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Abstract

Reinforcement learning agents naturally learn from extensive exploration. Explo-
ration is costly and can be unsafe in safety-critical domains. This paper proposes
a novel framework for incorporating domain knowledge to help guide safe ex-
ploration and boost sample efficiency. Previous approaches impose constraints,
such as regularisation parameters in neural networks, that rely on large sample
sets and often are not suitable for safety-critical domains where agents should
almost always avoid unsafe actions. In our approach, called System III, which
is inspired by psychologists’ notions of the brain’s System I and System II, we
represent domain expert knowledge of safety in form of first-order logic. We
evaluate the satisfaction of these constraints via p-norms in state vector space. In
our formulation, constraints are analogous to hazards, objects, and regions of state
that have to be avoided during exploration. We evaluated the effectiveness of the
proposed method on OpenAI’s Gym and Safety-Gym environments. In all tasks,
including classic Control and Safety Games, we show that our approach results in
safer exploration and sample efficiency.

1 Introduction

While existing Reinforcement Learning (RL) methods provide promising guarantees given sufficient
exploration guarantees, in safety-critical applications most of the exploration methods are impractical
due to the system vulnerability. Consider the example of a self-driving car where the controller agent
should respect the speed limit, should not cross the stop sign, and should not crash into objects and
other agents in the environment [2]. Safety in RL is not limited to self-driving cars, it can be used to
make algorithms systematically safe and aligned with human intent [17]. In safety-critical domains
such as autonomous driving, warehouse logistics or assistance in health care, experts require deep RL
controllers to operate within known bounds and limits. Let us refer to these safety bounds and limits
as constraints. Recent advances in the development of deep RL provide means to allow prior domain
knowledge to be encoded in the training processes of neural networks. However, previous efforts on
encoding the constraints requires direct modification of the optimization problem. Specifically, the
constraints are encoded in the loss function, which may require heavy domain-specific engineering [8].
Consequently, these approaches are not suitable in safety-critical domains where the constraints must
be satisfied during learning and thus sample efficiency is an important factor. Although combining
expert constraints with neural networks tends to help learning, generating expert constraints remains
challenging, understudied and domain-dependent. Further related work is discussed in Appendix A.

In this work we take inspiration from [7, 20, 27] and express our constrains in first-order logic, which
allows for efficient encoding of expert domain knowledge. Deep reinforcement learning relies on
extensive exploration to generate data, which is highly undesirable when dealing with safety-critical
domains. On the other hand, exploration is needed in order to learn and generalize better.
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In this paper, we address both issues. Firstly, we provide a novel way of incorporating constraints in
the training processes of deep reinforcement learning. We do not manipulate the current deep learning
formulations, i.e. we do not add any extra regularization parameter in the loss function, nor do we
rely on any domain-specific engineering. Our approach evaluates the likelihood of constraints being
satisfied at each point in time given a state prediction, and this affects the agent’s reward function.
Namely, actions that highly satisfy the constraints are encouraged, and actions that do not fully satisfy
the constraints are discouraged. Secondly, we use model-based reinforcement learning techniques,
which are data-efficient comparing to model-free counterparts. In general, the proposed approach can
be seen as analogous to combining system I and system II of the brain, as discussed in Kahneman’s
Thinking Fast and Slow [18]. Whilst system I is fast, automatic and intuitive, system II is slower,
analytical, and has reasoning capabilities. Hence, we call this approach "System III" as we represent
logical constraints and combine them with the high-performing fast deep learning algorithms.

To show the effectiveness of System III, we conduct experiments on classic control tasks such as the
Cart-Pole setup from OpenAI’s Gym [3], which is a common task in many reinforcement learning
algorithms. We show that even a simple constraint on the Cart-Pole system leads to safer exploration
and faster convergence. We further conduct experiments on the OpenAI Safety-Gym environments
[1]. We show the approach’s superiority in safe exploration for a wide arrangement of constraints,
hazards and environment configuration in a dynamic setting where the constraints differ across
experiments. Further details are discussed in Section 5. The contribution of this paper is a novel
framework for integrating domain knowledge in the training process of deep RL. Our framework is
applicable to any off-the-shelf reinforcement learning algorithm and can be used on top of them to
encode domain knowledge and boost sample efficiency significantly while satisfying the constraints.

