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Abstract

Embedding-based information retrieval mod-001
els can suffer from false retrievals due to002
issues such as training data bias and poly-003
semy. To address this problem, we propose a004
novel method for controlling embedding mod-005
els through an interpretable steering technique006
based on Sparse Autoencoders (SAEs). SAEs007
decompose embeddings into semantically dis-008
entangled features, and a steering vector se-009
lectively enhances or suppresses features that010
contribute to false retrievals, thereby correcting011
the search results. Experimental results demon-012
strate that the proposed method effectively recti-013
fies false retrievals within a limited range while014
maintaining the generalization performance of015
the model. However, limitations of the SAE,016
including potential performance degradation,017
possible side effects from polysemantic fea-018
tures, and the difficulty in determining optimal019
correction values, indicate the need for further020
research. Future work should focus on overcom-021
ing these limitations and expanding the scope022
of the interpretlalbr steering technique to build023
a more sophisticated search result correction024
system.025

1 Introduction026

The rapid advancements in Large Language Mod-027

els (LLMs) (Ouyang et al., 2022; Achiam et al.,028

2023; Touvron et al., 2023) emphasize the signifi-029

cance of efficient and precise information retrieval030

(Zhao et al., 2023). Embedding models (Gao et al.,031

2022; Karpukhin et al., 2020), which convert text032

into vector representations for similarity-based re-033

trieval, have become essential for knowledge dis-034

covery and information search (Izacard and Grave,035

2020; Shi et al., 2023).036

However, embedding models exhibit biases cat-037

egorized into two types: Intrinsic bias (Sun et al.,038

2019), which originate from the training data, as039

well as the architecture and underlying assumptions040

Figure 1: Steering in Embedding space. An illustration
of the semantic space of the word ’bat’ across different
contextual bases (sports, animals, and movies). Steering
the embedding 1.5× toward a movie-related context
reduces the unit distance from three units (three-unit
distance) to two units (two-unit distance), decreasing the
semantic gap between ’bat’ and its meaning in a movie-
related context, making ’bat’ more closely associated
with ‘Batman’.

made during model design,and Extrinsic bias (Kir- 041

itchenko and Mohammad, 2018), which emerge 042

during the application of LLMs in real-world tasks 043

(Guo et al., 2024). These biases can skew search 044

results, prioritizing on certain interpretations over 045

others and misaligning with user intent. For in- 046

stance, a query for "bat" may predominantly return 047

results related to baseball rather than the animal, or 048

"apple" may emphasize Apple Inc. over the fruit 049

(Figure 1). 050

The black box nature of neural network-based 051

models makes it difficult to understand the fac- 052

tors driving specific retrieval results. This lack of 053

transparency undermines trust and limits the ability 054
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Figure 2: Interpretable Steering in Embedding. (left) Steering the representation of an embedding model
using a SAE. The input text is transformed into an embedding vector, which is then decomposed into sparse features
by SAE. By manipulating specific feature activations related to "train" and "battery", we can directly modify the
embedding, thereby steering its semantic meaning. (right) Changes in the Corrected Embedding Space and
Retrieval Adjustment. In the original embedding space (top), the positive instance (P) is retrieved due to its higher
similarity to the query (Q). In the reconstructed embedding space by steering (bottom), the negative instance (N)
becomes more similar to the query and is thus retrieved instead. This demonstrates that the steering process can
dynamically adjust the actual retrieval ranking.

