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Abstract

Embedding-based information retrieval mod-
els can suffer from false retrievals due to
issues such as training data bias and poly-
semy. To address this problem, we propose a
novel method for controlling embedding mod-
els through an interpretable steering technique
based on Sparse Autoencoders (SAEs). SAEs
decompose embeddings into semantically dis-
entangled features, and a steering vector se-
lectively enhances or suppresses features that
contribute to false retrievals, thereby correcting
the search results. Experimental results demon-
strate that the proposed method effectively recti-
fies false retrievals within a limited range while
maintaining the generalization performance of
the model. However, limitations of the SAE,
including potential performance degradation,
possible side effects from polysemantic fea-
tures, and the difficulty in determining optimal
correction values, indicate the need for further
research. Future work should focus on overcom-
ing these limitations and expanding the scope
of the interpretlalbr steering technique to build
a more sophisticated search result correction
system.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) (Ouyang et al., 2022; Achiam et al.,
2023; Touvron et al., 2023) emphasize the signifi-
cance of efficient and precise information retrieval
(Zhao et al., 2023). Embedding models (Gao et al.,
2022; Karpukhin et al., 2020), which convert text
into vector representations for similarity-based re-
trieval, have become essential for knowledge dis-
covery and information search (Izacard and Grave,
2020; Shi et al., 2023).

However, embedding models exhibit biases cat-
egorized into two types: Intrinsic bias (Sun et al.,
2019), which originate from the training data, as
well as the architecture and underlying assumptions
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Figure 1: Steering in Embedding space. An illustration
of the semantic space of the word "bat” across different
contextual bases (sports, animals, and movies). Steering
the embedding 1.5x% toward a movie-related context
reduces the unit distance from three units (three-unit
distance) to two units (two-unit distance), decreasing the
semantic gap between ’bat’ and its meaning in a movie-
related context, making “bat’ more closely associated
with ‘Batman’.

made during model design,and Extrinsic bias (Kir-
itchenko and Mohammad, 2018), which emerge
during the application of LLMs in real-world tasks
(Guo et al., 2024). These biases can skew search
results, prioritizing on certain interpretations over
others and misaligning with user intent. For in-
stance, a query for "bat" may predominantly return
results related to baseball rather than the animal, or
"apple" may emphasize Apple Inc. over the fruit
(Figure 1).

The black box nature of neural network-based
models makes it difficult to understand the fac-
tors driving specific retrieval results. This lack of
transparency undermines trust and limits the ability
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Figure 2: Interpretable Steering in Embedding. (left) Steering the representation of an embedding model
using a SAE. The input text is transformed into an embedding vector, which is then decomposed into sparse features
by SAE. By manipulating specific feature activations related to "train" and "battery", we can directly modify the
embedding, thereby steering its semantic meaning. (right) Changes in the Corrected Embedding Space and
Retrieval Adjustment. In the original embedding space (top), the positive instance (P) is retrieved due to its higher
similarity to the query (Q). In the reconstructed embedding space by steering (bottom), the negative instance (IN)
becomes more similar to the query and is thus retrieved instead. This demonstrates that the steering process can

dynamically adjust the actual retrieval ranking.

to identify or correct unintended biases. O’Neill
et al. (2024) introduced the Sparse AutoEncoder
to improve interpretability, providing insights into
internal representations and aiding in potential bias
mitigation.

Interpretable steering is gaining attention as a
technique to actively adjust black-box models by
modifying specific semantic attributes. Feature de-
composition based on Sparse AutoEncoder facili-
tates the selective enhancement or suppression of
dimensions, providing dynamic control over re-
trieval outputs. In contrast to traditional methods
that require model retraining, steering offers a flex-
ible and efficient approach to refine search results
while preserving model integrity.

We propose a steering-based method for correct-
ing false retrievals through direct user interven-
tion. Unlike static pretrained embeddings, our ap-
proach enables the dynamic adaptation of retrieval
results to better align with evolving search needs.
The steering method based on Sparse AutoEncoder
provides a powerful tool for interactive control,
enhancing accuracy and personalization in search
systems.

This approach improves transparency and con-
trollability, making embedding models more adapt-
able for applications such as search engines,
retrieval-augmented generation (RAG) systems,
and medical information retrieval.

Key Contributions

* We propose a dynamic method for embedding
correction using steering vectors.

