431± 0.006

Table 2: Private Bagging, Instance-MIR

standard d-dimensional Gaussian distribution, and then set-
ting Y = Xθ∗+γ where each coordinate of γ is i.i.d. drawn
from N(0, σ2) where σ is 0.5. We set n to be 50, 000 and d
as 32. We also vary k, and use k = 10, 50.

We implement 3 bagging mechanisms on each of Instance-
MIR, Aggregate-MIR, and Bag-LLP, namely (1) Instance
k-means, (2) Label k-means, and (3) Random bagging. In
Table 1, we present the mean and standard deviation of
the error, calculated over 15 runs for each experiment. As
expected, for Bag-LLP, instance k-means performs better
than random bagging, which in turn performs better than
label k-means. For Aggregate-MIR, instance k-means con-
sistently performs the best, which is expected, while random
bagging overall performs slightly better than label k-means.
However, for Instance-MIR, all the 3 mechanisms show sim-
ilar performance. We compute statistical significance of our
results using the paired T -value test in Appendix D.1.

We also consider the private version of Instance-MIR in
Table 2. We set δ = 10−5, and vary ε. For each mechanism,
we see that accuracy drops with a decrease in ε. However,
the drop is sharper for label k-means, which is expected,
since unlike feature k-means, it is label-dependent, incurring
an extra utility error. We also note that that drop in accuracy
is sharper for a smaller bag size; this is again expected since
the error due to privacy scales with 1

k .

We also consider non-isotropic distributions. We generateX
i.i.d. fromN (0,Σ), where Σ is determined by sampling d in-
dependent values {λ1, · · · , λd} from a uniform distribution
U(0.1, 10) to be the eigenvalues of the Σ, which is diagonal
matrix. We also consider the case where the columns of Σ
are non-independent. We sample each entry of a Cholesky
matrix M of size d× d fromN (0, 1). We then compute the
covariance matrix MTM and apply a linear transformation
to feature vectors x sampled from N (0, I) using M . The
resulting set of vectors is non-isotropic with correlated fea-
tures. Here, we also implement Scaled Instance k-means,
that scales the dataset X as Σ−

1
2X to be isotropic, and then

k Bagging Method ‖θ̂ − θ∗‖22
Independent

10

Scaled Instance k-means 0.008552± 0.00191
Instance k-means 0.009739± 0.00201

Random 0.010518± 0.00339
Label k-means 0.042496± 0.00626

50

Scaled Instance k-means 0.038586± 0.00784
Instance k-means 0.036923± 0.00536

Random 0.039461± 0.00760
Label k-means 0.059834± 0.00598

Non-independent

10
Scaled Instance k-means 0.024811± 0.00498

Instance k-means 0.032367± 0.00835
Random 0.024585± 0.00755

Label k-means 0.052438± 0.00936

50
Scaled Instance k-means 0.049910± 0.00773

Instance k-means 0.051425± 0.00895
Random 0.048222± 0.01074

Label k-means 0.061918± 0.00820

Table 3: Non-Isotropic Distribution, Bag-LLP

finds an optimal k-means clustering on the scaled dataset.
We demonstrate results in the Bag-LLP setup in Table 3.

The complete tables (Table 6, Table 5, Table 7) are deferred
to the Appendix D, where we also vary σ.

Real-world Data In Table 4, we conduct experiments us-
ing the Wine Quality Regression dataset from UCI, focusing
on the White wine subset, which contains 4898 samples. We
evaluate performance using MSE on the test set after 10-fold
cross-validation. The results for Instance-MIR align with
our theoretical expectations, showing that label k-means has
the lowest error. For Bag-LLP, the results for are consistent
with our bounds as (Scaled)Instance k-means is perform-
ing the best. We see label k-means consistently performs
better than Instance k-means for Aggregate-MIR. This is
possibly because the distribution for real data does not fol-
low the linear behavior that our results assume. We provide
additional experiments on Wine Quality Datasets (Red and
White Subsets) in Tables 8 and 9.

The experimental code for the paper is available at
https://github.com/google-deepmind/agg_
data_uai25.

6 CONCLUSION

In this paper, we study for various loss functions in the MIR
and LLP setups, the optimal way to partition the dataset
into bags such that the utility for downstream tasks like
linear regression is maximized. We derive upper bounds
on error, and show that in each case, the optimal bagging
strategy (approximately) reduces to finding an optimal k-

https://github.com/google-deepmind/agg_data_uai25
https://github.com/google-deepmind/agg_data_uai25


Setting k Bagging Method MSE

AggMIR

10

Instance k-means 0.605± 0.086
Label k-means 0.190± 0.023

Random 0.778± 0.131
Scaled Instance k-means 0.840± 0.143

40

Instance k-means 0.731± 0.176
Label k-means 0.198± 0.072

Random 1.112± 0.514
Scaled Instance k-means 0.941± 0.152

BagLLP

10

Instance k-means 0.098± 0.008
Label k-means 0.194± 0.021

Random 0.049± 0.008
Scaled Instance k-means 0.061± 0.006

40

Instance k-means 0.104± 0.017
Label k-means 0.162± 0.057

Random 0.126± 0.042
Scaled Instance k-means 0.083± 0.021

InstanceMIR

10

Instance k-means 0.718± 0.108
Label k-means 0.577± 0.038

Random 0.804± 0.082
Scaled Instance k-means 0.930± 0.060

40

Instance k-means 0.983± 0.263
Label k-means 0.602± 0.033

Random 0.807± 0.317
Scaled Instance k-means 0.961± 0.190

Table 4: White Wine Quality

means clustering of the feature vectors or the labels. We
also show that our bagging mechanisms can be made to
satisfy label-DP, incurring an additional utility error. We
finally generalize our results to the setting of GLMs, and
experimentally validate our theoretical results.

There are several potential directions for future work. While
we only considered linear models, it would be interesting
to analyse optimal bagging strategies in non-linear mod-
els, such as neural networks. We believe that similar results
should also hold for more complex models such as neu-
ral networks (the error bounds might be different, but we
believe similar clustering objectives would be effective).
However, the analysis is challenging and would require dif-
ferent techniques, and we leave this important direction
for future work. In addition, one could also consider other
popular loss functions for MIR and LLP used in literature.
Furthermore, while our work only looked at upper bounds,
having corresponding lower bounds would also be valuable.
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A LABEL-DEPENDENT BAGGING (CONTINUED)

A.1 INSTANCE-MIR

We denote the uniform distribution by Γ. Let y = [y1, . . . , ym], where yl = yΓ(Bl). We define a random attribution matrix
for MIR, A ∈ {0, 1}n×n, as follows.

A(i,j) =

{
1 if i ∈ Bl and yl = yj

0 otherwise.

Note that E[A] = S = ST is given by

S(i,j) =

{
1
|Bl| if i, j ∈ Bl
0 otherwise.

The minimizer of (1) is then given by

θ̂ = argmin
θ

1

n
‖Ay −Xθ‖22 = (XTX)−1XTAy.

We now give a proof sketch for Theorem 1, providing an upper bound for the error of θ̂ (some details are omitted to Appendix
A. All the expectations henceforth are over the randomness in A unless otherwise stated.

Proof. (of Theorem 1) We begin with the following proposition, and use it to prove the main theorem

Proposition 2.

E
[
||θ̂ − θ∗||22

]
= E

[
||(XTX)−1XT (A− I)Xθ∗||22

]
+ σ2E

[
||(XTX)−1XTA||2F

]
.

Proof. (of Proposition 2) By rearranging the terms,

θ̂ − θ∗ = (XTX)−1XTAy − θ∗

= (XTX)−1XTAXθ∗ − θ∗ + (XTX)−1XTAγ

= (XTX)−1XT (A− I)Xθ∗ + (XTX)−1XTAγ .