to identify or correct unintended biases. O’Neill055

et al. (2024) introduced the Sparse AutoEncoder056

to improve interpretability, providing insights into057

internal representations and aiding in potential bias058

mitigation.059

Interpretable steering is gaining attention as a060

technique to actively adjust black-box models by061

modifying specific semantic attributes. Feature de-062

composition based on Sparse AutoEncoder facili-063

tates the selective enhancement or suppression of064

dimensions, providing dynamic control over re-065

trieval outputs. In contrast to traditional methods066

that require model retraining, steering offers a flex-067

ible and efficient approach to refine search results068

while preserving model integrity.069

We propose a steering-based method for correct-070

ing false retrievals through direct user interven-071

tion. Unlike static pretrained embeddings, our ap-072

proach enables the dynamic adaptation of retrieval073

results to better align with evolving search needs.074

The steering method based on Sparse AutoEncoder075

provides a powerful tool for interactive control,076

enhancing accuracy and personalization in search077

systems.078

This approach improves transparency and con-079

trollability, making embedding models more adapt-080

able for applications such as search engines,081

retrieval-augmented generation (RAG) systems,082

and medical information retrieval.083

Key Contributions 084

• We propose a dynamic method for embedding 085

correction using steering vectors. 086

• We establish the theoretical foundation for 087

steering-based false retrieval correction. 088

• We empirically validate the effectiveness of 089

SAE-based steering for retrieval correction. 090

2 Theoretical Analysis 091

"Can a steered embedding still function as a valid 092

embedding?" 093

Before proposing that embedding models can be 094

adjusted via steering, it is essential to address this 095

core question. In this section, we provide a theo- 096

retical foundation for separating specific semantic 097

axes within the embedding space using SAEs, and 098

demonstrate how linear steering can be employed 099

to effectively manipulate these semantic axes. De- 100

tailed proofs are provided in the Appendix 1. 101

This paper is based on three fundamental theo- 102

retical components: 103

1. Assumption of Linear Superposition in Em- 104

bedding Space. (Section 2.1) 105

2. Proof of Semantic Disentanglement via Spar- 106

sity. (Section 2.2) 107

3. Linearity of Steering Operation. (Section 2.3) 108
1Each proof is discussed in detail in the Appendix.
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Figure 3: Overall framework of the proposed correction method step 1. After generating the embedding vector,
it is transformed into interpretable representations using a Sparse AutoEncoder (SAE), and false positive retrieval
cases are identified based on the results. step 2. 1) Identify the problematic features that cause false positive retrieval
2) Based on these features, steering vector(s) are constructed. step 3. the final embedding is reconstructed by
adjusting steering vector(s).

2.1 Superposition of Semantic Features109

Word embedding techniques such as Word2Vec110

(Mikolov, 2013), GloVe (Pennington et al., 2014),111

BERT (Devlin, 2018), and Nomic Embed (Nuss-112

baum et al., 2024) are grounded in the distribu-113

tional hypothesis, which asserts that “words or doc-114

uments in similar contexts exhibit similar mean-115

ings.”. These models map a word (or phrase, docu-116

ment) x to a d-dimensional vector v = f(x) ∈ Rd.117

Definition 1 (Linear Superposition in Embedding118

Space) The embedding space Rd formed by the119

embedding function f : X → Rd is hypothesized120

to be represented as a linear combination of m121

latent semantic axes {u1, . . . ,um} ⊂ Rd. This122

means that any embedding vector v = f(x) can be123

expressed as:124

v ≈
m∑
j=1

αjuj , (1)125

where αj denotes the weight or contribution as-126

sociated with each corresponding semantic axis.127

Lemma 1 (Existence of Semantic Axes) A suffi-128

ciently trained embedding model can account for129

the similarity between word (or phrase, document)130

vectors as a linear combination of multiple latent131

semantic axes.132

As stated in Lemma 1, the structure of the em-133

bedding space, which is conceived as a superposi-134

tion of multiple semantic representations, serves as 135

the theoretical basis for the sparsity-driven disen- 136

tanglement methodology outlined in Section 2.2. 137

The formal proof of this lemma is provided in the 138

Appendix. 139

2.2 Semantic Disentanglement Using Sparse 140

AutoEncoder (SAEs) 141

As the embedding space consists of multiple inter- 142

woven (superposed) semantic axes, it is challenging 143

to isolate the meaning represented by each individ- 144

ual axis. To mitigate this issue, we employ a SAEs, 145

which autonomously disentangles these semantic 146

axes. 147

Proposition 1 (Semantic Disentanglement via 148

SAE) SAEs with sparsity constraints and an over- 149

complete structure effectively decompose overlap- 150

ping semantic representations within the embed- 151

ding space into components that interfere mini- 152

mally. 153

This approach facilitates the learning of latent 154

representations z, which correspond to distinct se- 155

mantic axes. The proof of Proposition 1 is provided 156

in the Appendix. 157

2.3 Linear Steering 158

Assuming SAEs have learned a representation in 159

which each hidden unit corresponds to a distinct se- 160

mantic axis, we now focus on manipulation (steer- 161
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ing) these semantic axes within the embedding vec-162

