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Abstract. Accurate delineation of gross tumor volumes (GTVs) in oropharyngeal carcinoma re-
mains central to radiotherapy (RT) planning, and recent advances in automated segmentation are
beginning to influence multiple aspects of clinical workflow. However, automated segmentation
of head and neck primary tumors and nodal metastases in multi-modal FDG-PET/CT is challeng-
ing due to anatomical complexity and varying image resolution. We describe the DLaBella29
team’s approach for Task 1 of the MICCAI 2025 HECKTOR challenge, which involves a multi-
phase deep learning pipeline for GTVp and GTVn segmentation. Our method leverages the
MONAI Auto3DSeg framework with a 3D SegResNet backbone, trained on co-registered
PET/CT scans using a cross-validation strategy (3/7/15 folds across Phases). Key innovations
include a mandible-anchored region-of-interest cropping strategy derived from automated man-
dible segmentation to focus the model on the oropharyngeal region and improve efficiency. A
multi-phase segmentation pipeline was employed: an initial Phase infers GTVp and GTVn in the
focused ROI, and a second Phase independently refines these predictions. Post-processing ensues
to merge GTVp and GTVn outputs to the original image coordinates. On the HECKTOR 2025
test set, our more limited and resource-constrained algorithm achieved a primary tumor Dice
Similarity Coefficient (DSC) of 0.5289, an aggregated nodal DSC of 0.6156, and a GTVn detec-
tion F1-score of 0.5561, indicating fair performance in the challenge. This paper details the clin-
ical context, methodology, cross-validation and testing results, and the implications of PET/CT-
guided automated segmentation for oropharyngeal carcinoma.
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1 Introduction

Head and neck cancers are a major global health burden, motivating continuous efforts
to optimize radiation therapy (RT) effectiveness while minimizing treatment morbidity
[1]. Studies have shown that intensity-modulated RT with deliberate organs-at-risk
(OAR) sparing techniques achieved toxicity reduction without compromising local
control, underscoring the importance of anatomy-guided dose sculpting and target de-
lineation [2—4].

Fludeoxyglucose positron emission tomography (FDG PET) and computed tomog-
raphy (CT) are now integral across the head and neck cancer (HNC) care continuum,
from staging and RT planning to response assessment, and quantitative PET signals
have been linked to prognosis and treatment tailoring [5,6]. PET-derived and
CT-derived radiomics features capture complementary aspects of tumor biology rele-
vant to local control modeling; in comparative studies, PET-based models often provide
more reliable risk estimates for adverse outcomes [7]. Multi-feature radiomics strate-
gies have also been shown to stratify failure risk in HNC, reinforcing the promise of
image-derived biomarkers for individualized therapy [8].

These advances have motivated selective de-escalation strategies in HPV-associated
oropharyngeal squamous cell carcinoma (OPSCC), designed to reduce late effects with-
out compromising disease control. Prospective data indicate that thoughtfully imple-
mented de-escalation can maintain excellent oncologic outcomes while improving
quality of life [9]. Building on this, a recent phase II trial used mid-treatment FDG-PET
response as a biomarker to selectively reduce RT dose in early-stage HPV-positive
OPSCC, reporting feasibility with encouraging disease-control and toxicity profiles
[10]. Together, these data frame FDG-PET as both a planning tool and a dynamic re-
sponse indicator to guide patient-specific de-intensification.

Adaptive radiation therapy (ART) provides a paradigm for customized daily radio-
therapy. By accommodating day-to-day anatomic and volumetric variation, ART can
improve target coverage while reducing dose to OARs which may ultimately improve
outcomes [11-13]. ART workflows require frequent on-treatment imaging, deformable
mapping, and rapid plan adaptation; their clinical scalability increasingly depends on
accurate, automated contouring of both gross tumor volumes (GTVs) and OARs to
shorten decision cycles [14]. In this context, daily deep-learning automated segmenta-
tion of GTVs, ideally integrated with routine image guidance, could enable re-
sponse-adapted thresholds and ART triggers while maintaining consistency in nor-
mal-tissue delineation [14].

