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ABSTRACT

This paper focuses on two crucial issues in domain-adaptive lane detection, i.e.,
how to effectively learn discriminative features and transfer knowledge across do-
mains. Existing lane detection methods usually exploit a pixel-wise cross-entropy
loss to train detection models. However, the loss ignores the difference in feature
representation among lanes, which leads to inefficient feature learning. On the
other hand, cross-domain context dependency crucial for transferring knowledge
across domains remains unexplored in existing lane detection methods. This paper
proposes a Domain-Adaptive lane detection via Contextual Contrast and Aggrega-
tion (DACCA), consisting of two key components, i.e., cross-domain contrastive
loss and domain-level feature aggregation, to realize domain-adaptive lane detec-
tion. The former can effectively differentiate feature representations among cat-
egories by taking domain-level features as positive samples. The latter fuses the
domain-level and pixel-level features to strengthen cross-domain context depen-
dency. Extensive experiments show that DACCA significantly improves the detec-
tion model’s performance and outperforms existing unsupervised domain adaptive
lane detection methods on six datasets, especially achieving the best accuracy of
92.24% when using RTFormer on TuLane.

1 INTRODUCTION

Lane detection is crucial in autonomous driving and advanced driver assistance systems. Benefitting
from developing convolutional neural networks, deep learning-based lane detection methods (Pan
et al., 2018; Xu et al., 2020) demonstrate greater robustness and higher accuracy than traditional
methods (Liu et al., 2010). To train a robust lane detection model, a high-quality dataset is neces-
sary. However, acquiring high-quality labeled data is laborious and costly. Simulation is a low-cost
way to obtain training pictures. Nevertheless, the detection performance may be degraded after
transitioning from the virtual (source domain) to the real (target domain). Unsupervised domain
adaptation (UDA) has been proposed to solve this problem (Saito et al., 2018; Vu et al., 2019).

Recently, UDA has been successfully applied in the image segmentation task (Vu et al., 2019; Tar-
vainen & Valpola, 2017), significantly improving the segmentation performance. However, applying
existing unsupervised domain-adaptive segmentation methods to lane detection does not yield sat-
isfactory results, even inferior to those of supervised training, as revealed in (Li et al., 2022). We
consider the cross-entropy loss adopted in these methods only focuses on pulling similar features
closer but ignores different features across categories, making these methods inefficient in learning
discriminative features of different categories (Vayyat et al., 2022). Contrastive learning (He et al.,
2020; Chen et al., 2020) is expected to solve this problem by appropriately selecting positive and
negative samples. However, segmentation models may generate false pseudo-labels on the input
image for the unlabeled target domain, causing false assignments of positive samples. On the other
hand, cross-domain context dependency is essential for adaptive learning of cross-domain context
information (Yang et al., 2021), which is overlooked by many existing domain adaptive lane detec-
tion methods, e.g. (Garnett et al., 2020) and (Gebele et al., 2022). In MLDA (Li et al., 2022), an
Adaptive Inter-domain Embedding Module (AIEM) is proposed to aggregate contextual informa-
tion, but it is limited to performing on a single image and disregards useful contextual information
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Figure 1: Diagrams of our DACCA. (a) The main flowchart, and (b) the proposed cross-domain
contrastive loss, where DFA is the abbreviation of domain-level feature aggregation. Different colors
in the original pixel features represent different lane features.

from other images. How to effectively leverage the potential of cross-domain context dependency
in domain-adaptive lane detection remains a challenging topic.

This paper presents a novel Domain-Adaptive lane detection via Contextual Contrast and Aggrega-
tion (DACCA) to address the aforementioned issues. As shown in Figure 1, two positive sample
memory modules (PSMMs) are adopted to save domain-level features for each lane in both source
and target domains. We select two corresponding domain-level features as positive samples from
both source and target PSMMs for each lane pixel in an input image. Subsequently, the selected
domain-level features are aggregated with the original pixel feature to enrich the cross-domain con-
textual information. In addition, we pair the aggregated features with the source and target positive
samples to avoid the false assignment of positive samples in the cross-domain contrastive loss.

The main contributions of this paper are as follows. (1) We propose a novel cross-domain contrastive
loss to learn discriminative features and a novel sampling strategy to fully utilize the potential of
contrastive loss without modifying an existing contrastive loss. (2) A novel domain-level feature
aggregation module combining pixel-level and domain-level features is presented to enhance cross-
domain context dependency, Aggregating domain-level features, instead of feature aggregation of
mini-batches or individual images, is a fresh perspective. (3) Extensive experiments show that our
method can significantly improve the baseline performance on six public datasets. Remarkably, we
achieve the best results on TuLane using RTFormer (Wang et al., 2022).

2 RELATED WORK

Lane detection. Traditional lane detection mainly depends on image processing operators, e.g.,
Hough transforms (Liu et al., 2010). Although they can quickly achieve high detection accuracy
in specific scenarios, their generalization ability is too poor to apply to complex scenarios. Deep
learning-based lane detection has received increasing attention, including segmentation-based meth-
ods (Pan et al., 2018; Zheng et al., 2021) and anchor-based methods (Torres et al., 2020; Liu et al.,
2021). SCNN (Pan et al., 2018) is one of the typical segmentation-based methods using a message-
passing module to enhance visual evidence. Unlike pixel-wise prediction in segmentation-based
methods, anchor-based methods regress accurate lanes by refining predefined lane anchors. For ex-
ample, using a lightweight backbone, UFLD (Qin et al., 2020) pioneers row anchors in real-time
lane detection. In this paper, we consider segmentation-based domain-adaptive lane detection.