γ is independent of A with E[γ] = 0, E[γγT ] = σ2I and E[A] = S. Using this we get,

E
[
||θ̂ − θ∗||2

]
= E

[
||(XTX)−1XT (A− I)Xθ∗||22

]
+ E

[
tr((XTX)−1XTAγγTATX(XTX)−1)

]
= E

[
||(XTX)−1XT (A− I)Xθ∗||22

]
+ σ2E

[
tr((XTX)−1XTAATX(XTX)−1)

]
= E

[
||(XTX)−1XT (A− I)Xθ∗||22

]
+ σ2E

[
||(XTX)−1XTA||2F

]

We now upper bound the error in Proposition 2. We simplify the first term.

E
[
||(XTX)−1XT (A− I)Xθ∗||22

]
≤ E

[
||(XTX)−1XT ||op||(A− I)Xθ∗||22

]
= ||(XTX)−1XT ||2opE

[
||(A− I)Xθ∗||22

]
||M ||op above denotes the operator norm of martix M . We simplify the RHS above with the following proposition.

Proposition 3.

E
[
||(A− I)Xθ∗||22

]
=

(
2||ỹ||22 − 2

m∑
l=1

(∑
i∈Bl ỹi

)2
|Bl|

)



Proof.

E
[
||(A− I)Xθ∗||22

]
= E

[
((A− I)Xθ∗)T (A− I)Xθ∗

]
= E

[
θ∗TXTATAXθ∗

]
− E

[
θ∗TXT (A+AT )Xθ∗

]
+ ||Xθ∗||22

= E
[
||Aỹ||22

]
− θ∗TXT (S + ST )Xθ∗ + ||Xθ∗||22

= E
[
||AXθ∗||22

]
− 2θ∗TXTSXθ∗ + ||ỹ||22

Putting the following two lemmas together, we conclude Proposition 3.

Lemma 5. E
[
||AXθ∗||22

]
= ||ỹ||22.

Proof. (of Lemma 5) Let B(i) be the bag containing xi. Note that AXθ∗ =
[
ỹΓ(B(1)), . . . , ỹΓ(B(n))

]T
θ∗TXTATAXθ∗ =

i=n∑
i=1

ỹ2
Γ(B(i))

Then we have

E

[
i=n∑
i=1

ỹ2
Γ(B(i))

]
=

i=n∑
i=1

 ∑
j∈B(i)

(ỹj)
2

|(B(i))|


=

l=m∑
l=1

|Bl|

 ∑
j∈B(i)

(ỹj)
2

|Bl|


=

n∑
i=1

(ỹi)
2

Lemma 6. θ∗TXTSXθ∗ =
∑m
l=1

(∑
i∈Bl

ỹi
)2

|Bl| .

Proof. (of Lemma 6). Note that S = MTM , where M ∈ Rm×n is defined as:

M(i,j) =

{
1/
√
|Bi| if xj ∈ Bi

0 otherwise.

Thus, θ∗TXTSXθ∗ = θ∗TXTMTMXθ∗ = ||Mỹ||22.

||Mỹ||22 =

m∑
l=1

( ∑
xi∈Bl

1√
|Bl|

ỹi

)2

=

m∑
l=1

1

|Bl|

( ∑
xi∈Bl

ỹi

)2

The following proposition analyses the second term in Proposition 2, and together with Proposition 3 concludes the proof of
Theorem 1.



Proposition 4.

E
[
||(XTX)−1XTA||2F

]
≤ d||(XTX)−1XT ||2op

Proof. (of Proposition 4). We use the following inequality:

||AB||2F ≤ min
(
||A||2op||B||2F , ||B||2op||A||2F

)
.

E
[
||(XTX)−1XTA||2F

]
≤ min

(
E
[
||(XTX)−1XT ||2op||A||2F

]
,E
[
||(XTX)−1XT ||2F ||A||2op

])
We assumed rank(X) = d, hence ||(XTX)−1XT ||F ≤

√
d||(XTX)−1XT ||op .

E
[
||(XTX)−1XTA||2F

]
≤ min

(
E
[
||(XTX)−1XT ||2op||A||2F

]
,E
[
d||(XTX)−1XT ||2op||A||2op

])
= ||(XTX)−1XT ||2op min

(
E
[
||A||2F

]
, dE

[
||A||2op

])
We have E

[
||A||2F

]
= n and E

[
||A||2op

]
= 1. Also, we are in the setting where n > d to have a well defined regressor.

Therefore, we obtain
E
[
||(XTX)−1XTA||2F

]
≤ d||(XTX)−1XT ||2op

A.2 BAG-LLP

We define a bagging matrix S ∈ {0, 1}m×n that encodes the assignment of instances to bags.

S(l,i) =

{
1
|Bl| if i ∈ Bl,
0 otherwise.

(11)

The minimizer of the bag-level loss in matrix form is

θ̂ = argmin
θ

1

m
‖Sy − SXθ‖22.

Theorem (full version of Theorem 2). For θ̂ as in (2), for a given bagging B with bagging matrix S, we have

E
[
‖θ̂ − θ∗‖22

]
≤ σ2

(
λmax((SX)TSX)

λmin((SX)TSX)

)2
(

m∑
l=1

1

|Bl|

)

For equal sized bags of size k, this simplifies to

E
[
‖θ̂ − θ∗‖22

]
≤ σ2m

k

(
λmax((SX)TSX)−1

λmin((SX)TSX)−1

)2

.

Proof. We start by proving the following lemma

Lemma 7.

E
[
‖θ̂ − θ∗‖22

]
=σ2‖((SX)TSX)−1(SX)T (SST )1/2‖2F .



Proof. The minimizer of the bag-level loss in matrix form is

θ̂ = argmin
θ

1

m
‖Sy − SXθ‖22

= (XTSTSX)−1XTSTSy.

By rearranging the terms, we have

θ̂ − θ∗ = ((SX)TSX)−1XTSTSy − θ∗

= ((SX)TSX)−1XTSTSXθ∗ − θ∗

+ ((SX)TSX)−1XTSTSγ

= ((SX)TSX)−1XTSTSγ

Since γ is independent of Xl, with E[γ] = 0, and E[γγT ] = σ2I, we have

E
[
‖θ̂ − θ∗‖22

]
= σ2tr(((SX)TSX)−1(SX)TSST (SX)((SX)TSX)−1)

By definition, SST = Diag({ 1
|B1| ,

1
|B2| , . . . ,

1
|Bm|}) and the expression simplifies to give:

E
[
‖θ̂ − θ∗‖22

]
= σ2‖((SX)TSX)−1(SX)T (SST )1/2‖2F

Now we upper bound the RHS.

E
[
‖θ̂ − θ∗‖22

]
= σ2‖((SX)TSX)−1(SX)T (SST )1/2‖2F

≤ σ2‖((SX)TSX)−1(SX)T ‖2op‖(SST )1/2‖2F

= σ2‖((SX)TSX)−1(SX)T ‖2op

(
m∑
l=1

1

|Bl|

)

≤ σ2‖((SX)TSX)−1‖2op‖(SX)T ‖2op

(
m∑
l=1

1

|Bl|

)

≤ σ2

(
λmax((SX)TSX)

λmin((SX)TSX)

)2
(

m∑
l=1

1

|Bl|

)

A.3 AGGREGATE-MIR

We define a random attribution matrix A ∈ {0, 1}m×n as follows, to indicate the bag-label of each bag.

A(l,i) =

{
1 if yi = Γ(Bl),

0 otherwise.

We denote E[A] = S. This turns out to be the same S as (11), and represents the instances in each bag. The minimizer of the
aggregate-level loss is

θ̂ = argmin
θ

1

m
‖Ay − SXθ‖22.