* We establish the theoretical foundation for
steering-based false retrieval correction.

* We empirically validate the effectiveness of
SAE-based steering for retrieval correction.

2 Theoretical Analysis

"Can a steered embedding still function as a valid
embedding?"

Before proposing that embedding models can be
adjusted via steering, it is essential to address this
core question. In this section, we provide a theo-
retical foundation for separating specific semantic
axes within the embedding space using SAEs, and
demonstrate how linear steering can be employed
to effectively manipulate these semantic axes. De-
tailed proofs are provided in the Appendix '.

This paper is based on three fundamental theo-
retical components:

1. Assumption of Linear Superposition in Em-
bedding Space. (Section 2.1)

2. Proof of Semantic Disentanglement via Spar-
sity. (Section 2.2)

3. Linearity of Steering Operation. (Section 2.3)

"Each proof is discussed in detail in the Appendix.
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Figure 3: Overall framework of the proposed correction method step 1. After generating the embedding vector,
it is transformed into interpretable representations using a Sparse AutoEncoder (SAE), and false positive retrieval
cases are identified based on the results. step 2. 1) Identify the problematic features that cause false positive retrieval
2) Based on these features, steering vector(s) are constructed. step 3. the final embedding is reconstructed by

adjusting steering vector(s).

2.1 Superposition of Semantic Features

Word embedding techniques such as Word2Vec
(Mikolov, 2013), GloVe (Pennington et al., 2014),
BERT (Devlin, 2018), and Nomic Embed (Nuss-
baum et al., 2024) are grounded in the distribu-
tional hypothesis, which asserts that “words or doc-
uments in similar contexts exhibit similar mean-
ings.”. These models map a word (or phrase, docu-
ment)  to a d-dimensional vector v = f(z) € R%.

Definition 1 (Linear Superposition in Embedding
Space) The embedding space R? formed by the
embedding function f : X — R¢ is hypothesized
to be represented as a linear combination of m
latent semantic axes {uj,...,u,,} C R? This
means that any embedding vector v = f(x) can be
expressed as:

m
V= Zajuj, (1)
7j=1

where a; denotes the weight or contribution as-
sociated with each corresponding semantic axis.

Lemma 1 (Existence of Semantic Axes) A suffi-
ciently trained embedding model can account for
the similarity between word (or phrase, document)
vectors as a linear combination of multiple latent
semantic axes.

As stated in Lemma 1, the structure of the em-
bedding space, which is conceived as a superposi-

tion of multiple semantic representations, serves as
the theoretical basis for the sparsity-driven disen-
tanglement methodology outlined in Section 2.2.
The formal proof of this lemma is provided in the
Appendix.

2.2 Semantic Disentanglement Using Sparse
AutoEncoder (SAEs)

As the embedding space consists of multiple inter-
woven (superposed) semantic axes, it is challenging
to isolate the meaning represented by each individ-
ual axis. To mitigate this issue, we employ a SAEs,
which autonomously disentangles these semantic
axes.

Proposition 1 (Semantic Disentanglement via
SAE) SAEs with sparsity constraints and an over-
complete structure effectively decompose overlap-
ping semantic representations within the embed-
ding space into components that interfere mini-
mally.

This approach facilitates the learning of latent
representations z, which correspond to distinct se-
mantic axes. The proof of Proposition 1 is provided
in the Appendix.

2.3 Linear Steering

Assuming SAEs have learned a representation in
which each hidden unit corresponds to a distinct se-
mantic axis, we now focus on manipulation (steer-



ing) these semantic axes within the embedding vec-
tor.

Theorem 1 (Linearity of Steering under Linear
SAE) Given that both the encoder E and de-
coder D are linear transformations (E(v) = Wgw,
D(z) = Wpz), the steering operation results in
a linear transformation of the embedding vector
f().

The proof (provided in the Appendix) demon-
strates that the steering operation, element-wise
multiplication in the latent space (z ® s), followed
by a linear decoding, is equivalent to a linear trans-
formation applied to the original embedding. This
linearity ensures that the steered embedding re-
mains within the valid embedding space and that
applying the steering vector results in predictable
and proportional changes to the embedding. This
is integral for maintaining the semantic coherence
of the embedding.