Unsupervised domain adaptation. Domain adaptation has been widely studied to address the
domain discrepancy in feature distribution, usually, implemented through adversarial training and
self-training. Adversarial training (Gong et al., 2019) eliminates the differences in feature distribu-
tion between the source and target domains by adversarial approaches. Different from adversarial
training, self-training (Sajjadi et al., 2016; Tarvainen & Valpola, 2017) trains a model in the target
domain using generated pseudo labels. On the other hand, the contrastive loss is introduced as an
auxiliary loss to improve the model’s robustness. CDCL (Wang et al., 2023) takes labels and pseudo-
labels as positive samples in the source and target domain, respectively. However, the model may
generate false pseudo labels in the unlabeled target domain, leading to false positive sample assign-
ments. There exists some works (Li et al., 2023; Wang et al., 2021; Jiang et al., 2022; Zhang et al.,
2022; Melas-Kyriazi & Manrai, 2021) taking positive samples from the prototypes to achieve accu-
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Figure 2: An overview of DACCA’s framework. (a) Training pipeline of DACCA. (b) Stu-
dent/Teacher model structure. The source domain-level feature assignment shares the same structure
with the target domain-level feature assignment, except that a PSMM saves features from the source
domain. The representation head U is used to obtain the pixel-wise feature representation.

rate positive sample assignments. CONFETI (Li et al., 2023) adopts the pixel-to-prototype contrast
to enhance the feature-level alignment. CONFETI only uses a prototype to save source and target
domain features, but we think this way is inappropriate because the feature distribution between
the two domains is different. In our work, we use two PSMMs to save features of two domains
separately and take the domain-level features as positive samples. In addition, we also optimize the
sample selection policy in the contrastive loss but most works ignore it.

Unsupervised domain adaptive lane detection. Due to the lack of a domain adaptive lane de-
tection dataset, early studies (Garnett et al., 2020; Hu et al., 2022) focus on synthetic-to-real or
simulation-to-real domain adaptation. Their generalizability in real-world scenarios is not satisfac-
tory with low-quality synthetic and simulation images. (Gebele et al., 2022) establishes a specific
dataset for domain adaptive lane detection and directly apply a general domain adaption segmen-
tation method to this dataset. However, it does not yield good results, since conventional domain
adaptive segmentation methods generally assume the presence of salient foreground objects in the
image, occupying a significant proportion of the pixels. On the other hand, lane lines, which occupy
a relatively small proportion of the image, do not exhibit such characteristics. To solve this problem,
MLDA (Li et al., 2022) introduces an AIEM to enhance the feature representation of lane pixel by
aggregating contextual information in a single image. Unfortunately, in this way, useful contextual
information from other images may be ignored. Instead, we propose to aggregate the domain-level
features with pixel-level features.

Context aggregation. Performing contextual information aggregation for pixel-level features can
effectively improve segmentation performance in semantic segmentation. In supervised methods,
common context information aggregation modules, e.g., ASPP (Chen et al., 2017), PSPNet (Zhao
et al., 2017), OCRNet (Yuan et al., 2020), and MCIBI (Jin et al., 2021), only aggregate features
within a single domain instead of both target and source domains. In UDA, some methods try to
design modules to aggregate contextual features by attention mechanisms, such as cross-domain
self-attention (Chung et al., 2023), and context-aware mixup (Zhou et al., 2022). However, all
existing cross-domain feature aggregation methods only fuse a mini-batch of contextual features. In
contrast to previous works, our method tries to simultaneously fuse features from the whole target
and source domains to enhance the cross-domain context dependency.

3 METHOD

As illustrated in Figure 2, the network is self-trained in our DACCA, where the student model
is trained in both the labeled source domain and the unlabeled target domain with pseudo-labels
generated by the teacher model. DACCA has two key components, i.e., cross-domain contrastive
loss and domain-level feature aggregation.
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3.1 SELF-TRAINING

In UDA, a segmentation-based lane detection model sθ is trained using source images Xs =
{xk

S}
Ns

k=1 with labels Y s = {ykS}
Ns

k=1, to achieve a good performance on the unlabeled target im-
ages Xt = {xk

T }
Nt

k=1, where Ns and Nt are the number of source and target images, respectively.
ykS is a one-hot label. Pixel-wise cross-entropy loss Lk

S is adopted to train sθ in the source domain.

Lk
S = −

H∑
i=1

W∑
j=1

C+1∑
c=1

(y
k
S)(i,j,c) × log(sθ(x

k
S)(i,j,c)), (1)

where C is the number of lanes and class C +1 denotes the background category. H and W are the
height and width of xk

S . However, when transferred to the target domain, sθ trained in the source
domain suffers from performance degradation due to the domain shift. In this paper, we adopt a
self-training method (Tarvainen & Valpola, 2017) to address this issue.

As shown in Figure 2 (a), in the self-training process, we train two models, i.e., student model sθ
and teacher model tθ to better transfer the knowledge from the source domain to the target domain.
Specifically, tθ generates the one-hot pseudo-label ykT on the unlabeled target image xk

T .

(y
k
T )(i,j,c) =

[
c = argmax

c′∈c∗
(tθ

(
xk
T

)
(i,j,c′)

)

]
, i ∈ [0, H] , j ∈ [0,W ], (2)

where [·] denotes the Iverson bracket and c∗ represents the set of all categories. To ensure the quality
of pseudo-labels, we filter low-quality pseudo-labels by setting the confidence threshold αc, i.e.,

(y
k
T )(i,j,c) =

{
(y

k
T )(i,j,c), if (tθ

(
xk
T

)
(i,j,c)

) ≥ αc

0, otherwise
. (3)

sθ is trained on both labeled source images and unlabeled target images with pseudo-labels. The
same pixel-wise cross-entropy loss Lk

T is used as the loss function in the target domain.

Lk
T = −

H∑
i=1

W∑
j=1

C+1∑
c=1

(y
k
T )(i,j,c) × log(sθ(x

k
T )(i,j,c)). (4)

During training, no gradients are backpropagated into tθ and the weight of tθ is updated by sθ
through Exponentially Moving Average (EMA) at every iteration m, denoted by,

tm+1
θ = β × tmθ + (1− β)× smθ , (5)

where the scale factor β is set to 0.9 empirically. After the training, we use the student model sθ for
inference and produce the final lane detection results.