Theorem (full version of Theorem 3). For θ̂ in (3), given a bagging B with bagging matrix S,

E
[
‖θ̂ − θ∗‖22

]
≤ ‖((SX)TSX)−1(SX)T ‖2op

(
m∑
l=1

(∑
i∈Bl ỹ

2
i

|Bl|

)
−

m∑
l=1

(∑
i∈Bl ỹi

|Bl|

)2

+ σ2n

)

For equal sized bags, this simplifies to

E
[
‖θ̂ − θ∗‖22

]
≤ 1

k
‖((SX)TSX)−1(SX)T ‖2op

 m∑
l=1

∑
ỹi∈Bl

(ỹi − µl)2 + σ2nk

 ,

Proof.

θ̂ = argmin
θ

1

m
‖Ay − SXθ‖22

= (XTSTSX)−1XTSTAy.

By rearranging the terms, we have

θ̂ − θ∗ = ((SX)TSX)−1XTSTAy − θ∗

= ((SX)TSX)−1XTSTAXθ∗ − θ∗ + ((SX)TSX)−1XTSTAγ

γ is independent of X with E[γ] = 0 and E[γγT ] = σ2I. Also, E[A] = S, and γ,A are independent. Hence,

E
[
‖θ̂ − θ∗‖22

]
= E

[
‖((SX)TSX)−1(SX)TAXθ∗ − ((SX)TSX)−1(SX)TSXθ∗ + ((SX)TSX)−1XTSTAγ‖22

]
≤ ‖((SX)TSX)−1(SX)T ‖2opE[‖(AXθ∗ − SXθ∗) +Aγ‖22]

≤ ‖((SX)TSX)−1(SX)T ‖2op
(
E[‖AXθ∗ − SXθ∗‖22] + E[‖Aγ‖22]

)
≤ ‖((SX)TSX)−1(SX)T ‖2op

(
E[‖Aỹ − Sỹ‖22] + E[‖Aγ‖22]

)
We now analyse E[‖Aỹ − Sỹ‖22] in the lemma below.

Lemma 8.

E[‖Aỹ − Sỹ‖22] =

m∑
l=1

(∑
i∈Bl ỹ

2
i

|Bl|

)
−

m∑
l=1

(∑
i∈Bl ỹi

|Bl|

)2

Proof.

E[‖Aỹ − Sỹ‖22] = E[(Aỹ − Sỹ)T (Aỹ − Sỹ)]

= E[||Aỹ||2 + ||Sỹ||2 − 2ỹTSTAỹ]

= E[||Aỹ||2] + E[||Sỹ||2]− 2E[ỹTSTAỹ]

= E[||Aỹ||2] + E[||Sỹ||2]− 2E[ỹTSTSy]

= E[||Aỹ||2] + E[||Sỹ||2]− 2E[||Sỹ||2]

= E[||Aỹ||2]− E[||Sỹ||2]

= E[||Aỹ||2]− ||Sỹ||2

We now analyse E[||Aỹ||2]

Aỹ =
[
ỹΓ(B1), . . . , ỹΓ(Bm)

]T
=⇒ ỹTATAỹ =

l=m∑
l=1

ỹ2
Γ(Bl)



Then we have

E
[
ỹTATAỹ

]
= E

[
l=m∑
l=1

ỹ2
Γ(Bl)

]

=

m∑
l=1

(∑
i∈Bl ỹ

2
i

|Bl|

)

For equal size bags it simplifies to ||ỹ||
2

k . We now analyse Term 2 ||Sỹ||2

Sỹ =

[∑
i∈B1

ỹi

|B1|
, . . . ,

∑
i∈Bm ỹi

|Bm|

]T
=⇒ ỹTSTSỹ =

m∑
l=1

(∑
i∈Bl ỹi

|Bl|

)2

For equal size bags this simplifies to
∑m
l=1

(∑
i∈Bl

ỹi

k

)2

.

It is easy to see that E[‖Aγ‖22] = nσ2. Combining this with the above lemma, we are done.

B MISSING RESULTS AND PROOFS

In this section, we present some missing proofs from the paper, along with some additional results that were briefly
mentioned in the main paper.

B.1 ADDITIONAL RESULTS FROM SECTION 2

Lemma 9 shows that finding the optimal k-means clustering of the (expected) labels ỹ exactly maximizes
∑m
`=1

(∑
i∈B`

ỹi
)2

|B`| .
Lemma 10 shows that clustering over y = ỹ + γ as a proxy for clustering over ỹ leads to an additional utility error of(
1− 1

k

)
σ2n. Lemma 11 shows that the 1d clustering problem above turns out to result in a bagging that just sorts the labels

in order, and partitions contiguous segments into bags.

Lemma 9 (k-means Equivalence). Maximizing
∑m
`=1

(∑
i∈B`

ỹi
)2

|B`| corresponds to finding the optimal k-means clustering
over ỹ.

Proof. The k-means objective for a bagging B over ỹ is

m∑
l=1

∑
i∈Bl

(ỹi − µl)2 ,



where µl = 1
|Bl|

∑
i∈Bl ỹi is the mean of the entries of ỹ in bag l. We expand on the objective below.

m∑
l=1

∑
i∈Bl

(ỹi − µl)2
=

m∑
l=1

∑
i∈Bl

(ỹ2
i + µ2

l − 2ỹiµl)

=

m∑
l=1

(∑
i∈Bl

ỹ2
i +

∑
i∈Bl

µ2
l − 2

∑
i∈Bl

ỹiµl

)

=

m∑
l=1

(∑
i∈Bl

ỹ2
i + |Bl|µ2

l − 2|Bl|µ2
l

)

=

n∑
i=1

ỹ2
i −

m∑
l=1

(
|Bl|µ2

l

)
= ||ỹ||22 −

m∑
`=1

(∑
i∈B` ỹi

)2
|B`|

||ỹ||22 is constant, hence minimizing
∑m
l=1

∑
i∈Bl (ỹi − µl)2 is equivalent to maximizing

∑m
`=1

(∑
i∈B`

ỹi
)2

|B`| .

Lemma 10 (Noisy Clustering). Given yi = ỹi + γi, where γi ∼ N (0, σ2). Then, given a clustering B over y,

E[k-means(B(y))] = E[k-means(B(ỹ))] + (n−m)σ2

where where k-means(S(X)) is the k-means clustering objective of S on X . For equal sized bags of size k,

E[k-means(B(y))] = E[k-means(B(ỹ))] + n

(
1− 1

k

)
σ2.

Proof.

E[k-means(B(y))]− E[k-means(B(ỹ))] = E

[
m∑
l=1

∑
i∈Bl

(yi − µl)2

]
− E

[
m∑
l=1

∑
i∈Bl

(ỹi − µl)2

]

= E

[
m∑
l=1

∑
i∈Bl

(yi − µl)2 −
m∑
l=1

∑
i∈Bl

(ỹi − µl)2

]

= E

[
m∑
l=1

∑
i∈Bl

(
(yi − µl)2 − (ỹi − µ̃l)2

)]

= E

[
m∑
l=1

∑
i∈Bl

((yi − ỹi + µ̃l − µl)(yi − µl + ỹi − µ̃l))

]

= E

[
m∑
l=1

∑
i∈Bl

((
γi −

∑
i∈Bl γi

|Bl|

)(
2yi − 2µl + γi −

∑
i∈Bl γi

|Bl|

))]

=

m∑
l=1

∑
i∈Bl

(
E
[
γ2
i

]
+

∑
i∈Bl E

[
γ2
i

]
|Bl|2

− 2
E
[
γ2
i

]
|Bl|

)

=

m∑
l=1

∑
i∈Bl

E
[
γ2
i

](
1− 1

|Bl|

)

= σ2
m∑
l=1

(|Bl| − 1)

= σ2 (n−m)



Lemma 11. Sort ỹi in non-increasing order as ỹ(1), . . . , ỹ(n). There exists an optimal k-means clustering B∗ such that
ỹ(i), ỹ(j) ∈ B∗l =⇒ ỹ(k) ∈ B∗l ,∀k ∈ {i, i+ 1, . . . , j}.

Proof. Follows from Lemma 2.3 in Javanmard et al. [2024].