Conclusion of Theoretical Analysis This anal-
ysis validates the feasibility of embedding steer-
ing using SAEs grounded in three primary prin-
ciples. First, the linear superposition assumption
demonstrates that embeddings can be represented
as a linear combination of independent semantic
axes, providing the foundation for semantic disen-
tanglement. Next, we prove that overcomplete and
sparse SAE can effectively separate these axes into
interpretable units. Finally, we demonstrate that
the steering operation maintains linearity within
a linear SAE, ensuring the steered embedding re-
mains valid and semantically coherent. In conclu-
sion, SAEs facilitate intuitive and interpretable em-
bedding adjustments by manipulating the steering
vector, which represents semantic axes in the latent
space.

3 Interpretable Steering for Controllable
Retrieval

We introduce a novel steering method that uses
interpretable features from SAEs to enhance in-
terpretability of embedding model and correct re-
trieval errors, overcoming the limitations of current
retrieval systems. The proposed methodology com-
prises three main steps: (1) diagnosing retrieval
failures to analyze problematic features, (2) adjust-
ing embeddings via interpretable feature steering,
and (3) performing search tasks using the adjusted
embeddings. The overall workflow of the proposed
method is illustrated in Figure 3.

3.1 Diagnosing Retrieval Failures for
Targeted Correction

First, we encode queries using an existing em-
bedding model (e.g., Nomic Embedding (Nuss-
baum et al., 2024)) to detect false retrievals and
analyze problematic features. We employ a triplet
dataset T = {(q;, p;,n;)} 2, where q; represents
a query, p; denotes the correct (positive) document,
and n; refers to the incorrect (negative) document,
with N denoting the total number of triplets.

Each query-document pair is embedded into a
vector space via the embedding model f: v, =
F(ai). Vi, = f(Pi). Vi, = f(m;). The similarity
between the query and document embeddings is
then computed using cosine similarity:

Vg, * Vd
score(q;,d) = cos(vg,,vq) = 7”"%”“‘%1”7 2)
s

where d can be either p; or n;. A false retrieval
occurs if:

score(q;,n;) > score(q;, p;) 3)

We collect instances of false retrieval set Dy,
which serves as the primary target for embedding
adjustments in subsequent steps.

3.2 Embedding Adjustment via Interpretable
Feature Steering

In this step, we analyze the causes of false retrieval
instances within Dy, in the interpretable feature
space of SAEs, enabling precise and targeted ad-
justments to the embeddings. Since each hidden
unit of SAEs corresponds to a distinct semantic
feature (Corollary 1), we identify and isolate the
problematic features contributing to retrieval er-
rors.

3.2.1 Identifying Problematic Features

To identify problematic features, we analyze the
activation values of SAEs’ hidden units for each
query, positive document, and negative document.
For each triplet (q, p,n) € Dyqyse, embeddings
are generated through embedding model f and
encoded via SAE encoder E: z, = E(f(q)),
zp = E(f(p)), zn = E(f(n)).

For each hidden unit j, if z,; # 0 and z,; >
Zpj» the feature is considered to contribute to the
false retrieval. Consequently, the set of problematic
features J; ,n is identified for each triplet.



Example Passage

Query the most important factor that influences k+ secretion is

Positive Internal K+ balance regulates K+ distribution between intracellular and extracellular spaces,
mainly controlled by insulin and catecholamines.

Negative | Cholecystokinin and secretin regulate bile secretion and flow, responding to gallbladder
movement and acid in the duodenum.

Table 1: The example of MS MARCO triplet dataset

# of revision retrieval Consistency Steering rate retrieval Consistency
accuracy (%) (%) accuracy (%) (%)
0 95.4 - 1/3 90.49 90.78
1 93.26 96.02 1/2 91.19 92.31
2 92.87 94.45 1 93.26 96.02
3 92.16 93.21 2 91.42 92.24
4 91.59% 91.68 3 90.20 91.28

Table 2: The performance of MS MARCO triple
dataset by the number of revisions.

3.2.2 Construction of the Steering Vector

Based on the identified problematic features, a
steering vector s is constructed to adjust embed-
dings while preserving useful features. For a given
triplet (q, p,n), the elements s; of s are deter-
mined as follows:

e If j € Jypn and z,; > 2y, reinforcing rel-
evant features: s; > 1 such that cos(D(zq ©
s), D(z, ®s)) < cos(D(zqy®s), D(z, ®s)).

e If j € Jypn and 2,5 > zp;, weakening
misleading features: 0 < s; < 1 such that
cos(D(zg ©s),D(z, ®s)) > cos(D(zqg ©
s), D(zn ©5)).