tor.163

Theorem 1 (Linearity of Steering under Linear164

SAE) Given that both the encoder E and de-165

coder D are linear transformations (E(v) = WEv,166

D(z) = WDz), the steering operation results in167

a linear transformation of the embedding vector168

f(x).169

The proof (provided in the Appendix) demon-170

strates that the steering operation, element-wise171

multiplication in the latent space (z⊙ s), followed172

by a linear decoding, is equivalent to a linear trans-173

formation applied to the original embedding. This174

linearity ensures that the steered embedding re-175

mains within the valid embedding space and that176

applying the steering vector results in predictable177

and proportional changes to the embedding. This178

is integral for maintaining the semantic coherence179

of the embedding.180

Conclusion of Theoretical Analysis This anal-181

ysis validates the feasibility of embedding steer-182

ing using SAEs grounded in three primary prin-183

ciples. First, the linear superposition assumption184

demonstrates that embeddings can be represented185

as a linear combination of independent semantic186

axes, providing the foundation for semantic disen-187

tanglement. Next, we prove that overcomplete and188

sparse SAE can effectively separate these axes into189

interpretable units. Finally, we demonstrate that190

the steering operation maintains linearity within191

a linear SAE, ensuring the steered embedding re-192

mains valid and semantically coherent. In conclu-193

sion, SAEs facilitate intuitive and interpretable em-194

bedding adjustments by manipulating the steering195

vector, which represents semantic axes in the latent196

space.197

3 Interpretable Steering for Controllable198

Retrieval199

We introduce a novel steering method that uses200

interpretable features from SAEs to enhance in-201

terpretability of embedding model and correct re-202

trieval errors, overcoming the limitations of current203

retrieval systems. The proposed methodology com-204

prises three main steps: (1) diagnosing retrieval205

failures to analyze problematic features, (2) adjust-206

ing embeddings via interpretable feature steering,207

and (3) performing search tasks using the adjusted208

embeddings. The overall workflow of the proposed209

method is illustrated in Figure 3.210

3.1 Diagnosing Retrieval Failures for 211

Targeted Correction 212

First, we encode queries using an existing em- 213

bedding model (e.g., Nomic Embedding (Nuss- 214

baum et al., 2024)) to detect false retrievals and 215

analyze problematic features. We employ a triplet 216

dataset T = {(qi,pi,ni)}Ni=1, where qi represents 217

a query, pi denotes the correct (positive) document, 218

and ni refers to the incorrect (negative) document, 219

with N denoting the total number of triplets. 220

Each query-document pair is embedded into a 221

vector space via the embedding model f : vqi = 222

f(qi), vpi = f(pi), vni = f(ni). The similarity 223

between the query and document embeddings is 224

then computed using cosine similarity: 225

score(qi,d) = cos(vqi ,vd) =
vqi · vd

∥vqi∥∥vd∥
, (2) 226

where d can be either pi or ni. A false retrieval 227

occurs if: 228

score(qi,ni) > score(qi,pi) (3) 229

We collect instances of false retrieval set Dfalse, 230

which serves as the primary target for embedding 231

adjustments in subsequent steps. 232

3.2 Embedding Adjustment via Interpretable 233

Feature Steering 234

In this step, we analyze the causes of false retrieval 235

instances within Dfalse in the interpretable feature 236

space of SAEs, enabling precise and targeted ad- 237

justments to the embeddings. Since each hidden 238

unit of SAEs corresponds to a distinct semantic 239

feature (Corollary 1), we identify and isolate the 240

problematic features contributing to retrieval er- 241

rors. 242

3.2.1 Identifying Problematic Features 243

To identify problematic features, we analyze the 244

activation values of SAEs’ hidden units for each 245

query, positive document, and negative document. 246

For each triplet (q,p,n) ∈ Dfalse, embeddings 247

are generated through embedding model f and 248

encoded via SAE encoder E: zq = E(f(q)), 249

zp = E(f(p)), zn = E(f(n)). 250

For each hidden unit j, if zqj ̸= 0 and znj > 251

zpj , the feature is considered to contribute to the 252

false retrieval. Consequently, the set of problematic 253

features Jq,p,n is identified for each triplet. 254
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Example Passage
Query the most important factor that influences k+ secretion is __________.
Positive Internal K+ balance regulates K+ distribution between intracellular and extracellular spaces,

mainly controlled by insulin and catecholamines.
Negative Cholecystokinin and secretin regulate bile secretion and flow, responding to gallbladder

movement and acid in the duodenum.

Table 1: The example of MS MARCO triplet dataset

# of revision retrieval Consistency
accuracy (%) (%)

0 95.4 -
1 93.26 96.02
2 92.87 94.45
3 92.16 93.21
4 91.59* 91.68

Table 2: The performance of MS MARCO triple
dataset by the number of revisions.

Steering rate retrieval Consistency
accuracy (%) (%)

1/3 90.49 90.78
1/2 91.19 92.31
1 93.26 96.02
2 91.42 92.24
3 90.20 91.28

Table 3: The performance of MS MARCO triple
dataset based on the rate of steering.