B.2 ADDITIONAL RESULTS FROM SECTION 3.1

Lemma 12 (k-means Decomposition). Consider an orthogonal basis z1, . . . zd. Fix a clustering S. We can show the
following

k-means(S(X)) =

d∑
j=1

k-means(S(Xzj )),

where k-means(S(X)) is the k-means clustering objective of S on X , and Xz is the projection of X along z.

Proof. Let X = {X1, . . . , Xn}.

k-means(S(X)) =
m∑
l=1

∑
Xi∈Sl

||Xi − µl||22

=

m∑
l=1

∑
Xi∈Sl

||Xi||22 + ||µl||22 − 2XT
i µl

=

m∑
l=1

∑
Xi∈Sl

d∑
j=1

(
Xzj

2
i

+ µ2
lzj
− 2Xzj

Tµlzj

)

=

d∑
j=1

m∑
l=1

∑
Xi∈Sl

(
Xzj

T − µlzj
)2

=

d∑
j=1

k-means(S(Xzj ))

Lemma 13 (k-means-Variance Equivalence). Consider a direction z, and a centred dataset X . Given a bagging S over X
with m bags of equal size k,

Varz(SX) =
1

k2
(Var(Xz)− k-means(S(Xz))) ,

Proof. Say the points are X1, . . . , Xn, and the projections along z are x1, . . . , xn. Let µ = 0 be the mean of X , and µl be
the mean of Bl. The variance of SX along z is

Var(SXz) =

m∑
l=1

(µlz − µz)2

=

m∑
`=1

(∑
i∈B` xi

k

)2

=
1

k2

(
n∑
i=1

x2
i −

m∑
`=1

∑
i∈B`

(xi − µlz)2

)

=
1

k2
(Var(Xz)− k-means(S(Xz)))



B.3 RANDOM BAGGING, AGGREGATE-MIR

Proposition (Full version of Proposition 1). For super-bags B′l as defined in Algorithm 2 with arbitrary non-overlapping
partitions B(1)

l and B(2)
l , we have

r∑
l=1

k-means-cluster
(
{ỹi}i∈B′l

)
≥

r∑
l=1

k-means-cluster
(
{ỹi}i∈B(1)

l

)
+ k-means-cluster

(
{ỹi}i∈B(1)

l

)
where, k-means-cluster(C) is the k-means clustering loss for cluster C. This expands to give the following:

r∑
l=1

∑
i∈B′l

(ỹi − µ′l)
2 ≥

r∑
l=1

 ∑
j∈B(1)

l

(
ỹi − µ(1)

l

)2

+
∑
j∈B(2)

l

(
ỹi − µ(2)

l

)2


where, µ denotes the respective cluster means.

Proof. We write the k-means loss for B′l . Let µ′l =
∑
j∈B′l

ỹi/2k.

∑
i∈B′l

(ỹi − µ′l)
2

=
∑
i∈B′l

ỹ2
i − 2ỹiµ

′
l + µ′2l

=

∑
i∈B′l

ỹ2
i

−
(∑

i∈B′l
ỹi

)2

k
+

(∑
i∈B′l

ỹi

)2

2k

=

∑
i∈B′l

ỹ2
i

+

(
1

4k
− 1

k

)∑
i∈B′l

ỹi

2

=

∑
i∈B′l

ỹ2
i

− 1

2k

∑
i∈B′l

ỹi

2

Next, we write the k-means loss for B(1)
l . Let µ(1)

l =
∑
j∈B(1)

l

ỹi/k.

∑
j∈B(1)

l

(
ỹi − µ(1)

l

)2

=
∑
j∈B(1)

l

ỹ2
i − 2ỹiµ

(1)
l + µ

(1)
l

2

=

 ∑
j∈B(1)

l

ỹ2
i

− 2
(∑

j∈B(1)
l

ỹi

)2

k
+

(∑
j∈B(1)

l

ỹi

)2

k

=

 ∑
j∈B(1)

l

ỹ2
i

− 1

k

 ∑
j∈B(1)

l

ỹi


2

Similarly, for B(2)
l , we get

∑
j∈B(2)

l

(
ỹi − µ(2)

l

)2

=

 ∑
j∈B(2)

l

ỹ2
i

− 1

k

 ∑
j∈B(1)

l

ỹi


2



We define ∆l =
∑
i∈B′l

(ỹi − µ′l)
2 −

∑
j∈B(1)

l

(
ỹi − µ(1)

l

)2

−
∑
j∈B(2)

l

(
ỹi − µ(2)

l

)2

.

∆l =
−1

2k

∑
i∈B′l

ỹi

2

+
1

k


 ∑
j∈B(1)

l

ỹi


2

+

 ∑
j∈B(2)

l

ỹi


2

+ 2
∑
i∈B(1)

l

∑
j∈B(2)

l

ỹiỹj − 2
∑
i∈B(1)

l

∑
j∈B(2)

l

ỹiỹj


=
−1

2k

∑
i∈B′l

ỹi

2

+
1

k


∑
j∈B′l

ỹi

2

− 2
∑
i∈B(1)

l

∑
j∈B(2)

l

ỹiỹj


=

1

2k

∑
i∈B′l

ỹi

2

+
−2

k

 ∑
i∈B(1)

l

∑
j∈B(2)

l

ỹiỹj


=

1

2k


∑
i∈B′l

ỹi

2

− 4

 ∑
i∈B(1)

l

∑
j∈B(2)

l

ỹiỹj




=
1

2k


 ∑
j∈B(1)

l

ỹi

−
 ∑
j∈B(2)

l

ỹi




2

≥ 0

For any super-bag B′l for l ∈ [r], ∆l > 0. We can now sum over all bags to get the total loss observed after bagging
∆ =

∑r
l=1 ∆ ≥ 0. This implies that the loss incurred by applying the k-means objective is higher when the instances are

clustered into super-bags of sizes 2k, compared to our random bagging approach, which creates two non-overlapping bags
of sizes k from the super-bags.

C DIFFERENTIAL PRIVACY (CONTINUED)

In this section, we quantify the additional loss in utility incurred due to label-DP guarantees, for each setting we consider.
We give full versions of the theorems stated in Section 4, along with the proofs.

C.1 INSTANCE-MIR

Theorem (full version of Theorem 5). There exists a bagging B with |Bl| = k, ∀l ∈ [m], satisfying (ε, δ) label-DP, such
that for θ̂ in (1), we have

E
[
||θ̂ − θ∗||22

]
≤ ||(XTX)−1XT ||2op

(
2

(
OPT + n

(
1− 1

k

)
α2

)
+ d

(
σ2 +

α2

k2

))
,

where α2 =
16R2 log( 1.25

δ/2 )
ε2 , and OPT is the objective value of the optimal k-means clustering over ỹ.

Proof. The error due to privacy can be decomposed into two parts.

We need to add noise to the bag-labels before releasing them. MIR outputs one label at random, hence the sensitivity of the
output is 2R. Due to privacy amplification via subsampling [Balle et al., 2018, Steinke, 2022], and the fact that ε << n in

our setting, we add N
(

0, α
2

k2

)
noise to the bag-label value to ensure

(
ε
2 ,

δ
2

)
label-DP, where α2 =

16R2 log( 1.25
δ/2 )

ε2 . Note that

we assume addition of N
(
0, σ2

)
noise to each ỹi. Adding N

(
0, α

2

k2

)
to each bag-label is equivalent to adding N

(
0, α

2

k2

)
to each label yi, hence leading to a total noise of N

(
0, σ2 + α2

k2

)
to each ỹi, leading to an additional error of dα

2

k2 over the

intital dσ2.



In addition, since the objective here is a label-dependent clustering, we must use a differentially private k-means algorithm,
leading to additional loss in utility. Adding N

(
0, α2

)
noise to each label, and then find an optimal clustering over the noise

labels, satisfies
(
ε
2 ,

δ
2

)
label-DP by postprocessing. If OPT is the objective value of the optimal k-means clustering over ỹ,

this private clustering method will lead to an additional error of
(
1− 1

k

)
α2, due to Lemma 10.