* Otherwise, if s; = 1, no adjustment is needed.

To derive a practical steering vector, a steering
rate \ is introduced, where s; = A for reinforcing
relevant features and s; = 1/ for suppressing
misleading features. The optimal A is selected to
minimize embedding distortion while effectively
addressing false retrievals.

3.3 Downstream Task Using Adjusted
Embeddings

The final adjusted embeddings are obtained by ap-
plying the steering vector to the latent representa-
tion:

7 =z0s. )

The adjusted latent representation z’ is then passed
through the SAE’s decoder D to produce the

Table 3: The performance of MS MARCO triple
dataset based on the rate of steering.

steered embedding Vgieered:

Vsteered = D(Z/) = D(Z © S)- ®))

By applying this method, we ensure that the cosine
similarity condition cos(D(zq ©®s), D(z, ©®s)) >
cos(D(zq © s), D(z, ® s)) is satisfied. This en-
sures that false retrievals are corrected effectively
without the need for additional training or other
burdensome tasks.

4 Experiments and Evaluation

In this section, we identify False retrieval cases in
the MS-MARCO triplet dataset (Bajaj et al., 2016)
with the steering technique based on SAEs, and ana-
lyze the effect of correcting these cases on retrieval
performance. Additionally, We evaluate whether
the model’s generalization capability is preserved
by the Multi-Task Embedding Benchmark (MTEB)
(Muennighoff et al., 2022).

4.1 Experiment Settings

Model We use the pretrained Nomic Embed
model (Nussbaum et al., 2024) for initial text em-
beddings. A SAE also pretrained on over 420,000
Nomic Embed outputs from scientific paper ab-
stracts in the computer science and astronomy do-
mains (O’Neill et al., 2024).

Datasets We utilize a 10 million instance triplet
corpus (query, positive, negative) from the MS
MARCO dataset, which is Bing search query logs
(Bajaj et al., 2016). An example is presented in



Category — Cls. Clust. PairCls. Rerank Retr. STS Avg

nomic-embed | 74.1 439 85.2 55.7 52.8 82.1 65.63

+sae 55.78 23.75 76.16 44.02 17.64 67.63 47.50
+steering 5221 23.34 78.21 44.38 10.65 64.74 45.59
+over revised | 56.47 21.93 59.92 40.08 8.40 59.67 41.08

Table 4: The performance comparison on general task (MTEB). The highest performance across the different
steering levels (SAE, steering, and over steering), excluding the Nomic-Embed model, is highlighted in bold.

Table 1. Our experiments identify and correct false
retrievals, where a negative instance n is retrieved
instead of the correct positive instance p for a query

q.

4.2 The effects of Steering-based Correction

As shown in Table 2, applying a single revision
(steering one problematic feature) results in a re-
trieval accuracy of 93.26% and a consistency of
96.02%. This demonstrates that a single, targeted
steering operation can effectively correct false re-
trievals while maintaining, and even slightly im-
proving, the consistency of the embedding space.
Increasing the number of revisions leads to a grad-
ual decrease in retrieval accuracy, suggesting that
excessive steering can begin to distort the original
embedding, although consistency mostly remains
above 90%. This indicates a trade-off between the
number of corrections and overall embedding qual-
ity.

Table 3 explores the effect of the steering rate,
A. A steering rate of 1 (equivalent to one revision,
as shown in Table 2) achieves the highest retrieval
accuracy (93.28%) and consistency (96.02%). Both
weaker (1/3, 1/2) and stronger (A > 1) steering
rates lead to a decrease in performance. This sug-
gests that a moderate steering strength, accurately
reflecting the identified problematic feature’s influ-
ence, is optimal. Overly aggressive steering (A = 2
or 3) can negatively impact the embedding, while
overly weak steering may not sufficiently correct
the retrieval error.

From these results, we conclude that inter-
pretable steering, applied judiciously with an ap-
propriate steering rate (A = 1 in our experiments)
and a limited number of revisions (optimally 1, and
up to 2 while maintaining acceptable performance),
can effectively correct false retrievals while pre-
serving the overall performance and consistency of
the embedding model. This highlights the potential
of our method for controllable retrieval.