Community challenges have been pivotal in stress-testing these technologies on a
large scale. The HEad and neCK TumOR (HECKTOR) series, initiated at MICCAI,
standardized multicenter FDG-PET/CT datasets and performed objective evaluation to
benchmark automatic tumor segmentation [15]. The MICCAI 2021 edition combined
primary-tumor segmentation with progression-free survival prediction, accelerating
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translation of robust PET/CT pipelines [16]. More recently, HEad and neCK TumOR
Lesion Segmentation, Diagnosis and Prognosis Using Multimodal Data Fourth Edition
Challenge (HECKTOR25) extends this agenda on the Grand-Challenge platform, fo-
cusing on multimodal PET/CT lesion segmentation (including primary and nodal dis-
ease) with containerized submissions and standardized metrics to ensure fair, reproduc-
ible comparison across methods [15]. This iteration emphasizes clinical applicability
through large, multi-institutional data and harmonized evaluation protocols [15].

We present Multi-Phase Mandible-Anchored Automated Segmentation of Oropha-
ryngeal GTVs in FDG-PET/CT, an algorithm designed for HECKTOR2S that aims to
produce anatomically consistent, high-fidelity delineations suitable for PET-guided
de-escalation studies and ART workflows. Using a CT-based mandible segmentation
to define a stable oropharyngeal anchor, our approach crops to a biologically and ana-
tomically focused field-of-view; a subsequent multimodal PET/CT model performs
joint coarse GTVp and GTVn segmentation, followed by dedicated refinement models
for primary and nodal disease, with fusion back to canonical space. This design is in-
tended to: (i) improve localization stability across heterogeneous acquisitions, (ii) re-
duce silent failure modes in high-complexity neck anatomy, and (iii) furnish
daily-ready GTV contours that can be paired with automated OAR delineation to sup-
port ART decision-making. The method is implemented with open-source components
(MONALI Auto3DSeg, and SegResNet) and evaluated in the HECKTOR2S framework;
methodological details and analyses are provided in the subsequent sections [17,18].

2 Methods

2.1 Dataset Selection

The training set consisted of co-registered CT and FDG-PET scans from patients with
head and neck cancer, with expert contours for the primary gross tumor volume (GTVp)
and any pathologic gross lymph nodes (GTVn); the data were provided as part of the
HEad and neCK TumOR Lesion Segmentation, Diagnosis and Prognosis Using Multi-
modal Data Fourth Edition Challenge (HECKTOR25) [15]. Every CT and FDG-PET
case included the patient’s head and neck within the field of view, and a subset of cases
also included the chest, abdomen, and pelvis. All CT and FDG-PET image pairs were
already registered, as provided by the challenge, but we resampled all images to a con-
sistent and common sampling of 0.9766 x 0.9766 x 1.5 mm. We preserved the original
images origin and direction metadata such that predictions made on resampled and
cropped images could be transformed back to the original CT space for submission
without loss of spatial correspondence.

Additionally, we generated a synthetic reference standard mandible label for all
cases in the training set. The synthetic reference standard mandible label was generated
using TotalSegmentator on each case’s CT to first segment major anatomical structures,
from which we extracted the mandible (jaw bone) mask [19]. TotalSegmentator is a
robust, pretrained model capable of segmenting over 100 structures on CT, and upon
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qualitative review, it provided a reliable mandible label in the training set data [19]. We
did not manually modify any mandible label within the training set, as this would have
created an unallowable expert annotated private dataset for training, contradictory to
challenge rules.

2.2 Mandible Segmentation and Cropping Strategy

A key aspect of our method is focusing the Phase 1 segmentation task on a specific
region-of-interest (ROI) around the mandible-anchor-point, since the oropharyngeal
primary tumors in this dataset typically occur in anatomical proximity to the mandible
(e.g. tonsillar region, base of tongue) and involved lymph nodes are often in levels II-
III of the neck. We therefore hypothesized that using the mandible-anchor-point as a
landmark could define a cropped volume that still contains all relevant targets (GTVp
and GTVn) while excluding irrelevant areas (e.g. chest, abdomen) that increase com-
plexity and inference time.

We determined the absolute real-world distance between all training set cases’ ref-
erence standard mandible label’s most anterior and midline voxel (mandible-anchor-
point) compared to the most extreme minimum and maximum GTVp and GTVn coor-
dinates. These data were internally analyzed, not reported here, and guided us to select
fixed margin expansion values for each direction to create a Phase 1 cropped image
around the mandible-anchor-point. Specifically, in the resampled space (0.9766 %
0.9766 x 1.5 mm), from the mandible-anchor-point, we expanded each registered CT
and FDG-PET image-labels by the values in Table 1, to only include the at-risk head
and neck cropped ROI. These margins were chosen based on anatomical knowledge
and empirical tuning on the training set, to ensure known primary sites and nodal re-
gions would be included.