Now, we have two queries, each of which are
(
ε
2 ,

δ
2

)
label-DP, ensuring (ε, δ) label-DP in total due to composition.

Private clustering Note that it is possible to further reduce the error n
(
1− 1

k

)
α2 due to private clustering. Note that the

above method for private clustering satisfies the more stringent notion of local-DP [Bebensee, 2019], while we only need to
satisfy the standard notion of central-DP. Hence, while it is easy to analyse, we can potentially find a much more accurate
private clustering mechanism, suitably modifying existing algorithms in the rich literature on differentially-private k-means
clustering [Su et al., 2015, Lu and Shen, 2020], for the special case of a single dimension.

C.2 BAG-LLP

Theorem (full version of Theorem 6). There exists a bagging B with |Bl| = k, ∀l ∈ [m], satisfying (ε, δ) label-DP, such
that for θ̂ in (2), we have

E
[
‖θ̂ − θ∗‖22

]
= OPT

(
σ2 +

α2

k

)
m

k
,

where α2 =
4R2 log( 1.25

δ )
ε2 , and OPT is the optimal value of

(
λmax(f(X))
λmin(f(X))

)2

.

Proof. In this case, the optimal bagging strategy in independent of the labels. Hence, we just need to add noise to the
bag-labels before releasing them, and not add noise for a private clustering of the labels. Each bag-label here is the mean
of k labels, hence the sensitivity of the output is 2R

k . We add N
(

0, α
2

k2

)
noise to the label value to ensure (ε, δ) label-DP,

where α2 =
4R2 log( 1.25

δ )
ε2 . This is equivalent to adding N

(
0, α

2

k

)
noise to each of the k labels, and then averaging them.

Note that we assume addition of N
(
0, σ2

)
noise to each ỹi. Adding N

(
0, α

2

k

)
to each label yi, leads to a total noise of

N
(

0, σ2 + α2

k

)
to each ỹi, leading to an additional error of α

2

k
m
k over the intital σ2m

k .

C.3 AGGREGATE-MIR

Theorem 3 shows that, for θ̂ in (3), given a bagging B, with equal sized bags, we have

E
[
‖θ̂ − θ∗‖22

]
≤ 1

k
‖((SX)TSX)−1(SX)T ‖2op

 m∑
l=1

∑
ỹi∈Bl

(ỹi − µl)2 + σ2nk

 ,

If we want a private bagging B, the error due to privacy can be decomposed into two parts. We need to add noise to the
bag-labels before releasing them. As in the case of Instance-MIR, we add N

(
0, α

2

k2

)
noise to the bag-labels value to ensure

(ε, δ) label-DP, where α2 =
4R2 log( 1.25

δ )
ε2 , leading to an additional error of nkα

2

k2 over the intital nkσ2.

Now, there are two terms that contribute to the clustering error, term 1
(
‖((SX)TSX)−1(SX)T ‖2op

)
, and term 2(∑m

l=1

∑
ỹi∈Bl(ỹi − µl)

2
)

. Term 1 is involved in Bag-LLP, and minimizes the condition number of the bag-centroids.
Term 2 is also involved in Instance-MIR, and minimizes a label-dependent k-means clustering objective. If we minimize
Term 1, the optimal bagging strategy in independent of the labels. Hence, we just need to add noise to the bag-labels before
releasing them, and not add noise for a private clustering of the labels. However, in this case, the value of Term 2 could be
suboptimal.



If we minimize Term 2, we must use a differentially private k-means algorithm, leading to additional loss in utility. Adding
N
(
0, α2

)
noise to each label, and then find an optimal clustering over the noise labels, satisfies (ε, δ) label-DP. As in the

case of Instance-MIR, this private clustering method will lead to an additional error of n
(
1− 1

k

)
α2. Note that since we

now have two private queries, we would have to split the privacy budget amongst them. However, minimizing term 2 might
lead to a suboptimal value of Term 1.

D EXPERIMENTS (CONTINUED)

We implement 4 bagging mechanisms on each of Instance-MIR, Aggregate-MIR, and Bag-LLP, namely (1) Instance
k-means, (2) Label k-means, (3) Random bagging, and (4) Scaled Instance k-means. We also implement Label k-means
super-bags (Algorithm 2) for Aggregate-MIR, and Bag-LLP. In addition, we also vary the value of σ. In the tables, we
present the mean and standard deviation of the error, calculated over 15 runs for each experiment. As expected, in most cases
for Bag-LLP (Table 6) and Aggregate-MIR (Table 5), scaled instance k-means performs better than instance k-means, which
in turn performs better than random bagging, which in turn performs better than label k-means. However, for Instance-MIR
(Table 7), all the mechanisms show similar performance, with label k-means showing better performance in many cases.

D.1 STATISTICAL SIGNIFICANCE

Table 10 has statistical significance scores for the results in Table 1. There is one row for each bag-size {10, 50} and three
settings of Bag-LLP, Instance-MIR, and Aggregate-MIR. The columns IkM, LkM, and Rand contain the mean errors of
the bagging methods: Instance k-means, Label k-means, and Random. All methods are evaluated on 15 independent trial
datasets for each row. In column (LkM vs. IkM)-T we present the paired T -value for Label k-means and Instance k-means.
In column S1 (90%) we check whether the magnitude of this T -value is greater than the critical-T = 1.760, indicating
whether there is a significant difference in the means with 90% confidence. In column (Rand vs best)-T we present the
paired T -value for Random Bagging vs. the better (i.e., lower error) of Label k-means and Instance k-means. Column
S2 (90%) indicates whether there is a significant difference in the means of Random vs the better of Label k-means and
Instance k-means, with 90% confidence. Table 11 similarly has the confidence scores for the results in Table 2 (private
bagging) of the paper.

Takeaways: We see from Table 10 that Instance-k-means has statistically significant better performance over Label k-means
as well as Random for Aggregate-MIR and for Bag-LLP (bag-size 10). For Instance-MIR on the other hand there is no
statistically significant difference between the methods. In Table 11 we see that Label k-means is statistically significantly
better than Instance k-means for all settings. However, Label k-means has statistically significant better performance over
Random for 2 settings with bag-size 10. Overall we see that in many settings our results provide statistically significant
separation between the techniques.

E GENERALIZED LINEAR MODELS

We now present the setup and terminology we use in this section, borrowed from Javanmard et al. [2024]. The instance-level
labels yi are conditionally independent given xi in GLMs, and are drawn from a specific distribution within the exponential
family. The corresponding log-likelihood function can be expressed as:

log p(yi | ηi, φ) =
yiηi − b(ηi)

ai(φ)
+ c(yi, φ) ,

where ηi is a location variable and φ is the scaling variable. The functions ai, b, and c are provided. We can take
ai(φ) = φ/wi, where wi is a constant prior weight. We analyse canonical GLMs, in which ηi = xTi θ

∗ for an unknown
model θ∗. Some properties of GLMs are µ = E[y|x] = b′(xT θ∗), and Var(y|x) = a(φ)b′′(xT θ∗). We consider L to the
negative log likelihood, and can ignore the term c(yi, φ) as it does not depend on θ. Our objective is to find a bagging
strategy which closes the gap between the true model θ∗ and θ̂. For GLMs, we achieve this by minimizing the gradient of
the loss at θ∗. We now state the following lemma, that will be used later on.

Lemma 14. [Javanmard et al. [2024]] Suppose that the loss L is strongly convex with parameter µ and θ̂ = arg minθ L(θ).
Then, for any model θ∗, we have

‖θ̂ − θ∗‖2 ≤
1

µ
‖L(θ∗)‖2.