2 Preliminaries

In this section, we introduce RL formalism and model-based RL methods that we will build upon in
the development of System III. We model our problem as Markov Decision Process (MDP), which is
defined as a tuple 〈S,A, P,R, γ〉. In the MDP model S ⊆ Rn is a continuous state space, A ⊆ Rm
is a continuous action space, and P : B(Rn)× A× S → [0, 1] is a Borel-measurable conditional
transition kernel such that P (·|s, a) is a probability measure of s ∈ S and a ∈ A over the Borel
space (Rn,B(Rn)), where B(Rn) is the set of all Borel sets on Rn. The transition probability P
captures the motion uncertainties of the agent, and it is assumed that P is not known a priori. A
reward function R : S × A × S → R defines a scalar feedback that the agent receives. At each
time step t in the environment, the agent observes a state st ∈ S, executes an action at ∈ A and
transitions to the next state st+1 ∼ P (·|st, at) and receives the reward associated with that action
rt = R(st, at, st+1). The discount factor γ ∈ [0, 1] is used to weigh the current value of future
returns. A policy π is a mapping from the state space to a distribution in P(A), where P(A) is the
set of probability distributions on subsets of A. A policy is stationary if π(·|s) ∈ P(A) does not
change over time and it is called a deterministic policy if π(·|s) is a degenerate distribution. The
objective in RL is to find a policy π∗ that maximises the expected discounted sum of rewards,

Eπ∗ [
∞∑
t=0

γtR(st, at, st+1)], (1)

where at ∼ π(·|st), and st+1 ∼ P (·|s, a) [25, 22]. The value of state s under any policy π, denoted
as V π(s), is similarly defined as the expected return starting at state s and following π afterwards:
V π(s) = Eπ

[∑∞
t=0 γ

trt | s0 = s
]
. We might drop π to simplify notation. We focus on policy

gradient methods, which model and optimise the policy directly. Different policy gradient-based
algorithms have been proposed in the literature, e.g., TRPO [23] and ACKTR [26], that learn to
update the policy subject to a constraint in the policy space which discourages large differences
between successive policies.

In policy gradient techniques, the key idea is to increase the probability of actions that are associated
with higher returns and reduce the probability of actions that lead to lower return until an optimal
policy is found. In this paper, we use Asynchronous Advantage Actor Critic policy gradient (A3C)
for policy learning [21] combined with Generalized Advantage Estimation (GAE) [24]. For a policy
πθ where θ is the neural network parameters. J(πθ) is the expected discounted return, and∇θJ(πθ)

is the gradient of the return with respect to the θ: ∇θJ(πθ) = Eπθ
[∑
∇θ log πθ(s, a)Aπθ (s, a)

]
,
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where Aπθ (s, a) is the advantage function. The policy gradient algorithm updates the policy network
parameter by stochastic gradient ascent θ ← θ + α∇θJ(πθ), where α is the learning rate.

3 Constraints Evaluation Using SMT

To illustrate how human prior knowledge is mapped to first order logic (FL) sentences, consider
the example of driving a car, where a learner, i.e. agent, sits in the driver’s seat and observes the
constraints in the environment, e.g. other cars, designated driving lane, speed limit, humans, traffic
signs etc. Prior to driving, they have prior knowledge about the constraints in the environment, for
example, not to crash into humans, traffic signs, and not to get out of the designated lane. Let us
consider the example of not getting out of the designated driving lane and maintaining the speed limit,
as shown in Figure 1a in Appendix B. The prior knowledge for keeping the car in its appropriate lane
and respecting the speed limit can be expressed in the form of (lb ≤ SPEED LIMIT ≤ ub) ∧ (lb′ ≤
DESIGNATED LANE ≤ ub′) defined by a desirable range in Conjunctive Normal Form (CNF) or
Disjunctive Normal Form (DNF). For instance, if the car speed and the designated lane are in the
allowed range, and the distance by which any action moves the car is smaller then the allowed range,
any meditate should satisfy the constraint because the agent will still be in the desired range.

4 Combining Logical Constraints and Reinforcement Learning

High-Level FL Constraint: We take motivation from real-world settings, where expressive yet
intuitive constraints are required to fully capture the desired behavior while are easily understandable
for humans. For example, consider the task of parking between two objects. Formally, given the
agent state s, the FL constraint is:

ϕ(s) = ∀ objecti : lb′ ≤ ||s− objecti ||,
where ||s− objecti || is the agent’s distance to the objects while lb′ is the lower bound on the distance.

