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Abstract

We identify semantically coherent, context-consistent network components in large1

language models (LLMs) using coactivation of sparse autoencoder (SAE) features2

collected from just a handful of prompts. Focusing on country-relation tasks,3

we show that ablating semantic components for countries and relations changes4

model outputs in predictable ways, while amplifying these components induces5

counterfactual responses. Notably, composing relation and country components6

yields compound counterfactual outputs (Figure 1). We find that, whereas most7

country components emerge from the very first layer, the more abstract relation8

components are concentrated in later layers; within relation components themselves,9

nodes from later layers tend to have a stronger causal impact on model outputs.10

Overall, these findings suggest a modular organization of knowledge within LLMs11

and advance methods for efficient, targeted model manipulation.12

1 Introduction13

Sparse autoencoders (SAEs) have emerged as a powerful tool for extracting interpretable features14

from large language models (LLMs), but it remains unclear how these features integrate across layers15

to produce coherent responses. In this work, we uncover modular semantic structures in the form16

of networks of coactivating SAE features. Compared to Ameisen et al. [1], our approach does not17

require manual grouping of features. We also provide a more granular, feature-level view of the18

mechanism identified by Merullo et al. [25]. For a full discussion of related work, see Appendix A.19

We focus our analyses on Gemma 2 2B [34], with additional results for Gemma 2 9B in Appendix D.20

For each prompt, we collect activations from pre-trained SAEs [21, 3] and select the set of features21

that appear in the top-5 activations at any token position for each layer. Second, we construct a22

directed graph where nodes are the selected features and an edge connects features in adjacent layers23

if their activation patterns have a Pearson correlation over 0.9. Third, to filter out overly generic24

features, we prune this graph by removing any feature with an activation density greater than 0.0125

according to Neuronpedia [22]. Finally, we identify the resulting weakly connected components26

using a standard BFS algorithm [15] and validate their causal role by ablating or amplifying their27

activations [27] and measuring the model’s output distribution shift.28

2 Experimental Results29

We focused on country-capital, country-currency, and country-language tasks for China, France,30

Germany, Japan, Nigeria, Poland, Russia, Spain, the United Kingdom, and the United States. To31

collect model activations for each country-capital pair, we used the following prompt template with32

in-context examples: “The capital city of Peru is Lima. The capital city of South Korea is Seoul. The33
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                    Q: What is the capital of China?
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Figure 1: Selective component ablation and amplification steers model toward counterfactual outputs.

Figure 2: Component feature count (x-axis) vs. causal effect (KL divergence) when ablated (y-axis).

capital city of Saudi Arabia is Riyadh. The capital city of {country} is”. Similar templates were used34

for country-currency and country-language pairs.35

2.1 Component Identification36

For each country-relation pair, we obtained around 70 connected components using the methods37

outlined in Section 1. Typically, two to three of the extracted components exert a markedly higher38

causal effect on the model output than the others (Figure 2).39

Semantic coherence. To evaluate the roles of these top components, we began by inspecting40

their associated feature descriptions from Neuronpedia. In most cases, the features within a given41

component had thematically coherent descriptions, often referring to a common country or relation42

(Appendix C). However, there are exceptions—for instance, none of the high-impact components43

obtained from Spain-related prompts explicitly mention Spain in their feature descriptions. Given44

that feature descriptions are not always reliable, we performed component ablations and observed45

the resulting changes in the model’s top predicted tokens. Table 1 presents results from ablation46

experiments using components obtained from China and Nigeria-related prompts. Promisingly, when47

country components were ablated, the model’s top predicted tokens shifted predictably to the capitals,48

currencies, or languages of other countries. When relation components were ablated, the model49

assigned higher probabilities to country names.50

Capital Currency Language

Original Ctry. Abl. Rel. Abl. Original Ctry. Abl. Rel. Abl. Original Ctry. Abl. Rel. Abl.

Beijing 97. Madrid 39. the 12. Yuan 80. Euro 64. Yuan 59. Mandarin 59. Spanish 49. Chinese 24.
Be .38 Warsaw 10. China 6.7 Ren 14. Lira 20. Ren 14. Chinese 37. English 22. China 18.
Peking .35 Rome 9.5 Beijing 6.4 RMB 1.8 Krone 3.1 Yen 1.9 English .69 French 6.7 Mandarin 11.
Shanghai .23 Paris 6.1 Shanghai 5.0 Yen .98 Franc 2.4 P 1.7 also .43 German 4.0 also 3.5
Xi .11 Berlin 5.0 a 2.7 yuan .53 Peso 1.2 Ba 1.5 Put .22 Italian 2.7 a 2.9