3.2 CROSS-DOMAIN CONTRASTIVE LOSS

Since the cross-entropy loss is ineffective in learning discriminative features of different lanes, we
introduce the category-wise contrastive loss (Wang et al., 2021) to solve this problem. The formula-
tion of category-wise contrastive loss LCL is written as,

LCL = − 1

C ×M

C∑
c=1

M∑
p=1

log

[
e<Vcp,V

+
c >/τ

e<Vcp,V
+
c >/τ +

∑N
q=1 e

<Vcp,V
−
cpq>/τ

]
, (6)

where M and N represent the numbers of anchors and negative samples, respectively. Vcp is the
feature representation of the p-th anchors of class c, used as a candidate for comparison. V +

c is the
feature representation of the positive sample of class c. V −

cpq denotes the feature representation of
the q-th negative samples of the p-th anchors of class c. τ is the temperature hyper-parameter and
⟨·, ·⟩ is the cosine similarity between features from two different samples.

In the target domain, existing methods either focus on improving the form of contrastive loss (Wang
et al., 2023), introducing extra hyper-parameters, or only select V +

c from the current input im-
ages (Wang et al., 2021). However, the false pseudo-labels generated by tθ cause the incorrect
positive samples assignment, making the contrastive loss ineffective in learning discriminate fea-
tures of different categories. We develop a sample selection policy without modifying the existing
contrastive loss to overcome the difficulty.
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Anchor Selection. We choose anchors for each lane from a mini-batch of samples. The anchors of
the c-th lane, Ac can be selected according to,

Ac = {(i, j)|GT (i,j) = c, sθ
(
xin

)
(i,j,c)

≥ µc, i ∈ [0, H] , j ∈ [0,W ]}, (7)

Vc = {V(i,j)|(i, j) ∈ Ac}, (8)

where GT denotes the labels in the source domain or pseudo-labels in the target domain, xin repre-
sents an input image, and µc is the threshold. We set pixels whose GT are category c and whose pre-
dicted confidence are greater than µc as anchors to reduce the effect of hard anchors. V ∈ RH×W×D

is the pixel-wise representation and D is the feature dimension. As illustrated in Figure 2 (b), we
achieve V by exploiting an extra representation head U . U shares the input with the prediction
head and is only used in the training process. Vc is the set of feature representation of anchors and
Vcp ∈ RD is randomly selected from Vc.

Positive sample selection. To ensure the appropriate assignment of positive samples, we establish
a positive sample memory module (PSMM) for each lane in both the source and target domains
to save its domain-level feature, denoted as Bso ∈ RC×D and Bta ∈ RC×D. We initialize and
update the domain-level features saved in PSMM, following MCIBI (Jin et al., 2021). This process
can be found in Appendix A.2. For the c-th lane, we take its domain-level feature as the feature
representation of the positive sample.

V +
c = Bo(c), (9)

where o is the source domain (so) or the target domain (ta).

Negative sample selection. We directly use pixels of a lane not labeled c as the negative samples
in the source domain. On the other hand, in the target domain, pixels with the lowest predicted
conference for category c are selected as negative samples.

neg−locc =

{
(i, j) | argmin

c′∈c∗

(
sθ

(
xk
T

)
(i,j,c′)

)
= c, i ∈ [0,W ], j ∈ [0, H]

}
, (10)

negc = {V(i,j)|(i, j) ∈ neg− locc}, (11)

where neg−locc and negc denote the location and the set of feature representation of negative
samples of class c, respectively. V −

cpq ∈ RD is also randomly selected from negc. To compare
intra-domain and inter-domain features at the same time, we propose a Cross-domain Contrastive
Loss (CCL), consisting of an intra-domain contrastive learning loss Linter and an inter-domain con-
trastive learning loss Lintra.

CCL = Linter + Lintra, (12)

where Linter and Lintra are the same as Eq. 6. CCL is applied in both source and target domains.
For the source cross-domain contrastive loss (SCCL), the positive samples in Linter are the domain-
level features saved in Bta, and the positive samples in Lintra are the domain-level features saved in
Bso. The positive samples in the target cross-domain contrastive loss (TCCL) are opposite to SCCL.
The overall loss of DACCA is,

Loss =
1

Ns

Ns∑
k=1

(λc × SCCLk + Lk
S) +

1

Nt

Nt∑
k=1

(λc × TCCLk + Lk
T ), (13)

where λc is the scale factor, which is set to 0.1 empirically.

3.3 DOMAIN-LEVEL FEATURE AGGREGATION

Cross-domain context dependency is essential to transfer knowledge across domains. Cross-domain
Contextual Feature Aggregation (CCFA) is an effective way to achieve cross-domain context de-
pendency. Existing CCFA methods (Yang et al., 2021; Zhou et al., 2022; Chung et al., 2023) only
aggregate a mini-batch of features. We argue that aggregating features from a whole domain is more
beneficial. As shown in Figure 2 (b), Domain-level Feature Aggregation (DFA) aims to fuse the
domain-level features into the pixel-level representation. DFA contains two key components, i.e.,
source and target domain-level feature assignment. The process is the same for both. We take the
target domain-level feature assignment as an example to depict the process.
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Figure 3: Location of unreliable background pixels in green.
Pixel feature selection. To select the corresponding domain-level feature for each lane pixel, we
propose the pixel feature selection. We first obtain the predicted category at location (i, j) by,

P = argmax
c′∈c∗

(Softmax(Conv(E))(i,j,c′)), i ∈ [0,W ], j ∈ [0, H], (14)

where E ∈ RH×W×D represents the feature map, containing the pixel-level feature representation.
1×1 convolution (termed as Conv) is adopted to change the channels of E to C + 1. P ∈ RH×W

saves the predicted category at each location of E. Then, we build a feature map Z whose pixel
values are zero and whose size and dimension are the same as E. We assign the pixel-wise feature
to Z using the domain-level feature.