The Running Example is shown in Figure 2 in Appendix C and is a moving robot in a grid. Let the
grid be a 20×20 square over which the robot moves. In this setup, the robot location is the MDP state
s ∈ S. At each state s ∈ S the robot has a set of actions A = {left , right , up, down, stay} using
which the robot is able to move to other states (e.g. s′) with the probability of P (s, a, s′), a ∈ A. At
each state s ∈ S, the actions available to the robot are either to move to a neighbour state s′ ∈ S or to
stay at the state s. In this example, we assume for each action the robot chooses, there is a probability
of 85% that the action takes the robot to the correct state and 15% that the action takes the robot
to a random state in its neighbourhood, including its current state. The property of interest in this
example is an FL formula: ϕ(s) = ∀ unsafei : ||s − unsafei|| ≤ lb, where ||s − unsafei|| is the
agent’s distance to any unsafe (red) state unsafei.

System III architecture: System III comprises two reciprocating subsystems: a system that learns
to model the next state st+1 and a system that evaluates the constraints on st+1. The ability of the
latter subsystem to evaluate the constraints depends on the former subsystem’s ability to accurately
model the next state. . We further define the total reward rt to be the sum of reward returned by
the environment (ret ) and reward returned by the degree of constraints satisfaction (rct ) resulting in:
rt = ret +rct . We use a policy π(·|st; θp) representing an actor neural network, where st is the current
state, and θp refers to the weights of the network. An agent at state st takes the action at ∼ π(·|st; θp)
sampled from the policy. The parameters of the policy network θp are optimised to maximize the
sum of discounted expected return in (1).

Reward Construction via Constraint Evaluation: In order to ensure that the agent explores the
state space sufficiently to learn and satisfy the necessary constraints, we construct a model to take as
input the state st and action at and returns the distribution of next state at t+ 1. This is also known
as forward dynamics. Formally: ŝt+1 ∼ f(·|st, at; θF ), where ŝt+1 is the estimate of st+1 and θF is
the forward model (e.g. a neural network) parameters. From the forward dynamics we optimize the
parameter θF by minimizing the mean squared loss function:

Lf =
∑
t

(f(st, at)− (st+1))2. (2)

With the model f trained via mean squared loss function , we can evaluate the constraints satisfaction
at each time step. Consider the running example FL constraint ϕ(s) = lb ≤ ||s− unsafe||. Define
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∆ : S ×A× S → R as the constraint evaluation function. At each time step t, the agent observes a
state st ∈ S, chooses an action at ∈ A and the forward model f outputs ŝt+1 ∼ f(·|st, at; θF ). The
constraint reward is then defined as:

rct = ∆(st, at, ŝt+1) =

{
1 if ϕ(ŝt+1)

0 otherwise
.

We can write the overall optimization problem as a combination of (1) and (2):

min
θpθF

[−λEπ(st;θp)
[
∑
t

γrt] + βLF ], (3)

where 0 ≤ β ≤ 1 is a scalar that weighs the forward model loss and λ > 0 is a scalar that weighs the
importance of the policy gradient loss against the importance of satisfying the constraint.

5 Experiments setup and Results

In the running example, in order to get to the target state the agent has to cross a bridge (Fig. 2a)
surrounded by unsafe states. The grid is slippery, namely from the agent’s perspective, when it
takes an action it usually moves to the intended cell, but there is an unknown probability that the
agent is moved to a random neighbour cell. However, the trained model P̂ initially advises the
agent that it can always move to the correct state and this is the dynamics known to the agent.
The initial state of the agent is bottom left. For the simulated physical environments we consider
OpenAI Gym [4] and Safety Gym [1]. OpenAI’s Gym environment comprises a set of toolkits
for developing and comparing reinforcement learning algorithms. It contains tasks ranging from
control to Attari. For this paper, we focus on the continuous control task CartPole [25]. In Safety
Gym, we run experiments using the Point, Car and Doggo robot [1] while varying the number of
constraints in the environment with constant goal task. In both environments, the agent interacts with
the environment and is rewarded based on the degree to which it satisfies the constraints. We leave
the case for sparse reward setting for future work. Consider Figure 3a, where the agent task is to
press the highlighted button while avoiding hazards. We represent such scenario via a general FL
formula: ϕ(s) = {(∀ hazard i : lbh ≤ ||s− hazard i|| ≤ max_distance_pair_button) ∧
(∀ goal_buttoni : ||s− goal_buttoni|| ≤ max_distance_pair_button)}.
Constraints are defined as an ’allowable’ subspace of the state space. In the CartPole experiment
we deliver d-step accumulated reward every d time steps. The constraints on the in CartPole is:
ϕ(s) = (lb ≤ x ≤ ub) ∧ (lb ≤ k ≤ ub) where x corresponds to the cart position, and k corresponds
to the pole angle at tip. We evaluate our algorithm under different delayed steps. Figure 4 plots the
results under a sparse reward setting. Similarly, in Safety-Gym, we provide rct after each immediate
action and ret is fully ignored as rct captures the degree of satisfaction in each state. Table 1 shows the
average episodic mean return along with constraint violation (i.e. 1 - constraint satisfaction), where
0 corresponds to 0% constraint satisfaction and 1 corresponds to 100% satisfaction at evaluation.
We train our system’s combined objective in 3 with λ = 0.15, β = 0.3 and learning rate of 1e−3.
We observe there to exist an inverse relationship between the reward and constraint satisfaction.
Unconstrained algorithms (e.g. PPO and TRPO) achieves higher return at the cost of high degree of
constraint violation. However, PPO and TRPO’s Lagrangian counter part which follows the adaptive
penalty to enforce constraints achieves higher degree of constraint satisfaction. We observe a an
inverse relationship between achieving higher reward and acting safely. System 3 is able to act safely
after a small amount of interaction with the environment at a cost of slightly lower return compared
to the other methods which achieves slightly higher return but does significantly worse at satisfying
the constraints. We hypothesis this is due to the nature of the the environment reward function not
being able to capture the actual desire of the designer and what it intends it to do. We show that
our method achieves high constraint satisfaction (95%) as shown in 1 in Appendix E, compared to
popular baselines designed to deal with constrained MDPs.