Abuja 85. New 7.7 Lagos 17. Naira 93. Franc 16. Naira 62. English 72. English 50. Nigeria 40.
Lagos 11. Islamabad 7.3 the 12. N 2.9 Euro 9.1 Dollar 6.0 Ha 11. French 31. English 14.
... .38 Kathmandu 6.0 Nigeria 7.1 Nai 2.5 D 7.4 Niger 4.3 Yoruba 4.7 Spanish 2.1 Nigerian 9.8
Nigeria .29 Delhi 5.7 called 5.1 naira .36 Pound 5.1 Currency 2.4 Igbo 2.4 Arabic 2.0 ... 2.9
. . . .27 Tehran 4.9 Abuja 3.4 K .23 Krone 4.8 Nai 1.4 Nigerian 1.6 Dutch 1.1 also 2.3

Table 1: Top five output tokens and their likelihoods for China (top) and Nigeria (bottom) across all
three relations, before and after ablating the relevant country or relation component.
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Figure 3: China (blue) and language (green) components.

Capital, China Currency, China Language, China

·, Nigeria Currency, · Language, · ·, Nigeria Capital, · Language, · ·, Nigeria Capital, · Currency, ·

_Abuja 87. _Yuan 15. _Mandarin 32. _Naira 75. _Beijing 98. _Chinese .35 _English 71. _Beijing 96. _Yuan 15.
_Nigeria 4.6 _yuan 12. _Chinese 27. _naira 8.3 _Be .75 _Mandarin .33 _Yoruba 5.6 _Be 1.5 _Ren 10.
_Lagos 3.9 _RMB 11. _English 25. _Nai 3.7 _BE .34 _English .28 _Ha 4.8 _Peking .83 _RMB 6.8
_- .58 _Ren 5.6 _Spanish 2.2 _Nigeria 3.3 _Peking .27 _Simplified .82 _Nigeria 4.4 Beijing .42 _yuan 6.3
_ .57 _China 5.4 _mandarin 2.1 _Nigerian 2.4 Beijing .25 _Spanish .79 _Igbo 3.4 _BE .30 _The 5.3

Table 2: Top five output tokens and likelihoods for prompts about China after ablating an in-prompt
component and amplifying a target country or relation.

Context consistency. We found that country and relation components are remarkably consistent51

across different contexts. Therefore, in subsequent experiments, we define each country component52

as the intersection of all the components for that country across relations; similarly, each relation53

component is defined as the intersection of all the components for that relation across countries.54

Figure 3 shows the resulting China and Language components.55

2.2 Component Steering56

Having identified distinct graph components for each country and relation, we next investigate57

whether these components can be used to steer model outputs individually and in combination. To test58

whether components generalize across different contexts, we applied a test prompt template different59

from the one used to collect the initial activations: “Q: What is the {capital city of / currency of /60

main language in} {country}? Answer directly (two words max). A:”.61

Country steering. By ablating an in-prompt country component and amplifying a target country62

component, we successfully directed the LLM to respond to questions about the capital, currency, and63

language of the in-prompt country with counterfactual answers, i.e., the capital, currency, or language64

for the target country, which is not actually queried in the prompt. As shown in Table 2, when we65

ablated the China component and amplified the Nigeria component, the model consistently responded66

with the desired counterfactual answers “Abuja”, “Naira”, and “English” for capital, currency, and67

language questions, respectively—disregarding the prompt’s reference to China. Overall, country68

steering successfully produced the desired counterfactual answers 96% of the time (Table 3). This69

confirms that our identified country components encode country-specific information that causally70

determines model outputs.71

Relation steering. Similarly, by ablating an in-prompt relation while amplifying a target relation,72

we successfully directed the model to respond to queries about the in-prompt relation as though they73

concerned the target relation. As shown in Table 2, with the capital component ablated, the model74

answered a question about China’s capital with “Yuan” and “Mandarin” when currency and language75

components were respectively amplified. We observed similar results for currency and language76

prompts. The average success rate for relation steering is 92% (Table 3).77

CN FR DE JP NG PL RU ES UK US Avg. Cap. Curr. Lang. Avg.

1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.78 1.00 1.00 0.96 0.95 0.90 0.90 0.92

Table 3: Steering success rates for each target country and relation.
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Capital, China Currency, China Language, China

Currency, Nigeria Language, Nigeria Capital, Nigeria Language, Nigeria Capital, Nigeria Currency, Nigeria

_Naira 34. _English 71. _Abuja 70. _English 93. _Abuja 49. _Naira 40.
_Nigeria 28. _French 5.1 _Lagos 26. _French 1.7 _Lagos 46. _Nigeria 18.
_naira 13. _Yoruba 4.1 _ 2.3 _Yoruba 1.5 _ 1.7 _Dollar 6.2
_N 4.1 _Spanish 3.8 _Nigeria .41 _Spanish 1.1 _Nigeria .78 _naira 4.7
_ 3.2 _Igbo 3.0 _... .30 _Igbo .55 _... .36 _ 3.7

Table 4: Top five output tokens and likelihoods for prompts about China after ablating both in-prompt
components (row 1) and amplifying a target country-relation pair (row 2).