Data k σ Bagging Method ‖θ̂ − θ∗‖22

Isotropic

10

0.5

Instance k-means 0.010693± 0.00167
Label k-means 0.044320± 0.00720
Label k-means super-bags 0.040845± 0.01104
Random 0.022352± 0.00447

2

Instance k-means 0.037875± 0.00494
Label k-means 0.056199± 0.01042
Label k-means super-bags 0.059399± 0.01304
Random 0.053995± 0.01119

50

0.5

Instance k-means 0.046242± 0.00773
Label k-means 0.064936± 0.01016
Label k-means super-bags 0.058051± 0.00631
Random 0.057210± 0.00981

2

Instance k-means 0.056337± 0.01002
Label k-means 0.065491± 0.00853
Label k-means super-bags 0.061981± 0.00991
Random 0.065836± 0.01079

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.014946± 0.00421
Label k-means 0.040369± 0.00990
Label k-means super-bags 0.042778± 0.00804
Random 0.020230± 0.00506
Scaled Instance k-means 0.012608± 0.00354

2

Instance k-means 0.039141± 0.00884
Label k-means 0.048532± 0.01083
Label k-means super-bags 0.052560± 0.01105
Random 0.058208± 0.00860
Scaled Instance k-means 0.042403± 0.00573

50

0.5

Instance k-means 0.041916± 0.00736
Label k-means 0.062490± 0.00929
Label k-means super-bags 0.060436± 0.01054
Random 0.055356± 0.01085
Scaled Instance k-means 0.047906± 0.00964

2

Instance k-means 0.059583± 0.00788
Label k-means 0.062350± 0.01028
Label k-means super-bags 0.062662± 0.01306
Random 0.065602± 0.00934
Scaled Instance k-means 0.059133± 0.01235

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.031268± 0.00649
Label k-means 0.052303± 0.01065
Label k-means super-bags 0.049302± 0.00531
Random 0.034642± 0.01052
Scaled Instance k-means 0.022451± 0.00636

2

Instance k-means 0.043493± 0.00732
Label k-means 0.054761± 0.01151
Label k-means super-bags 0.056316± 0.01127
Random 0.055723± 0.01053
Scaled Instance k-means 0.039650± 0.00781

50

0.5

Instance k-means 0.052643± 0.01071
Label k-means 0.060606± 0.00677
Label k-means super-bags 0.059758± 0.00977
Random 0.057136± 0.00876
Scaled Instance k-means 0.046376± 0.00642

2

Instance k-means 0.058460± 0.01074
Label k-means 0.060828± 0.00811
Label k-means super-bags 0.065220± 0.00745
Random 0.067064± 0.01064
Scaled Instance k-means 0.059597± 0.00908

Table 5: Aggregate-MIR



Data k σ Bagging Method ‖θ̂ − θ∗‖22

Isotropic

10

0.5

Instance k-means 0.007562± 0.00137
Label k-means 0.043625± 0.00722
Label k-means super-bags 0.044586± 0.00906
Random 0.009745± 0.00206

2

Instance k-means 0.014722± 0.00329
Label k-means 0.056195± 0.01101
Label k-means super-bags 0.056651± 0.01085
Random 0.026405± 0.00502

50

0.5

Instance k-means 0.037432± 0.00721
Label k-means 0.063826± 0.00800
Label k-means super-bags 0.058686± 0.01111
Random 0.046269± 0.00830

2

Instance k-means 0.040709± 0.00964
Label k-means 0.063859± 0.00486
Label k-means super-bags 0.058983± 0.00880
Random 0.049042± 0.00872

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.009739± 0.00201
Label k-means 0.042496± 0.00626
Label k-means super-bags 0.044571± 0.00929
Random 0.010518± 0.00339
Scaled Instance k-means 0.008552± 0.00191

2

Instance k-means 0.018930± 0.00425
Label k-means 0.049482± 0.01074
Label k-means super-bags 0.055759± 0.01066
Random 0.030314± 0.00652
Scaled Instance k-means 0.014849± 0.00286

50

0.5

Instance k-means 0.036923± 0.00536
Label k-means 0.059834± 0.00598
Label k-means super-bags 0.062452± 0.01025
Random 0.039461± 0.00760
Scaled Instance k-means 0.038586± 0.00784

2

Instance k-means 0.043048± 0.01045
Label k-means 0.058143± 0.01113
Label k-means super-bags 0.059907± 0.00812
Random 0.054860± 0.00659
Scaled Instance k-means 0.045390± 0.00617

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.032367± 0.00835
Label k-means 0.052438± 0.00936
Label k-means super-bags 0.050445± 0.01255
Random 0.024585± 0.00755
Scaled Instance k-means 0.024811± 0.00498

2

Instance k-means 0.033099± 0.01050
Label k-means 0.057081± 0.00955
Label k-means super-bags 0.057327± 0.01297
Random 0.032676± 0.00675
Scaled Instance k-means 0.029420± 0.00755

50

0.5

Instance k-means 0.051425± 0.00895
Label k-means 0.061918± 0.00820
Label k-means super-bags 0.058320± 0.01040
Random 0.048222± 0.01074
Scaled Instance k-means 0.049910± 0.00773

2

Instance k-means 0.051430± 0.00661
Label k-means 0.065289± 0.01090
Label k-means super-bags 0.069147± 0.01071
Random 0.059075± 0.00885
Scaled Instance k-means 0.047859± 0.00678

Table 6: Bag-LLP



‖θ̂ − θ∗‖22
Data k σ Bagging Method

Isotropic

10

0.5
Instance k-means 0.008894± 0.00168
Label k-means 0.007597± 0.00197
Random 0.007997± 0.00174

2
Instance k-means 0.019629± 0.00410
Label k-means 0.010983± 0.00239
Random 0.010078± 0.00190

50

0.5
Instance k-means 0.039916± 0.00828
Label k-means 0.040155± 0.00986
Random 0.044420± 0.00472

2
Instance k-means 0.049003± 0.01167
Label k-means 0.040044± 0.00608
Random 0.040281± 0.00600

Non-isotropic
(Independent)

10

0.5

Instance k-means 0.008672± 0.00215
Label k-means 0.007790± 0.00158
Random 0.008808± 0.00174
Scaled Instance k-means 0.009683± 0.00102

2

Instance k-means 0.018395± 0.00421
Label k-means 0.012217± 0.00205
Random 0.011335± 0.00198
Scaled Instance k-means 0.022363± 0.00499

50

0.5

Instance k-means 0.042065± 0.00686
Label k-means 0.041108± 0.00867
Random 0.038124± 0.00552
Scaled Instance k-means 0.037391± 0.00674

2

Instance k-means 0.043934± 0.00901
Label k-means 0.041059± 0.00527
Random 0.044340± 0.00826
Scaled Instance k-means 0.047298± 0.00768

Non-isotropic
(Non-independent)

10

0.5

Instance k-means 0.023122± 0.00747
Label k-means 0.023248± 0.00916
Random 0.022115± 0.00565
Scaled Instance k-means 0.019744± 0.00628

2

Instance k-means 0.035530± 0.01027
Label k-means 0.027272± 0.00708
Random 0.026394± 0.00626
Scaled Instance k-means 0.034814± 0.00768

50

0.5

Instance k-means 0.049454± 0.00978
Label k-means 0.048404± 0.00920
Random 0.048654± 0.01101
Scaled Instance k-means 0.051057± 0.00644

2

Instance k-means 0.049799± 0.00843
Label k-means 0.045538± 0.00981
Random 0.047661± 0.00710
Scaled Instance k-means 0.048617± 0.00801