3.2.2 Construction of the Steering Vector255

Based on the identified problematic features, a256

steering vector s is constructed to adjust embed-257

dings while preserving useful features. For a given258

triplet (q,p,n), the elements sj of s are deter-259

mined as follows:260

• If j ∈ Jq,p,n and zpj > znj , reinforcing rel-261

evant features: sj ≥ 1 such that cos(D(zq ⊙262

s), D(zn⊙ s)) < cos(D(zq ⊙ s), D(zp⊙ s)).263

• If j ∈ Jq,p,n and znj > zpj , weakening264

misleading features: 0 ≤ sj ≤ 1 such that265

cos(D(zq ⊙ s), D(zp ⊙ s)) > cos(D(zq ⊙266

s), D(zn ⊙ s)).267

• Otherwise, if sj = 1, no adjustment is needed.268

To derive a practical steering vector, a steering269

rate λ is introduced, where sj = λ for reinforcing270

relevant features and sj = 1/λ for suppressing271

misleading features. The optimal λ is selected to272

minimize embedding distortion while effectively273

addressing false retrievals.274

3.3 Downstream Task Using Adjusted275

Embeddings276

The final adjusted embeddings are obtained by ap-277

plying the steering vector to the latent representa-278

tion:279

z′ = z⊙ s. (4)280

The adjusted latent representation z′ is then passed281

through the SAE’s decoder D to produce the282

steered embedding vsteered: 283

vsteered = D(z′) = D(z⊙ s). (5) 284

By applying this method, we ensure that the cosine 285

similarity condition cos(D(zq ⊙ s), D(zp ⊙ s)) > 286

cos(D(zq ⊙ s), D(zn ⊙ s)) is satisfied. This en- 287

sures that false retrievals are corrected effectively 288

without the need for additional training or other 289

burdensome tasks. 290

4 Experiments and Evaluation 291

In this section, we identify False retrieval cases in 292

the MS-MARCO triplet dataset (Bajaj et al., 2016) 293

with the steering technique based on SAEs, and ana- 294

lyze the effect of correcting these cases on retrieval 295

performance. Additionally, We evaluate whether 296

the model’s generalization capability is preserved 297

by the Multi-Task Embedding Benchmark (MTEB) 298

(Muennighoff et al., 2022). 299

4.1 Experiment Settings 300

Model We use the pretrained Nomic Embed 301

model (Nussbaum et al., 2024) for initial text em- 302

beddings. A SAE also pretrained on over 420,000 303

Nomic Embed outputs from scientific paper ab- 304

stracts in the computer science and astronomy do- 305

mains (O’Neill et al., 2024). 306

Datasets We utilize a 10 million instance triplet 307

corpus (query, positive, negative) from the MS 308

MARCO dataset, which is Bing search query logs 309

(Bajaj et al., 2016). An example is presented in 310
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Category → Cls. Clust. PairCls. Rerank Retr. STS Avg
nomic-embed 74.1 43.9 85.2 55.7 52.8 82.1 65.63
+sae 55.78 23.75 76.16 44.02 17.64 67.63 47.50
+steering 52.21 23.34 78.21 44.38 10.65 64.74 45.59
+over revised 56.47 21.93 59.92 40.08 8.40 59.67 41.08

Table 4: The performance comparison on general task (MTEB). The highest performance across the different
steering levels (SAE, steering, and over steering), excluding the Nomic-Embed model, is highlighted in bold.