Table 1. Fixed margin expansions for cropped Phase 1 images from the mandible-anchor-point
in the initial resampled uncropped image space. The new ROI was used for Phase 1 training and
inference. Note that both -y and +y expansions were in the anatomical posterior direction since
no significant amount of GTV were identified anterior to the mandible-anchor-point.

Direction Distance Distance
(voxels) (mm)
-x (left) 75 73.3
+x (right) 75 73.3
-y (posterior) 143 139.7
+y (anterior) -23 -22.5
-z (caudal) 72 108
+z (cranial) 52 78

After expansion from the mandible-anchor-point, this ROI was additionally bounded
by the case’s CT image dimensions to prevent over-expansion to full-sized image out-
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of-bound regions. Each case’s FDG-PET and CT were cropped to this cropped volume,
yielding a significantly smaller volume for subsequent processing. An illustration of
this mandible-anchored ROI pipeline is provided in Figure 1, which shows adequate
coverage of the primary and nodal tumor regions while excluding unrelated anatomy.
Importantly, during inference, we retained the original spatial coordinates of the ROI
so that any segmentation outputs could later be placed back into the full image grid at
the correct location. This geometry-preserving strategy avoids any misalignment when
fusing the final GTVp and GTVn masks into the original coordinate system.

Fig. 1. Mandible-anchored field-of-view selection. (A) Whole-volume sagittal CT (512
x 512 x 568 voxels) resampled to 0.9766 x 0.9766 x 1.5 mm spacing, showing the
mandible (purple) and the mandible anchor point (pink star) with expert annotated
GTVp (Red) and the mandible-anchored ROI (light-blue box). (B) Corresponding
cropped sagittal subvolume (151 x 121 % 125 voxels) centered on the anchor, used for
Phase 1 inference.

2.3  Model Architecture, Training, and Inference

We implemented a four-phase Auto3DSeg pipeline using a 3D SegResNet backbone
(17,18), that included segmentation of the mandible (Phase 0), coarse segmentation of
GTVp and GTVn (Phase 1), and independent refinement stages for GTVp (Phase 2p)
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and GTVn (Phase 2n). Across all stages, the network used deep supervision with
dsdepth of 4, an encoder-decoder with 1-2-2-4-4 convolutional blocks,
Dice + Cross-Entropy loss, automatic mixed precision (AMP), AdamW optimization
algorithm, and a batch size of 1. Data augmentation included random rotations in 3D,
random intensity scaling and random intensity shifting to improve generalization. The
CT image served as the canonical reference throughout the pipeline.

All training and inference ran on a single NVIDIA RTX 4090. Table 2 shows vary-
ing training parameters and metrics identified during each phase’s training. We trained
using cross-validation for each phase, and we evaluated performance on the held-out
fold using Dice Similarity Coefficient (DSC) for both GTVp and GTVn. The number
of folds used for each Phase was determined based on the amount of estimated available
training and inference time due to real-world time constraints. Grand-Challenge only
allows 10 minutes for inference for each case using an NVIDIA T4 GPU with 16 GB
of available VRAM, of which 8 GB is shared amongst multiple processes [15].

Phase 0: Mandible (1 fold; CT-only).

For the mandible model, we trained a single-fold SegResNet on CT volumes resampled
to 3 mm isotropic resolution, using the synthetic reference standard mandible labels.
Training used a ROI size of 192 x 192 x 64 voxels for 19 epochs, and with a learning
rate of 4e-4. This larger 3 mm resampling was selected due to the ease of mandible
segmentation owing to its larger anatomical size and high contrast relative to nearby
anatomy. Because the structure served only as an approximate guide for subsequent
Phase window placement, no additional training beyond 19 epochs was performed. At
inference, the mandible is predicted from the full RAS-canonical CT image, and the
anterior mandible voxel is used as an anchor to compute the Phase 1 crop window.

Phase 1: Coarse GTVp + GTVn (3 folds; CT + PET).

For the coarse tumor model (joint GTVp and GTVn), we trained three folds using cross-
validation on CT-PET pairs that are resampled to 0.9766 x 0.9766 x 1.5 mm and
cropped using the mandible-anchored Phase 1 cropped subvolume, with training ROI
size of 128 x 112 x 112 voxels, a learning rate of 4e-4, training for 137 epochs. At
inference, each of the three folds is applied to the same RAS-canonical crop and fused
with MultiLabel STAPLE to produce a consensus Phase 1 GTVp and GTVn label map
in canonical space [20].