Table 7: Instance-MIR



Setting k Bagging Method MSE

Aggregate-MIR

5

Instance k-means 0.518± 0.125
Label k-means 0.246± 0.082

Random 0.654± 0.159
Scaled Instance k-means 0.678± 0.126

10

Instance k-means 0.530± 0.199
Label k-means 0.198± 0.071

Random 0.781± 0.267
Scaled Instance k-means 0.601± 0.180

20

Instance k-means 0.666± 0.251
Label k-means 0.251± 0.071

Random 0.965± 0.497
Scaled Instance k-means 0.551± 0.287

40

Instance k-means 0.516± 0.350
Label k-means 0.957± 0.655

Random 1.550± 0.771
Scaled Instance k-means 0.763± 0.483

Bag-LLP

5

Instance k-means 0.143± 0.048
Label k-means 0.235± 0.066

Random 0.140± 0.044
Scaled Instance k-means 0.137± 0.030

10

Instance k-means 0.097± 0.026
Label k-means 0.170± 0.060

Random 0.134± 0.061
Scaled Instance k-means 0.077± 0.026

20

Instance k-means 0.070± 0.024
Label k-means 0.201± 0.074

Random 0.205± 0.170
Scaled Instance k-means 0.060± 0.020

40

Instance k-means 0.060± 0.026
Label k-means 0.887± 0.620

Random 0.626± 0.371
Scaled Instance k-means 0.054± 0.027

Instance-MIR

5

Instance k-means 0.587± 0.115
Label k-means 0.493± 0.074

Random 0.679± 0.205
Scaled Instance k-means 0.811± 0.106

10

Instance k-means 0.691± 0.108
Label k-means 0.527± 0.099

Random 0.834± 0.144
Scaled Instance k-means 0.770± 0.085

20

Instance k-means 0.735± 0.356
Label k-means 0.457± 0.113

Random 0.627± 0.293
Scaled Instance k-means 0.720± 0.187

40

Instance k-means 0.654± 0.309
Label k-means 0.468± 0.131

Random 0.801± 0.418
Scaled Instance k-means 0.867± 0.175

Table 8: Experiments on the Wine Quality - Red Wine



Setting k Bagging Method MSE

Aggregate-MIR

5

Instance k-means 0.651± 0.086
Label k-means 0.306± 0.021

Random 0.796± 0.096
Scaled Instance k-means 0.773± 0.163

10

Instance k-means 0.605± 0.086
Label k-means 0.190± 0.023

Random 0.778± 0.131
Scaled Instance k-means 0.840± 0.143

20

Instance k-means 0.711± 0.123
Label k-means 0.195± 0.037

Random 1.145± 0.193
Scaled Instance k-means 0.870± 0.324

40

Instance k-means 0.731± 0.176
Label k-means 0.198± 0.072

Random 1.112± 0.514
Scaled Instance k-means 0.941± 0.152

Bag-LLP

5

Instance k-means 0.174± 0.019
Label k-means 0.311± 0.041

Random 0.108± 0.010
Scaled Instance k-means 0.115± 0.012

10

Instance k-means 0.098± 0.008
Label k-means 0.194± 0.021

Random 0.049± 0.008
Scaled Instance k-means 0.061± 0.006

20

Instance k-means 0.128± 0.016
Label k-means 0.183± 0.047

Random 0.112± 0.021
Scaled Instance k-means 0.098± 0.019

40

Instance k-means 0.104± 0.017
Label k-means 0.162± 0.057

Random 0.126± 0.042
Scaled Instance k-means 0.083± 0.021

Instance-MIR

5

Instance k-means 0.640± 0.103
Label k-means 0.572± 0.052

Random 0.791± 0.097
Scaled Instance k-means 0.857± 0.090

10

Instance k-means 0.718± 0.108
Label k-means 0.577± 0.038

Random 0.804± 0.082
Scaled Instance k-means 0.930± 0.060

20

Instance k-means 0.826± 0.130
Label k-means 0.628± 0.018

Random 0.924± 0.184
Scaled Instance k-means 0.950± 0.236

40

Instance k-means 0.983± 0.263
Label k-means 0.602± 0.033

Random 0.807± 0.317
Scaled Instance k-means 0.961± 0.190

Table 9: Experiments on the Wine Quality - White Wine



Setup k IkM LkM Rand (LkM vs IkM)-T S1 (90%) (Rand vs best)-T S2 (90%)
Bag 10 0.0082± 0.002 0.0458± 0.012 0.0099± 0.002 12.301 Yes 2.004 Yes
LLP 50 0.0392± 0.008 0.0629± 0.008 0.0423± 0.009 7.062 Yes 1.261 No
Instance 10 0.0088± 0.002 0.0072± 0.002 0.0085± 0.002 -1.688 No 1.332 No
MIR 50 0.0388± 0.006 0.0404± 0.007 0.0419± 0.006 0.643 No 1.172 No
Aggregate 10 0.0102± 0.002 0.0453± 0.008 0.0221± 0.004 15.85 Yes 8.284 Yes
MIR 50 0.0437± 0.008 0.0601± 0.008 0.0619± 0.012 5.339 Yes 4.505 Yes

Table 10: Statistical Significance for Non-Private Bagging

ε k IkM LkM Rand (LkM vs IkM)-T S1 (90%) (Rand vs best)-T S2 (90%)
0.5 10 0.0619± 0.012 0.0505± 0.005 0.0553± 0.008 -4.105 Yes 1.761 Yes

50 0.0656± 0.012 0.0559± 0.008 0.0564± 0.007 -2.297 Yes 0.208 No
1 10 0.0537± 0.009 0.0362± 0.006 0.0397± 0.010 -5.513 Yes 1.189 No

50 0.0595± 0.012 0.0480± 0.005 0.0447± 0.005 -3.029 Yes -1.689 No
2 10 0.0390± 0.008 0.0189± 0.004 0.0216± 0.005 -9.182 Yes 2.148 Yes

50 0.0521± 0.009 0.0431± 0.006 0.0434± 0.008 -3.513 Yes 0.1569 No

Table 11: Statistical Significance for Private Bagging

In addition, if L has a Lipschitz continuous gradient with parameter L, we have

1

L
‖L(θ∗)‖2 ≤ ‖θ̂ − θ∗‖2.

E.1 INSTANCE-MIR

Let θ̂ be the minimizer of the instance-level loss, i.e.,

θ̂ = argmin
θ

1

n

m∑
l=1

∑
i∈Bl

ylηi − b(ηi)
ai(φ)

.

We find the optimal θ̂ by solving ∇L(θ̂) = 0, and use Lemma 14 which states that ‖θ̂ − θ∗‖2 is lower bounded by
‖∇L(θ∗)‖2 for strongly convex functions. We now state the main result of this section below. We define the bagging
matrices A,S as in Section A.1.

Theorem 7 (GLM Upper Bound, Instance-MIR). Given a bagging denoted by S, we have

E [‖∇L(θ∗)‖2] ≤ ‖XTD−1‖2op
(
m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) + ‖(S − I)b′(Xθ)‖22 − ‖Sb′(Xθ)‖22

)
,

where, D = Diag({ai(φ)}).

Proof. We begin by computing ∇L(θ) and expressing it in the matrix format:

∇L(θ) =
1

n

m∑
l=1

∑
i∈Bl

(
yl − b′(xTi θ)

)
xi

ai(φ)

= XTD−1(Ay − b′(Xθ)).



We now expand the expected value below.