Ctry. / Rel. CN FR DE JP NG PL RU ES UK US Avg.

Capital 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Currency 1.00 0.94 1.00 0.72 0.61 0.50 0.11 0.94 1.00 1.00 0.78
Language 0.50 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00 0.93

Average 0.83 0.98 1.00 0.91 0.87 0.76 0.70 0.98 1.00 1.00 0.90

Table 5: Composite steering success rates for each target country-relation pair.

Composite steering. We conducted composite steering experiments where both country and relation78

components were manipulated at once. By ablating both the in-prompt country and in-prompt relation79

components while amplifying the target country and target relation components, it is indeed possible80

to steer the model to ignore both the in-prompt country and in-prompt relation and answer about a81

different country-relation pair. Table 4 provides specific examples of composite steering success. As82

shown in the first column, when we ablated both the China and capital components while amplifying83

the Nigeria and currency components, the model correctly answered “Naira” despite being asked84

about China’s capital. The average steering success rate for composite steering is 90% (Table 5).85

2.3 Component Organization86

Having established the causal role and composability of country and relation components, we next87

analyze their distribution across network layers and the relative importance of individual nodes within88

these components. To quantify the causal importance of an individual country node, we compute the89

average post-ablation KL divergence from the original output distribution across all relations. For a90

relation node, we compute the same average across all countries. Country and relation components91

show distinct distribution patterns across model layers. Eight out of the ten country components92

tested begin in the first layer of the network; some (e.g., China) span nearly all layers, while others93

(e.g., Nigeria) concentrate in early to middle layers. In contrast, all three relation components appear94

only in later layers of the network (Figure 4). This suggests that representations of concrete entities95

are established earlier in processing, while those of abstract relational concepts emerge later. Not96

only do all three relation components concentrate in later layers, but we find that, even within each97

relation component, nodes from later layers tend to have a stronger causal impact on model outputs.98

This is not the case for country nodes, which exhibit variable relationships between layer depth and99

KL divergence ranging from positive to negative.100

Figure 4: Node-wise KL divergence between pre- and post-ablation output token distributions.
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Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel225

Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska,226
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A Related Work257

Mechanistic interpretability aims to reverse-engineer neural networks into human-interpretable algo-258

rithms. Central to this field is the hypothesis that large networks can be understood as compositions259

of subnetworks, known as circuits, that perform specific functions [11, 28, 33]. Early efforts involved260

manual identification of circuits for specific tasks such as numerical comparison [16] and indirect261

object recognition [35]. Work on in-context learning revealed specialized mechanisms like induction262

heads, which detect repeated subsequences and predict their completion [29]. To improve scalability,263

automated circuit discovery methods were developed, including path patching [14], ACDC [6],264

CD-T [18], and edge pruning [2]. However, these approaches are often computationally expensive265

and can yield circuits that are difficult for humans to interpret.266

The theory of superposition proposes that networks represent more features than dimensions by267

encoding sparse features across polysemantic neurons [10]. Dictionary learning techniques such268

as SAEs promise greater interpretability by extracting monosemantic features from polysemantic269

neurons [5, 19]. However, standard SAEs face challenges such as inconsistent feature quality, poor270

reconstruction, and weak functional alignment—issues that recent work has sought to address through271

architectural and training improvements [4, 31, 32]. SAEs have also allowed circuit discovery to272

operate on interpretable features instead of neurons [23]. Circuit tracing efforts by Anthropic [1]273

utilized transcoders [9], an alternative approach for extracting human-interpretable features from274

LLMs. Despite these advances, high computational costs remain a significant barrier. More recently,275

coactivation patterns have been explored for understanding SAE feature organization. Li et al. [20]276

analyzed the geometry of SAE features, finding spatial clustering of related concepts. Building on277

this approach, we construct directed graphs based on feature coactivation and introduce node pruning278

based on activation density. This allows us to discover semantically coherent, context-consistent279

connected components that can influence model outputs individually or in combination. Our approach280

offers a computationally efficient framework for analyzing and controlling LLM behavior without281

exhaustive circuit tracing.282

Factual knowledge is believed to reside in the feedforward layers of transformer-based LLMs.283