Phase 2p: Focused GTVp (15 folds; CT + PET).

For primary tumor refinement, we trained using a dataset including a tight GTVp
cropped image by taking the Phase 1 GTVp bounding box and expanding it by 10 mm
in x/y/z directions (Figure 2). We used an ROI size of 48 x 48 x 48 voxels, resampled
to 0.9766 x 0.9766 x 1.5 mm, used a learning rate to 2e-4, and trained for 137 epochs.
We trained 15 folds using cross-validation, and at inference we ran all fold’s models on
the focused crop region and fused them with MultiLabel STAPLE; the fused GTVp
then replaced the Stage 1 tumor prediction inside the focused region, with tumor label
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assignment prioritized over surrounding structures, before reintegration onto the full
canonical grid.

Fig. 2. GTVp-focused field-of-view refinement. Axial CT (A) from the Phase 1 man-
dible-anchored crop showing expert-annotated GTVp (red) and GTVn (green); the
light-blue box denotes the Phase-2p, GTVp-centered ROI. Corresponding cropped ax-
ial subvolume (B) restricted to this ROI, generated by applying a 10 mm isotropic ex-
pansion to the GT Vp bounding boxes, used for Phase 2p inference.

For nodal refinement, we computed 26-connected components of Stage 1 GTVn, and
for each instance GTVn lesion we expanded the bounding box by 10 mm in x/y/z di-
rections (Figure 3). We then repeated that process for all instance GT Vn for each case.
We used an ROl size of 48 x 48 x 48 voxels, resampled to 0.9766 x 0.9766 x 1.5 mm,
used a learning rate to 2e-4, and trained for 137 epochs. We trained 7 folds using cross-
validation, and, at inference, ensembled them with MultiLabel STAPLE per compo-
nent; nodes were inserted without overriding tumor, and non-confirmed node voxels
within the component’s ROI were cleared before the result was fused back to the ca-
nonical grid.

Fig. 3. GTVn-focused field-of-view refinement. Axial CT (A) from the Pha 1 man-
dible-anchored crop showing expert-annotated GTVn (green) with candidate nodal
ROIs (pink and light-blue boxes). Corresponding instance-specific cropped axial
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subvolumes (B—C) centered on each node, generated by applying a 10 mm isotropic
expansion to the instance GTVn bounding boxes, used for Phase 2n inference.

Finalization.

After Phase 2 fusions, the canonical GTVp and GTVn label map were resampled back
to the original input CT geometry (matching size, spacing, origin, and direction), small
components (< 150 voxels) of instance GTVp and instance GTVn lesions were re-
moved, and a single CT-native label Metalmage Header File was saved per case to an
output folder as seen in Figure 4.

Fig. 4. 3D volume of final segmentation for GTVp (Red) and GTVn (Green).

Table 2. Summary of each phase’s training ROI size, learning rate, observed VRAM used for
training, and approximate training time per fold.

Stage ROI(resampled | gy | VRAM | Epocheper | il

Rate Fold
Phase 0 (Mandible, 1 fold) [192, 192, 64] 0.0004 ~4 GB 19 5.8 hours
Phase 1 (GTVp + GTVn, 3 folds) [128, 112, 112] 0.0004 ~ 12 GB 300 8.5 hours
Phase 2p (GTVp focus, 15 folds) [48, 48, 48] 0.0002 ~4 GB 137 0.9 hours
Phase 2n (GTVn focus, 7 folds) [48, 48, 48] 0.0002 ~4 GB 200 1.5 hours
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3 Results

31 Data

The training set included 682 co-registered CT and FDG-PET scans from patients with
head and neck cancer, with expert contours for the GTVp and any GTVn if present. A
subset of 73 cases also included the chest, abdomen, and pelvis.

3.2 Cross-Validation

We report the cross-validation results on the training sets for phases 0, 1, 2p, and 2n.
The average cross-validation results are presented in Table 3, demonstrating consistent
segmentation accuracy across folds. These results provided an estimate of generaliza-
tion performance prior to final test submission.

Table 3. Cross-validation DSC results at the best performing epoch during training for GTVp
and GTVn during each of the phases 0, 1, 2p, and 2n.