6 Conclusions And Future Work

In this paper we propose a novel framework for incorporating constraints in the training processes of
deep reinforcement learning. Our approach evaluates the likelihood of constraints being satisfied at
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each point in time given a state prediction, and this affects the agent’s reward function. The future
work should consider changing the environments and keeping the constraints constant and learn the
constraints directly from the environment. From a novel safety and alignment perspective this work
provides a solution for outer alignment, however future research would need to address issues that
might arise with inner alignment.
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Appendix

A Related work

In this section, we compare supervised, unsupervised and RL related works that use human knowledge
in the form of constraints. The integration of constraints as an additional regularizer in the training
process of neural networks has achieved considerable attention in recent years, with most work still
imposing constraints on the network’s output [27, 7]. The main contribution of "Semantics loss"
[27] is the addition of a semantic loss function to the standard neural network loss (e.g. another
regularizer), and the design is such that it is equivalent to evaluating some Boolean constraint formula
using Weighted Model Counting (WMC) which counts the weights of the solutions to a propositional
logic formula [6]. Similar to [27], [7] defines a non-negative loss function using fuzzy logic to
incorporate logical constraints. This loss measures how far the output of the network is from the
nearest satisfying solution. Our approach differs from both of these. We compile constraints and
add them to the training process of an RL agent; our constraints are motivated by real-world physics,
which are crucial for safety-critical domains. Unlike [27] we do not rely on WMC to evaluate the
constraints as they rely on SAT solvers, instead we designed a more suitable metric for constraint
evaluation in sequential decision-making tasks.

One of the closest works to ours is [28] comprised of a two-system, a fuzzy rule controller that takes
the represented human knowledge constraints and returns a preferred action and a refined module
that tunes the suboptimal knowledge. The constraints are represented in fuzzy logic and allow for
imprecise policy selection. During the constraint generation, they assume to have perfect knowledge
of the state-space, and the constraints fully capture all aspects of the state-space, which is a strong
assumption to hold. Our work differs from this: we do not assume to know the full-state space
dynamics and do not use constraints to warm-start the policy; further, our constraints are much more
general and expressive. To illustrate this generality, consider the rule from [28] Rule: IF S1 is Ml1
and S2 isMl2 and... and Sk isMlk THEN Action is aj : where Si are variables that describe different
parts of the state, Mli is the fuzzy rules corresponding to each Si and aj is the action taken. This
rule would only be applicable with in fully observable scenarios: an assumption which is unrealistic
in many real-world applications. Their approach is no different to hard encoding actions. In our
framework, constraints are high level, general, and provide expressiveness. For example, consider
when we want to specify that the agent’s distance to an undesired object (e.g. traffic light) should be
greater than the lower bound or if the distance is less than, the lower bound, the agent should decrease
its speed ϕ(s) = (lb ≤ ||s− obj||) ∨ (velocity ≤ vlimit ∧ ||s− obj|| ≤ ub). Similarly, there exist
other approaches [9, 11, 13, 10, 16, 12, 14, 5, 15] that define safety by the satisfaction of temporal
logical formulae of the learnt policy.