Table 1. Our experiments identify and correct false311

retrievals, where a negative instance n is retrieved312

instead of the correct positive instance p for a query313

q.314

4.2 The effects of Steering-based Correction315

As shown in Table 2, applying a single revision316

(steering one problematic feature) results in a re-317

trieval accuracy of 93.26% and a consistency of318

96.02%. This demonstrates that a single, targeted319

steering operation can effectively correct false re-320

trievals while maintaining, and even slightly im-321

proving, the consistency of the embedding space.322

Increasing the number of revisions leads to a grad-323

ual decrease in retrieval accuracy, suggesting that324

excessive steering can begin to distort the original325

embedding, although consistency mostly remains326

above 90%. This indicates a trade-off between the327

number of corrections and overall embedding qual-328

ity.329

Table 3 explores the effect of the steering rate,330

λ. A steering rate of 1 (equivalent to one revision,331

as shown in Table 2) achieves the highest retrieval332

accuracy (93.28%) and consistency (96.02%). Both333

weaker (1/3, 1/2) and stronger (λ > 1) steering334

rates lead to a decrease in performance. This sug-335

gests that a moderate steering strength, accurately336

reflecting the identified problematic feature’s influ-337

ence, is optimal. Overly aggressive steering (λ = 2338

or 3) can negatively impact the embedding, while339

overly weak steering may not sufficiently correct340

the retrieval error.341

From these results, we conclude that inter-342

pretable steering, applied judiciously with an ap-343

propriate steering rate (λ = 1 in our experiments)344

and a limited number of revisions (optimally 1, and345

up to 2 while maintaining acceptable performance),346

can effectively correct false retrievals while pre-347

serving the overall performance and consistency of348

the embedding model. This highlights the potential349

of our method for controllable retrieval.350

4.3 Overall Performance on Benchmark 351

Multi-Task Embedding Benchmark (MTEB) 352

The experimental results show that the 353

sae(unrevised) model achieved an average 354

score of 47.50, while the revised model scored 355

45.59, demonstrating that the steering technique, 356

when applied within a limited range, does not 357

significantly degrade generalization performance. 358

However, when the number of corrections ex- 359

ceeded four (over-revised state), the average score 360

dropped to 41.08, indicating that excessive correc- 361

tions can negatively impact model performance. 362

These findings highlight the importance of pre- 363

defining an acceptable number or range of cor- 364

rections, ensuring that false retrievals can be ef- 365

fectively corrected while maintaining the model’s 366

overall performance. 367

5 Related Work 368

5.1 Embedding based Retrieval 369

Word representations have evolved from the initial 370

one-hot encoding to more advanced, context-based 371

models such as Word2Vec (Mikolov, 2013), GloVe 372

(Pennington et al., 2014), BERT (Devlin, 2018), 373

and Nomic embed (Nussbaum et al., 2024). These 374

models capture semantic relationships by mapping 375

them into high-dimensional vector spaces, forming 376

the foundation for embedding-based retrieval tech- 377

niques (Chang et al., 2020; Gao et al., 2022; Lee 378

et al., 2024). However, these models often face sig- 379

nificant challenges, including low interpretability 380

and the potential for distorted search results caused 381

by factors such as domain-specific biases or neg- 382

ative sample bias (Subramanian et al., 2018). To 383

address these issues, various approaches have been 384

proposed, including the analysis of internal model 385

structures (Mikolov, 2013; Liu et al., 2021) and the 386

enhancement of semantic feature extraction using 387

domain-specific datasets (Reimers, 2019; Lee et al., 388

2020). Nevertheless, the inherent structural limita- 389

tions of the embedding models themselves remain 390

a significant challenge. This paper proposes a novel 391
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Category # Feature Explanation

1842 Chemical, physiological, and industrial applications of Potassium (K) and
Potassium Hydroxide (KOH)

Positive 17469 General information, technology, science, research, space, democracy, research
institutions, industrial trends in various fields

3596 Physics (especially mechanics, kinematics, and the law of motion) & logical
and scientific approaches

20887 Physiology, metabolism, blood & immune system, endocrinology, nutrition,
brain & fluid secretion

Negative 3468 Physiology, metabolism, blood and immune system, endocrinology, brain &
fluid secretion

598 Military, aerospace, rocket launches, satellites, engineering data, military his-
tory, scientific research

Table 5: Qualitative analysis on generated explanations. Regarding the dataset used as an example in Table 1, the
identified features and interpretation through auto-interp (Paulo et al., 2024)