Phase Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | Fold | , .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 &

0 (Mandi- |, 0.85

ble)

1(GTVp) | 072 | 072 | 075 0.73

1(GTVn) | 069 | 072 | 0.72 0.71

2p (GTVp) | 0.84 | 0.85 | 0.85 | 0.83 | 0.85 | 0.84 | 0.83 | 0.85 | 0.83 | 0.83 | 0.83 | 0.85 | 0.84 | 0.84 | 0.82 0.83

2n (GTVn) | 0.82 | 0.81 | 0.82 | 0.81 | 0.82 | 0.81 | 081 0.81

3.3  Sanity Check Set and Testing Set Performance

Our final submitted algorithm was evaluated by the HECKTOR25 organizers on the
held-out 2025 Sanity Check set and Testing set, comprising approximately 3 and 450
patients, respectively [15]. The DLaBella29 team’s method achieved a Sanity Check
Phase inference average DSC of 0.87 for GTVp, an aggregate DSC of 0.75 for GT Vn,
and an Aggregate F1 of 0.67 for GTVn. This Sanity Check Phase inference utilized all
4 phases (0, 1, 2p, and 2n) as described in the methods section.

Because of shared VRAM constraints on the Grand-Challenge platform, inference
on the 450 testing cases was limited to the coarse Phase 1 predictions, without refine-
ment from Phase 2p or Phase 2n. Under these conditions, the testing set mean DSC was
0.5289 for GTVp, with an aggregate mean DSC of 0.6156 and aggregate F1 of 0.5561
for GTVn. By definition of the challenge, the GTVn aggregate DSC was computed by
combining all nodal lesions per case into a single mask, such that the score reflected
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summed overlap between predicted and true nodal volumes. The F1-score evaluated
lesion-level detection performance by balancing sensitivity and precision of nodal de-
tection. An F1 of 0.5561 indicates that just over half of the nodal metastases were cor-
rectly identified with relatively few false positives, a reasonable result given the diffi-
culty of detecting small nodes.

Qualitative internal review of inference of the public training cases suggested robust
performance for large, FDG-avid primary tumors, often delineating them nearly as well
as human experts. Performance on very small lymph nodes was more variable; some
sub-centimeter nodes with low PET uptake were missed by the model, whereas others
were detected but with slightly underestimated volume. Finally, mandible-anchored
cropping significantly reduced inference time and did not exclude any tumors in the
training cases, as all GT Vs fell within the chosen ROI margins.

4 Discussion

We developed and evaluated a four-phase, anatomy-guided pipeline for automatic seg-
mentation of oropharyngeal primary tumors and nodal disease on paired FDG-PET/CT.
The key design choice was to anchor the coarse segmentation to the mandible (Phase
0) and to constrain learning and inference to anatomically plausible ROI through fixed,
empirically chosen expansion margins around the mandible-anchor-point. This anatom-
ically grounded cropping substantially reduced memory footprint and computation
time, while maintaining coverage of all training tumors. Building on this, we used a
coarse-to-fine progression: a joint GTVp and GTVn model for coarse localization
(Phase 1), followed by focused refinements using tight, task-specific ROIs including
GTVp centered crops (Phase 2p) and lesion-wise nodal crops derived from 26-con-
nected components (Phase 2n). The phased design sought to improve performance over
a single-phase model.

4.1 Cross-validation Performance

The mandible model achieved a mean cross-validation DSC of 0.85 after only 19 train-
ing epochs, enabling robust and fast ROI definition for subsequent phases. Coarse tu-
mor segmentation (Phase 1) produced mean cross-validation DSCs of 0.73 for GTVp
and 0.71 for GTVn. Focused refinements improved both tasks: GTVp (Phase 2p) in-
creased to 0.84 across 15 folds, and GTVn (Phase 2n) increased to 0.81 across 7 folds
(Table 2). These improvements are consistent with the intended role of Phase 2 as a
high-precision stage that fine-tunes instance detections by inferring on smaller cropped
and anatomically informed ROls, after Phase 1 has addressed full-image localization.
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4.2 Held-out Evaluations

On the HECKTOR25 Sanity Check set, our full pipeline (all four phases) achieved an
average DSC of 0.87 for GTVp and an aggregate DSC of 0.75 for GTVn, with an ag-
gregate F1 of 0.67 for nodal presence/absence. In contrast, Testing set results were
lower: 0.5289 DSC for GTVp, 0.6156 aggregate DSC for GTVn, and 0.5561 aggregate
F1 for nodal detection. The principal driver of this generalization gap was a practical
constraint: due to shared-GPU VRAM limits on the Grand-Challenge inference plat-
form when processing the 450 case Testing set, we were required to run only the coarse
model (Phase 1) during testing. As a result, none of the fine-tuning steps from Phase 2p
and Phase 2n were applied at testing time, which is hypothetically consistent with the
observed drop in performance. However, due to the smaller sample size of the Sanity
Check set, a legitimate statistical comparison of the single-phase vs four-phase algo-
rithms cannot be made. Further testing should be considered to compare the perfor-
mance of the single-phase algorithm compared to the four-phase algorithm.