Z(i,j) = Bta

(
P(i,j)

)
, P(i,j) ̸= C + 1, i ∈ [0,W ], j ∈ [0, H]. (15)

After the assignment, Z is a domain-level feature map. Here, the lane pixels on E predicted as the
background in training are called unreliable background pixels (UBP). For example, as illustrated in
Figure 3, UBP is mainly located at the edge of the lane. However, the features of UBP can not be
augmented since domain-level features are only aggregated for the foreground pixels. To refine the
features of UBP, we also perform further feature aggregation on UBP.

Specifically, the predicted confidence of the UBP is usually low, hence we distinguish UBP from
reliable background pixels by setting confidence threshold ε. The UBP is defined as,

UBP = {(i, j)|pred(i,j) < ε, P(i,j) = C + 1, i ∈ [0,W ], j ∈ [0, H]}, (16)

where pred(i,j) is the confidence of the predicted category at location (i, j). pred(i,j) is obtained
by: pred(i,j) = max

c′∈c∗

(
Softmax(Conv(E))(i,j,c′)

)
. We choose the category with the lowest Eu-

clidean distance as the pseudo category of UBP and use domain-level feature of pseudo category to
instantiate UBP in Z.

P(i,j) = argmin
c′∈c∗

(
dis

(
EUBP

(i,j) , Bta (c
′)
))

, (i, j) ∈ UBP, (17)

Z(i,j) = Bta(P(i,j)), (i, j) ∈ UBP, (18)

where EUBP
(i,j) is the feature representation of UBP at location (i, j) in E, and dis is used to calculate

the Euclidean distance between the feature representation of UBP and the domain-level feature.

Thereafter, we adopt a linear layer to extract features along the channel dimension in Z to obtain
the output of target domain-level feature assignment FT . In the same process, we replace the target
PSMM with the source PSMM to obtain the feature FS . FS , FT , and E are concatenated along the
channel dimension and fused by a 1×1 convolution to enrich the cross-domain context information
of E.

Faug = Conv(φ(E,FS , FT )), (19)

where Faug ∈ RH×W×D is the aggregated features and φ is the concatenate operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We provide the experimental setting including datasets and implementation details in Appendix A.1.
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Table 1: Results of critical components.

Source-only SCCL Self-Training TCCL DFA UBP Accuracy(%) FP(%) FN(%)

✓ 77.42 58.29 54.19
✓ ✓ 79.63 53.41 50.00
✓ ✓ ✓ 80.76 49.39 47.50
✓ ✓ ✓ ✓ 81.77 48.36 45.06
✓ ✓ ✓ ✓ ✓ 82.43 44.53 42.89
✓ ✓ ✓ ✓ ✓ ✓ 83.99 42.27 40.10

4.2 ABLATION STUDY

We ablate the key components of DACCA and use SCNN with ResNet50 (He et al., 2016) as the
detection model. If not specified, all ablation studies are conducted on TuLane. Additional ablation
study can be found in Appendix A.3.

Effectiveness of cross-domain contrastive learning (CCL). In Table 1, when only source domain
data are used in supervised learning, SCCL prompts the accuracy from 77.42% to 79.63%. It also
indicates that our SCCL works for supervised training. On the other hand, the accuracy increases by
1.01%, i.e., from 80.76% to 81.77%, if TCCL is adopted. T-SNE visualization in Figure A4 (c) of
Appendix A.4 shows that the model with CCL can learn more discriminative features.

Effectiveness of domain-level feature aggregation (DFA). In Table 1, DFA can improve the de-
tection accuracy from 81.77% to 82.43%. As for feature aggregation of UBP, the accuracy is further
increased by 1.56% (83.99% vs. 82.43%). Also, we can observe a significant adaptation of the
source and target domain features in Figure A2 (c) of Appendix A.4, which validates the effective-
ness of domain-level feature aggregation.

Table 2: Generalizability of different methods. The symbol * indicates source domain only.

Model Backbone Accuracy/% FP/% FN/%

SCNN* ResNet50 77.42 58.29 54.19
SCNN+DACCA ResNet50 83.99 42.27 40.10

ERFNet (Romera et al., 2017)* ERFNet 83.30 37.46 37.55
ERFNet+DACCA ERFNet 90.47 30.66 18.16

RTFormer (Wang et al., 2022)* RTFormer-Base 87.24 26.78 25.17
RTFormer+DACCA RTFormer-Base 92.24 15.10 12.58

Generalizability of different methods. As shown in Table 2, our method can be integrated into
various segmentation-based lane detection methods. In SCNN, using our method can increase the
accuracy by 6.57% and decrease FP and FN by 16.02% and 14.09%, respectively. Also, in the
lightweight model ERFNet, the accuracy rises by 7.17%, and FP and FN drop by 6.8% and 19.39%.
Finally, in the Transformer-based method RTFormer, our method significantly improves the detec-
tion performance, in terms of accuracy, FP, and FN.

Comparison with existing contrastive loss variants. In Figure 4 (a), CCL is evaluated against
other contrastive loss variants in UDA. In turn, we replace CCL in DACCA with CDCL,
ProCA (Jiang et al., 2022), CONFETI (Li et al., 2023), and SePiCo (Xie et al., 2023). Compared
with ProCA and CONFETI, CCL increases the accuracy by 2.58% (81.77% vs. 79.19%) and 1.9%
(81.77% vs. 79.87%), respectively. The reason may be that both ProCA and CONFETI ignore the
differences in feature distribution between the source domain and target domain and only use a pro-
totype to represent the features of the two domains. Moreover, CCL overwhelms SePiCo regarding
accuracy. It attributes to SePiCo only taking domain-level features from the source domain as the
positive samples but ignoring the samples from the target domain.

Comparison with existing cross-domain context aggregation. We substitute the DFA with Cross-
domain (Yang et al., 2021) and Self-attention module (SAM) (Chung et al., 2023)—the latter aggre-
gate features in a mini-batch. The superiority of the DFA is shown in Figure 4 (b). DFA performs
better than Cross-domain and SAM, e.g., prompts the accuracy by 0.46% (83.51% vs. 83.05%)
and 0.72% (83.51% vs. 82.79%), respectively. From the T-SNE visualization in Figure A3 of Ap-
pendix A.4, we can see that DFA aligns the features of two domains better. The results demonstrate
that aggregating features from the whole domain is more effective than from a mini-batch.
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Figure 4: Accuracy comparison with counterparts of key peer components. (a) Comparison among
existing contrastive loss variants. (b) Comparison among existing cross-domain context aggregation.