Geva et al. [13] characterized these layers as key-value memories mapping textual patterns to284

vocabulary distributions. Dai et al. [7] identified “knowledge neurons” whose activations correlate285

with specific facts. These insights have informed approaches for editing factual knowledge stored286

in LLMs [8, 26, 24]. Geva et al. [12] described the recall of factual associations as a three-step287

process involving subject enrichment, relation propagation, and attribute extraction. Hernandez288

et al. [17] demonstrated that relation decoding in transformers can be approximated by simple289

linear transformations. Merullo et al. [25] showed that LLMs implement Word2Vec-style vector290

arithmetic to solve some relational tasks. Recent work on “knowledge circuits” has begun tracing291

causal pathways underlying factual recall [36, 30]. Leveraging SAEs, our method offers a more292

human-interpretable analysis of LLMs’ knowledge organization by identifying emergent connected293

components that correspond to task-related concepts.294

B Model and Hyperparameter Selection295

Our choice of LLMs was constrained to those with pretrained SAEs available via Neuronpedia. We296

did not use smaller models like GPT-2, as they demonstrated a weaker grasp of the factual concepts297

under investigation (e.g., confusing Lagos, Nigeria’s largest city, with its capital) and an inability to298

follow in-context instructions to shorten their answers.299

For individual country and relation steering, we selected steering strengths ωc,ωr from {k ·0.05 : k →300

Z} ↑ (0, 1] that achieved the highest respective success rates. For composite steering, we selected the301

(ω→
c,ω

→
r) pair from {ωc↓0.05,ωc,ωc+0.05}↔{ωr↓0.05,ωr,ωr+0.05} that achieved the highest302

success rate. This procedure yielded parameters ωc = 0.1, ωr = 0.45, ω→
c = 0.15, and ω→

r = 0.45.303

C Component Feature Visualizations304

Figure 5 shows word clouds for LLM-generated descriptions [22] of SAE features within the China,305

capital, currency, and language components.306
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China Component Capital Component

Currency Component Language Component

Figure 5: Component word clouds.

Figure 6: China components extracted from capital and currency prompts (Gemma 2 9B).

D Gemma 2 9B Results307

We replicated all experiments using Gemma 2 9B. Results closely mirrored those observed with308

Gemma 2 2B. The model showed context consistency, with similar country components across309

relations (Figure 6) and similar relation components across countries (Figure 7). High success rates310

were achieved for country (93%), relation (97%), and composite (92%) steering (see Tables 6–7).311

CN FR DE JP NG PL RU ES UK US Avg. Cap. Curr. Lang. Avg.

1.00 0.78 0.85 1.00 0.89 0.81 1.00 0.96 1.00 0.96 0.93 0.90 1.00 1.00 0.97

Table 6: Steering success rates for each target country and relation (Gemma 2 9B).
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Figure 7: Language components extracted from China and Nigeria prompts (Gemma 2 9B).

Ctry. / Rel. CN FR DE JP NG PL RU ES UK US Avg.

Capital 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Currency 1.00 1.00 1.00 0.72 1.00 0.50 0.11 0.94 1.00 1.00 0.83
Language 0.50 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00 0.93

Average 0.83 1.00 1.00 0.91 1.00 0.76 0.70 0.98 1.00 1.00 0.92

Table 7: Composite steering success rates for each target country-relation pair (Gemma 2 9B).

E License Information312

We provide available licenses and terms of use for key artifacts employed in this work, including313

relevant links:314

• Hugging Face Transformers315

– License: Apache 2.0 (https://github.com/huggingface/transformers/blob/316

main/LICENSE)317

– Terms of Service: https://huggingface.co/terms-of-service318

• Gemma 2 2B319

– License: Apache 2.0 (https://github.com/google-deepmind/gemma/blob/320

main/LICENSE)321

– Terms of Use: https://ai.google.dev/gemma/terms322

• Gemma 2 9B323

– License: Apache 2.0 (https://github.com/google-deepmind/gemma/blob/324

main/LICENSE)325

– Terms of Use: https://ai.google.dev/gemma/terms326

• Gemma Scope327

– License: Apache 2.0 (https://huggingface.co/google/328

gemma-scope-2b-pt-res/blob/main/LICENSE)329

– Terms of Use: https://ai.google.dev/gemma/terms330

• Transformer Lens331

– License: MIT (https://github.com/TransformerLensOrg/332

TransformerLens/blob/main/LICENSE)333

• SAE Lens334

– License: MIT (https://github.com/jbloomAus/SAELens/blob/main/335

LICENSE)336

• NetworkX337

– License: 3-clause BSD (https://github.com/networkx/networkx/blob/main/338

LICENSE.txt)339

• Neuronpedia API340

– License: MIT (https://github.com/hijohnnylin/neuronpedia/blob/main/341

LICENSE)342

We have verified that this work acts in accordance with all available licenses and terms of use.343
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