technique to mitigate biased retrieval results caused392

by these limitations while preserving the baseline393

model’s performance by dynamically adjusting its394

behavior during the inference phase.395

5.2 Mechanical Interpretability and Steering396

According to the Superposition hypothesis (Park397

et al., 2023; Nelson Elhage†, 2021), Neural net-398

work embeddings often intertwine multiple seman-399

tic meanings, leading to polysemanticity, which400

complicates their interpretability (Bolukbasi et al.,401

2021). By employing Sparse Autoencoder (SAEs)402

(Ng, 2011), latent semantic structures within em-403

beddings can be effectively disentangled, trans-404

forming them into more interpretable components.405

This approach has been extensively applied across406

various domains, from language models to mul-407

timodal frameworks such as CLIP (Cunningham408

et al., 2023; Adly Templeton*, 2024; Daujotas,409

2024). In particular, research have demonstrated410

that it can significantly enhance the interpretabil-411

ity of embedding models to decompose the mul-412

tifaceted meanings embedded in dense represen-413

tations into sparse spaces using SAEs can signif-414

icantly enhance the interpretability of embedding415

models(O’Neill et al., 2024; Han et al., 2024). Fur-416

thermore, SAEs have proven effective in enabling417

interpretable steering functions, offering the abil-418

ity to modulate model behavior. We apply SAE-419

based interpretability techniques to text embed-420

dings, leveraging interpretable steering to mitigate421

search bias in retrieval models.422

6 Discussion 423

This study applies an SAEs-based steering tech- 424

nique to mitigate false retrievals using the MS- 425

MARCO Triplet dataset (Bajaj et al., 2016). We 426

analyzed the impact of our proposed SAEs-based 427

steering technique on model performance and gen- 428

eralization, and evaluated whether modifying com- 429

mon features between the Positive and Query im- 430

proved retrieval accuracy. 431

6.1 The Effectiveness of the Steering 432

Technique 433

The experimental results demonstrate that apply- 434

ing corrections within a defined range effectively 435

mitigates retrieval errors in the existing retrieval 436

model (Table 2, Table 3). Furthermore, these cor- 437

rections do not significantly affect overall retrieval 438

performance or domain generalization (Table 4). 439

Visualization of embedding changes (Figure 4) 440

shows that it enhances a specific feature through 441

steering by increasing the distance between the 442

Query and Positive, which improves their cosine 443

similarity and increases the likelihood of retrieving 444

the correct Positive. On the other hand, weaken- 445

ing a feature decreases the distance between the 446

Query and Negative, reducing their similarity and 447

preventing the retrieval of the incorrect Negative. 448

6.2 Feature Analysis 449

The analysis revealed that feature number 1842 in 450

Table 5 had the most significant impact on false 451

retrieval, as it was closely related to the positive 452

information associated with the query. Therefore, 453

7



Figure 4: Visualization of embedding space adjustments with interpretable steering techniques using PCA (a)
In the original embedding prior to steering, the negative correlation outweighs the positive correlation. (b) After
strengthening the positive feature for correction, both the positive and query move farther from the origin, resulting
in an increase in positive similarity. (c) When the negative feature is weakened, the negative feature and query
become closer, resulting in a reduction of negative similarity. (d) Both features are adjusted through steering.

we conclude that further research is needed to refine454

feature selection and optimize the steering vector455

for more precise corrections beyond the method456

proposed in this study.457

6.3 Practical Implications458