Other works in this space [19] propose constrained Q-learning to restrict the action space directly in
the Q-update to learn the optimal Q-function; they claim this approach can lead to optimal safe policy
in the induced MDP. Our method also differs from this approach, and we do not change anything
in the existing deep RL toolbox. However, we believe that some actions become prohibited in our
constraint evaluation phase due to low log probability.
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B System III Architecture

(a) Self-driving agent with
SPEED LIMIT and DESIG-
NATED LANE

(b) System III architecture

Figure 1: S3 short for System III: Figure 1a shows a self-driving agent that has to respect the speed
limit and designated driving lane. The left-hand side of Figure 1b shows the data generation (model
free) while the right-hand side of Figure 1b shows that the Forward Model takes st and at as input
and returns ŝt+1 as output. The Forward Model loss calculates the discrepancy between st+1 and
ŝt+1 and the constraint satisfaction ∆ calculates the reward rct . The black arrows indicate forward
pass while, the red arrow indicates backward pass.

C Running Example

Slippery grid world example below:

(a)

(b) (c)

Figure 2: (a) Slippery grid world example, where yellow is the target , red is unsafe, blue is safe,
and green is the initial state s0; Safety and performance tuning with FL: (b) value function V (s) with
lb = 0; and (c) value function with lb > 0 where the FL formula is ϕ(s) = lb ≤ ||s− unsafe||, and
||s− unsafe|| is the agent’s distance to unsafe (red) states.
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D OpenAI SafetyGym

(a) Point Agent with press task (b) Point Agent with position task (c) Point Agent with push task

(d) Car Agent with press task (e) Car Agent with position task (f) Car Agent with push task

(g) Quadruped Agent with press
task

(h) Quadruped Agent with posi-
tion task

(i) Quadruped Agent with push
task

Figure 3: Environment Agent and Constraint Configuration: All constraint elements represent
scenarios for the agent to avoid; they pose different challenges for the agent by virtue of having
different dynamics. To illustrate the contrast: hazards (purple circle) provide no physical obstacle,
vases (blue box) are movable obstacles, pillars (tall purple box) are immovable obstacles, buttons
(orange button) can sometimes be perceived as goals, and gremlins (purple box) are actively-moving
obstacles.

10



E Results

(a) Performers on CartPole with no
Constraints

(b) CartPole Constraint Violation

(c) Performance of System III vs PPO
with no constraints

(d) Constraint violations of System III vs
PPO with no constraints

Figure 4: cartpole-v1 trained for 1e6 time steps (max score is 500). Each training loop has a length
of 100 time steps and batch size of 20, hidden layers each has 64 nodes. Every 400 time steps, the
model is saved and evaluated for 1000 time steps in "test runs", i.e., no training. The score for each
of the episodes that are completed are added in the test runs. The constraints are added up across all
of the time steps in the test runs. The score plots are averaged between 10 different instances of the
model at each time step, and the graph is smoothed with a 20 step rolling mean. The error plots are
the same but with a 10 step rolling mean. The constraint are placed on the state space, e.g., angle and
position.

Method Mean return Constraint Satisfaction

PPO 1.0 0.16
PPO-Lagrangian 0.15 0.83

TRPO 1.0 0.42
TRPO-Lagrangian 0.61 0.83

System 3 0.75 0.950.950.95
Table 1: Normalized metrics from training averaged all environments and three random seeds per
environment.
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Constraint Type Static Static & Moving

Method Agent Return Constraint Sat Return Constraint Sat

PPO
Point 1.0 0.16 1.0 0.11
Car 1.0 0.26 1.0 0.23
Doggo 1.0 0.08 1.0 0.17

PPO-Lagrangian
Point 0.36 0.67 0.21 0.62
Car 0.45 0.73 0.55 0.64
Doggo 0.71 0.59 0.88 0.62

TRPO
Point 1.0 0.32 0.99 0.28
Car 1.0 0.41 1.0 0.45
Doggo 1.0 0.64 1.0 0.43

TRPO-Lagrangian
Point 0.41 0.73 0.56 0.84
Car 0.62 0.88 0.73 0.88
Doggo 0.69 0.89 0.67 0.84

System3
Point 0.73 0.96 0.68 0.94
Car 0.72 0.96 0.75 0.95
Doggo 0.81 0.94 0.82 0.93

Table 2: Agents: Mean return (return) and constraint satisfaction. Normalized metrics from training
averaged all environments and three random seeds per environment
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