4.3 Overall Performance on Benchmark

Multi-Task Embedding Benchmark (MTEB)
The experimental results show that the
sae(unrevised) model achieved an average
score of 47.50, while the revised model scored
45.59, demonstrating that the steering technique,
when applied within a limited range, does not
significantly degrade generalization performance.

However, when the number of corrections ex-
ceeded four (over-revised state), the average score
dropped to 41.08, indicating that excessive correc-
tions can negatively impact model performance.

These findings highlight the importance of pre-
defining an acceptable number or range of cor-
rections, ensuring that false retrievals can be ef-
fectively corrected while maintaining the model’s
overall performance.

S Related Work
5.1 Embedding based Retrieval

Word representations have evolved from the initial
one-hot encoding to more advanced, context-based
models such as Word2Vec (Mikolov, 2013), GloVe
(Pennington et al., 2014), BERT (Devlin, 2018),
and Nomic embed (Nussbaum et al., 2024). These
models capture semantic relationships by mapping
them into high-dimensional vector spaces, forming
the foundation for embedding-based retrieval tech-
niques (Chang et al., 2020; Gao et al., 2022; Lee
et al., 2024). However, these models often face sig-
nificant challenges, including low interpretability
and the potential for distorted search results caused
by factors such as domain-specific biases or neg-
ative sample bias (Subramanian et al., 2018). To
address these issues, various approaches have been
proposed, including the analysis of internal model
structures (Mikolov, 2013; Liu et al., 2021) and the
enhancement of semantic feature extraction using
domain-specific datasets (Reimers, 2019; Lee et al.,
2020). Nevertheless, the inherent structural limita-
tions of the embedding models themselves remain
a significant challenge. This paper proposes a novel



Category # Feature Explanation

1842  Chemical, physiological, and industrial applications of Potassium (K) and
Potassium Hydroxide (KOH)
Positive 17469  General information, technology, science, research, space, democracy, research
institutions, industrial trends in various fields
3596  Physics (especially mechanics, kinematics, and the law of motion) & logical
and scientific approaches
20887 Physiology, metabolism, blood & immune system, endocrinology, nutrition,
brain & fluid secretion
Negative 3468 Physiology, metabolism, blood and immune system, endocrinology, brain &

fluid secretion

598  Military, aerospace, rocket launches, satellites, engineering data, military his-

tory, scientific research

Table 5: Qualitative analysis on generated explanations. Regarding the dataset used as an example in Table 1, the
identified features and interpretation through auto-interp (Paulo et al., 2024)

technique to mitigate biased retrieval results caused
by these limitations while preserving the baseline
model’s performance by dynamically adjusting its
behavior during the inference phase.

5.2 Mechanical Interpretability and Steering

According to the Superposition hypothesis (Park
et al., 2023; Nelson Elhaget, 2021), Neural net-
work embeddings often intertwine multiple seman-
tic meanings, leading to polysemanticity, which
complicates their interpretability (Bolukbasi et al.,
2021). By employing Sparse Autoencoder (SAEs)
(Ng, 2011), latent semantic structures within em-
beddings can be effectively disentangled, trans-
forming them into more interpretable components.
This approach has been extensively applied across
various domains, from language models to mul-
timodal frameworks such as CLIP (Cunningham
et al., 2023; Adly Templeton*, 2024; Daujotas,
2024). In particular, research have demonstrated
that it can significantly enhance the interpretabil-
ity of embedding models to decompose the mul-
tifaceted meanings embedded in dense represen-
tations into sparse spaces using SAEs can signif-
icantly enhance the interpretability of embedding
models(O’Neill et al., 2024; Han et al., 2024). Fur-
thermore, SAEs have proven effective in enabling
interpretable steering functions, offering the abil-
ity to modulate model behavior. We apply SAE-
based interpretability techniques to text embed-
dings, leveraging interpretable steering to mitigate
search bias in retrieval models.

6 Discussion

This study applies an SAEs-based steering tech-
nique to mitigate false retrievals using the MS-
MARCO Triplet dataset (Bajaj et al., 2016). We
analyzed the impact of our proposed SAEs-based
steering technique on model performance and gen-
eralization, and evaluated whether modifying com-
mon features between the Positive and Query im-
proved retrieval accuracy.