E
[
‖∇L(θ)‖22

]
= E

[
‖XTD−1(Ay − b′(Xθ))‖22

]
≤ ‖XTD−1‖2opE

[
‖Ay − b′(Xθ)‖22

]
= ‖XTD−1‖2opE

[
(Ay − b′(Xθ))T (Ay − b′(Xθ))

]
= ‖XTD−1‖2opE

[
(Ay)T (Ay)− b′(Xθ)TAy − (Ay)T b′(Xθ) + b′(Xθ)T b′(Xθ)

]
= ‖XTD−1‖2op

(
E
[
(Ay)T (Ay)

]
− b′(Xθ)TSy − (Sy)T b′(Xθ) + b′(Xθ)T b′(Xθ)

)
= ‖XTD−1‖2op

(
E
[
(Ay)T (Ay)

]
− b′(Xθ)TSy − (Sy)T b′(Xθ) + b′(Xθ)T b′(Xθ)

+ (Sb′(Xθ))T (Sb′(Xθ))− (Sb′(Xθ))T (Sb′(Xθ))
)

= ‖XTD−1‖2op
(
E
[
‖Ay‖22

]
+ ‖(S − I)b′(Xθ)‖22 − ‖Sb′(Xθ)‖22

)
≤ ‖XTD−1‖2op

(
E
[
‖A‖2op‖y‖22

]
+ ‖(S − I)b′(Xθ)‖22 − ‖Sb′(Xθ)‖22

)
≤ ‖XTD−1‖2op

(
m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) + ‖(S − I)b′(Xθ)‖22 − ‖Sb′(Xθ)‖22

)

Note that, since the term ‖XTD−1‖2op is constant and the first term m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) is independent
of the bagging strategy, it can be disregarded. Thus, we focus on the remaining terms to derive a clustering objective.
We expand the matrix notation and express these terms as a summation over instances. We define µl :=

∑
µi
|Bl| , where

µi = E[yi|xi] = b′(xTi θ
∗). We get the following

min
(B1,...,Bm)∈B

‖(S − I)b′(Xθ)‖22 − ‖Sb′(Xθ)‖22 = min
(B1,...,Bm)∈B

m∑
l=1

∑
i∈Bl

(µi − µl)2 −
m∑
l=1

|Bl|µl

Minimizing the first term in the objective is similar to performing 1d k-means clustering.

E.2 AGGREGATE-MIR

Let θ̂ be the minimizer of the aggregate-level loss, i.e.,

θ̂ = argmin
θ

1

m

m∑
l=1

yl
∑
i∈Bl

ηi
|Bl| − b

(∑
i∈Bl

ηi
|Bl|

)
al(φ)

.

The steps involved in the analysis here are similar to the instance-level loss function. We find the optimal θ̂ by solving
∇L(θ̂) = 0 and then minimize ‖∇L(θ∗)‖2 to approximate ‖θ̂ − θ∗‖2. We now state the main result of this section below.
We define the bagging matrices A,S as in Section A.3.

Theorem 8 (GLM Upper Bound, Aggregate-MIR). Given a bagging denoted by S, we have

E [‖∇L(θ∗)‖2] ≤ nλmax(XTX)
(
m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) + ‖Sb′(Xθ)− b′(SXθ)‖22 − ‖Sb′(Xθ)‖22

)
) (12)

where, D = Diag({ai(φ)}).

Proof. We begin by computing ∇L(θ) and expressing it in the matrix format:

∇L(θ) =
1

m

m∑
l=1

(
yl − b′

(∑
i∈Bl

xTi θ
|Bl|

))∑
i∈Bl

xTi θ
|Bl|

al(φ)

= (SX)TD−1(Ay − b′(SXθ)).



We now expand the expected value below.

E
[
‖∇L(θ)‖22

]
= E

[
‖(SX)TD−1(Ay − b′(SXθ))‖22

]
≤ ‖(SX)TD−1‖2opE

[
‖Ay − b′(SXθ)‖22

]
= ‖(SX)TD−1‖2opE

[
(Ay − b′(SXθ))T (Ay − b′(SXθ))

]
= ‖(SX)TD−1‖2opE

[
(Ay)T (Ay)− b′(SXθ)TAy − (Ay)T b′(SXθ) + b′(SXθ)T b′(SXθ)

]
= ‖(SX)TD−1‖2op

(
E
[
(Ay)T (Ay)

]
− b′(SXθ)TSy − (Sy)T b′(SXθ) + b′(SXθ)T b′(SXθ)

)
= ‖(SX)TD−1‖2op

(
E
[
(Ay)T (Ay)

]
− b′(SXθ)TSb′(Xθ)− (Sb′(Xθ))T b′(SXθ) + b′(SXθ)T b′(SXθ)+

(Sb′(Xθ))T (Sb′(Xθ))− (Sb′(Xθ))T (Sb′(Xθ))
)

= ‖(SX)TD−1‖2op
(
E
[
‖Ay‖22|X

]
+ ‖Sb′(Xθ)− b′(SXθ)‖22 − ‖Sb′(Xθ)‖22

)
≤ ‖(SX)TD−1‖2op

(
E
[
‖A‖2op‖y‖22|X

]
‖Sb′(Xθ)− b′(SXθ)‖22 − ‖Sb′(Xθ)‖22

)
≤ ‖(SX)TD−1‖2op

(
m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) + ‖Sb′(Xθ)− b′(SXθ)‖22 − ‖Sb′(Xθ)‖22

)
≤ ‖D−1‖2opλmax(XTX)

(
m(‖b′(Xθ∗)‖22 + ‖Db′′(Xθ∗)‖1) + ‖Sb′(Xθ)− b′(SXθ)‖22 − ‖Sb′(Xθ)‖22

)

We now justify why the final objective in Theorem 8 leads to a clustering objective. The key term in this objective which
depends on S is ‖Sb′(Xθ)− b′(SXθ)‖22. Our task is to determine the optimal bagging matrix S that would minimize this
term. To simplify this expression and develop an interpretable algorithm, we assume that the function b′(.) is monotonic3.
Focusing on the case where b′(.) is an increasing function, we know that b′(t1) ≥ b′(t2) ⇐⇒ t1 ≥ t2. Simplifying, we get
that ∥∥∥(Sb′(Xθ)− b′(SXθ)

∥∥∥2

2
=

m∑
l=1

(∑
x∈Bl

b′(xT θ∗)

|Bl|
− b′

(∑
x∈Bl

xT θ∗

|Bl|

))2

Since b′ is an increasing function, the inequality b′
(
maxx′∈Bl x

′T θ∗
)
≥ b′(xT θ∗) holds true for all x ∈ Bl (and

maxx′∈Bl x
′T θ∗ ≥ xT θ∗). Similarly, b′

(
xT θ∗

)
≥ b′(minx′∈Bl x

′T θ∗) would hold true for all x ∈ Bl (and xT θ∗ ≥
minx′∈Bl x

′T θ∗)) We now look at the first term:

b′
(∑

x∈Bl minx′∈Bl x
′T θ∗

)
|Bl|

≤
∑
x∈Bl

b′(xT θ∗)

|Bl|
≤
b′
(∑

x∈Bl maxx′∈Bl x
′T θ∗

)
|Bl|

b′
(

min
x′∈Bl

x′T θ∗
)
≤
∑
x∈Bl

b′
(
xT θ∗

)
|Bl|

≤ b′
(

max
x′∈Bl

x′T θ∗
)
.

We now bound the second term:

b′

(∑
x∈Bl

minx′∈Bl x
′T θ∗

|Bl|

)
≤ b′

(∑
x∈Bl

xT θ∗

|Bl|

)
≤ b′

(∑
x∈Bl

maxx′ x
′Tθ∗

|Bl|

)

b′
(

min
x′∈Bl

x′T θ∗
)
≤ b′

(∑
x∈Bl

xT θ∗

|Bl|

)
≤ b′

(
max
x′∈Bl

x′T θ∗
)
.

It is easy to see that the difference ‖Sb′(Xθ)− b′(SXθ)‖22 has an upper bound:

m∑
l=1

(∑
x∈Bl

b′(xT θ∗)

|Bl|
− b′

(∑
x∈Bl

xT θ∗

|Bl|

))2

≤
m∑
l=1

(
b′
(

max
x′∈Bl

x′T θ∗
)
− b′

(
min
x′∈Bl

x′T θ∗
))2

. (13)

If n = mk and we need to construct-equal sized bags having k instances each, then the minimization of Equation 13 can
be achieved by sorting b′(xT θ∗) for all x ∈ X , and dividing the points into contiguous chunks of size k. This process
resembles the 1d clustering objective with an equal-size constraint.

3The monotonicity condition holds true for the majority of distributions belonging to the exponential family, including normal,
poisson, logistic, and inverse gaussian.
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