The proposed steering technique demonstrates459

the potential to correct erroneous retrieval results460

caused by model bias without further training. By461

analyzing the features, we can identify those that462

directly contribute to false retrievals and apply463

steering with the appropriate intensity, allowing464

for more accurate corrections.465

However, a key limitation of this study is the lack466

of an established objective criterion for determining467

the intensity and selection of features for steering.468

Additionally, further research is required to analyze469

the long-term effects of feature manipulation on470

overall retrieval performance. Future studies should471

focus on expanding the application scope of the472

steering technique and systematically establishing473

optimal feature manipulation methods to enhance474

retrieval correction capabilities.475

7 Conclusion476

In this work, we introduces a new approach to con-477

trolling embedding models using an interpretable478

steering technique based on SAEs. Experimental479

results demonstrate that this approach effectively480

mitigates false retrieval problems while maintain- 481

ing the generalization performance of the model. 482

Notably, the SAE-based correction method offers 483

a practical advantage by enabling localized correc- 484

tions of erroneous retrieval results without requir- 485

ing a complete retraining of the existing model. 486

This approach allows for error correction with rel- 487

atively low computational cost and minimal data, 488

even in situations where retraining large-scale mod- 489

els is not feasible, thereby contributing to the de- 490

velopment of more efficient retrieval systems. 491

8 Limitation 492

We demonstrate the effectiveness of our steering 493

approach, based on SAEs, on an embedding model 494

using the MS MARCO dataset. However, we ob- 495

served that performance decreased when the cor- 496

rections were excessive or too frequent. This can 497

be attributed to the following limitations: 498

Limitations of SAE The Sparse Autoencoder 499

(SAE) model, due to its autoencoder architecture, is 500

inherently limited in its ability to fully reconstruct 501

the original input, which may lead to performance 502

degradation, as shown in Table 4. 503

Ideally, the features should be mono-semantic, 504

where only the features corresponding to the de- 505

sired semantic axis should be activated and recti- 506

fied. However, due to polysemanticity, some fea- 507
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tures may be entangled with unrelated information.508

This suggests that the proposed correction method509

could introduce potential side effects.510

As observed in Section 4, excessive corrections511

resulted in side effects. To mitigate this issue, the512

SAE needs to better decompose the embedding513

representation into more semantically meaningful514

components. However, there are currently technical515

limitations in achieving this.516

Problematic Features and Steering Rate In this517

work, we propose the minimal correction value re-518

quired to address erroneous retrievals, and we cor-519

rect both the associated positive and negative fea-520

tures. However, there exists an optimal correction521

value that aligns with the user’s intended criteria522

(which is subjective and qualitative), and as men-523

tioned in 6.2, the feature that the user perceives as524

causing the error may represent only a subset of525

the overall positive and negative features.526

As done in this study, steering all related fea-527

tures may be inefficient. However, identifying and528

correcting only the semantically relevant features529

requires an analytical approach, and since the530

model’s semantic perception often differs from that531

of humans, this remains a key limitation.532
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