Figure 5: Visualization result comparison among cross-domain, SGPCS, and our method. Results
on (a) MuLane, (b) MoLane, and (c) TuLane.

Table 3: Performance comparison on TuLane.

Method Detection model Backbone Accuracy/% FP/% FN/%

DANN (Gebele et al., 2022) ERFNet ERFNet 86.69 33.78 23.64
ADDA (Gebele et al., 2022) ERFNet ERFNet 87.90 32.68 22.33

SGADA (Gebele et al., 2022) ERFNet ERFNet 89.09 31.49 21.36
SGPCS (Gebele et al., 2022) ERFNet ERFNet 89.28 31.47 21.48

SGPCS RTFormer RTFormer-Base 90.78 28.44 15.66
SGPCS UFLD ResNet18 91.55 28.52 16.16

LD-BN-ADAPT (Bhardwaj et al., 2023) UFLD ResNet18 92.00 - -
MLDA (Li et al., 2022) ERFNet ERFNet 88.43 31.69 21.33

MLDA+CCL ERFNet ERFNet 89.00 30.53 20.42
MLDA+DFA ERFNet ERFNet 89.45 30.22 20.02

PyCDA (Lian et al., 2019) ERFNet ERFNet 86.73 31.26 24.13
Cross-domain (Yang et al., 2021) ERFNet ERFNet 88.21 29.17 22.27

Maximum Squares (Chen et al., 2019) ERFNet ERFNet 85.98 30.20 26.85

DACCA ERFNet ERFNet 90.47 30.66 18.16
DACCA RTFormer RTFormer-Base 92.24 15.10 12.58

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Performance on TuLane. The results on TuLane are shown in Table 3. When ERFNet is used
as the detection model, our method performs better than other methods. For instance, our method
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Table 4: Performance comparison on ”OpenLane” to ”CULane”.

Method Normal Crowded Night No line Shadow Arrow Dazzle Curve Cross Total
Advent (Li et al., 2022) 51.2 24.5 21.5 19.9 16.9 34.7 27.2 35.3 5789 31.7

PyCDA (Lian et al., 2019) 42.4 20.6 14.7 15.9 14.4 28.6 19.5 30.8 4452 26.3
Maximum Squares (Chen et al., 2019) 51.4 28.4 22.1 19.7 20.9 40.8 28.1 39.3 9813 31.8

MLDA (Li et al., 2022) 62.0 38.0 28.5 21.9 24.1 50.3 31.7 44.5 11399 38.8
DACCA 64.9 39.6 29.3 25.1 26.3 52.8 34.1 43.5 7158 43.0

Table 5: Performance comparison on ”CULane” to ”Tusimple”.

Method Detection model Backbone Accuracy/% FP/% FN/%

Advent (Li et al., 2022) ERFNet ERFNet 77.1 39.7 43.9
PyCDA (Lian et al., 2019) ERFNet ERFNet 80.9 51.9 45.1

Maximum Squares (Chen et al., 2019) ERFNet ERFNet 76.0 38.2 42.8
MLDA (Li et al., 2022) ERFNet ERFNet 89.7 29.5 18.4

DACCA ERFNet ERFNet 92.1 26.7 14.6

outperforms MLDA in terms of accuracy by 2.04% (90.47% vs. 88.43%). Besides, using our CCL
and DFA, the performance of MLDA gains consistent improvement. It indicates our sample selection
policy is more effective than designing complicated loss functions, and DFA has a stronger domain
adaptive ability than AIEM in MLDA. Regarding FN metrics, our method is 5.97% and 4.11% lower
than PyCDA and Cross-domain, respectively. Significantly, when using the Transformer model
RTFormer, DACCA outperforms the state-of-the-art SGPCS (92.24% vs. 91.55%) and achieves the
best experimental results on TuLane in similar settings.

Performance on OpenLane to CULane.To further validate our method’s generalization ability, we
carry out experiments transferring from OpenLane to CULane to demonstrate a domain adaptation
between difficult real scenarios. As shown in Table 4, our method delivers 4.2% enhancement
(43.0% vs. 38.8%) compared to the state-of-the-art MLDA. Our DACCA surpasses the existing
methods in most indicators and also all these results reflect its outperformance.

Performance on CULane to Tusimple. As presented in Table 5, our DACCA achieves the best
performance on ”CULane to Tusimple”. For instance, DACCA increases the accuracy from 89.7%
to 92.1% compared with the state-of-the-art methbod MLDA. It indicates our DACCA can perform
well on the domain adaptation from difficult scene to simple scene.

Qualitative evaluation. We display the visualization comparison results between Cross-domain,
SGPCS, and our method in Figure 5. In Figure 5 (c), our method predicts more smooth lanes than
the other methods in the urban scenario. Our method can detect the complete lanes in the real-world
scene in Figure 5 (a) and 5 (b). Qualitative results demonstrate that our method can effectively
transfer knowledge across different domains.

5 CONCLUSION

This paper presents a novel unsupervised domain-adaptive lane detection via contextual contrast
and aggregation (DACCA), in which learning discriminative features and transferring knowledge
across domains are exploited. Firstly, we create the positive sample memory module to preserve
the domain-level features of the lane. Then, we propose a cross-domain contrastive loss to improve
feature discrimination of different lanes by a novel sample selection strategy without modifying
the form of contrastive loss. Finally, we propose the domain-level feature aggregation to fuse the
domain-level features with the pixel-level features to enhance cross-domain context dependency. Ex-
perimental results show that our approach achieves the best performance on the TuLane dataset. On
the MuLane and MoLane datasets, our method outperforms existing unsupervised domain-adaptive
segmentation-based lane detection methods.