4.3  Interpretation and Implications.

The results support three practical conclusions. First, anatomy-anchored cropping is an
effective and reproducible way to reduce search space and computation without sacri-
ficing coverage; our fixed margins around a mandible-derived anchor included every
training GTV and significantly reduced inference time. Second, a coarse-to-fine pipe-
line with lesion-wise refinement is important for head-and-neck disease, where the class
imbalance and anatomical clutter make single-pass models particularly susceptible to
false positives and false negatives in nodal basins and to boundary under-segmentation
along mucosal surfaces. Third, inference configuration matters: disabling the refine-
ment phases for operational reasons (here, platform VRAM) predictably degrades ex-
ternal performance, highlighting that system-level constraints can be as consequential
as model choice when translating to large, real-world cohorts.

4.4  Strengths and limitations.

Strengths include (i) a transparent, modular design that cleanly separates localization
and refinement; (ii) explicit lesion-wise handling of nodal disease using con-
nected-component crops; (iii) efficiency compatible with a single RTX 4090 (with
modest per-fold training times); and (iv) no dependence on external training datasets.
Limitations include (i) reliance on accurate mandible segmentation for ROI definition;
(ii) potential miss or truncation of very distant nodal disease if encountered in distribu-
tions different from the training set; and (iii) over-filtering risk from post-processing
for tiny reference standard lesions. In addition, the Testing set constraint to Phase 1
only means the reported external numbers reflect our coarse model’s ceiling rather than
the whole four-phase algorithm’s true capacity.
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4.5  Future directions.

Several extensions are straightforward. The refinement phases could be made infer-
ence-robust under strict VRAM by reducing network size, inference optimization, and
reducing the number of folds utilized so that Phases 2p and 2n can run even on shared
VRAM hardware. Addition of test-time augmentation may stabilize boundaries and
small-lesion recall. Exploring multi-anchor ROIs (e.g., mandible plus hyoid or soft-pal-
ate landmarks) could reduce the risk of missing atypically located disease. Finally, add-
ing uncertainty quantification would alert clinicians when outputs are unreliable (e.g.,
out-of-distribution scans).

4.6  Clinical perspective.

In its intended multiphase configuration, our pipeline provides initial contours rapidly
and with high DSC performance for typical, FDG-avid primaries and many nodal
presentations, making it well-suited for draft-contouring workflows that incorporate
expert verification. The coarse-only Testing set findings underscore that deployment
details (hardware, memory budget, and batching strategy) are central to achieving clin-
ically acceptable performance at scale. While challenges remain in perfecting auto-
mated head and neck tumor segmentation, our results show the potential to speed up
and make more consistent radiotherapy contours, which could help enable adaptive
treatment strategies in OPSCC.

5 Conclusion

In summary, we have demonstrated a multi-phase, mandible-anchored Auto3DSeg ap-
proach for automated GTV segmentation in oropharyngeal cancer PET/CT scans. By
integrating anatomical knowledge with deep learning SegResNet networks, our algo-
rithm effectively segmented primary and nodal tumors and achieved fair performance
in the HECKTOR 2025 challenge. The approach emphasizes preserving geometric fi-
delity and leveraging multi-modal imaging. While challenges remain in perfecting au-
tomated head and neck tumor segmentation, our results show the potential to speed up
and make more consistent radiotherapy contours, which could help enable adaptive
treatment strategies in OPSCC. Continued improvements and validation on larger co-
horts will be necessary, but automated segmentation is poised to become a valuable
assistant in the radiation oncologist’s toolkit, particularly as we move toward more per-
sonalized and adaptive therapy paradigms.

Data Availability. Our code for all pre-processing, training, inference, and post-processing are
available as open-source at GitHub: dlabella29/HECKTOR25_Auto3DSeg.
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