6.1 The Effectiveness of the Steering
Technique

The experimental results demonstrate that apply-
ing corrections within a defined range effectively
mitigates retrieval errors in the existing retrieval
model (Table 2, Table 3). Furthermore, these cor-
rections do not significantly affect overall retrieval
performance or domain generalization (Table 4).
Visualization of embedding changes (Figure 4)
shows that it enhances a specific feature through
steering by increasing the distance between the
Query and Positive, which improves their cosine
similarity and increases the likelihood of retrieving
the correct Positive. On the other hand, weaken-
ing a feature decreases the distance between the
Query and Negative, reducing their similarity and
preventing the retrieval of the incorrect Negative.

6.2 Feature Analysis

The analysis revealed that feature number 1842 in
Table 5 had the most significant impact on false
retrieval, as it was closely related to the positive
information associated with the query. Therefore,
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Positive similarity : 0.5644
Negative similarity : 0.6663
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Positive similarity : 0.6529
Negative similarity : 0.6423

Positive similarity : 0.6409
Negative similarity : 0.6150

L]

Positive similarity : 0.6504
Negative similarity : 0.6433

(a) original embedding

(b) positive feature

(c) negative feature

(d) both feature revised

revised embedding

revised embedding

Figure 4: Visualization of embedding space adjustments with interpretable steering techniques using PCA (a)
In the original embedding prior to steering, the negative correlation outweighs the positive correlation. (b) After
strengthening the positive feature for correction, both the positive and query move farther from the origin, resulting
in an increase in positive similarity. (¢) When the negative feature is weakened, the negative feature and query
become closer, resulting in a reduction of negative similarity. (d) Both features are adjusted through steering.

we conclude that further research is needed to refine
feature selection and optimize the steering vector
for more precise corrections beyond the method
proposed in this study.

6.3 Practical Implications

The proposed steering technique demonstrates
the potential to correct erroneous retrieval results
caused by model bias without further training. By
analyzing the features, we can identify those that
directly contribute to false retrievals and apply
steering with the appropriate intensity, allowing
for more accurate corrections.

However, a key limitation of this study is the lack
of an established objective criterion for determining
the intensity and selection of features for steering.
Additionally, further research is required to analyze
the long-term effects of feature manipulation on
overall retrieval performance. Future studies should
focus on expanding the application scope of the
steering technique and systematically establishing
optimal feature manipulation methods to enhance
retrieval correction capabilities.

7 Conclusion

In this work, we introduces a new approach to con-
trolling embedding models using an interpretable
steering technique based on SAEs. Experimental
results demonstrate that this approach effectively

mitigates false retrieval problems while maintain-
ing the generalization performance of the model.
Notably, the SAE-based correction method offers
a practical advantage by enabling localized correc-
tions of erroneous retrieval results without requir-
ing a complete retraining of the existing model.
This approach allows for error correction with rel-
atively low computational cost and minimal data,
even in situations where retraining large-scale mod-
els is not feasible, thereby contributing to the de-
velopment of more efficient retrieval systems.

8 Limitation

We demonstrate the effectiveness of our steering
approach, based on SAEs, on an embedding model
using the MS MARCO dataset. However, we ob-
served that performance decreased when the cor-
rections were excessive or too frequent. This can
be attributed to the following limitations:

Limitations of SAE The Sparse Autoencoder
(SAE) model, due to its autoencoder architecture, is
inherently limited in its ability to fully reconstruct
the original input, which may lead to performance
degradation, as shown in Table 4.

Ideally, the features should be mono-semantic,
where only the features corresponding to the de-
sired semantic axis should be activated and recti-
fied. However, due to polysemanticity, some fea-



tures may be entangled with unrelated information.
This suggests that the proposed correction method
could introduce potential side effects.

As observed in Section 4, excessive corrections
resulted in side effects. To mitigate this issue, the
SAE needs to better decompose the embedding
representation into more semantically meaningful
components. However, there are currently technical
limitations in achieving this.

Problematic Features and Steering Rate In this
work, we propose the minimal correction value re-
quired to address erroneous retrievals, and we cor-
rect both the associated positive and negative fea-
tures. However, there exists an optimal correction
value that aligns with the user’s intended criteria
(which is subjective and qualitative), and as men-
tioned in 6.2, the feature that the user perceives as
causing the error may represent only a subset of
the overall positive and negative features.

As done in this study, steering all related fea-
tures may be inefficient. However, identifying and
correcting only the semantically relevant features
requires an analytical approach, and since the
model’s semantic perception often differs from that
of humans, this remains a key limitation.
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