Although DACCA is implemented upon the segmentation-based lane detection, it holds potential for
application in other lane detection methods, e.g., keypoint-based and transformer-based approaches.
Our future work is to explore this aspect.
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Feihu Zhang, Vladlen Koltun, Philip Torr, René Ranftl, and Stephan R Richter. Unsupervised con-
trastive domain adaptation for semantic segmentation. arXiv preprint arXiv:2204.08399, 2022.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2881–2890, 2017.

Tu Zheng, Hao Fang, Yi Zhang, Wenjian Tang, Zheng Yang, Haifeng Liu, and Deng Cai. Resa:
Recurrent feature-shift aggregator for lane detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 3547–3554, 2021.

Kunyang Zhou. Pplanedet, a toolkit for lane detection based on paddlepaddle. https://
github.com/zkyseu/PPlanedet, 2022.

Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Jiangmiao Pang, Guangliang Cheng, Xuequan Lu, Jian-
ping Shi, and Lizhuang Ma. Context-aware mixup for domain adaptive semantic segmentation.
IEEE Transactions on Circuits and Systems for Video Technology, 33(2):804–817, 2022.

12

https://github.com/zkyseu/PPlanedet
https://github.com/zkyseu/PPlanedet


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Datasets. We conduct extensive experiments to examine DACCA on six datasets for lane detection
tasks, i.e., TuLane (Stuhr et al., 2022), MoLane (Stuhr et al., 2022), MuLane (Stuhr et al., 2022),
CULane (Pan et al., 2018), Tusimple (tus), and OpenLane (Chen et al., 2022). The source domain of
the TuLane dataset uses 24,000 labeled simulated images as the training set, and the target domain
images derives from the Tusimple dataset. The source domain of the MoLane dataset uses 80,000
labeled simulated images as the training set, and the target domain training set is adopted from
the real scenes and contains 43,843 unlabeled images. The MuLane dataset mixes the TuLane and
MuLane datasets are uniformly blended. The source domain of MuLane dataset uses 48000 labeled
simulated images as the training set, and the target domain combines the Tusimple and MoLane
target domains.

Following (Li et al., 2022), we conduct the experiments on ”CULane to Tusimple” and ”Tusumple
and CULane”. “TuSimple to CULane” means that the source domain is TuSimple and the target
domain is CULane. To further validate the effectiveness of our method on the domain adaptation
cross difficult scenes, we carry out the experiments on ”CULane to OpenLane” and ”OpenLane to
CULane”.

Evaluation metrics. For TuLane, MuLane. MoLane, and Tusimple datasets. We use three official
indicators to evaluate the model performance for three datasets: Accuracy, false positives (FP), and
false negatives (FN). Accuracy is defined by Accuracy = pc

py
, where pc denotes the number of

correct predicted lane points and py is the number of ground truth lane points. A lane point is
regarded as correct if its distance is smaller than the given threshold tpc = 20

cos(ayl)
, where ayl

represents the angle of the corresponding ground truth lane. We measure the rate of false positives
with FP =

lf
lp

and the rate of false positives with FN = lm
ly

, where lf is the number of mispredicted
lanes, lp is the number of predicted lanes, lm is the number of missing lanes and ly is the number
of ground truth lanes. Following (Stuhr et al., 2022), we consider lanes as mispredicted if the
Accuracy < 85%. For CULane and OpenLane, we adopt the F1 score to measure the performance,
F1 = 2×Precision×Recall

Precision+Recall , where Precision = TP
TP+FP and Recall = TP

TP+FN , where TP denote
the true positives.

Implementation details. We update the learning rate by the Poly policy with power factor 1 −
( iter
totaliter

)
0.9

. We select the AdamW optimizer with the initial learning rate 0.0001. We adopt the
data augmentation of random rotation and flip for TuLane, and random horizontal flips and random
affine transforms (translation, rotation, and scaling) for MuLane and MoLane. The training epochs
on the TuLane, MuLane, and MoLane are 30, 20, and 20 respectively. We set the threshold for
filtering false pseudo labels αc to 0.3 during domain adaptation. The threshold for selecting anchors
µc and UBP ε are 0.2 and 0.7, respectively. The number of anchors M and negative samples N in the
cross-domain contrastive loss are 256 and 50, respectively. Temperature hyper-parameter τ is set to
0.07 empirically. The feature dimension D is 128. The optimizer and update policy of the learning
rate are the same as those in pretraining. All images are resized to 384×800. All experiments are
conducted on a single Tesla V100 GPU with 32 GB memory. DACCA is implemented based on
PPLanedet (Zhou, 2022).

A.2 POSITIVE SAMPLE MEMORY MODULE

Positive sample memory module (PSMM) is introduced to store domain-level features for each lane
in both source and target domains. The process of initializing and updating features is the same for
source and target PSMM. We take the target PSMM as an example to describe this process.

Feature initialization. MCIBI (Jin et al., 2021) selects the feature representation of one pixel
for each lane to initialize the feature in PSMM. However, this way may bring out false feature
initialization due to false pseudo labels. For the c-th lane, we initialize its feature in PSMM using
the center of the features of all anchors, expressed by,

Bta(c) =
1

|Vc|
∑

nc∈Vc

nc, (20)
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where |Vc| denotes the number of anchors and nc is the feature representation of anchors in Vc.

Feature update. The features in target PSMM are updated through the EMA after each training
iteration m,

(Bta(c))m = tm−1 × (Bta(c))m−1 + (1− tm−1)× ∂((Vc)m−1), (21)

where t is the scale factor and ∂ is used to transform Vc to obtain the feature with the same size as
(Bta(c))m−1. Following MCIBI, we adopt the polynomial annealing policy to schedule t,

tm = (1− m

T
)p × (t0 −

t0
100

) +
t0
100

,m ∈ [0, T ], (22)

where T is the total number of training iterations. We set both p and t0 as 0.9 empirically. To
implement ∂, we first compute the cosine similarity vector Sc between the feature representation of
anchors in (Vc)m−1 and (Bta[c])m−1, as below,

Sc(i) =
(Vc)m−1(i)× (Bta(c))m−1

∥(Vc)m−1(i)∥2 × ∥(Bta(c))m−1∥2
, i ∈ [1, |Vc|], (23)

where we use (i) to index the element in Sc or feature representation in (Vc)m−1. Then, we obtain
the output of ∂((Vc)m−1) by,

∂((Vc)m−1) =

|Vc|∑
i=1

1− Sc(i)∑|Vc|
j=1(1− Sc(j))

× (Vc)m−1(i). (24)

For the source PSMM, features in Vc come from the source domain.

A.3 ADDITIONAL ABLATION STUDY

In this section, we provide additional ablation studies about hyper-parameters. If not specified,
we still adopt the SCNN with the ResNet50 backbone as the detection model and experiments are
conducted on TuLane.

The number of anchors M . We study the influence of the number of anchors M and the results
are shown in Figure A1 (a). It can be observed that the model achieves the best performance when
M is 256. Besides, It causes extra computational burden when M increases. Considering accuracy
and computational burden, we set M as 256.

Figure A1: Hyper-parameter study. (a) Study of the number of anchors. (b) Study of the number of
negative samples.

The number of negative samples N . Figure A1 (b) shows the influence of the number of neg-
ative samples. When N is 50, model achieves the best performance. We can also see that as N
increases, the accuracy does not always improve, indicating that excessive negative samples can
degrade performance.
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The threshold for selecting anchors µc. We study the threshold for selecting anchors µc. As shown
in Table A1, setting the anchor selection threshold can avoid hard anchors compared with anchor
selection without the threshold (83.99% vs. 80.97%). However, when the threshold is too high,
available anchors shrink, leading to performance degradation (83.99% vs. 80.80%). Hence, we set
µc to 0.2.

Table A1: The threshold for selecting anchors.

µc Accuracy/% FP/% FN/%
0.0 80.97 51.72 46.95
0.1 81.27 51.45 46.84
0.2 83.99 42.27 40.10
0.3 80.79 50.81 46.52
0.4 80.80 52.14 49.25

Table A2: The threshold for selecting UBP.

ε Accuracy/% FP/% FN/%
- 83.32 46.83 40.76

0.5 83.41 44.79 40.67
0.6 83.38 46.67 40.17
0.7 83.99 42.27 40.10
0.8 82.20 47.55 43.53
0.9 81.66 48.49 45.34

The threshold for selecting UBP. We can see that without the feature refinement of UBP, accuracy
is only 83.32% in Table A2. When ε is 0.7, model achieves the best performance. It has little effect
on model performance when ε is too low. This is attributed to the small number of UBP. When ε is
too high, many background pixels are wrongly regarded as UBP, causing the negative effect.

Table A3: The threshold for filtering false pseudo
labels.

αc Accuracy/% FP/% FN/%
0.1 81.39 52.36 48.02
0.2 82.37 48.25 45.81
0.3 83.99 42.27 40.10
0.4 83.58 44.41 42.10
0.5 83.49 45.09 42.79

Table A4: The way of feature aggregation

Way Accuracy/% FP/% FN/%
Add 77.92 52.72 54.04

Weighted add 80.05 49.15 48.23
Concatenation 83.99 42.27 40.10

The threshold for filtering false pseudo labels. We study the threshold for filtering false pseudo
labels αc and results are shown in Table A3. When αc is low, false pseudo labels have a greater
impact on performance. If αc is too high, the number of pseudo labels is too small, providing
insufficient supervision signals. Therefore, we set αc to 0.3.

The way of feature fusion. We study the way of feature fusion in Table A4. Add denotes for
element-wise adding E, FS , and FT . Compared with add, concatenation gains 6.07% accuracy
improvements. The reason may be that Add directly changes the original pixel features but concate-
nation does not. Weighted add means adding E, FS , and FT weightedly where weights are predicted
by a 1 × 1 convolution. Concatenation overwhelms Weighted add regarding accuracy, FN, and FP.
We adopt the concatenation as the way of feature fusion.

A.4 VISUALIZATION OF CROSS-DOMAIN FEATURES

T-SNE visualization of the key components. As shown in Figure A2 (a). There is a slight adap-
tation of cross-domain features when model is only trained in the source domain. Learned cross-
domain features are aligned better using our proposed CCL in Figure A2 (b). However, since CCL is
a pixel-wise contrast, it can lead to the separation of the feature space due to lack of contextual infor-
mation. To solve this problem, we enhance the links between cross-domain features by introducing
domain-level feature aggregation (DFA). DFA incorporate cross-domain contextual information into
the pixel-wise feature and effectively address the separation of the feature space in Figure A2 (c).

T-SNE visualization of different cross-domain context aggregation methods. Compared with
Cross-domain (Yang et al., 2021) and Self-attention module (SAM) (Chung et al., 2023), DACCA
aligns source and target domain features better in Figure A3, indicating domain-level features can
provide more cross-domain knowledge than features from a mini-batch.
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Figure A2: T-SNE visualization of the key components. (a) SCNN trained with only source domain.
(b) SCNN trained with SCCL and TCCL. (c) SCNN trained with SCCL, TCCL, and DFA. Blue and
green color represent the source and target domain, respectively.

Figure A3: T-SNE visualization of different cross-domain context aggregation methods. (a) Cross-
domain. (b) SAM. (c) DACCA.

Figure A4: T-SNE visualization of different loss functions. (a) Cross-entropy loss. (b) SePiCo. (c)
CCL. Different colors represent different lane features.

T-SNE visualization of different loss functions. As shown in Figure A4, our CCL learns more
discriminative features than SePiCo, indicating that our sample selection policy is effective. Be-
sides, cross-entropy is inefficient in discriminating features of different categories. Our CCL can
effectively compensate for the deficiency of cross-entropy loss.

A.5 ADDITIONAL EXPERIMENTS

Tusimple to CULane. We conduct the experiments on the domain adaptation from simple scene
and difficult scene and result are shown in Table A5. DACCA demonstrates consistent performance
advantages.

CULane to OpenLane. From Table A6, we can see that DACCA achieves the best performance and
gains 5.3% F1 score improvement. The results on domain adaptation cross difficult scenes manifest
the effectiveness and generalizability of our DACCA.

Performance on MoLane. Next, our method is tested on MoLane. By observing Table A7, we can
conclude that DACCA is superior to existing unsupervised domain-adaptive lane detection meth-
ods. Specifically, DACCA improves the accuracy by 2.22% against SGPCS (93.50% vs. 91.28%).
Moreover, using ERFNet as the detection model, DACCA improves the accuracy by 4.37% (90.52%
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Table A5: Performance comparison on ”Tusimple” to ”CULane”. Detection model and backbone
are still ERFNet. We only report the number of false positives for Cross category following (Li
et al., 2022).

Method Normal Crowded Night No line Shadow Arrow Dazzle Curve Cross Total
Advent (Li et al., 2022) 49.3 24.7 20.5 18.4 16.4 34.4 26.1 34.9 6257 30.4

PyCDA (Lian et al., 2019) 41.8 19.9 13.6 15.1 13.7 27.8 18.2 29.6 4422 25.1
Maximum Squares (Chen et al., 2019) 50.5 27.2 20.8 19.0 20.4 40.1 27.4 38.8 10324 31.0

MLDA (Li et al., 2022) 61.4 36.3 27.4 21.3 23.4 49.1 30.3 43.4 11386 38.4
DACCA 64.6 39.1 28.6 24.5 25.8 52.0 33.4 42.9 8517 41.9

Table A6: Performance comparison on ”CULane” to ”OpenLane”. Detection model and backbone
are still ERFNet.

Method All Up&Down Curve Extreme Weather Night Intersection Merge&Split
Advent (Li et al., 2022) 17.3 12.6 15.8 20.7 16.9 9.4 15.6

PyCDA (Lian et al., 2019) 17.0 12.8 15.4 19.2 16.0 9.6 14.9
Maximum Squares (Chen et al., 2019) 18.9 13.4 16.0 21.4 17.3 11.0 16.8

MLDA (Li et al., 2022) 22.3 18.4 20.3 24.8 21.4 15.8 21.0
DACCA 27.6 25.0 25.3 31.8 27.0 14.1 23.9

Table A7: Performance comparison on MoLane. Symbol * indicates source domain only.

Method Detection model Backbone Accuracy/% FP/% FN/%

DANN (Gebele et al., 2022) ERFNet ERFNet 85.65 22.25 22.25
ADDA (Gebele et al., 2022) ERFNet ERFNet 87.85 18.61 18.66

SGADA (Gebele et al., 2022) ERFNet ERFNet 89.46 15.13 15.13
SGPCS (Gebele et al., 2022) ERFNet ERFNet 90.08 12.16 12.16
SGPCS (Gebele et al., 2022) RTFormer RTFormer-Base 91.28 8.69 8.69

LD-BN-ADAPT (Bhardwaj et al., 2023) UFLD ResNet18 92.68 - -
MLDA (Li et al., 2022) ERFNet ERFNet 89.97 12.33 15.42

PyCDA (Lian et al., 2019) ERFNet ERFNet 87.40 17.59 18.10
Cross-domain (Yang et al., 2021) ERFNet ERFNet 88.57 15.16 17.41

Maximum Squares (Chen et al., 2019) ERFNet ERFNet 87.22 21.31 27.85

DACCA* ERFNet ERFNet 86.15 23.85 29.50
DACCA ERFNet ERFNet 90.52 7.00 13.95
DACCA* RTFormer RTFormer-Base 86.77 20.6 26.9
DACCA RTFormer RTFormer-Base 93.50 6.26 7.25

Table A8: Performance comparison on MuLane. Symbol * indicates source domain only.

Method Detection model Backbone Accuracy/% FP/% FN/%

DANN (Gebele et al., 2022) ERFNet ERFNet 84.01 38.31 36.30
ADDA (Gebele et al., 2022) ERFNet ERFNet 85.99 29.38 28.59

SGADA (Gebele et al., 2022) ERFNet ERFNet 85.26 29.13 28.73
SGPCS (Gebele et al., 2022) ERFNet ERFNet 86.92 27.49 28.39
SGPCS (Gebele et al., 2022) RTFormer RTFormer-Base 88.02 23.98 25.80

LD-BN-ADAPT (Bhardwaj et al., 2023) UFLD ResNet18 89.88 - -
MLDA (Li et al., 2022) ERFNet ERFNet 87.28 32.59 30.06

PyCDA (Lian et al., 2019) ERFNet ERFNet 86.01 35.15 34.17
Cross-domain (Yang et al., 2021) ERFNet ERFNet 85.74 32.10 37.42

Maximum Squares (Chen et al., 2019) ERFNet ERFNet 84.26 42.59 49.67

DACCA* ERFNet ERFNet 83.28 47.17 55.21
DACCA ERFNet ERFNet 87.93 25.95 27.08
DACCA* RTFormer RTFormer-Base 84.19 37.88 39.20
DACCA RTFormer RTFormer-Base 90.14 15.11 17.14

vs. 86.15%) compared to the model using only source domain data. It is worth mentioning that if
the Transformer model, RTFormer, is used as the detection model, the detection accuracy can be
prompted by 6.73% (93.50% vs. 86.77%).

Performance on MuLane. To further validate our method’s generalization ability, we carry out
experiments on MuLane. As shown in Table A8, when using ERFNet as the detection model, our
method delivers 4.65% enhancement (87.93% vs. 83.28%) in contrast to the model using only the
source domain data. Moreover, our method DACCA outperforms existing methods in accuracy,
FP, and FN. Specifically, DACCA is 1.92% higher than PyCDA in accuracy (87.93% vs. 86.01%),
6.15% lower than Cross-domain in FP (25.95% vs. 32.10%), and 7.09% lower than PyCDA in FN
(27.08% vs. 34.17%). All these results reflect the outperformance of our method.
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